Bioorthogonal Swarming: In Situ Generation of Dendrimers

Citation for published version:

Digital Object Identifier (DOI):
10.1021/jacs.0c07869

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of the American Chemical Society

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Bioorthogonal Swarming: in situ Generation of Dendrimers

Yichuan Zhang, a,b Muhammed Üçüncü, a,c‡ Alessia Gambardella, a,‡ Assel Baibek, a Jin Geng, b Shuo Zhang, a Jessica Clavadetscher, a Inga Litzen, a Mark Bradleya* and Annamaria Lilienkampfa* a EaSTCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK; b Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; c Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey

Supporting Information Placeholder

ABSTRACT: With the aid of bioorthogonal chemistry, we demonstrate the fabrication of synthetic dendrimers in situ around living cells. Using tetratin–dienophile and aminooxyl/hydrazide–aldehyde chemistries, the density of functional groups on the dendrimers exponentially amplified intensities of fluorescent markers in antibody-targeted live cell imaging. This novel “swarming” approach highlights the power of bioorthogonal chemistry and provides a route to non-natural chemical structures on cells, paving the way for the generation of various artificial cellular nanostructures and scaffolds.

Dendrimers, with their well-defined structures, high density of functional groups, and a variety of internal binding elements, are ideal carriers for a variety of chemical cargos be they small molecular therapeutics,1–4 biomacromolecules (DNA, RNA and proteins),5–9 fluorescent reporters,10–13 or radioactive isotopes.14 As such, dendrimers are used in a variety of biological and medical scenarios and are often synthesized and modified with targeting ligands, before biological application.15–19 Polyamidoamines (PAMAM) are one of the most widely investigated dendrimers and have been explored for imaging,20,21 gene transfection22,23 and protein/drug delivery to name but a few.20, 24 offering precise control over their size, shape and the placement of functional groups (typically through distal primary amine functionalisation).25,26 Peptide-based dendrimers have also found uses in various biological applications ranging from multiple antigenic peptides (MAPs)27,28 to artificial capsids29 and imaging probes.30 Progress has already been made in fabricating linear polymers (by radical polymerizations) on the cell surface of yeast31 and even within mammalian cells,32 however, currently, these polymerization reactions are limited by the choice of monomers and lack of precise structural control.

Here we explore, for the first time, the in situ generation of dendrimers within/on biological systems (live cells) – an approach that requires highly bioorthogonal, biocompatible water-based chemistries.33,34 This in situ dendrimer formation offers the possibility of enhanced assay detection technologies, entrapping or “straightjacketing” cells, or the means of joining multiple ligands or cells together. In addition, this approach offers new biological applications of dendrimers, such as in situ synthesis of artificial organelles35–37 and biocatalysis.38–42

A number of bioorthogonal reactive partners such as aminooxyl–aldehyde,43–46 boronic acid–diol,47–49 tetratin–dienophile,50–53 and azide–cycloalkyne,54 have been used in applications from cellular labelling to material synthesis. The absence of bioorthogonal reactive centers on the surface of cells means that selective attachment with compatible reactive handles, for specific functional molecule conjugation in complex biological environments, is possible (e.g. the classic azido sugar incorporation onto cells).55–57 However, the in situ generation of dendrimers utilizing these powerful chemical tools has not been reported. Here, multibranched, bifunctional building blocks were synthesized, with bioorthogonal conjugations achieved using tetratin–dienophile and aminooxyl/hydrazide–aldehyde chemistries, with dendrimer generation validated first in solution and ultimately on cells via antibody targeting (Figure 1). The resulting dendrimers provided multiple reactive centers for bioorthogonal conjugations for amplification of fluorescence signals by means of so-called bioorthogonal “swarming”, i.e., rapid exponential amplification of reactive motifs by bioorthogonal conjugation of building blocks to a targeted reactive core.

