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Abstract 

Investigation of the global eruptive records of particular types of volcanoes is a fundamental and 

valuable method of understanding what style of activity can be anticipated in the future, and can 

highlight what might be expected or unusual in particular settings. This paper investigates the 

relationship between large explosions (Volcanic Explosivity Index, VEI ≥ 4), and lava dome 

growth from 1000 AD-present and develops the DomeHaz database. DomeHaz contains 

information from 397 dome-forming episodes, including duration of dome growth, duration of 

pauses in extrusion, extrusion rates, and the timing and magnitude (VEI) of associated large 

explosions. Major explosive activity, when associated with dome growth, is more likely to occur 

before dome growth rather than during, or at the end of, dome-forming eruptions. In most cases 

where major explosive activity has been associated with dome growth, the eruptions occurred at 

basaltic andesite to andesitic volcanoes (the most common type of dome-forming volcano), but a 

greater proportion of dacitic and rhyolitic dome growth episodes were associated with large 

explosions. High extrusion rates (>10 m3s−1) seem to be associated with large explosions, and 

may inhibit degassing or destabilize existing domes, leading to explosive decompression. Large 

explosions may, alternatively, be followed by dome growth, which represents the clearing of 

residual magma from the conduit. Relationships extracted from the global record can be used to 

construct probability trees for new and ongoing dome-forming eruptions, or can be used in 

conjunction with other types of event trees to aid in forecasting volcanic hazards during a crisis, 

especially for volcanoes where data are sparse. 

 



 

 

1. Introduction 

Lava dome-forming eruptions vary in style and can produce a variety of extrusive features from 

blocky Peléan-type domes (typically andesite to dacite), thick coulées and tortas (typically dacite 

to rhyolite), to low-viscosity coulées and flows (typically basalt to basaltic andesite) (Calder et al. 

in press). These eruptions are associated with a suite of hazards including dome-collapse 

pyroclastic density currents (PDCs), column-collapse PDCs, lateral blasts, lahars, and debris 

avalanches.  Ninety-five percent of dome-forming eruptions reported by Newhall and Melson 

(1983) were associated with some degree of explosive activity. Most of this explosive activity was 

VEI ≤ 3 (Newhall and Melson 1983). Nevertheless, major explosive activity, i.e. large explosions 

VEI ≥ 4, also occurs in association with dome growth and some of the most significant and deadly 

eruptions of the twentieth century have been of this type. These include the VEI 4 eruption of Mt. 

Pelée, Martinique on 8 May 1902 (Lacroix 1904); the VEI 4 eruption of Kelut, Indonesia on 19 

May 1919; the VEI 5 eruption at Mount St. Helens (MSH), USA on 18 May 1980 (Carey & 

Sigurdsson 1985; 1989); and the VEI 6 eruption of Mt. Pinatubo, Philippines on 15 June 1991 

(Newhall & Punongbayan 1996).  More recently, the 2008-2009 VEI 5 eruption of Chaitén, Chile 

was followed by dome growth (Major & Lara 2013); and the 2010 VEI 4 eruption at Merapi, 

Indonesia occurred during rapid dome growth (Jousset et al. 2013; Pallister et al. 2013a). While 

each of these are considered unusual events in the context of the individual volcano concerned, on 

a global scale it is clear that large explosions associated with dome growth occur with some 

regularity. In fact, of the 13 eruptions responsible for the majority (74%) of recorded fatalities 

since 1600 AD (Auker et al. 2013), 9 occurred at dome-forming volcanoes. 

Volcano observatories need to be able to easily access historical data in order to assess the potential 

for rapid escalation from precursory seismic or phreatic activity to explosions (of any magnitude) 



 

 

or to consider the likelihood that effusive dome growth may switch to major explosive activity. 

Global historical analyses provide a useful evidence base for decision-making alongside volcano 

monitoring and knowledge of the geological history of a volcano. Indeed, in the absence of 

monitoring data or significant knowledge of a volcano’s eruptive history, global analysis can 

provide a range of possible outcomes for which a community can prepare.  

In this study, all relevant data regarding the association of dome growth and explosive activity (of 

any magnitude) is collated into a database. DomeHaz forms one component of a wider initiative 

to develop global databases of volcanic hazards, several components of which have been 

completed, including the Large Magnitude Explosive Eruptions (LaMEVE) database (Ortiz-

Guerrero, 2008; Deligne et al., 2010; Crosweller et al., 2012; Auker et al. 2013; Brown et al. 2014). 

The rationale behind the present work is the following:  

1) To build upon and add to previous work (e.g. Newhall & Melson 1983; Loughlin et al. 1998), 

by including newly available data about more recent dome-forming eruptions or those previously 

not included in analyses (Fig. 1).  

2) To carry out a detailed investigation into the occurrence of major (VEI ≥ 4) explosive activity 

which can be considered an infrequent, yet possible, event associated with dome growth. 

3) To interpret the findings within the context of the significantly improved understanding of lava 

dome systems over the last 30 years (Melnik & Sparks 1999, 2005; Barmin et al. 2002; Diller et 

al. 2006) developed on the basis of exceptionally well-studied recent eruptions, e.g. MSH, USA 

(Lipman & Mullineaux 1981; Sherrod et al. 2008), Soufrière Hills Volcano (SHV), Montserrat 

(Druitt & Kokelaar 2002; Wadge et al. 2014a), Merapi, Indonesia (Newhall et al. 2000; Surono et 



 

 

al. 2012; Jousset et al. 2013), Unzen, Japan (Sato et al. 1992), and Pinatubo, Philippines (Newhall 

& Punongbayan 1996). 

One of the driving questions for this work is to estimate the likelihood, based on previous 

eruptions, that a period of dome growth may transition to major explosive activity. In particular, 

two pertinent questions are: When during a given dome-forming eruption is the likelihood of large 

explosions highest? To what extent does this likelihood vary based on composition, extrusion rate, 

or dome growth duration? 

