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Acceleration and localization of subcritical crack growth in a natural composite material

S. Lennartz-Sassinek,* I. G. Main, and M. Zaiser†

School of Engineering and School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JL, United Kingdom

C. C. Graham
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(Received 15 July 2013; revised manuscript received 14 May 2014; published 12 November 2014)

Catastrophic failure of natural and engineered materials is often preceded by an acceleration and localization
of damage that can be observed indirectly from acoustic emissions (AE) generated by the nucleation and growth
of microcracks. In this paper we present a detailed investigation of the statistical properties and spatiotemporal
characteristics of AE signals generated during triaxial compression of a sandstone sample. We demonstrate that
the AE event amplitudes and interevent times are characterized by scaling distributions with shapes that remain
invariant during most of the loading sequence. Localization of the AE activity on an incipient fault plane is
associated with growth in AE rate in the form of a time-reversed Omori law with an exponent near 1. The
experimental findings are interpreted using a model that assumes scale-invariant growth of the dominating crack
or fault zone, consistent with the Dugdale-Barenblatt “process zone” model. We determine formal relationships
between fault size, fault growth rate, and AE event rate, which are found to be consistent with the experimental
observations. From these relations, we conclude that relatively slow growth of a subcritical fault may be associated
with a significantly more rapid increase of the AE rate and that monitoring AE rate may therefore provide more
reliable predictors of incipient failure than direct monitoring of the growing fault.

DOI: 10.1103/PhysRevE.90.052401 PACS number(s): 46.50.+a, 62.20.mm, 64.60.av

I. INTRODUCTION

For seismologists, physicists, and engineers the nature
and causes of the acceleration and localization of damage in
natural materials are important outstanding problems. Several
empirical laws have been found and theories developed. These
include Charles’ law, relating crack velocity to the stress
intensity factor for tensile laboratory tests [1–3]; the time-
reversed Omori law, describing the event (acoustic emission or
earthquake) rate prior to large earthquakes, volcanic eruptions,
and sample failure in laboratory “creep” tests [4–6]; and the
Dugdale-Barrenblatt model for crack growth, incorporating
a process (or damage) zone in front of a crack [7], in turn
consistent with the scale-invariant fault growth observed in
geological systems [8]. In addition, laboratory experiments
with acoustic emission (AE) monitoring of samples under
compression show strong progressive localization of the
acoustic events along an incipient fault plane, associated with
a macroscopic strain softening rheology [9]. At the same
time, the statistical distribution of AE signatures such as the
energy release occurring during individual AE events exhibits
power-law statistics indicative of critical dynamic behavior in a
complex system, as expressed, e.g., in terms of the well-known
Gutenberg-Richter law for AE magnitudes. In this paper,
we present a detailed analysis of AE data recorded during
triaxial loading of a cylindrical sample of Clashach sandstone,
together with a theoretical interpretation of the experimental
data, which brings the above-mentioned empirical laws into a
single model for the evolution of crack length and AE rate. We

*Current address: Institute for Geophysics and Meteorology, Uni-
versity of Cologne, Cologne, Germany; lennartzsassinek@gmail.com
†Current address: Institute for Materials Simulation WW8, Univer-

sity of Erlangen-Nuremberg, Germany.

first describe some of these empirical relationships in more
detail.

In early double torsion experiments [10] with a preexisting
notch and guided growth in a cuboid specimen, it was observed
that the crack velocity dC/dt is proportional to some power η

of the stress intensity factor K (Charles’ law),

dC

dt
∝ Kη, (1)

where η is usually between 20 and 60, for polycrystalline rocks
under tension [1–3].

For a constant applied stress, K is proportional to the
square-root of the crack length (see, e.g., Ref. [1]), and one
obtains from Eq. (1) the differential equation for the (sub-)
critical crack length C:

dC

dt
∝ Cη/2. (2)

Its solution for crack length in the case η > 2 diverges at a
finite time tf according to Ref. [11]:

C(t) = C(0)(1 − t/tf )−ν, (3)

where ν = 1/(η/2 − 1) is roughly between 1/30 and 1/10 for
the η range quoted above.