The three multibranched building blocks 1–3, bearing bioorthogonally reactive centers (aldehyde–NHS ester 1, norbornene–aminooxyl 2, and tetratin–aldehyde 3), were synthesized using both solid-phase58 and solution-based chemistries (Figure 1, Schemes S1–S3). The building blocks, by design, contained high densities of amides and poly(ethylene glycol) groups to promote water solubility,
with spacers between functional moieties minimizing steric congestion. The branched building block 1 was designed as the first component of the dendrimer, with the NHS ester allowing conjugation onto primary amines (e.g. on antibodies giving Her-1, Figure S1), while the three aldehydes provide amplification sites for aminooxyl or hydrazide ligation (Figure 1). The second building block 2 was constructed with one aminooxyl motif and three norbornenes to enable amplification from three aldehydes to nine norbornenes (Her-2, Figure S1). Building block 3 has a single tetrazine and two aldehydes, allowing conjugation with the norbornenes and amplification of the reactive centers to give a total of 18 aldehyde groups (per dendrimer) on the antibody (Her-3, Figure S2). Labelling of the final dendrimer was achieved with fluorescein hydrazide 8 (giving the final antibody-dendrimer Her-4, Figure S3). The inverse electron-demand Diels–Alder (IEDDA) reaction between a tetrazine and a dienophile, and aminooxyl–aldehyde imine formation, are orthogonal to each other, allowing dendrimer generation.

The chemistries between the individual building blocks were first evaluated/validated by HPLC and 1H NMR. Tris-aldehyde 4 (without the active ester) was used as a model for 1 to investigate imine formation under biologically relevant conditions. When aminooxyl 2 was incubated with tris-aldehyde 4, full conversion of 4 and the generation of norbornene 5 as the only product was observed within 4 h (Figures 2 and S4). The IEDDA chemistry was evaluated with model norbornene 6 (without the aminooxyl) and tetrazine 3 with full conversion to bis-aldehyde 7 observed by HPLC after 30 min (Figure 2) with 1H NMR characterization showing the efficient generation of 7 (Figure S5). Thus, the oxime formation and the IEDDA chemistries were rapidly completed with high product purities and yields (note, the full conversion of the reactions requires completion of three individual reactions).

To investigate full dendrimer formation and fluorescence signal amplification, a sulphonated Cy5 fluorophore (bearing a short PEG spacer) was conjugated onto the tri-branched aldehyde 1 via the NHS ester to give 9 (Scheme S4), which was then used to build the fluorescently labelled dendrimer 10 (Scheme 1), using the aminooxyl 2 and tetrazine 3 building blocks and fluorescein hydrazide 8, consecutively, with the reactions monitored by 1H NMR and MS (Figures S6 and S7). The constructed “first-generation” Cy5-dendrimer 9 was also treated with fluorescein hydrazide 8 (giving S13, Figure S8) and both of the labelled dendrimers were analyzed by UV-Vis spectroscopy. The number of fluorescein molecules on dendrimers S13 (first-generation, 3 aldehydes) and 10...
Figure 2. Evaluation of the aminooxyl–aldehyde imine formation and tetrazine–dienophile IEDDA reactions. (A) Model tris-aldehyde 4 (1 mM) was reacted with aminooxyl 2 (15 mM, 5 equiv. per aldehyde) in MeCN/PBS (1:1, v/v) at 37 °C for 4 h to give 5, with the conversion monitored by HPLC (ELSD detection). (B) Model norbornene 6 (1 mM) was reacted with tetrazine 3 (10 mM, 3.3 equiv. per norbornene) in MeCN/PBS (1:1, v/v) for 30 min to give bis-aldehyde 7, with the conversion monitored by HPLC (ELSD detection).