2. DomeHaz: a global database of dome-forming eruptions  

The Smithsonian Institution Global Volcanism Program (GVP) database (Siebert and Simkin 

2002-) and the Bulletin of the Global Volcanism Network (BGVN) (Venzke et al. 2002-) were 

used to compile an initial list of dome-forming eruptions.  Peer-reviewed literature and volcano 

observatory data sources for particular eruptions or volcanoes were used wherever possible to 

validate the initial list and to extract eruption dates, composition, VEI and timing of major 

explosive activity, dates and duration of dome growth, extrusion rates, etc.; and were the preferred 

data sources. The database contains a total of 223 dome-forming eruptions with 397 recorded 

discrete episodes of dome growth (Fig. 1). The eruptions date from 1000 AD to the most current 

update as of publication, August 2014 (DomeHaz 2.1, currently available in spreadsheet format at 

https://vhub.org/groups/domedatabase, with the full relational database online soon).   

2.2 Terminology and data constraints 

2.2.1 Eruptions, dome-forming episodes, and explosions 

https://vhub.org/groups/domedatabase


 

 

There is always some subjectivity in defining what constitutes an ‘eruption’; this was discussed in 

Simkin et al. (1981), where it was assumed that no observed activity for periods of ≤ 3 months 

probably constituted a pause in an eruption, whereas longer periods without observed extrusion or 

other activity were considered to be gaps between eruptions. Improved monitoring means that the 

ends of eruptions may now be defined based on a return to baseline of the geophysical and/or 

remote sensing monitoring data rather than the end of extrusion. The beginning of an eruption is 

sometimes much easier to define than the end. Dome-forming eruptions, which can be long-lived 

and are often characterized by cyclical dome growth episodes, are particularly difficult to define 

consistently and present a challenge when compiling global databases. For example, the SHV 

eruption from 1995-present is generally considered (e.g. Loughlin et al., 2010) as one eruption 

with pauses (also known as quiescence) between episodes of dome growth of usually no more than 

2 years (Fig. 2a). At the time of this publication, there has been no lava extrusion at SHV for more 

than 4 years. However, the end of the eruption has not been announced and this quiescence in 

dome growth is currently considered to be a pause (SAC 2014), but could potentially be redefined 

in the future. In the GVP database, however, this period was split into three different eruptions. 

Santiaguito (Santa María), Guatemala has a record of distinct episodes of dome growth (Fig. 2b) 

(Harris et al., 2003), but short days-long pauses between these episodes were not recorded by the 

GVP. Merapi (Fig. 2c) has had numerous episodes of dome growth since 1768 with pauses in 

dome growth lasting up to 5 years, but with otherwise consistent extrusion rates and eruptive styles, 

so many refer to it as a long-lived continuous dome-forming eruption (Siswowidjoyo et al. 1995; 

Voight et al., 2000). The GVP lists many separate eruptions for Merapi in this period.  The start 

and end dates of an ‘eruption’ recorded in the GVP may therefore incorporate several discrete 

episodes of dome growth (e.g. SHV 1995-2003 and 2005-present; Santiaguito), coincide with a 



 

 

single episode of dome growth (e.g. Merapi), or refer to discrete explosive events (e.g. SHV 2004). 

It is important to note that the way in which the GVP defines these eruptions, mainly in relation to 

explosivity, is not necessarily incorrect, but is just one way of categorizing often difficult to define, 

ongoing, dome-forming eruptions based on information available at the time. Indeed, explosive 

intervals are important to discriminate, as these may be the most hazardous. The GVP database is 

largely based upon volcano observatory reports during ongoing eruptions, making discrete 

explosions easier to record than ongoing dome growth. There may be significant uncertainty about 

the status of a lava dome in daily to weekly reports from volcano observatories for a variety of 

reasons, including poor visibility. Start and end dates of dome growth (with quantified 

uncertainties) may be easier to record retrospectively, rather than during an eruptive episode. A 

clear, holistic picture of eruptive activity may, therefore, only be apparent retrospectively.  

Different definitions of an ‘eruption’ clearly pose a problem for examining the relationship 

between large explosions and dome growth, as they potentially skew the number of recorded 

eruptions and distort the timing of the explosive activity in relation to the ‘eruption’. For our 

purposes, we consider that a dome-forming eruption may have only one period of dome growth, 

or that one continuous dome-forming eruption (e.g. Fig 2) may have multiple episodes of dome 

growth with pauses in extrusion (quiescence) in-between. In this paper, cases where any of the 

following conditions are met are considered to be continuous dome-forming eruptions: 1) the 

literature refers to a volcano as “continuously active” for a given time period, 2) dome quiescence 

lasts less than 2 years, 3) dome quiescence is shorter than the longest period of dome growth, 

and/or 4) there is continuous observed volcanic activity or monitored unrest during dome 

quiescence. We note that this perspective on what constitutes an eruption was necessitated by the 

nature of our inquiry, and does not suggest that it is the only way to categorize or define cyclical 



 

 

dome-forming eruptions. In this study, we focus on dome growth episodes within continuous 

dome-forming eruptions, and in particular how they relate in terms of timing and extrusion rates 

to large explosions (VEI ≥ 4).  

With respect to how we define the relative timing, large explosions occur before dome growth 

when they precede the onset of lava extrusion; large explosions occur during dome growth when 

they occur during a period of active lava extrusion; and large explosions occur after a dome growth 

when they follow the complete cessation of dome-growth (rather than during a brief pause between 

dome-forming episodes).  

This work is concerned with potentially hazardous large magnitude explosions associated with 

dome-forming eruptions. There are some challenges with using VEI as an identifier of large 

magnitude explosive events, as VEI is based primarily on erupted tephra volume or plume height, 

and as a quantitative measure is subject to significant uncertainties (Brown et al. 2014). As such, 

this work only investigates two categories of dome-forming eruptions: those associated with large 

explosions (VEI ≥4) and those that are not (0-3). VEI also assumes that eruption magnitude and 

intensity are related, which may not be the case (Carey & Sigurdsson 1989). However, VEI has 

the advantage over other measures in that it can be relatively easily assigned from quantitative and 

qualitative data, allowing even poorly studied eruptions to be classified (Crossweller et al. 2012).  

2.2.2 Extrusion rates 

Extrusion rate information was collected from a variety of sources, including explicit statements 

of extrusion rates from volcano observatory-derived activity reports in the BGVN (Venzke et al. 

2002-) or peer-reviewed literature, calculations of weekly or monthly extrusion rates from reported 



 

 

dome volumes in BGVN activity reports, or longer-term averaged extrusion rates reported by 

Newhall & Melson (1983) or other literature.  

