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26 Abstract

27

28 Peatlands are carbon-rich ecosystems that cover 185-423 million hectares of the earth’s 

29 surface. The majority of the world’s peatlands are in temperate and boreal zones, whereas 

30 tropical ones cover only a total area of 90-170 million hectares. However, there are still 

31 considerable uncertainties in C stock estimates as well as a lack of information about depth, 

32 bulk density and carbon accumulation rates. The incomplete data is notable especially in 

33 tropical peatlands located in South America, which are estimated to have the largest area of 

34 peatlands in the tropical zone. This paper displays the current state of knowledge surrounding 

35 tropical peatlands and their biophysical characteristics, distribution and carbon stock, role in 

36 the global climate, the impacts of direct human disturbances on carbon accumulation rates and 

37 greenhouse gas emissions. Based on the new peat extension and depth data, we estimate that 

38 tropical peatlands store 152-288 GtC, or about half of the global peatland emitted carbon. We 

39 discuss the knowledge gaps in research on distribution, depth, C stock and fluxes in these 

40 ecosystems which play an important role in the global carbon cycle and risk releasing large 

41 quantities of greenhouse gases into the atmosphere (CO2 and CH4) when subjected to 

42 anthropogenic interferences (e.g. drainage and deforestation). Recent studies show that 

43 although climate change has an impact on the carbon fluxes of these ecosystems, the direct 

44 anthropogenic disturbance may play a greater role. The future of these systems as carbon sinks 

45 will depend on advancing current scientific knowledge and incorporating local understanding 

46 to support policies geared toward managing and conserving peatlands in vulnerable regions, 

47 such as the Amazon where recent records show increased forest fires and deforestation.

48

49

50 Keywords: tropical peatlands, carbon cycling, greenhouse gas emissions, climate change, land 

51 use change
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55 Introduction

56 Peatlands are a type of wetland that form when waterlogged anoxic conditions limit the 

57 decomposition and respiration of organic matter (Vitt, 2013) and creates an accumulation of 

58 peat. Like most wetlands, peatlands can have dense vegetation cover with lacustrine 

59 characteristics (presence of the water plants), sometimes influenced by river seasonality and 

60 dynamics (Lähteenoja, Flores, & Nelson, 2013), as well as seasonal or annual floods with 

61 geomorphological features where water is retained  (Finlayson & Milton, 2018; Kelly et al., 

62 2013; Warner & Rubec, 1997). Whilst there is no absolute consensus on what defines peat, 

63 most studies have settled on two criteria: soils that have both an organic matter content of at 

64 least 30% (Reiche, Gleixner, & Küsel, 2010; Sorensen, 1993), though typically with a higher 

65 threshold of 50% (Gumbricht et al., 2017) or 65% (e.g. (Dargie et al., 2017), and a minimum 

66 depth of 30cm to 40cm (Dargie et al., 2017; Page et al., 2011; Page & Baird, 2016; Dargie et 

67 al., 2017; Page et al., 2011; Page & Baird; 2016) . 

68 These ecosystems provide unique ecosystem services, such as water storage by regulating 

69 the river’s discharge, thereby benefiting ecosystems and human communities (Harenda, 

70 Lamentowicz, Samson, & Chojnicki, 2018), along with  regulating water flow in hydrographic 

71 basins, including buffering floods (Joseph, 2005). Moreover, they are fertile fields for 

72 agricultural and horticultural production (Rieley et al., 2008),  play an important role in 

73 sediment, nutrient and carbon (C) retention (Rieley et al., 2008), and are home to a unique 

74 biodiversity that includes a variety of endemic species (Wilson, Griffiths, & Anielski, 2001). 

75 Peatlands cover a total area of about 185-423 million hectares throughout the world (1.2-

76 2.8% of the earth’s total land area) (Xu, Morris, Liu, & Holden, 2018). In the tropical area, 

77 zones covered by peat range from 90-170 million hectares and are located mainly in South 

78 America, Southeast Asia and Central Africa (Gumbricht et al., 2017). These system store large 

79 amounts of C (469-694 Giga tonnes of C) (Lähteenoja et al., 2012; Leifeld & Menichetti, 2018; 
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80 Page et al., 2011; Yu et al.,2010) and act as net sinks of atmospheric carbon dioxide (CO2). 

81 However, they can also act as major sources of greenhouse gas (GHG) emissions, such as CO2 

82 and methane (CH4), into the atmosphere( Leifeld & Menichetti, 2018; Roulet, 2012), due to 

83 either natural processes such as changes in autotrophic and heterotrophic respiration rates,  

84 changes in river paths, droughts and natural fires, or anthropogenic interferences including 

85 logging, drainage, deforestation, fires, and land use and land cover (LULC) changes (Hooijer 

86 et al., 2010; Leng, Ahmed, & Jalloh, 2019; Yule, Lim, & Lim, 2016). 

87 Changes to the gross C uptake and/or release of these ecosystems can reverse whole-

88 peatlands carbon budget and significantly alter the current and future global climate (Worrall 

89 et al., 2011; Wu & Roulet, 2014). In recent years, tropical peatlands have been receiving more 

90 attention not only because of their contribution to the global carbon budget and climate change, 

91 but also because of new estimates of larger peatland areas in the tropics (Dargie et al., 2017; 

92 Draper et al., 2014; Gumbricht et al., 2017; Page et al., 2011; Xu et al., 2018). To understand 

93 how tropical peatlands contribute to global climate change, it is important to understand their 

94 geographical coverage, capacity to store and sequester carbon, and the main factors that drive 

95 their degradation (Yu, 2011).

96 In contrast to temperate peatlands, in which the relationship between climate, ecosystem 

97 dynamics and carbon (C) accumulation is well studied, the body of literature on tropical 

98 peatlands is mainly concentrated on Southeast Asia (S E Page, Rieley, Shotyk, & Weiss, 1999; 

99 San José et al., 2013), Peru in South America (Kelly et al., 2017; Lähteenoja et al., 2012; 

100 Roucoux et al., 2017; Sorribas et al., 2016) and, to a lesser degree, the Cuvette Centrale basin 

101 in Africa (Dargie et al., 2019, 2017). This paper presents an extensive review about tropical 

102 peatlands in terms of their biophysical conditions that promotes peat formation (e.g. 

103 temperature, rainfall, ground water, nutrient pool and substrate quality), spatial distribution and 

104 carbon stock, as well as how these ecosystems are affected under different disturbance regimes. 
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105 Moreover, the paper identifies and discusses knowledge gaps surrounding this highly 

106 threatened, yet poorly understood ecosystem in several regions of the tropical area.