The crack is termed subcritical when the stress applied
to the specimen is less than the critical stress required for
inducing immediate failure, but above an activation thresh-
old determined by the relevant physiochemical mechanisms
governing damage accumulation [12].

A typical time-dependent crack growth curve from Eq. (3),
with exponent ν = 1/20, is shown in Fig. 1 (full line). Over a
long time the crack grows very slowly until it accelerates very
rapidly near the time of failure.

Equations (1)–(3) also hold for rocks under compres-
sion [6], albeit with different exponents. The exponent η may
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FIG. 1. (Color online) Sketch of a typical evolution of (sub-)
critical crack size C(t) (full black line) and event rate ṅ(t) (dashed
red line) according to Eqs. (3) and (9), respectively; ν = 1/20, time
is normalized by the failure time tf .

in this case be also smaller than 10 leading to ν values larger
than 1/4. It has not yet been possible to measure the crack
size directly in those experiments, so this inference is based
on indirect measurements of AE.

Here we combine laboratory results with a theoretical
model for the damage zone in fracture mechanics in order to
relate the time-dependent crack velocity dC(t)/dt to statistical
properties of the AE record. AE signals related to fracture
processes generally consist of a stochastic sequence of discrete
acoustic bursts (henceforth referred to as “events”), which
serve as indicators for microscopic damage processes such as
microcracking. Owing to its discrete and stochastic nature,
the AE signals need to be characterized in terms of statistical
properties such as probability distributions and correlations of
event amplitudes or interevent times. We analyze in detail the
statistical nature of the AE signal and demonstrate that, for
our laboratory data, the dynamics of damage accumulation in
the run-up to failure as reflected by the AE signal can be well
described in terms of average signatures such as event numbers
and AE rates.

We demonstrate that failure is preceded by a characteristic
acceleration of the AE rate and concomitant increased spatial
clustering and localization of the AE events on a quasiplanar
zone of damage accumulation, which can be considered as
an incipient fault plane. We make the assumption that the
characteristic extension of the fault zone controls failure in
a similar manner as the length of a critical crack does in
the context of fracture mechanics (for detailed discussion
of this point see Ref. [13]). This allows us to relate the
crack size to the number of AE events and to use the AE
record for monitoring damage accumulation and predicting
time-to-failure even when it is impossible to measure the crack
size directly within an experiment.

II. EXPERIMENT

The AE data described in the following section were
recorded during the triaxial loading of a cylindrical sample of
Clashach sandstone (105 mm in length and 50 mm in diameter)
[14]. A detailed description of the sample material and the

experimental setup is given in Ref. [15]. The sample was
subjected to a pore-fluid pressure of 10.5 MPa (with deaired
water) and a confining pressure of 50.5 MPa (provided by
hydraulic oil). A rubber jacket was used to isolate the sandstone
from the confining fluid (hydraulic oil), through which an
array of 18 piezoelectric transducers (PZT) were emplaced
inside brass housings, with a further two sensors embedded
within the pistons. A total of 12 P -wave PZTs and 8 S-wave
PZTs were utilized for this test, while five of the P -wave
sensors also acted as transmitters for a regular ultrasonic
pulse (every minute), thereby allowing the changing ultrasonic
velocity field to be monitored within the sample. The sample
was loaded at a constant axial strain rate of 1.7 × 10−6 s−1,
until failure occurred by shear localization. A brief period
of strain-softening was observed before an abrupt stress drop
indicating sample failure. The acoustic waveforms generated
from the test were preamplified, then recorded by a 12-channel
transient recording system (DaxBox, Prökel GmbH, Germany)
at a sampling rate of 10 MHz. P -wave arrival times were
automatically picked by an algorithm utilizing the approach
of Leonard and Kennett (1999) [16]. Where AE were detected
at a minimum of eight sensors, hypocenter locations were
then also determined automatically, using a downhill simplex
algorithm [17], which allows for temporal changes in the
velocity field. The resulting hypocenters were located with
an uncertainty of ±1 mm, and the locations, initiation times,
as well as the amplitudes of these events were recorded.