It is important to note that all extrusion rate data is necessarily time-averaged, over a variety of 

time scales and was collected using different methods. These time scales tend to be longer at poorly 

instrumented or difficult to observe lava domes, and with older data. Extrusion rates themselves 

can vary considerably over even short time periods (minutes to hours) so time-averaging misses 

much detail.  Because of the dearth of extrusion rate information in general (i.e. only available for 

129 out of 397 dome growth episodes), the wide variation in time-scales over which extrusion rate 

information is averaged, and the lack of reporting of the length of these time-scales, it is extremely 

difficult to ensure proper comparison of extrusion rates between episodes, eruptions and 

volcanoes. Wherever possible, we have recorded both the representative longer time-averaged 

extrusion rates, as well as any relevant information regarding extrusion rates immediately 

preceding or following large explosions (if they are higher than representative rates). Because 

more representative rates are available than relevant rates, the extrusion rate data is skewed toward 

lower extrusion rates.  

2.2.3 Completeness of the data 

Investigations of the global catalog of large explosions shows that under-recording of events is a 

serious problem, and that under-recording increases with age but decreases with magnitude (Coles 

& Sparks 2006; Furlan 2010; Brown et al. 2014).  Under-recording is shown to decrease rapidly 

beginning in 1000 AD (Coles & Sparks 2006), and to largely disappear after 1600 AD (Furlan 

2010). On the other hand, accurate frequency-magnitude distributions for very large explosions 

can only be obtained with sufficiently long time-scales (Deligne et al. 2010). Deligne et al. (2010) 



 

 

estimated that the probability of a large explosive eruption being recorded steadily decreases from 

nearly 100% for eruptions occurring today to roughly 20% for eruptions occurring in 1000 AD. 

Thus, the decision of the recording interval for DomeHaz is a tradeoff between adequately 

capturing large magnitude events, and avoiding the under-recording of smaller magnitude events. 

A comparison of DomeHaz with the GVP list of Holocene large explosions and LaMEVE (version 

2) shows that all known large explosions associated with dome growth since 1000 AD are 

contained in DomeHaz. However, it is assumed that DomeHaz does not capture all large 

explosions or all dome-forming episodes. The rate of under-recording for dome growth is currently 

unknown, and more difficult to quantify than under-recording of explosions, which follow a well-

studied frequency-magnitude distribution. It is likely that DomeHaz under-records dome-forming 

episodes with smaller magnitudes (VEI 0-3), and thus may overestimate the overall likelihood of 

associated large explosions.  

All dome-forming episodes in DomeHaz have compositional information. However, dome- or 

eruption-specific compositional information was not always available, and the characteristic 

composition of the volcano was used instead. Of the 397 dome-forming episodes, 384 have VEI 

information (the remaining 13 with unknown VEI are, however, known to be VEI < 4), 255 have 

duration information, and 129 have extrusion rate information. Of 51 dome-forming episodes 

associated with large explosions, 41 have information regarding the timing of the large explosion 

in relation to dome growth.  

3. Results 

The frequency with which different types of volcanoes developed different eruption scenarios are 

presented here as histograms and event trees. These results are based on data contained in 



 

 

DomeHaz, and as such, are a reflection of the frequency of known past occurrences (1000 AD to 

the time of publication) alone. 

The overview results (Fig. 3) indicate that major explosive activity (VEI ≥ 4) was associated with 

a small, but not insignificant, number of dome-forming episodes (51/397 dome-forming episodes 

had a total of 54 large explosions, 13%). An alternative view shows that ~20% of the VEI ≥ 4 

eruptions compiled by the GVP were associated with dome growth. Volcanoes of andesitic 

composition produced the greatest number of dome-forming episodes as well as the greatest 

number of large explosions associated with dome growth (29/296 cases; 10%) (Fig. 4a). However, 

dacitic and rhyolitic volcanoes had a greater proportion of large explosions associated with dome 

growth (17/59 cases, 29%; 5/10 cases, 50%, respectively) (Fig. 4a). Large explosions most 

commonly occurred before the onset of dome growth at volcanoes of all compositions (28/51 

cases, 55%)  (Fig. 4b). However, major explosive activity during dome growth episodes was not 

unprecedented (10/51 cases, 20%). Basaltic andesite to andesitic volcanoes had the greatest 

number (Fig. 4b) of large explosions to occur during or after dome growth, but more silicic 

volcanoes had similar proportions of large explosions during dome growth or cryptodome 

intrusion (Fig. 4b).  

In terms of duration of dome growth episodes, the vast majority lasted less than 5 years (237 of 

255 dome growth episodes with duration information), and as a result, this was also the class 

associated with the greatest number of large explosions (Fig. 5a). However, a greater proportion 

of dome-forming episodes lasting longer than 5 years were associated with large explosions (Fig. 

5a). When large explosions did occur, they most commonly preceded dome growth episodes (Fig. 

5b). Proportionally, however, many large explosions associated with intermediate duration dome 

growth episodes (1-15 years) occurred during dome growth (Fig. 5b). Large explosions associated 



 

 

with shorter duration (< 10 year) dome growth episodes commonly occurred at higher silica 

volcanoes (Fig. 5c). 

Extrusion rate information is available for 129 dome-forming episodes. Wherever possible, 

relevant shorter-term extrusion rates directly associated with explosive activity were used rather 

than representative longer-term extrusion rates. Higher extrusion rates (> 10 m3s-1) carried an 

elevated likelihood of being associated with large explosions (Fig. 6a). Sample sizes were too 

small to make firm conclusions about the relationship between extrusion rate and the relative 

timing of large explosions (Fig. 6b) or volcanic composition (Fig. 6c), although explosions 

occurring before the onset of dome growth were the most common. Very high (>30 m3s-1) and low 

(<10 m3s-1) extrusions rates had the greatest proportion of large explosions occurring during dome 

or cryptodome growth (Fig. 6b). Large explosions associated with the highest extrusion rates 

occurred most commonly at higher silica volcanoes (Fig. 6c). 