107

108 Peat formation process and biophysical characteristics of tropical peatlands 

109 In general, peat is formed when the amount of photosynthetically produced organic matter 

110 exceeds the loss of organic matter through fire, decomposition and lateral loss (Hodgkins et al., 

111 2018). Peat formation is led by several factors s, such as hydrological dynamics (groundwater, 

112 seasonality and river dynamics), climatic characteristics (temperature and precipitation), 

113 underlying topography and geology of the area, nutrient pool, chemistry, and vegetation 

114 dynamics (Biancalani & Avagyan, 2014; Hapsari et al., 2017; Yu, 2012). Hydrological 

115 dynamics are among the main factors that regulate peatlands and control peat formation 

116 processes, predominant vegetation, nutrient content, carbon sequestration capacity, and 

117 decomposition processes (Blodau, 2002; Limpens et al., 2008). In certain peatlands, where 

118 water-saturated condition occurs all year around, peat soil profiles identified peat domes that 

119 reach depths up to 15 m (Gumbricht et al., 2017).

120 In many tropical peatlands the soil is seasonally flooded mostly by large rivers with high 

121 nutrient content and intense sediment deposition. These factors associated to high precipitation 

122 patterns and temperatures favor the development of flooded peatlands concomitant of dense 

123 tree coverage, with high floristic diversity and high net primary productivity (NPP) (Gillman et 

124 al., 2015) and absence of mosses (Page et al., 1999). On the contrary, in many northern 

125 peatlands, the low temperature and low nutrient inputs favors the dominance of the bryophyte 

126 genus Sphagnum (Clymo, 1987) and a shrub layer is usually well developed with sparse 

127 occurrence of large trees (Vitt, 2013; Ingram, 1987).

128 The peatland vegetation cover described above, is an important characteristic that 

129 influences the composition and the process of peat formation. Peat in tropical peatlands is 

130 mainly formed by woody material and dead branches and roots (Dommain et al., 2015; Gallego-
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131 Sala et al., 2018) whereas most of the peat in northern peatlands is formed of Sphagnum mosses 

132 and sedges. The woody material contains high C:N and lignin:N ratios that degrade slowly 

133 (Gandois et al., 2012; Gandois et al., 2014). This promotes the release of phenolic components 

134 that inhibit decomposition (H. Wang, Richardson, & Ho, 2015). These conditions increase the 

135 aromatic content in the soil and create a reduced oxidation state in which C remains and 

136 recalcitrance is high, despite high temperatures (Hodgkins et al., 2018). Divergent from the peat 

137 formation process in northern peatlands, the low soil temperatures, freezing and the acid 

138 characteristics of the cell wall of Sphagnum species favor the reduction of C oxidative processes 

139 even with abundant labile carbohydrates (Sphagnum) (Vitt, 2013; Clymo, Kramer, & 

140 Hammerton, 1984).

141 “In general, there are two types of peatlands: ombrotrophic and minerotrophic (Clymo, 

142 1987), being divided according to the origin of nutrient input in the system . Ombrotrophic 

143 peatlands are influenced exclusively by water from precipitation (no other sources) 

144 (Bourbonniere, 2009; Takada, Shimada, & Takahashi, 2016; Vitt, 2013) while minerotrophic 

145 peatlands are typically formed in depressions and floodplains and receive mineral nutrients with 

146 incoming surface or ground water (Bourbonniere, 2009; International Peatland Society (IPS), 

147 n.d.; Lähteenoja et al., 2009; Takada et al., 2016; Vitt, 2013).

148 At the start of the peat formation, the peatland is initially minerotrophic (Clymo, 1987). 

149 As the peat layer grows in height, the dome becomes elevated and the peatland may no longer 

150 be affected by the river that feeds into it or by the entry of groundwater, thereby obtaining water 

151 exclusively from precipitation and becoming ombrotrophic. At this stage, nutrient and mineral 

152 deposits are mainly from atmospheric dry deposition or precipitation, but large amounts of 

153 nutrients can also come from dust and air pollution (Ponette-González et al., 2016). For 

154 instance, according to Swindles et al. (2018), the oldest Peruvian tropical peatlands discovered 

155 to date were formed in three stages: first, peat was formed in an abandoned river channel with 
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156 open water and aquatic plants; then inundated forest swamp was formed; and finally the peat 

157 dome raised as the peat accumulated.

158 Many peatlands in tropical region are minerotrophic having been formed from the lateral 

159 migration of rivers (Lähteenoja et al., 2013, 2012; Lähteenoja et al., 2009; Schumann & Joosten, 

160 2008). Most of them are located in river deltas, floodplain areas, abandoned river channels and 

161 shallow oxbow lakes (dead arms) (Baker, 2014; C. B. T.-C. and R. W. Craft, 2016; Rieley et 

162 al., 2008; Rebelo, Finlayson, & Nagabhatla, 2009). However, there are examples of 

163 ombrotrophic peat bogs in the tropics in South America (S E Page et al., n.d.; Swindles et al., 

164 2018), Southeast Asia (S E Page, Rieley, & Wüst, 2006; Wösten, Clymans, Page, Rieley, & 

165 Limin, 2008) and Africa (Dargie et al., 2017) reported in the literature. In Southeast Asia, 

166 different formation processes have been observed and most of the peat is currently 

167 ombrotrophic, with some related to ancient sea-level rise and an increase of Holocene 

168 precipitation (Dommain, Couwenberg, & Joosten, 2011). Thus, even at similar latitudes, the 

169 mechanisms of peat formation, regulation and carbon accumulation can differ between 

170 regions.” 

171

172 Distribution and carbon stock of tropical peatlands 

173 There is a lot of variation in the published data about the occurrence and distribution of 

174 tropical peatlands. Up to a few years ago, Southeast Asia (Indonesia, East Sumatra, Kalimantan, 

175 Papua New Guinea, Papua New Guinea, and Malaysia) was considered to have the largest 

176 peatland C reservoirs in the tropical area (Dargie et al., 2017; Joosten, 2009; Lähteenoja et al., 

177 2009; Miettinen & Liew, 2010; Miettinen, Shi, & Liew, 2016; Page, Rieley, & Banks, 2011; 

178 Page et al., 2002), however large intact peatlands have recently been described in South 

179 America (Draper et al., 2014) and Africa (Dargie et al., 2017). For example, Dargie et al. (2017) 

180 used field measurements combined with remote sensing data to estimate the extent of a peat 

181 complex in the Cuvette Centrale region of the Congo Basin, the largest intact tropical peatland 
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182 to date at 14.6 (13.2-15.6) million hectares (Mha). As a result of these recent studies, estimates 

183 of tropical peatlands have been revised (see Gumbricht et al., 2017; Xu et al., 2018) and the 

184 total area of tropical peatlands is now considered to cover 90-170 Mha, (23% to 30% of the 

185 total area covered by peatlands throughout the world). This new estimate is two to three times 

186 larger than the 56 Mha that Page et al. (2011) reported and which led to new discussions on the 

187 physical and chemical factors that define wetlands and peatlands (Figure 1). 