The bioorthogonal “swarming” system was translated to the synthesis of dendrimers on the antibody Herceptin, which binds to HER2 receptors (overexpressed on cancer cells) and is widely used clinically.61 Tri-branched aldehyde 1 (1.37 mM) was conjugated to Herceptin (137 µM) via active ester coupling giving Her-1 as the initial focal point of the “swarm” (Figure 3 and S1). Her-1 (10 µM) was treated, consecutively, with the aminooxyl building block 2 (to give Her-2, Figure S2), tetrazine 3 (to give Her-3, Figure S2), and fluorescein hydrazide to give the bioorthogonally “swarmed” antibody Her-4 (Figure S3), with the isolated products from each step characterized by gel electrophoresis (SDS-PAGE). The bands in the higher molecular weight region indicated the successful conjugation of the building blocks, while the fluorescent signals indicated the specificity of the fluorophore ligation (Figure S9).

With all the biocompatible building blocks in hand (no cytotoxicity was observed, Figure S10), “swarming” was achieved on SK-BR-3 (HER2 receptor positive) cells. The cells were incubated with Her-1 (10 nM) for 4 h, washed and treated with the aminooxyl–norbornene 2 (150 nM) for 4 h to generate Her-2 in situ. Next, the washed cells were treated with the bis-aldehyde tetrazine 3 (450 nM), with Her-3 generated via IEDDA chemistry. After washing, fluorescein hydrazide 8 (1 µM) was added to the cells for 30 min to fluorescently label the dendrimers on cells, giving dendrimer Her-4. The localized “swarm” around the cells, with amplified fluorescence labelling (~18 fluorophores per dendrimer) was analyzed by confocal microscopy and flow cytometry (Figure 3 and S11). The cells showed 1.3-fold and 4.6-fold increase in fluorescence for cells bearing Her-1 and Her-4, respectively, compared to cells treated with fluorescein conjugated Herceptin FAM-Her (Figure 3c). Compared to
untreated cells, **Her-4** gave a 23.2-fold increase in fluorescence. The “swarmed” antibodies showed similar cellular localizations as the small molecule labelled Herceptin **FAM-Her**, *i.e.*, in the cytoplasm and membranes, with fluorescence “hot spots” observed in some cells with **Her-4** (Figure 3b), which was attributed to antibody aggregation due to the increased hydrophobicity upon dendrimer modification (see Figure S12 for full image panel). No swarming, *i.e.*, dendrimer formation, was observed on HER2 negative cell line MCF-7 (Figure S13).

In conclusion, a strategy for *in situ* generation of synthetic dendrimers on live cells, using a series of consecutive bioorthogonal reactions, was pioneered. Biocompatible building blocks, with multiple bioorthogonal reactive centers (aminooxy, aldehyde, tetrazine and norbornene), were designed and showed high reactivities and specificities for their respective reactions in biologically relevant conditions. The dendrimer structures were first synthesized in solution by “swarming” the building blocks around a Cy5 fluorophore, with the dendrimers confirmed by NMR and the amplification of fluorophores at the distal end of the swarm also shown by UV-Vis spectroscopy. The starting point (or core) of the dendrimer (carrying three reactive aldehydes) was conjugated to the clinically used antibody Herceptin, which allowed cancer cell targeting and subsequent dendrimer formation on live cells, with fluorescent signal amplification. This original “swarming” approach provides a new aspect of synthesis of non-natural chemical structures on cells and the generation of nanostructures may pave the way for the generation of artificial cellular organisms for controlling/tuning cellular behaviors.
ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge on the ACS Publications website.

Supporting Schemes and Figures, and experimental procedures and copies of NMR spectra (PDF).

AUTHOR INFORMATION

Corresponding Authors

Mark Bradley – EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK. mark.brady@ed.ac.uk

Annamaria Lilienkampf – EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK. annamaria.lilienkampf@ed.ac.uk

Authors

Yichuan Zhang – EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Muhammed Üçüncü – EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK; Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey.
Alessia Gambardella – EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.

Assel Baike – EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.

Jin Geng – Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Shuo Zhang – EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.

Jessica Clavadetscher – EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.

Inga Litzen – EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.

Author Contributions

1 M.Ü. and A.G. contributed equally to this work.

ACKNOWLEDGMENT

We thank European Research Council (Advanced Grant ADREEM ERC-2013-340469) for funding, and Dr Logan Mackay for the help with the MS experiments.

REFERENCES