4. Probability Trees and Case Histories 

Probability trees were constructed from DomeHaz (after Newhall and Hoblitt, 2002) and used to 

illustrate a number of relevant case studies. The trees represent the probabilities of mutually 

exclusive events (e.g. VEI ≥ 4) or conditions (e.g. dacitic composition), whose branches are logical 

steps from more general events/conditions (e.g. dacitic volcano) to increasingly specific events 

(e.g. VEI ≥ 4 explosion during dome growth). Probabilities and conditional probabilities based on 

observed cases are presented. A conditional probability, P(n|n-x), is the probability of event n, 

given that event n-x has occurred (Newhall & Hoblitt, 2002). The absolute total probability for a 

specific outcome is the product of the probability of the initial event P(1) multiplied by all 



 

 

conditional probabilities  (Newhall & Hoblitt, 2002) such that P(n) = P(1) ∙ P(2|1) ∙ P(3|2) ∙…∙ 

P(n|n-1).  

Three separate probability trees are presented: One for dome-forming episodes of different 

compositions (Fig. 7), one for dome growth episodes of different durations (Fig. 8), and one for 

dome growth episodes of different extrusion rates (Fig. 9). The probability of an associated large 

explosion and its relative timing is investigated in each case. These probability trees can use the 

global record of dome-forming eruptions to make inferences about the likelihood of large 

explosions at individual volcanoes, rather than only considering the eruptive histories of the 

volcano in isolation. This allows the probability trees to better capture the probability of infrequent 

events which may not have been recorded or have even occurred at a specific volcano in the past. 

This is the main value of a global database:  to enhance the ability to make evidence-based 

decisions both at volcanoes with abundant data or at volcanoes where local datasets may be very 

sparse; the latter condition may be the case for the great majority of the world’s volcanoes. For 

example, Fig. 10a shows a probability tree constructed only from the eruptive history of SHV, 

which has had 5 recorded dome growth episodes, with no VEI ≥ 4 explosions. Fig. 10b uses the 

global record of dome-forming eruptions to show that 13% of recorded dome growth episodes 

since 1000 AD have been associated with large explosions, behavior that, while not recorded at 

SHV, ought not to be ruled out. The other probability trees (Figs. 7-9) allow one to examine subsets 

of the global record which may serve as useful analogs to a particular volcano, such as SHV. For 

example, about 10% of SHV analogs in terms of composition and dome growth episode duration 

were associated with large explosions, while 25% of extrusion rate analogs were associated with 

large explosions.   



 

 

Finally, it is important to note that because these probability trees are based on historical data, it is 

possible that they do not capture ALL plausible, but not yet observed, eruptive scenarios. Statistical 

modeling of recurrence rates using extreme value theory or other methods (e.g. Deligne et al. 2010) 

may prove a useful future step.  

The event paths taken by the Santiaguito (Santa María) 1922-present, MSH 1980, Chaitén 2008-

2010, and Merapi 2010 eruptions are indicated on the probability trees, as well as the most likely 

paths that may be taken by ongoing eruptions at SHV and Sinabung, Indonesia (case studies are 

introduced below). 

Santiaguito (Santa María), Guatemala: In 1902, an intense explosive eruption (VEI 6) of Santa 

Maria volcano produced voluminous clouds of dacitic ash, killed several thousand people, and left 

a large crater (Stoiber & Rose 1969). A new eruption (VEI 3) began in 1922 with the formation of 

a dacitic lava dome, Santiaguito (Rose 1973). Since 1922, the Santiaguito dome complex has 

exhibited periods of relatively high extrusion rates (0.6-2.1 m3s-1) lasting > 5 years, followed by 

~10 year periods of lower extrusion rates (0.2 m3s-1) (Rose 1973, 1987; Harris et al. 2003) (Fig. 

2b).  

The orange path on the probability trees shows the event history of the Santiaguito eruption. 

Santiaguito’s composition (dacitic) (Fig. 7), duration of dome growth (>20 years) (Fig. 8), and 

extrusion rate (0.07 – 2.06 m3s-1) (Fig. 9), were associated with fairly low frequencies of large 

explosive activity based on DomeHaz (15%, 0%, and 5% respectively). However, the relatively 

low extrusion rates recorded for Santiaguito are long term averages over entire episodes of dome-

growth, with possibly more relevant, shorter-term extrusion rates unrecorded. 



 

 

MSH, USA: Of the two recent dome-forming eruptions at MSH (1980-86 and 2004-08), only one 

was associated with a large explosion. On 18 May 1980 rapid intrusion of a cryptodome (42 m3s-

1; calculated from Moore & Albee 1981), triggered the failure of MSH’s northern slope, forming 

a debris avalanche, followed by a directed blast, devastating a 600 km² area (VEI 5).  Extrusive 

dome growth began on 12 June 1980, and continued with 19 subsequent short episodes of dome 

growth until the end of the eruption. The small domes or dome-lobes that were produced during 

this period each had volumes of a few million m³, with low extrusion rates (0.24-0.69 m3s-1; 

Swanson & Holcomb 1990).  

The purple path on the probability trees (Fig. 7-9) shows the event history of the MSH 1980 

eruption. Fifteen percent of dome-forming episodes at dacitic volcanoes exhibited large 

explosions, and 18% of those that did occur, had large explosions during dome growth (including 

cryptodome intrusion) (Fig. 7).  Short (< 1 year) duration episodes of dome growth (as at MSH) 

were very common (64%), with 7% associated with large explosions, 8% of which were associated 

with cryptodomes (Fig. 8). However, the extrusion rate probability tree (Fig. 9) shows that 55% of 

dome-forming episodes with extrusion rates >30m3s-1 were associated with large explosions, most 

of which occurred during dome growth or cryptodome intrusion. 

Chaitén, Chile: Prior to 2008, Chaitén was considered an inactive caldera, formed during a 

rhyolitic eruption ~10000 years ago (Naranjo and Stern 2004; Lara et al. 2013), with a possible 

unconfirmed eruption ≤ 3000 years ago (Lara et al. 2013). Little precursory activity was detected 

before the eruption of Chaitén in 2008 which comprised explosive, transitional, and effusive 

phases (Pallister et al. 2013b). The explosive phase began on 2 May 2008 with a Plinian VEI 4 

explosion (Major and Lara 2013). A second Plinian explosion occurred on 6 May 2008. Only 

minor PDCs were produced during the explosive phase (Major and Lara 2013). The transitional 



 

 

phase (11-31 May 2008) was characterized by Vulcanian explosions and simultaneous lava 

extrusion (Pallister et al. 2013b). This was followed by an exogenous lava flow phase (June-

September 2008), spine extrusion and endogenous dome growth (October-February 2009). A final 

phase of endogenous dome growth began with the collapse of a spine on 19 February 2009 and 

lasted until the end of the eruption in late 2009 or early 2010 (Pallister et al. 2013b). Dome growth 

extrusion rates averaged 66 m3s-1 during the first two weeks of the eruption, and 45 m3s-1 for the 

first 4 months (Pallister et al. 2013b). 