188 The new estimates of total peat cover in the tropics represent a volume of about 3,850-

189 7,268 km³ (estimated using area from Xu et al., 2018 and Gumbricht et al., 2017, and mean 

190 depth from Gumbricht et al., 2017), which is much higher than the previous estimate of 1,758 

191 km³ (Page et al., 2011) (Figure 1). Considering these estimates, the largest reserves of peat are 

192 located in Brazil (area and volume of 23 Mha and 900 km³, respectively), Indonesia (14 Mha 

193 and 578 km³) and the Democratic Republic of the Congo (9 Mha and 445 km³, Figure 2). It is 

194 important to note that in Indonesia there is a longer history of fieldwork and, therefore, a 

195 relatively large database of ground-truthing points (Jaenicke et al., 2008), whereas to date there 

196 are relatively few published field data from the Congo Basin (Dargie et al., 2017), and even 

197 fewer from Brazil (Lähteenoja. 2013).

198 Based on the estimated volume of peat in the tropics and the average carbon content per 

199 km3 of peat (Lähteenoja et al., 2009), we estimated that peat in the tropics stores an equivalent 

200 of 152-288 GtC (Table 1), which is significantly higher than previously reported estimates of 

201 119.2 (Leifield & Menichetti, 2018), 104.7 (Dargie etal, 2017), 90 (Moore et al., 2013), 88.6 

202 (Page et al., 2011) and 52 GtC (Zoltai & Martikainen, 1996). The stock of 152-288 GtC is 

203 equivalent to the amount of C emitted by burning fossil fuels at a rate of 10 GtC year-1 for the 

204 next 15-30 years (Murdiyarso, Hergoualch, & Verchot, 2010; Raupach et al., 2013). C emission 

205 from fossil fuel in 2014 were 9.8 GtC, (https://www.globalcarbonproject.org/). In addition, the 

206 mid-range value of our estimated C stock (215 Gt) represents about 25% of the terrestrial carbon 
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207 pool in the tropics (846.3 GtC), considering both carbon above ground (374.9 GtC, phytomass) 

208 and stored in the soil (571.3 GtC, Scharlemann et al., 2014).

209 The main explanation for the large range in our new estimate of tropical peatland C stock 

210 (152-288 GtC) is the different methodological approaches adopted for the estimation of the 

211 area. For instance, the numerical model that Gumbricht et al. (2017) adopted to estimate total 

212 area uses a set of factors associated with hydrological modeling, time series of vegetation, soil 

213 moisture and hydro-geomorphological data. Xu et al. (2018) considered a wide variety of 

214 sources from different authors and regions and applied criteria of relevance, spatial resolution 

215 as well as age, and combined these data sources to produce a new amalgamated global map of 

216 peatland distribution. For areas where peatland-specific datasets were not available, they 

217 estimated peatland extent based on the distribution of histosols derived from the Harmonized 

218 World Soil Database v1.2 (HWSD). Page et al., (2011) considered data from national soil 

219 inventories from different countries. Data from the latter may not be comparable given the 

220 different definitions of peat and inclusion of non-peat organic soils. The new estimates of 

221 Gumbricht et al. (2017) and Xu et al. (2018) suggest that the extent of differing with what was 

222 previously reported of what was previously reported (Page et al., 2011).

223 Peatlands in the tropical zone are found in many countries, however some regions have 

224 large peatland areas and carbon stock. The South American peatlands are estimated to be 

225 located mainly in the Rio Negro Basin (Brazil) and Pastaza-Marañón Foreland Basin (PMFB, 

226 Peru) (Draper et al., 2014, Lähteenoja et al., 2013; Lähteenoja et al., 2009), however, to date 

227 there has been limited ground-truthing of the former (Lähteenoja et al., 2013) and therefore 

228 larger uncertainty associated with the extent and volume of Brazilian peatlands. The PMFB 

229 alone is estimated to represent a C stock of 3.14 (0.44–8.15) GtC with 90% of this total 

230 contained belowground. The large uncertainty reflects the need for more field-data. 
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231 In Africa, peatlands occur in many countries, but extensive peatlands are located in the 

232 Rugezi Marsh in Rwanda, the Okavango Delta in Botswana, the Sudd catchment in Sudan and 

233 in particular the Congo basin (Grundling and Grootjans, 2018). The Cuvette Centrale wetland 

234 of the Congo basin is estimated to contain a C stock of 30.6 (6.3–46.8) Gt C (Bwangoy et al., 

235 2010; Dargie et al., 2017, Table 1). Again, note the large uncertainty range, which is a reflection 

236 of the fact that this estimate is based on a relatively sparse set of field measurements (Dargie et 

237 al., 2017). Peatlands have also been reported in southern Africa, mainly along the eastern coast 

238 (Mozambique Coastal Plain) and in the central plateau (Grundling & Grobler, 2005; McWethy 

239 et al., 2016). 

240 The total area covered by peatlands in Southeast Asia is roughly 21 Mha (Xu et al., 2018). 

241 Most of these peatlands are in Indonesia (15 Mha), Malaysia (2.2 Mha), Thailand (40 thousand 

242 ha) and, to a lesser extent, Vietnam, Brunei and the Philippines. A recent estimate put the peat 

243 C store in Indonesia alone at 28.1 (13.6-40.5) Gt C (Warren et al., 2017). Unlike other large 

244 tropical peat reservoirs in the world that are either untouched or have had little alteration, 

245 peatlands in Southeast Asia have faced intense anthropogenic disturbances since the 1970s, 

246 when permission was granted to use these extensive areas for commercial purposes.

247 Due to the current large uncertainties around carbon stocks in tropical peatlands, it is 

248 notorious that with the advance of knowledge in the identification of tropical peatlands (mainly 

249 extension and depth) resulted in significantly higher estimates for carbon stocks in the tropical 

250 zones. For South America and Africa the large uncertainty reflects the need for more field-data 

251 (Dargie et al., 2017). Peatlands in relatively remote African and Amazonian regions currently 

252 face low human intervention, however as anthropogenic activities, such as commercial 

253 agriculture, exploitation of waters for hydropower (in Andes), forestry (including 

254 deforestation), construction of impoundments, roads and ports, and gas exploration in peatlands 

255 increase, so does the degradation of these ecosystems (Baker, 2014; Lähteenoja et al., 2009; 
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256 Roucoux et al., 2017). Therefore, decreasing uncertainties about area, and C stock in such 

257 remote regions is crucial to estimate the true C accumulation potential of these peatlands and 

258 to prevent future impact of human activities that peatlands may face mainly in South America 

259 and Africa. 

260

261

262

263

264

265

266
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267

268 Figure 1 – Estimated peat area (a), depth (b) and volume (c), presented by Page et al. (2011), 

269 Gumbricht et al. (2017) and Xu et al. (2018) of tropical peatlands. (d) Estimated carbon stock 

270 (GtC) in tropical peatlands. Error bars are minimum and maximum estimates when available. 