The resulting sequence of about 25 000 AE events is used
here to characterize the damage processes occurring in the run-
up to sample failure. The AE sequence is characterized by ac-
celeration of the AE rate as indicated by decreasing interevent
times (defined as the difference between the initiation times of
two sequential events), accompanied by increasing localization
of events in the vicinity of an incipient failure plane.

III. STATISTICAL ANALYSIS OF THE AE RECORD

A. Spatial localization

To characterize the spatial structure of the AE pattern, we
define the failure plane as the plane for which the mean-square
separation between that plane and the locations of the last 5 000
events is minimum. We also define an associated damage zone
around that plane, as described below.

Figure 2(a) shows the histogram of event distances to the
failure plane for five subsequent subsets of the AE sequence.
One can see clearly that with increasing event number the AE
events increasingly localize within the damage zone defined
above. Figure 2(b) shows for two subsets of events (i =
12 000–17 000 and i = 20 000–25 000) the spatial distribution
of these events projected on a cross-section where the failure
plane corresponds to the plane z = 0 and the specimen axis
is contained in the xz plane. One can clearly see that most of
the last 5 000 AE events (69%) locate within 2.5 mm of the
eventual fault or failure plane. We use this metric from Fig. 2(a)
to define the damage zone shown by the red (dark gray) lines
in Fig. 2(b). The opposite holds for the earlier subsets, where
events are distributed more evenly throughout the sample.
These data confirm that deformation becomes progressively
more localized during the experiment.
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FIG. 2. (Color online) (a) Histogram of the perpendicular dis-
tances of the event locations to the final failure plane for different
subsequences of the record. The inset shows the curves for the first
and last 5 000 events in a double logarithmic presentation. The black
straight line is a reference curve with a power law exponent of −2.
(b) Location of acoustic emissions (dots), projected onto a cross-
section of the the x-z plane, where z = 0 defines the eventual fault
plane. Events numbered i = 12 000–17 000 are indicated in dark
yellow (grey) and i = 20 001–25 000 in black. In both plots the red
(dark gray) lines indicate the damage zone of width ±2.5 mm around
the failure plane. The green dashed lines in plot (b) indicate the
boundary and the green dash-dotted line indicates the middle axis of
the specimen, which is also the direction of the applied stress.

The inset in Fig. 2(a) quantifies this further, showing that
in the first part of the test the events are located more or
less randomly through the sample, with a flat distribution of
distances of AE events from the nearest point on the best-fitting
incipient fault plane, curving over in the tail due to the finite
sample boundaries. In contrast, the data for the last part of
the test is consistent with an emergent power-law distribution
of exponent −2. For natural seismicity this exponent is
−1.35 [18]. The difference between the exponents is likely
due to the fact that the latter measure takes no account of
the finiteness of the fault plane and is largely based on
“aftershock”-type triggering, including the susceptibility of
nearby preexisting critically stressed faults to small triggering
stresses, rather than the precursory localization on an incipient
fault observed here. To assess the influence of the observed
spatial localization on the event statistics, we will conduct two
parallel analyses (a) for all events irrespective of location and
(b) for the events contained within the damage zone.

FIG. 3. (Color online) Evolution of various experimental param-
eters as a function of the AE event number i; on the left-hand side,
event number refers to all events; on the right-hand side, only events
located within the damage zone surrounding the final failure plane are
counted. (a) and (b) Interevent times: black, all interevent times τi ;
brown (gray), interevent times averaged over windows of 50 events;
in the regions R1–R4, marked by red (dark gray) boxes, the interevent
times can be fitted by exponential functions. (c) and (d) Differential
stress σi in units of MPa. (e) and (f) Average spatial separation
of nearest neighbor events (mean nearest-neighbor distance, 〈nnd〉),
evaluated over a moving window of 1 000 events.