The yellow path on the probability trees shows Chaitén’s 2008 eruptive history (Fig. 7-9).  Half of 

the dome-forming episodes at rhyolitic volcanoes were associated with large explosions, and in 

most cases (40%), these occurred before dome growth began (Fig. 7). When large explosions were 

associated with short duration dome growth (< 1 year), they often (75%) occurred before dome 

growth (Fig. 8). Dome-forming episodes with high extrusion rates (>30 m3s-1) also commonly 

(55%) had large explosions, usually before or during dome growth (Fig. 9). 

Merapi, Indonesia: Since 1768 there have been 50-60 reported basaltic andesite eruptions (Voight 

et al., 2000; Costa et al. 2013) at Merapi, nearly all of which have involved dome growth (Fig. 2c). 

Based on our assumptions (set out in section 2.2.1) we consider these dome-growth episodes as 

part of one continuous dome-forming eruption. On 15 April 1872, a 5 day explosive phase (VEI 

4) occurred (Voight et al., 2000); dome-forming episodes have been frequent since that time, but 

with pauses up to 5 years between dome growth episodes (Fig. 2c). Since at least 1890, magma 

eruption rates have been relatively steady, indicating a constant supply of magma (Siswowidjoyo 

et al., 1995), providing a rationale for considering this activity as one continuous, ongoing 

eruption. Merapi’s case illustrates the importance of defining what constitutes an eruption in a 



 

 

meaningful and consistent way, as well as the effects that different definitions can have on results 

such as presented here.  

The dome growth episode from October 2010-July 2012 at Merapi was also associated with a VEI 

4 explosion. Dome growth initiated around 26 October 2010, with extrusion rates averaging 25 

m3s-1 (Surono et al., 2012; Pallister et al., 2013a). This rate is substantially higher than the 2006 

dome extrusion rates (average 2.4 m3s-1, peak 4 m3s-1; Ratdomopurbo et al., 2013) as well as the 

long-term average magma eruption rate (0.1 m3/month; Siswowidjoyo et al., 1995). The VEI 4 

explosion on 4 November 2010 produced PDCs that traveled 16 km radially around the volcano, 

necessitated the evacuation of about 400,000 people, and resulted in 367 deaths (Surono et al. 

2012; Mei et al. 2013). Extrusion rates increased to 35 m3s-1 after the paroxysmal explosion, but 

no further explosive activity occurred (Surono et al., 2012; Pallister et al., 2013a). The increase in 

extrusion rate after the 4 November 2010 explosive event caused considerable alarm, and 

understandably so.  

The blue path on the event trees (Fig. 7-9) corroborates this intuitive relationship, showing that 

given an extrusion rate of 25 m3s-1, the frequency of a VEI ≥ 4 explosion was around 33%, and 

that given an extrusion rate >30m3s-1, the frequency of a VEI ≥ 4 explosion was 55% (Fig. 9). 

However, extrusion rates over 20 m3s-1 were rarely recorded amongst lava domes. The sample size 

for 20-30 m3s-1 extrusion rates was 6 occurrences, and 11 occurrences were recorded for >30 m3s-

1 extrusion rates (from 129 sampled).  

SHV, Montserrat: The 1995-ongoing eruption has been characterized by episodes of dome growth 

and quiescence, often lasting several years (Fig. 2a), accompanied by PDCs, Vulcanian explosions 

and lahars (Wadge et al. 2014b). At several points during the eruption (e.g. 1997, 2006), extrusion 



 

 

rates rapidly escalated to several tens of m3s-1  (Sparks et al. 1998; Loughlin et al., 2010; Wadge 

et al. 2010; Odbert et al. 2014), often associated with the onset of minor Vulcanian explosivity 

(Odbert et al. 2014), causing concern that the volcano might enter a phase of major explosive 

activity.  

Using the red path on the probability trees to estimate probability of a large explosion at SHV, we 

show that it would be unusual, based on previous occurrences, for a large explosion to occur during 

the current eruption or for the current eruption to terminate in a large explosion. Given the andesitic 

composition of SHV, the probability of a VEI ≥ 4 explosion is ~10% based on past frequencies 

(Fig. 7), but the probability of a VEI ≥ 4 explosion occurring at an andesitic volcano during or 

after dome growth is low (2% and <1%, respectively). The vast majority of dome growth episodes 

of SHV’s duration (90%) and extrusion rate (75%) were not associated with large explosions (Fig. 

8-9). Large explosions much more commonly occurred before the onset of short dome growth 

episodes with extrusion rates < 30 m3s-1; again reinforcing the fact that the probability is low that 

SHV would experience such an event (Fig. 9).  

Sinabung, Indonesia: The current eruption at Sinabung (basaltic andesite to andesite) began in July 

2013, and a dome was observed on 24 December, 2013. Extrusion rates have ranged from < 5 m3s-

1 to occasionally more than 20 m3s-1, with several increases in extrusion rate followed by dome or 

lava-front collapses that generated significant PDCs (written communication J. Pallister; Wright 

et al. 2014). By January 2014 hundreds of PDCs were being generated, traveling up to 4.5 km, 

with over 22,000 people displaced by evacuations. On 1 February 2014 a large dome collapse 

produced PDCs reaching 4.5 km, killing 15 people who had reentered the evacuated zone. The 

lack of historic eruptions, and evidence of previous domes and PDCs (Yoshimoto et al. 2013; 

Wright et al. 2014), has necessitated the use of global records to anticipate future activity through 



 

 

the use of  by the Indonesian Center for Volcanology and Geologic Hazard Mitigation (CVGHM) 

and the USGS Volcano Disaster Assistance Program (VDAP) (Wright et al. 2014). 