271 *Values estimated using peatland area from Xu et al. (2018) and mean depth from Gumbricht 

272 et al. (2017) and Page et al. (2011).
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273
274

275
276 Figure 2 – Distribution of peatlands in tropical regions. Data from Xu et al., (2018)
277

278 Tropical peatland carbon accumulation, climate change and the global carbon cycle

279 The carbon accumulation rates in undisturbed tropical peatlands range from 24-300 gC 

280 m-2 yr-1 (Table 2), while for boreal and temperate undisturbed peatlands they are generally lower 

281 (vary from 2 to 271 gC m-2 yr-1, Olefeldt et al. 2012; Renou-Wilson et al. 2019). Although 

282 substantial variation occurs depending on peatland type, hydrology, vegetation type and peat 

283 formation (C. Craft, Washburn, & Parker, 2008; Sjögersten et al., 2014), C accumulation rates 

284 are, with a few exceptions, greater in the tropics and decrease with latitude (Sjögersten et al., 

285 2014). Additionally, the carbon accumulation rates in undisturbed tropical peatlands are 

286 generally much higher than in intact old-growth tropical forests, commonly over mineral soils, 

287 in Africa and Amazonia (40-91 and 0-47 gC m2 yr-1, respectively) (Hubau et al., 2020).

288 The accumulation rates depend on the balance between carbon uptake by vegetation and 

289 carbon emitted to the atmosphere and lost to adjacent terrestrial or aquatic system. CO2 
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290 emission vary greatly in tropical peatlands (250 and 13841 gC m-2 yr-1 (Table 3) and tend to be 

291 greater than in non-tropical systems (411 ± 128 gC m-2 yr-1 ) (Bubier, Bhatia, Moore, Roulet, 

292 & Lafleur, 2003; Clair, Arp, Moore, Dalva, & Meng, 2002; Crow & Wieder, 2005; Mäkiranta 

293 et al., 2009; Silvola, Alm, Ahlholm, Nykanen, & Martikainen, 1996). Estimated fluxes of CH4 

294 from peatlands are typically several orders of magnitude lower than those for CO2 (Table 3). 

295 CH4 emissions are indeed undetectable in some peatlands and an uptake from the atmosphere 

296 might occur instead (Sjögersten et al., 2014). Previous studies have estimated that undisturbed 

297 temperate and boreal environments emit moderate to high level of CH4 (-7.1–2088.6 gC m-2 yr-

298 1)  (Inubushi, Furukawa, Hadi, Purnomo, & Tsuruta, 2003; Martikainen, Nykänen, Alm, & 

299 Silvola, 1995; Melling, Hatano, & Goh, 2005; Mitsch et al., 2010; Turetisky 2014), whereas 

300 CH4 emissions from undisturbed tropical peatlands have been estimated at moderate range of -

301 9.2–110.6 gC m-2 yr-1 (Table 3).

302 Methane formation is driven by methanogenic microorganisms activity (anaerobic 

303 decomposers) that degrades organic matter slowly in an anoxic environment (Mitsch et al., 

304 2010). A peatland’s capacity to emit less CH4 appears to be a complex mechanism developed 

305 over several thousands of years, given that formerly human-disturbed restored peatlands in 

306 temperate systems with well-established vegetation and carbon stock have CH4 emissions about 

307 150% higher than older peatlands (Renou-Wilson et al., 2019). This fact suggests that to 

308 maintain low CH4 emissions and higher carbon sequestration rates it is important to not only 

309 invest in actions that seek to recover impacted areas, but also to ensure that ecosystems are 

310 protected.

311 In the absence of direct human disturbance, many tropical peat deposits are actively 

312 accumulating carbon or are in steady states (Dargie et al., 2017; Fatoyinbo, 2017). However, 

313 climate change may significantly impact peatlands, and this relationship is poorly understood, 

314 particularly in the case of tropical peatlands, and thus the fate of peatlands under future change 

Page 14 of 44Global Change Biology



315 remains uncertain (Frey & Smith, 2005; Gallego-Sala et al., 2018; Hapsari et al., 2017; Hirano 

316 et al., 2012; Hodgkins et al., 2018; Rieley et al., 2008). The effect of climate change will depend 

317 mainly on how temperature, total precipitation, sea level and frequency of extreme events will 

318 change in a specific region and how they will affect hydrology, vegetation composition and, 

319 consequently, primary production, substrate quality, decomposition process, lateral carbon 

320 fluxes and C accumulation rates of peatlands. 

321 Some recent work, using Dynamic Global Vegetation Models (DGVMs) indicated, for 

322 Northern Hemisphere peatlands, a carbon sink twice as big than the 1861-2005 mean under two 

323 climate scenarios (defined by the RCPs 2.6 and 6.0), even though rapid climate change (under 

324 RCP8.5) might impact negatively the extent of northern peatlands, and the capacity of these 

325 areas to act as a carbon sink (Chaudhary et al, 2019; Qiu et al, 2020). As well, some models 

326 have predicted continued peat accumulation through to 2100 (Gallego-Sala et al., 2018; Spahni 

327 et al.,2013), while most models agree that there will be substantial losses over the next centuries 

328 (Avis, Weaver, & Meissner, 2011; Gallego-Sala et al., 2018; Ise et al.,2008), and some models 

329 have predicted that loss to start before 2100 (Avis, Weaver, & Meissner, 2011; Ise et al.,2008). 

330 Few pan-tropic modelling studies have been undertaken (Gallego-Sala et al., 2018; Treat et al., 

331 2019) largely due to the sparsity of available data on tropical peatlands that is needed for model 

332 parametrization and validation. Climate models for the western Amazon predict increasing 

333 precipitation and river discharge over the century (Duffy et al., 2015; Sorribas et al., 2016; 

334 Zulkafli et al., 2016) whereas the opposite is predicted for the Eastern Amazon (Duffy et al., 

335 2015; Sorribas et al., 2016), meaning that Brazilian peatlands are likely to be more vulnerable 

336 than those in Peru. However, a recent modelling study in the PMFB in Peru predicted that 

337 temperature increases would offset any positive effect of increased precipitation on peat 

338 accumulation by the end of the century through an increase in decomposition. i.e., Peruvian 

339 peatlands will cease peat accumulation despite increases in precipitation (Wang et al.,  2018). 
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340 Likewise, in the Congo Basin there is a clear consensus that temperature will increase under all 

341 future scenarios while precipitation is predicted to increase under high emission scenarios and 

342 remain relatively unchanged under low emission scenarios (Haensler, Saeed, & Jacob, 2013) 

343 and, therefore, Congolese peatlands may also be vulnerable to future climate change. Likewise, 

344 studies in Southeast Asian peatlands, many of which are already degraded from deforestation 

345 and drainage, have been shown that additional carbon emission could also occur if dry seasons 

346 are extended or are more severe due to future climate change (Warren, et al., 2017).

347  Conversely, there is evidence to suggest that tropical peats may be more resistant to 

348 temperature changes. Hodgkins et al. (2018) observed that the higher aromatic content of 

349 tropical peat compared to the peat located at higher latitudes creates both a reduced oxidation 

350 state and higher recalcitrance, which prevents carbon release, even at high temperatures. In 

351 many peatlands in the northern hemisphere, deep peat has also high recalcitrance 

352 characteristics, which means that despite the expected temperature increases from climate 

353 change, the deep peat will probably remain stable, suggesting that these carbon stocks may be 

354 preserved in the face of climate change given their similar characteristics to tropical peat. 