Figures 3(a) and 3(b) show the observed interevent times
as a function of the event number i, (a) for all events and (b)
restricted to the events contained within the damage zone. To
enable connection with the mechanical response of the sample,
Figs. 3(c) and 3(d) show the differential stress applied during
the experiment, also as a function of the event number. When
interpreting this figure it is important to note that, even though
events are temporally ordered, the event number i should
not be considered a simple proxy for time. The interval of
near-linear stress increase at the beginning of the test accounts
for a significant fraction of the test duration but comprises
only a relatively small number of AE events. On the other
hand, the majority of events occur during the softening regime,
where the stress slightly decreases from the peak to the failure
stress, leading to only minor stress differences over most
of the events. This strain softening phase encompasses only
about 5% of the test duration but contains most of the AE
events. Localization around the incipient plane occurs at or
near the peak stress [5 000 < i < 10 000 in Fig. 2(a)]. As a
consequence, practically all events in the damage zone occur
during the softening regime [Fig. 2(b)]. Failure is marked by
a large load drop, after which some AE activity continues at a
much reduced stress level.
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FIG. 4. (Color online) Signatures of the scaled interevent time statistics in the different exponential relaxation regimes: top row, covariance
of interevent times separated by s events; bottom row, mean scaled interevent time M50(k) (black) and standard deviation S50(k) [red (gray)],
evaluated over disjoint windows of 50 events starting at event k. The last column shows the results for random surrogate data (2000 time values
drawn independently from an exponential distribution with mean value 0.1 s).

Figures 3(a) and 3(b) demonstrate that the interevent times
exhibit significant statistical scatter; however, the underlying
trend is that they tend to decrease with increasing event
number. To make the trend more visible, we average the
interevent times τi over a moving window of 50 events; i.e.,
we replace τi by the average of all τj ,j ∈ [i − 24,i + 25]
[brown (gray) data points in Fig. 3]. From these data one
can identify in each graph two regimes where the averaged
interevent times decrease with increasing event number in an
approximately exponential manner. During the two regimes of
exponential decrease, identified by straight lines on Fig. 3, the
spatial distribution of damage is different from that during
the intervening interval where the interevent time remains
roughly constant. During both exponential decreasing regimes,
the majority of events are located within the damage zone
surrounding the final failure plane, but a different behavior is
observed during the intervening interval: During this latency
period, most AE events are located within a second zone of
coalescent damage [15] that emerges outside the damage zone
and which we could identify as a conjugate fault plane. The
different spatial structure of the AE patterns in both cases can
be clearly seen in Fig. 2(b), where events accumulating during
the latency period are shown in dark yellow (gray).

B. Statistics of interevent times

To analyze the statistical properties of the random process τi

in the exponential relaxation regimes, we separately consider
each of the regimes R1–R4 evident in Fig. 3. For each we define
a relaxation coefficient a as the slope of the least-square fit of a
linear function to the data points [i, ln(τi)]. For the record of all
events irrespective of location [black data shown in Fig. 3(a)],
this gives the values a = 0.00028 for R1 and a = 0.00029 for
R2. For the record of events centered around the final failure
plane [black data shown in Fig. 3(b)], the corresponding values
are a = 0.0017 (R3) and a = 0.000094 (R4).