The green path on the probability trees (Fig. 7-9) indicates the most likely activity to be expected 

at the ongoing eruption of Sinabung based on previous frequencies. About 10% of basaltic andesite 

to andesitic dome-forming episodes were associated with large explosions, with most of these large 

explosions preceding dome growth (Fig. 7). 27% (6 of 22 cases) of dome-forming episodes with 

extrusion rates between 10-30 m3s-1 were associated with large explosions (Fig. 9), most of which 

(83%) preceded dome growth.  Only 5% of dome-forming episodes with extrusion rates < 10 m3s-

1 were associated with large explosions. 

 

5. Discussion 

5.1 Composition 

Most dome-forming episodes occur at andesitic volcanoes and most (in absolute terms) of the large 

explosions are also associated with these andesitic volcanoes (Fig. 4a). Proportionally, however, 

more dome-forming episodes at dacitic and rhyolitic volcanoes are associated with large 

explosions (Fig. 4b). For volcanoes of any composition it is significantly more common to have 

explosions before dome growth, rather than during dome growth or after dome growth has ceased. 

High silica content magmas are more commonly associated with explosive activity, so the trends 

observed might be expected. The propensity for large explosions to be more frequently associated 

with the onset of dome growth is clearly demonstrated and is an important finding in relation to 

potential hazards at persistently degassing or dormant silicic volcanoes where lava domes have 

formed in the past. Perhaps an unexpected outcome is that only andesitic dome-forming eruptions 



 

 

have exhibited large explosions after dome extrusion has completely ceased, although we record 

only one case (Egmont, New Zealand, 1655). Due to the age of the Egmont eruption, it is possible 

that the timing of the explosion is erroneous, and that it may in fact, have occurred during some 

residual dome growth. It is already known that lava domes remain hazardous long after extrusion 

has ceased (e.g. Norton et al. 2002) but more data is required to discount the possibility of large 

magnitude explosions occurring after the cessation of dome growth. 

It is also important to note that during an ongoing eruptive crisis, it is difficult to know if dome 

quiescence signals a pause in dome growth or the cessation of dome growth, and it is important to 

examine probability trees for large explosions both during and after dome growth. Additionally, 

magma compositions can evolve (although usually only subtly) during an eruption. For example, 

the 1991 Pinatubo eruption began with a short period of mingled andesite dome extrusion, 

followed by a series of explosions with an increasingly dacitic composition culminating in the 15 

June 1991 VEI 6 explosion (Wolfe & Hoblitt 1996). The explosion was eventually followed by 

the eruption of a residual mingled andesite lava dome roughly a year (July-Oct. 1992) after the 

paroxysmal explosion (Daag et al. 1996). This explosion is categorized as during a pause in 

andesite dome growth, rather than after the complete cessation of dome growth. 

5.2 Dome growth duration 

Large, VEI ≥ 4, explosions are more commonly associated with dome-forming episodes of short 

duration.  This is, in part, due to the fact that short duration (< 5 years) dome-forming eruptions 

are the most frequent type. However, longer duration episodes of dome growth are, proportionally, 

more likely to have large explosions during dome growth. Again, for dome-forming episodes of 

any duration, large explosions are more commonly observed before the onset of dome growth, 



 

 

rather than during or after dome growth. These trends can be rationalized in the context that most 

dome-forming episodes that follow large explosions are short lived, because the extrusion of lava 

in many of these cases represents the expulsion of residual, volatile-depleted magma following the 

volatile-rich explosive phase (e.g. Chaitén, Castro et al. 2013). It is also worth noting that two 

cases of large explosions associated with short duration dome growth episodes involved 

cryptodome intrusion and subsequent decompression (MSH 1980-86; Bezymianny 1956-2012). 

5.3 Lava extrusion rate 

The extrusion rate data are not sufficiently complete to comprehensively assess relationships 

between extrusion rates and the timing of large explosive activity in relation to dome growth, with 

less than 5 large explosions associated with each extrusion rate band. However, higher extrusion 

rates do seem to be associated with a proportionately higher number of large explosions. Again, 

this effect may actually be stronger than recorded due to the skew towards lower extrusion rates 

caused by representative, long-term average extrusion rates. There were 33 dome growth episodes 

with extrusion rates > 10 m3s-1, and of these, 12 (36%) were associated with large explosions, with 

extrusion rates >30 m3s-1 most likely to be associated with large explosions (6/11 cases, 55%). In 

fact, high extrusion rates (>30 m3s-1) were the only investigated condition more likely to be 

associated with a large explosion than not. Explosions generally occurred either before the onset 

of dome growth, or during dome or cryptodome growth. This association of large explosions 

during dome growth episodes with high extrusion rates is supported by theoretical work by Jaupart 

& Allègre (1991) and Sparks (1997), which notes that conditions favor explosive activity when 

extrusion rates are high (>10 m3s-1). High extrusion rates are also known to favor explosive 

decompression (Melnik & Sparks, 2005). 



 

 

While the small sample size and incompleteness of the extrusion rate dataset makes the robustness 

of the observed trends questionable, the data do raise an important flag of caution to monitoring 

institutions: low extrusion rates do not necessarily preclude a large explosion during dome growth. 

All extrusions rates were associated with at least 1 instance of a large explosion associated with 

dome growth, and both very low (<10 m3s-1) and very high (>30 m3s-1) extrusion rates have high 

proportions of large explosions occurring during dome-forming episodes.  

Additionally, extrusion rates are themselves difficult to measure and require frequent unobstructed 

observation to produce accurate measurements (Sparks et al. 1998). Extrusion rates can also vary 

considerably over time, and any measurement is necessarily time-averaged. It seems increasingly 

clear that shorter-term relevant extrusion rates leading up to or following explosive phases (of any 

magnitude) of eruptions may be more useful than longer-term representative extrusion rates when 

it comes to estimating explosive potential. Methods that allow more frequent high resolution 

observations of lava domes (e.g. radar satellite measurements at Merapi, Pallister et al. 2013a) can 

capture these short-term extrusion rates and, in combination with effective ground monitoring, 

facilitate appropriate and timely risk management measures such as evacuation (Surono et al., 

2012; Pallister et al. 2013a).   