355 Although there may only be a direct relationship between temperature and decomposition in 

356 high recalcitrant peat, it is recognized that changes in precipitation can alter the natural 

357 hydrology of these environments and enhance the degradation processes of recalcitrant peat  

358 (Chimner & Ewel, 2005).

359 In summary, many peatland areas are projected to stop accumulating peat by the end of 

360 the century and beyond, thus creating a positive climate feedback loop where further warming 

361 means C losses and, in turn, greater radiative forcing (Gallego-Sala et al., 2018).  However, 

362 across the entire tropics, and particularly the Amazon and Congo basins, further field data is 

363 required to better parameterize and validate models so that we can improve projections of the 

364 future C balance in tropical peatlands, which at the moment remain highly uncertain.
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365 Although climate change (such as changes to temperatures and precipitation) has an 

366 impact on the dynamics of these ecosystems, direct anthropogenic changes (LULC changes, 

367 drainage and deforestation) currently play a greater role.  Therefore, understanding the impact 

368 of direct anthropogenic changes on these ecosystems can help us understand whether tropical 

369 peatlands are a net sink or net source in the global carbon cycle.

370

371 Direct human disturbances and their impacts on carbon accumulation rates and GHG 

372 emissions in tropical peatlands

373 Anthropogenic activities, such as logging, drainage, deforestation, fires and the 

374 conversion of native forests to agricultural lands, have been rapidly increasing in peatlands 

375 since the 1990s (Hooijer et al., 2010), particularly in developing countries, and have put these 

376 ecosystems at risk (Swindles et al., 2018). Although most of the scientific literature on the 

377 degradation processes of tropical peatlands focuses on Southeast Asia (Hapsari et al., 2017; 

378 Hirano, Jauhiainen, Inoue, & Takahashi, 2009; Hirano et al., 2012; Inubushi et al., 2003; 

379 Könönen, Jauhiainen, Laiho, Kusin, & Vasander, 2015; Rieley et al., 2008), the degradation of 

380 large areas of peat and the impacts that may alter their natural conditions have also been 

381 documented in both South America and Africa (Baker, 2014; Dargie et al., 2017; Dargie et al., 

382 2019; Roucoux et al., 2017; Swindles et al., 2018).

383 In Southeast Asia, domestic and international demand for agricultural and forest products 

384 and services has put pressure on tropical peatlands and, by 2010, it was estimated that only 36% 

385 of the original peatland area in the Southeast Asia was covered by primary and secondary peat 

386 swamp forest (Miettinen, Shi, & Liew, 2012; Dohong, Aziz & Dargusch, 2017). In the 

387 Indonesian regions of Sumatra and Kalimantan, the two regions of Indonesia with the greatest 

388 impacts, only 6% were pristine peat swamp forests (Miettinen, Shi, & Liew, 2012). To meet 

389 the high demand of agricultural products, the peatlands have been subjected to deforestation 

390 (Hirano et al., 2012), widespread drainage (Fatoyinbo, 2017), and recurrent fires (Page et al., 
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391 2002). Page et al. (2011) argues that, on the one hand, expansion of agriculture and forestry in 

392 the region has provided opportunities to industries and businesses, yet on the other hand it has 

393 also had, has also had negative environmental impacts. Between 2000 and 2010, Southeast Asia 

394 has had the highest annual rate of deforestation (rate of 2.2%) among all tropical humid regions 

395 in the world. This deforestation has resulted in the loss of 11 Mha of native forests and has led 

396 to significant changes in natural ecosystem dynamics, mainly related to carbon balance 

397 (Miettinen & Liew, 2010). Harris et al. (2013) projected land use and emissions from peatlands 

398 between 2010 and 2050 across Indonesia, Malaysia, and in Papua New Guinea and found that 

399 under the “business as usual” scenario, in which total production of oil palm will increase 

400 without peatland protection measures, the average annual CO2 emissions would almost double 

401 between 2020 and 2050 (from 264 to 424 Tg CO2 yr-1). In contrast, restoring the peat to native 

402 forest vegetation (restoration scenario) would bring annual emissions close to zero.

403 In Africa, increased economic development could have a negative impact on peatlands 

404 through hydrocarbon exploration, logging, plantations and other forms of disturbance that 

405 significantly damage these ecosystems,  although they are still intact today (Dargie et al., 2019). 

406 Additionally, land-use changes occur as a result of multiple complex and interacting 

407 environmental, economic and political factors, which can accelerate the negative impacts of 

408 human activities. In Cuvette Centrale region in Congo, rivers are the main transport network 

409 and there are relatively few roads. This, along with the large distance from any international 

410 port and low population densities, is among the reasons why the Congo basin peatlands have 

411 so far been spared from more severe degradation typical for Southeast Asian peatlands. 

412 Although limited in number, roads have already been constructed across some of the peatland 

413 areas of the Cuvette Centrale. No studies have yet considered the specific impacts of these roads 

414 on the peat properties, hydrology or vegetation; however, the observed swamp forest death 

415 following road construction suggests that roads could be having a negative impact on the 
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416 wetlands of the region (Dargie et al., 2017). The low level of human intervention in the Cuvette 

417 Centrale peatlands at present suggests that there is still time to protect the peatlands in a largely 

418 intact state, possibly by encouraging funding for mitigation of land-use change (Dargie et al., 

419 2019). 

420 In South America, large areas of undisturbed peatlands are increasingly facing a range 

421 of threats, including hydroelectricity (river damming) projects, road and railway projects (Finer 

422 & Orta-Martínez, 2010; Gutiérrez-Vélez et al., 2011), ore, gas, and oil exploration, logging and 

423 drainage for agriculture (Baker, 2014; Roucoux et al., 2017). Over exploitation of the palm fruit 

424 (Mauritia flexuosa – commonly found in wetlands) is also an increasing concern (Kahn & 

425 Mejia, 1990; Lilleskiv et al, 2019). In contrast with the better-known but highly degraded and 

426 at-risk peatlands of Southeast Asia (Miettinen et al., 2012), many peatlands in South America 

427 remain largely intact and the threat of destruction from direct human impacts is comparatively 

428 low (Baker, 2014).  

429 In general, the degradation process of tropical peatlands begins with the felling of natural 

430 vegetation, which reduces the amount of biomass in the system (Könönen et al., 2016), and 

431 promotes an increase of C oxidation rates and a reduction of soil moisture because of the 

432 increased incidence of direct radiation (Dargie et al., 2019;  Jauhiainen, Hooijer, & Page, 2012). 