We now are in a position to remove the trend by defining
the scaled variable τ̃i = τi exp(ai). Because of the different a

values we do this for each of R1–R4 separately. Furthermore,
we use the counting convention that i is set to 1 for the first
event of each regime. Figure 4 (top) shows the covariance
C(s) = 〈τ̃i τ̃i+s〉 − 〈τ̃i〉2, averaged over all i and normalized
by C(0). For all four exponential relaxation regimes it is
evident that up to statistical fluctuations due to finite sample
size, the covariance is for all s close to zero. Hence, we
will in the following envisage τ̃i as an uncorrelated random
process. We next consider the mean Ml(k)(τ̃ ) = 〈τ̃i〉k...k+l and
variance Vl(k)(τ̃ ) = 〈τ̃ 2

i 〉k...k+l − 〈τ̃i〉2
k...k+l , which we evaluate

over disjoint intervals i ∈ [k . . . k + l] of length l. Figure 4
(bottom) shows the mean M50(k) and standard deviation
S50(k) = V50(k)1/2 as a function of k. Up to statistical fluctu-
ations, no discernible trend can be observed. For comparison,
we have also included C(s), M50(k), and S50(k) as evaluated
for random and uncorrelated surrogate data (2 000 time values
drawn independently from an exponential distribution with
average 0.1 s). We finally note that for 2 � l � 256), the
variance of the mean is found to be related to the mean variance
by 〈Ml(k)2〉k − 〈Ml(k)〉2

k ≈ (1/l)〈Sl(k)〉k , as expected for a
stationary and uncorrelated random process.

It is evident from Fig. 4 that the mean of τ̃i is approximately
equal to the standard deviation. To understand the reason for
this, we determine the probability distribution of τ̃i , shown
in Fig. 5. It is evident that, for all four regimes, the scaled
interevent times are exponentially distributed—which means
that the coefficient of variation (the ratio of the standard
deviation and the mean) is equal to unity. Moreover, if we
split the data into sequential subsequences and determine
distributions for these separately, it is seen that the distributions
for the subsequences are identical, again confirming the
stationarity of the scaled process. Based on the evidence in
Figs. 4 and 5, we will in the following consider τ̃i , in each
exponential relaxation regime, as a stationary, uncorrelated
random process with exponential frequency distribution.

052401-4
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FIG. 5. (Color online) Statistics of the scaled interevent times
τ̃ = τ exp(ai) for the different exponential relaxation regimes R1–
R4; the corresponding mean values are 〈τ̃ 〉 = (0.052 ± 0.0008) s for
R1, 〈τ̃ 〉 = (0.0071 ± 0.00011) s for R2, 〈τ̃ 〉 = (0.536 ± 0.011) s for
R3, 〈τ̃ 〉 = (0.0036 ± 0.00014) s for R4.

C. Statistics of event accumulation

Our analysis of the record of interevent times has demon-
strated that the series τi can be considered the product
of an uncorrelated random process τ̃i and an exponential
decrease exp(−ai) of the mean interevent time with increasing
event number. To understand the consequences for the event
accumulation process, we evaluate the occurrence time tn of
event number n. This is given by the sum of all interevent times
up to τn:

tn =
n∑

i=1

τi =
n∑

i=1

exp(−ai)τ̃i . (4)

Using the statistical properties of the process τ̃ we can
calculate the mean and variance of the occurrence times. We
obtain

〈tn〉 = 〈τ̃ 〉
a

[1 − exp(−an)] + O(a0),

(5)〈
t2
n

〉 − 〈tn〉2 = 〈τ̃ 〉2

2a
[1 − exp(−2an)] + O(a0),

where we have used in the last step that the variable τ̃

is exponentially distributed, hence its mean and standard
deviation are equal. In these equations, 〈τ̃ 〉 can be understood
as the expected interevent time at the moment in time when
we start counting. The expected time-to-failure from this point
is obtained by setting n → ∞, tf = t∞. We find that, up to
terms of higher order in a,

〈tf 〉 = 〈τ̃ 〉
a

,

〈
t2
f

〉 − 〈tf 〉2

〈tf 〉2
= a

2
. (6)