5.4 Explosive regimes 

It is clear from this work that patterns emerge when comparing composition and extrusion rate of 

lava domes with timing of large explosions.  We present a regime diagram where we attempt to 

‘map’ these associations in the context of composition and extrusion rate variations (Fig. 11).  

The apparent association, in this analysis, of very low extrusion rates with large explosions may 

be an effect of the inclusion of longer-term, eruption-averaged extrusion rates which mask 



 

 

extrusion rate variations, in particular, short-term elevated extrusion rates. This paucity of relevant 

data reflects the logistical and scientific challenges inherent in collecting extrusion rate data.  

However, the association of large explosions during dome-forming episodes with low extrusion 

rates (Fig. 11a) may be explained by theoretical work that has considered processes which might 

lead to explosions in these circumstances. For example, very low extrusion rates may promote the 

formation of a solidified dome “cap” or the attachment of magma to conduit walls (Collombet 

2009), limiting degassing and increasing pressurization in the conduit (Denlinger & Hoblitt 1999; 

Collombet 2009).   

Based on analysis of DomeHaz, large explosions most commonly precede the extrusion (at a 

variety of rates) of residual melts (Fig. 11b), at volcanoes of nearly all compositions. Indeed, while 

Fig. 11 plots cases with associated extrusion rate information, 55% (28/51) of large explosions 

occurred before the onset of dome growth. In these cases, a large explosion may be necessary to 

remove high-viscosity, degassed magma from the upper conduit and lava from a previously 

existing dome, clearing the way for dome extrusion, explaining the prevalence of large explosions 

that precede the onset of dome growth (Barmin et al. 2002). Barmin et al. (2002) posited that dome 

growth after large explosions could be caused by shortened conduit lengths and plug removal 

caused by large explosions.  

At rhyolitic dome-forming volcanoes, large explosions are common and may be associated with 

the rapid extrusion of obsidian domes as a byproduct of collapsed foams (Fig. 11c). Work at 

rhyolitic volcanoes (e.g. Chaitén and Cordón Caulle) demonstrates that the effusion of obsidian 

domes and lavas may require explosions to sufficiently degas the magma to enable flow, and that 

explosions and rapid extrusion of obsidian domes and flows are the result of the cyclical collapse 



 

 

of magmatic foams (Castro et al., 2013). DomeHaz contains no record of the growth of rhyolitic 

domes at low extrusion rates. 

DomeHaz also contains examples of rapid dome extrusion preceding large explosions (Fig. 11d), 

possibly because high extrusion rates limit degassing, triggering explosions; or because rapid 

decompression of a dome triggers an explosion. High extrusion rates are known to lead to large 

explosions (Jaupart & Allègre 1991; Sparks 1997; Melnik & Sparks, 2005). Melnik and Sparks 

(2005) modeled magma flow through conduits and noted that if extrusion rates are high, there is 

not sufficient time for gas to escape during ascent, and the volume fraction of bubbles can increase 

to over 70%. This can directly lead to explosivity during dome growth, or result in explosions 

triggered by rapid decompression through the removal of the dome by gravitational collapse. High 

extrusion rates also make dome-collapse more likely, by mechanically destabilizing domes by 

increasing internal shear strain, increasing loading on support structures, and by steepening the 

dome slope (Calder et al., 2002; Pallister et al., 2013a). 

 Basaltic dome eruptions are rare, mainly effusive, and not associated with large explosions (Fig. 

11e).  

While this work only explores the relationship of large explosions (VEI ≥ 4) and dome growth, 

less extreme explosive activity is both common and hazardous. Explosive activity reported as VEI 

3 occurred with 33% of dome-forming episodes since 1000 AD, and VEI 2 activity (which may 

include minor explosive activity) was associated with 38% of dome-forming episodes. Solely 

effusive (VEI 0 or 1) dome-forming episodes (13%) were as rare as those associated with large 

explosions (13%). Additionally, even in the absence of explosivity, dome-collapse PDCs are a 



 

 

common feature of dome growth episodes, and constitute one of the most dangerous volcanic 

hazards (Auker et al. 2013) 

6. Conclusions and recommendations 

Based on this study it appears that: 

1. Most dome-forming episodes occurred at basaltic andesite to andesitic volcanoes, lasted less 

than 5 years, and had extrusion rates less than 10 m3s-1. 

2. In most cases where major explosive activity (VEI ≥ 4) has been associated with dome growth, 

the eruptions occurred at basaltic-andesite to andesitic volcanoes. However, a greater 

proportion of dacitic and rhyolitic dome growth episodes were associated with large 

explosions, usually accompanied by high extrusion rates.  

3. Large explosions, when associated with dome growth (at volcanoes of any composition), are 

more likely before dome growth rather than during or at the end of the dome-forming eruptions. 

In these cases, explosions clear degassed magma from the conduit and old degassed lava dome 

rock from the vent area. Subsequent dome growth probably represents the clearing of residual 

magma from the conduit or the expulsion of a collapsed foam. 

4. Short (< 1 year) dome growth episode durations are most likely (by number) to be associated 

with large explosions, but a greater proportion of longer duration dome-forming episodes (>5 

years) are associated with large explosions. 

5. While sample sizes are small, higher extrusion rates (>10 𝑚3𝑠−1, and especially > 30 𝑚3𝑠−1) 

seem to be associated with large explosions, either because these high extrusion rates inhibit 

degassing, destabilize existing domes, or directly aid in the rapid extrusion of obsidian domes. 

However, all extrusion rates have at least some association with large explosions during dome 



 

 

growth. Better methods that allow more frequent observations of lava domes (e.g. radar 

satellite measurements at Merapi, Pallister et al. 2013a) can capture critical indicators such as 

relevant short-term pulses in extrusion rate, which may be key for constructing more accurate 

probability trees.   

6. This type of information has been and can be directly used to inform Expert Judgment 

Elicitation (Aspinall 2006) for hazard estimations.  Preliminary DomeHaz results were 

presented to the Montserrat Volcano Observatory (Ogburn and Calder, 2006), and were used 

by the Scientific Advisory Committee to estimate the probability of the SHV eruption ending 

with a large explosion (SAC 2006). 

7. Retrospective activity reporting or summarizing by volcano observatories in their regular 

reports would greatly improve the data on dome growth episodes and extrusion rates in 

DomeHaz. For example, retrospective summaries could more clearly define the end dates of 

dome growth periods. A clear, holistic picture of eruptive activity may only be apparent 

retrospectively and this would need to be included in volcano observatory reports to ensure 

timely update of global databases. 