433 However to a lesser extent, a reduction in vegetation can also lead to increase in soil moisture 

434 due to the decrease in transpiration (Porporato, Laio, Ridolfi, & Rodriguez-Iturbe, 2001). After 

435 the deforestation process, the peatlands are artificially drained in order to reduce groundwater 

436 levels to plant perennial and rotating crops (Dargie et al., 2019) are not adapted to the naturally 

437 flooded environment. Next, aerial biomass crops are produced, which reduce the ecosystem 

438 carbon uptake because the soil no longer has the environmental conditions of peatlands to 

439 accumulate carbon, and the carbon accumulated by the crop primary production is removed 

440 from the system through the harvest (Roucoux et al., 2017)
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441 The most recent studies on GHG soil emissions from natural and impacted environments 

442 show that tropical peatlands have high CO2 emissions in drained environments used for 

443 agricultural production and in recovering areas (Leifeld & Menichetti, 2018). Although non-

444 impacted forests emit C through soil respiration, on average emissions are lower due to the 

445 maintenance of natural soil moisture conditions and groundwater levels. 

446 In Indonesia, the carbon lost in peatlands after LULC changes has averaged 

447 approximately 60 Mg ha-1 yr-1 over 25 years of interference (Murdiyarso et al., 2010). This loss 

448 is, in part, due to the absence of vegetation in impacted and/or drained peatlands, given that in 

449 undisturbed peatlands C sequestration from vegetation cover offsets C emissions from the soil. 

450 In Southeast Asia, it is estimated that in 2006 CO2 emissions from organic matter 

451 decomposition in drained peat soil were equivalent to 1% to 3% of all global CO2 emissions 

452 from burning fossil fuels (~630 Mt), and that 82% of these emissions were from Indonesian 

453 peatlands (Hooijer et al., 2010). Other studies have pointed to even higher emission rates 

454 associated with peat decomposition in Indonesia, reaching about 8% of global emissions from 

455 burning fossil fuels (2000 Mt yr-1 of CO2, Rieley et al., 2008). Moreover, major events were 

456 reported in 1997 and 2015, in which widespread forest and peatland fires burned large areas of 

457 the Southeast Asia (Page et al. 2002; Huijnen et al., 2016), especially Indonesia, releasing large 

458 amounts of carbon land-based in the atmosphere, mainly in the form of CO2, CO and CH4. With 

459 an average emission rate of 11.3 Tg CO2 per day during these events, emissions exceeded the 

460 European Union's (EU28) fossil fuel CO2 release rate of 8.9 Tg CO2 per day (Huijnen et al., 

461 2016).

462 Methane fluxes also change as a result of human disturbance (Reay et al., 2018). The 

463 conversion of peatland forests to areas of intensive cultivation, along with significant inputs of 

464 nitrogen fertilizers, may alter the natural dynamics of methane and nitrous oxide emissions 

465 (Tian et al., 2015). Rice crops in Indonesia have shown very significant CH4 emissions after 
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466 being converted from peatland forests (Table 3) because the production of CH4 by 

467 methanogenic microorganisms is boosted by both the ever-flooded system and the use of 

468 nitrogen fertilizers (Conrad, 2002). Emissions from these crops may be about 20-fold greater 

469 than emissions from natural areas. Nitrous oxide emissions in Indonesia have been shown to 

470 increase substantially with land use change and the introduction of agricultural activities in 

471 peatlands (Oktarita et al., 2017). Nitrous oxide emissions from Elaesis guineensis (oil palm) 

472 monocultures in Indonesia were reported by Hadi et al. (2005) at 9.1 gC m-2 years-1, higher than 

473 those reported by Inubushi et al. (2003) in native peat forests, 1.25 gC m-2 years-1.

474 In addition to GHG emissions, drainage enables organic matter to be transported to 

475 adjacent watercourses in the form of dissolved organic carbon (DOC), particulate organic 

476 matter and dissolved inorganic matter. For instance, Baum et al. (2007) suggest that Indonesian 

477 rivers, particularly those receiving effluents drained from peatlands, transfer large amounts of 

478 carbon, in the form of DOC, to the oceans (21 Tg  yr-1) and that this accounts for approximately 

479 10% of global riverine DOC inputs into the ocean (Rieley et al., 2008).

480 Roucoux et al. (2017) examined the services provided by large, intact tropical peatlands, 

481 the factors threatening them, and opportunities to conserve them, and cite that, although their 

482 contribution from tropical peatlands to climate regulation on the planet is evident, their 

483 importance is weakly articulated within existing conservation agendas, mainly because they are 

484 poorly described and mapped and are frequently unrecognized by local agencies and 

485 institutions. Fortunately, in Amazonia, Africa, and New Guinea tropical peatland ecosystems 

486 are also widespread and often much less intensively exploited. Many can be described as intact 

487 at the landscape scale; their hydrology is unaffected by human activity and their vegetation 

488 cover is not fragmented or substantially degraded. 

489
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490 Table 1 –Tropical peatland carbon stock (GtC) showing mean values and/or (range) if available.

Carbon stock 
System/Location Land cover

(GtC)
Ref.

Tropical Asia  68.9 (66.6 – 70.4) Page et al. (2011)
    Central Kalimantan, South 
Sumatra and West Papua Peat swamp forest 55 ± 10 Jaenicke et al. (2008)

    Indonesia Native Forest 23.2 Dommain et al. (2014)
    Indonesia Native vegetation and impacted areas 30 Rudiyanto et al. (2015)
    Indonesia Native vegetation and impacted areas 57.4 Page et al. (2011)
    Malaysia Native vegetation and impacted areas 9.1 Page et al. (2011)
    Southeast Asia Native vegetation and impacted areas 172 Sjögersten et al. (2014)
    Southeast Asia Native Forest 65 Dommain et al. (2011)
    Southeast Asia Native vegetation and impacted areas 20 Dommain et al. (2011), (2014)
Tropical America  12.7 (11.5 – 13.4) Page et al. (2011)
    Peru (Pastaza-Marañon) Native Forest 3.14 (0.4 – 8.1) Baker, (2014)
    Peru (Pastaza-Marañon) Native Forest 3.12 (0.8 - 9.5) Lähteenoja et al. (2012)
Tropical Africa  6.9 (3.5 – 8.1) Page et al. (2011)
    Cuvette Centrale, Congo Native Forest 30.6 (6.3 – 46.8) Dargie et al. (2017)
Global scenario  (469 – 694) Page et al. (2011); Yu et al (2010) 

    Tropical undisturbed  (139 – 251) Miettinen & Liew (2010); Zoltai 
(1996)

    Tropical disturbed  (13 – 37) Kurnianto et al. (2015); Zoltai & 
Martikainen (1996)

    Tropical (152-288) This study

    Non-Tropical  (387 – 394)
Page et al. (2011); Gorham (1991); 
Immirzi & Maltby (1993); Gorham 

(1991)
491

492

493 Table 2 – Carbon accumulation rates (gC m−2 yr−1) from tropical peatlands and from non-tropical peatlands (for comparison) showing mean values 

494 and/or (range) if available. Positive values are carbon accumulation and negative values are carbon loss.