If we want to study the statistical properties of the counting
process n(t), which gives the number of events that have
occurred at a given time t , we encounter a problem: Unlike
standard counting processes such as a Poisson process where
events occur at fixed rate, here the event rate increases
exponentially with event number. As seen from Eq. (5), this

implies that the event time for n → ∞ reaches an asymptote
t∞ (the failure time), which itself is statistically distributed,
with mean and standard deviation given by Eq. (6). At this
failure time, which is different for different realizations of the
event accumulation process, the event number diverges. If we
now investigate an ensemble of different realizations of the
process {τn} and the associated process {tn} in order to study
the time-dependent statistics of event numbers, we encounter a
problem: As we approach the expected failure time, more and
more members of the ensemble will have failed [n(t) = ∞],
and it is therefore not possible to calculate statistical moments
〈[n(t)]k〉 in a meaningful manner.

This problem can be solved by evaluating moments of n

not at fixed values of t , but at fixed values of (t/tf ) where tf is
the failure time for the realization of {τn} under consideration,
and hence is different for each member of the ensemble. Using
this type of conditional statistics, it is evident by construction
that all members of the ensemble fail at t/tf = 1, and that
meaningful statistical information can be gathered for all
values of t/tf < 1. In terms of ensemble statistics, this implies
that we do not consider an ensemble of systems at fixed times,
but at fixed relative distance to their respective failure times.

For illustration, we have performed simulations of event
accumulation using 1 000 realizations of {τn}, each consisting
of a sequence of N = 105 events with interevent times
τi = τ̃i exp(−ai) where a = 3 × 10−4 and τ̃i is drawn inde-
pendently from an exponential distribution with mean value
〈τ̃i〉 = 1 (since we will divide times by the failure time, the unit
is irrelevant). We calculate for each sequence the occurrence
times {ti} for all events as well as the sample-specific failure
time tf . This time is estimated from tN by approximating the
residual time by its expectation value according to Eq. (6): tf ≈
tN + exp(−aN )/a, where exp(−aN ) is the mean interevent
time after N events. We then determine for each sample the
values of n(t/tf ) at fixed values of t/tf and calculate their
mean and standard deviation. The results are shown in Fig. 6.
Within the plotting resolution the mean values follow, on the
single-logarithmic plot, exactly a straight line. To understand
the origin of this functional form we replace Eq. (4) by its

FIG. 6. (Color online) Black solid curve, evolution of the mean
event number n as a function of time-to-failure t/tf ; the straight line
on the semilogarithmic plot follows exactly the prediction of Eq. (8);
red dash-dotted curve, coefficient of variation of n.
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deterministic counterpart,

t(n) = tf [1 − exp(−an)], (7)

and invert this equation to obtain

n(t) = 1

a
ln

[(
1 − t

tf

)−1]
. (8)

Also shown in Fig. 6 is the coefficient of variation of n(t) as
evaluated from the ensemble simulation. This coefficient is
small and decreases to zero for t/tf → 1. As a consequence,
the statistical sampling error on the n(t/tf ) plot, as well as the
scatter of the plotted points around the prediction of Eq. (8), is
within the thickness of the straight line for all points plotted.
Thus, we may consider Eq. (8) as asymptotically exact in the
vicinity of the failure time and as a very good approximation
elsewhere. This allows us in the following to consider damage
accumulation, despite the very significant fluctuations of the
interevent times, in fundamentally deterministic terms.

Some caution is, however, required when using Eq. (8)
to predict event numbers: Since the failure time tf in this
equation must be envisaged as a stochastic variable that differs
from sample to sample, Eq. (8) should not be used for making
predictions of the event number at future times that are close to
the mean failure time 〈tf 〉 = 〈τ̃ 〉/a. Rather, Eq. (8) describes
how the AE event number increases for a given sample as time
approaches the sample-specific failure time tf .