8. While DomeHaz does not categorize domes based on morphology or type, this may prove 

useful for future analyses of the association of large explosions with different styles of dome 

growth or of the investigation of dome-collapse PDC frequency-magnitude relationships. As 

many volcanoes exhibit transitions from lava domes to short lava flows or coulées (e.g. 

Sinabung, Cordón Caulle), which differ only in morphology and retain many of the same 

hazards as traditional domes (e.g. dome/flow-front collapse PDCs, large explosions), it is 

important to capture and categorize these different styles of dome growth. Additionally, certain 

types of lava domes are often not reported in the GVP or other literature sources as ‘dome 



 

 

growth’ (e.g. large volume dacite coulées, common in the northern Andes) and may be 

underrepresented in DomeHaz. 

9. Short-term eruption forecasting and risk management could be improved at many volcanoes 

using open-access global databases, such as DomeHaz.  When combined with other global 

databases such as WOVOdat, which includes monitoring data (Venezky and Newhall 2007), 

there’s potential for a powerful resource. To increase the value of such databases it is 

imperative that future eruptions are well monitored and documented thus providing more high 

quality data for analysis.  
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Fig. 1: The DomeHaz database as compared to previous studies. DomeHaz contains 397 dome-

forming episodes, at 127 volcanoes, with 54 large explosive (VEI ≥ 4) events. Of the additional 

237 more dome-forming episodes that DomeHaz contains in addition to Newhall & Melson 

(1983), 46% were part of ongoing dome-forming eruptions which continued past 1983, 26% were 

not studied by Newhall & Melson (1983), and 28% were new dome-forming episodes at volcanoes 

with no previous dome growth.  



 

 

 

Fig. 2: Periods of dome growth (dark grey) and quiescence (light grey) compared with recorded 

eruptive history (eruptions in pink) from the Smithsonian GVP for a) Soufrière Hills Volcano, 

Montserrat; b) Santiaguito Volcano, Guatemala; and c) Merapi Volcano, Indonesia. Santiaguito 

has alternating periods of high extrusion (darkest grey), low extrusion (medium grey), and 

quiescence (lightest grey). In our database, frequent episodes of dome growth and quiescence have 

been grouped together (white rectangles/arrows) into continuous dome-forming eruptions for the 

sake of consistency.  



 

 

 

Fig. 3: Overview of the DomeHaz database. Of the 397 dome growth episodes, 51 dome growth 

episodes were associated with 54 large explosions (three episodes had more than one large 

explosion). Dome growth episodes which were not associated with a large explosion (VEI 0-3) are 

shown in grey; the relative timing of VEI ≥ 4 explosions in relation to dome growth are indicated 

in various colors.  



 

 

 

Fig. 4: The a) overall frequency (top) and percentage (bottom) of dome growth episodes associated 

with explosions varying VEI, with respect to lava composition (B, basaltic, BA to A, basaltic 

andesite to andesitic; D, dacitic; R, rhyolitic); and b) the timing of the VEI ≥ 4 explosions with 

respect to dome growth (crypto = cryptodome). Large explosions were not associated with basaltic 

dome-forming episodes. All 397 dome-forming episodes had compositional information. 



 

 

 

Fig. 5: The a) overall frequency (top) and percentage (bottom) of dome growth episodes of 

associated with explosions varying VEI, in relation to dome growth duration; b) the relative timing 

of VEI ≥ 4 explosions with respect to dome growth; and c) the composition of the volcano which 

produced VEI ≥ 4 explosions. Large explosions were not associated with very long duration (>20 

years) dome-forming episodes. Of 397 dome-forming episodes, 255 had duration information. 



 

 

 

Fig. 6: The a) overall frequency (top) and percentage (bottom) of dome growth episodes of 

associated with explosions varying VEI, in relation to extrusion rate; b) the timing of VEI ≥ 4 

explosions with respect to dome growth; and c) the composition of the volcano which produced 

the VEI ≥ 4 explosions. Large explosions were associated with all extrusion rates. Of 397 dome-

forming episodes, 129 had duration information. 



 

 

 



 

 

Fig. 7: Probability tree for volcanoes of different compositions, where the probability in the 

absolute total column is equal to the product of each conditional probability: P(composition | total 

number of events)  ∙ P(VEI  | composition) ∙ P(explosion timing | VEI). 



 

 

 



 

 

Fig. 8: Probability tree for dome growth episodes of different durations (years), where the 

probability in the absolute total column is equal to the product of each conditional probability.  



 

 

 



 

 

Fig. 9: Probability tree for dome growth episodes of different extrusion rates, where the probability 

in the absolute total column is equal to the product of each conditional probability  



 

 

 

 

Fig. 10: Probability tree a) using only the eruptive history of SHV, and b) using the entire 

DomeHaz database to determine the likelihood and timing of large explosive eruptions. 



 

 

 

Fig. 11: Schematic diagram of the relationships between lava dome extrusion rate, compositions 

(B, basaltic; BA to A, basaltic andesite to andesitic; D, dacitic; R, rhyolitic) and dome types, and 

the timing of large explosions. Green fields indicate large explosions before dome growth; blue 

fields indicate large explosions during dome growth. Blue and green dots are data points from 

DomeHaz, and include the 17 large explosions with extrusion rate information. a) Low extrusion 

rates at basaltic andesite to andesitic volcanoes may favor the formation of domes that plug the 

conduit, inhibiting degassing and leading to large explosions during dome growth. Alternatively, 

very low extrusion rates are a result of long-term averaging. b) Major explosive eruptions at 

basaltic andesite to andesitic and dacitic volcanoes are followed by the extrusion (at a variety of 

rates) of residual melts. c) Large explosive eruptions at rhyolitic volcanoes result in the rapid 

extrusion of obsidian lava domes as the byproduct of collapsing foams. d) Rapid dome extrusion 

precedes large explosions because high extrusion rates limit degassing or because rapid 



 

 

decompression of growing lava domes trigger large explosions. e) Basaltic volcanoes do not 

display an association between large explosions and dome growth. Question marks indicate 

regions of the regime diagram where extrusion rates are not available.  