Carbon accumulation 
rates System/Location Land cover

(gC m−2 yr−1)
Ref.

Tropical Asia    
    Central Kalimantan Native Forest 22.3 (6.5 – 121.4) Page et al. (2004)
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    Central Kalimantan Native Forest 31.3 (16.6 – 73.2) Dommain et al. (2011)
    Central Sumatra, 
Indonesia Secondary peat swamp forest 55 Hapsari et al. (2017)

    Indonesia Native Forest 72 Dommain et al. (2015)
    Indonesia Native Forest 94 Page et al. (2004)
    Brunei (Borneo) Peat swamp forest (mangrove forest) 300 Dommain et al.(2015)
    Brunei (Borneo) Peat swamp forest (Shorea albida) 50 Dommain et al.(2015)
    Kalimantan Central  Drained peatlands and forest 85 Page et al. (2004)
    Kalimantan, Indonesia Peat swamp forest 94.3 Page et al. (2004)
    Malaysia Rain forest (79 – 147) Kosugi et al. (2008)
    Riau, Sumatra Native Forest 81 ± 1.4 Neuzil et al. (1997)
    Sarawak, Malaysia Undrained peat swamp forest 8.46 ± 0.51 Wong et al. (2020)

    Sarawak, Malaysia Relatively disturbed secondary peat 
swamp forest 4.17 ± 0.69 Wong et al. (2020)

    Sarawak, Malaysia oil palm plantation 2.19 ± 0.21 Wong et al. (2020)
    Southeast Asia Native Forest (30 – 270) Page et al. (2004)
    Southeast Asia Drained affected peat swamp forest (-499 – -174) Rieley et al. (2008)
    West Kalimantan  Drained peatlands and forest (74 – 85) Neuzil et al. (1997)
Tropical America    
    Amazonia Amazonian forests without El Niño event -100 Saleska et al. (2003)
    Amazonia Amazonian forests with El Niño event (100 – 200) Saleska et al. (2003)
    Amazonian peatlands Forested peatland (26 – 195) Lähteenoja et al. (2009)
    Costa Rica Fragments of Yolillo (Raphia) (250 – 260) Mitsch eta al. (2010)
    French Guiana Pristine tropical rain forest -138 Bonalet et al. (2008) 
    Peru (Pastaza-Marañon) Native Forest 52 ± 22 (36 – 85) Lähteenoja et al. (2009)
    Peru (Pastaza-Marañon) Native Forest (28 – 108) Lähteenoja et al. (2012)

Cayambre-Coca Peatlands in the Andes Mountains 51.1 Chimner & Ewel (2005)
Tropical Africa    
    Cuvette Centrale, Congo Native Forest 23.9 ± 5.8 (18.3 – 33.1) Dargie et al. (2017)
    Kenya Tropical papyrus peatland 160 Jones and Humphries (2002)
    Burundi Buyongwe Swamp 125 Panujen (1996)
    Burundi Ndurumu Swamp 65 Panujen (1996)
    Rwanda Cyili Swamp 113 Panujen (1996)
    Rwanda Gishoma Swamp (86-106) Panujen (1996)
    Rwanda Mashya Bog 91 Panujen (1996)
    Rwanda Cyabaralika Swamp 33 Panujen (1996)
    Rwanda Kiguhu Swamp 31 Panujen (1996)
Global scenario    
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    Tropical undisturbed  (24 – 300) Kurnianto et al. (2015); Chimner (2004)
    Tropical disturbed   (-499 – -174) Rieley et al. (2008)

    Non-Tropical  (-248 – 271) Roulet et al. (2007); Olefeldt et al. (2012); 
Renou-Wilson et al. (2019)

495

496 Table 3 – Estimates of soil emission of CO2 and CH4 from peatlands (gC m−2 yr−1) showing mean values and/or (range) if available. *Values of 

497 CO2 emission are from autotrophic and heterotrophic respiration and do not consider primary production.  *Positive values of soil emission mean 

498 carbon emission and negative mean carbon uptake.

499

CO2* CH4** 
System/Location Land cover

(gC m−2 yr−1)
Ref.

Tropical Asia     
    Malaysia Forested peatland  0.02 (-0.05 – 0.10) Melling et al. (2005)
    Thailand Forest peatland  9.81 ± 23.6 (1.7 – 110.4) Ueda et al. (2000)
    Central Kalimantan Peat swamp forest floor 3493 ± 316 1.36 ± 0.57 Jauhiainen et al. (2004)
    Indonesia Peat swamp forest floor  1.35 Jauhiainen et al. (2004)
    Indonesia Poorly drained forest 174 ± 203  Hirano et al. (2012)
    Indonesia Drained forest 328 ± 204  Hirano et al. (2012)
    Indonesia Burnt and drained forest 499 ± 72  Hirano et al. (2012)
    Indonesia Tropical peatlands (including rice)  (4.4 – 19.3) Hadi et al.(2005)
    Kalimantan, Indonesia Forested peatland 2777 ± 8322  Hirano et al.(2009)
    Kalimantan, Indonesia Secondary forest 4494 1.66 Hadi et al. (2005)
    Kalimantan, Indonesia Secondary forest 3460 (1603 - 35522) 4.4 (0 – 29) Hadi et al. (2005)
    Kalimantan, Indonesia Forested peatland 3495 ± 315 (438 - 4818) 1.4 ± 5.7 (-0.09 – 3.1) Jauhiainen et al. (2004)
    Kalimantan, Indonesia Forested peatland 4932 (692 - 13841)  Sundari et al. (2012)
    Kalimantan, Indonesia Forested peatland  9.6 ± 5.3 Inubushi et al. (1998)
    Malaysia Forested peatland 3889  Murayama and Bakar (1996)

    Micronesia Forested peatland 3469 ± 315 (2978 - 
3522)  Chimner 2004

    Sarawak, Malásia Sago (552 – 2146)  Melling et al. (2005)
    Sarawak, Malásia Oil palm (403 – 29334)  Melling et al. (2005)
    Sarawak, Malaysia Forest ecosystem (876 – 4669)  Melling  et al. (2005)
    South Kalimantan Secondary forest 1200 ± 430 1.2 ± 0.4 Inubushi et al. (2003)
    South Kalimantan Secondary forest peatland to paddy field (1200 – 1500) (1.2 – 1.9) Inubushi et al. (2003)

    South Kalimantan Changing land-use from Secondary forest to 
upland tended (1000 – 2000) (1.2 – 0.6) Inubushi et al. (2003)
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    South Kalimantan Abandoned upland crops field 990 ± 110 0.6 ± 0.7 Inubushi et al. (2003)
    South Kalimantan Abandoned paddy fields 1540 ± 290 1.9 ± 0.5 Inubushi et al. (2003)
    Southeast Asia Secondary Native Forest 3460 4.4 Hadi et al. (2005)
    Southeast Asia Secondary forest 3500 0.5 Hadi et al. (2005)
    Southeast Asia forest ecosystem 2100  Melling et al. (2005)
    Southeast Asia Lowland peatlands 250 1.09 Couwenberg et al. (2010)
    Southeast Asia Undrained peat swamp forest 3892 ± 304 1.36 ± 0.57 Rieley et al. (2008)
    Southeast Asia Drained uncultivated agricultural land 1928 ± 526 0.12 ± 0.09 Rieley et al. (2008)
    Southeast Asia Drained affected peat swamp forest 4000 ± 1091 1.3 ± 0.98 Rieley et al. (2008)
    Southeast Asia  Burned areas 2900  Hadi et al. (2005)
    Southeast Asia Converting peat swamp forests into oil palm 5940  Murdiyarso et al. (2010)
    Southeast Asia Paddy field 1389 19.6 Radjagukguk (1997)
    Southeast Asia Rice-soybean rotation field 2019 2.6 Bouwman (1990)
    Southeast Asia Paddy field 1400 1.4 Hadi et al. (2005)
    Southeast Asia Rice-soybean rotation field 2000  Hadi et al. (2005)
    Southeast Asia Oil palm 1500  Melling et al. (2005)
    Southeast Asia Sago 1100  Melling et al. (2005)
    Southeast Asia  Cultivation of palm oil (Elaesis guineensis) 5940  Murdiyarso et al. (2010)
    Southeast Asia  Rice crops (Mega Rice Project) 2178  Hadi et al. (2005)
    Southeast Asia Rice crops 1389 26.6 Hadi et al. (2005)
    Southeast Asia Agricultural Soils 2019 1.7 Hadi et al. (2005)
    Southeast Asia Horticulture 1500 1.9 Inubushi et al. (2003)

    Southeast Asia Cultures with nitrogen fertilization (Acacia 
sp e Metroxylon sagu) 2130 2.6 Couwenberg et al. (2010)

    Southeast Asia Clear felled recovering peat Swamp forest 3400 ± 927 2 ± 1.5 Rieley et al. (2008)
    Sumatra, Indonesia Forested peatland 3329 ± 481.8 7.8 ± 4.2 Furukawa et al. (2005)
    Sumatra, Indonesia Forested peatland 2435 ± 140 10.6 ± 11.9 Furukawa et al. (2005)
    Sumatra, Indonesia Forested peatland 3294 ± 937 6.7 ± 2.4 Furukawa et al. (2005)

    Sumatra, Indonesia Natural swamp forest drained more than 5 
years 267  Jauhiainen et al. (2012)

Tropical America     
    Bocas del Toro, Panama Forested peatland (Raphia sp.) 1857 (96 – 14839) (1.1 – 110.6) Wright et al. (2011)
    Bocas del Toro, Panama Forested peatland (Campnosperma sp.) 2085 (543 – 7017) (-7.7 – 31.8) Wright et al. (2011)
    Bocas del Toro, Panama Open peatland (Cyperus sp.) 1269 (61 – 8322) (-9.3 – 27.2) Wright et al. (2011)
    Ka’au, Hawaii Montane swamp 1112.5 ± 412  Chimner (2004)
    Mauim, Hawaii Montane peatland 2497 ± 657  Chimner (2004)
    Orinoco Llanos, Venezuela Palm peatland 263 (149 – 473)  Bracho & San José (1990)
    Brazil (Lowlands in São Paulo state) Pastureland (dry season and wet season) 3210 ( -5.2 – 4.0) Ribeiro et al. (2018)
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    Brazil (Lowlands in São Paulo state) Native forest (dry season and wet season) 2174 (-3.1 – 4.2) Ribeiro et al. (2018)

    Brazil (Lowlands in São Paulo state)  Irrigated rice crop (dry season and wet 
season) 2074 3.1 Ribeiro et al. (2018)

Global scenario     

    Tropical undisturbed  (250 – 13841) ( -9.3 – 110.6) Kurnianto et al. (2015); 
Chimner (2004)

    Tropical disturbed  (263 – 29334) (1.9 – 26.6) Kurnianto et al. (2015); 
Zoltai & Martikainen (1996)

    Non-Tropical  411 ± 128 35.1 ± 2.6 (-7.1 – 2088.6) Lund et al.(2010)

500

501
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502 Final remarks

503 Tropical peatlands are different from boreal and temperate peatlands, particularly their 

504 climatic settings, peat matter formation, and vegetation coverage. They cover 90-170 Mha 

505 which represents 23% to 30% of the total area covered by peatlands throughout the world. 

506 Bringing together the most up-to-date estimates of peatland area, peat depth, peat volume and 

507 peat carbon content, we estimate that tropical peatlands store 152-288 Gt of carbon, which is 

508 significantly higher than the previously reported values. The large uncertainty in these estimates 

509 is related to methodological approach and the sparse field data on depth and C content, mainly 

510 in South America and Africa. Despite tropical peatlands covering a smaller area and storing 

511 less carbon than non-tropical peatlands, carbon accumulation rates are greater in the tropics and 

512 decrease with latitude, which gives tropical peatlands the important role of accumulating carbon 

513 emitted by human activities now and in the future.

514 Climate change is a threat to peatlands, but at local and regional levels, direct human 

515 interventions have played a more important role in impairing the capacity of peatlands to 

516 sequester carbon. In the tropical zone, the carbon sequestration rate of peatlands in Southeast 

517 Asia has changed from 79-300 (uptake) to (-499) – (-174) g m−2 yr−1 (emission) after direct 

518 human interference. Integrated development and management mechanisms supported by strong 

519 policies and meaningful incentives can balance this scenario and contribute to more effective 

520 measures.

521 The Amazon region potentially holds the largest natural peatland across the tropics.  

522 However, the factors that contribute to tropical peatland degradation are only well understood 

523 for Southeast Asian peatlands. To date, very few studies have addressed the impacts of peatland 

524 degradation in South America and in Africa. Thus, advancing to fill the current scientific 

525 knowledge gaps and incorporating local understanding is crucial for supporting policies geared 

526 toward managing and conserving undisturbed peatlands in these regions. Furthermore, 
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527 understanding and mapping peatlands in Brazil by encouraging research projects can enhance 

528 the current knowledge about the potential of these system to uptake and store carbon, and can 

529 encourage actions aimed to protect peatlands in this region. Due to the high level of 

530 conservation and the expected high capacity of carbon accumulation, the Amazon region 

531 peatlands are particularly important in the context of climate change mitigation.
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Figure 1 – Estimated peat area (a), depth (b) and volume (c), presented by Page et al. (2011), Gumbricht et 
al. (2017) and Xu et al. (2018) of tropical peatlands. (d) Estimated carbon stock (GtC) in tropical peatlands. 

Error bars are minimum and maximum estimates when available. *Values estimated using peatland area 
from Xu et al. (2018) and mean depth from Gumbricht et al. (2017) and Page et al. (2011). 
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Figure 2 – Distribution of peatlands in tropical regions. Data from Xu et al., (2018) 
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