D. Statistics of AE amplitudes

To characterize the statistics of AE amplitudes m, the
sequence of all events was again divided into subsequences
containing 2 000 events each, and probability distributions of
m were determined separately for each subsequence. A similar
procedure was adopted for the events contained within the
damage zone around the failure plane, where subsequences of
1 000 events were considered.

The probability distributions are, for events above the
mean amplitude, well characterized by an exponential decay,
p(m) ∝ 10−bm with an exponent of b ≈ 0.7 (full lines in
Fig. 7). If the amplitudes are scaled by their mean values
in the respective subsequence (and even without that, since the
mean amplitudes do not change significantly), all distributions
fall on top of each other. There is no significant difference

FIG. 7. (Color online) Distributions of event amplitudes for dif-
ferent AE event subsequences; the right graphs represent events
contained within the damage zone. All amplitudes have been
normalized by the mean values for the respective subsequence.

between the amplitude distributions for all events and those
which consider only events contained in the damage zone,
or between the distributions early in the failure sequence and
those closer to the point of macroscopic failure.

While there is a pronounced acceleration of the AE rate,
the mean AE amplitude remains practically unchanged in the
run-up to failure, rising sharply only in the last second or so
(shown in top graphs of Fig. 8).

IV. DAMAGE ACCELERATION, SPATIAL CLUSTERING,
AND CRACK GROWTH

We have shown that, in the vicinity of the specimen-specific
failure time tf where tf ≈ 〈τ̃ 〉/a, the event number diverges
according to Eq. (8), which predicts that near failure the
number n(t) diverges as the logarithm of an inverse power
law. From Eq. (8) it follows that the characteristic event rate
diverges like

ṅ(t) = dn

dt
= 1

tf a
(1 − t/tf )−1. (9)

Equation (9) corresponds to the reverse-time Omori’s law
sometimes seen in natural seismicity, also with an exponent
−p near −1 [8,19–22]. A plot of Eq. (9) for the event
rate evolution is shown on Fig. 1 (dashed red line) for
comparison with the crack growth curve of Eq. (3), with both
parameters normalized to their starting values. The comparison
indicates that monitoring the event rate may provide earlier and
more sensitive indicators of approaching failure than direct
monitoring of the crack length or, more generally, the damage
pattern. This may explain why microearthquake event rate
is often used pragmatically as a strong metric in operational
forecasting of volcanic eruptions and underground mining
collapses and rock bursts, for example.

We first attempt a direct comparison of the observed event
rate with the values evaluated using Eq. (9), with tf = 6240.7
s identified with the time from the start of the experiment to
the macroscopic load drop seen in Figs. 3(c) and Fig. 3(d).
To this end, we evaluate the event rate over a moving window
of length l = 50 as ṅl(k) = l/�tl(k), where �tl(k) = ∑k+l

i=k τi ,
and the corresponding time tl(k) = tk + �tl(k)/2, where tk is
the occurrence time of event k.

A direct comparison between Eq. (9) and the [ṅl(k),tl(k)]
data does not work well since the experimental event rate
exhibits a “hiatus,” which is inconsistent with a power-law
increase (black curves in Fig. 8). This feature coincides with
the intervening time interval [t1,t2] with t1 = 6179 s and
t2 = 6228 s, corresponding to the AE with event numbers
12 500 and 19 100 of the complete record. During this time
interval a second damage zone is active and the acceleration of
the event rate is interrupted (Figs. 2 and 3). If we remove this
time interval from the analysis and shift the apparent failure
time t ′f = tf − (t2 − t1) for the antecedent events accordingly,
then both the event rates prior to this confounding interval
(first exponential acceleration regime) and those after the
confounding interval (second exponential acceleration regime)
are well represented by Eq. (9), as can be seen from the green
(light gray) and blue (dark gray) curves in Fig. 8.

In particular, the data pertaining to the damage zone
surrounding the final failure plane match the prediction of
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FIG. 8. (Color online) Top: evolution of event amplitude in the run-up to failure; left, all events; right, only events in damage zone around
final failure plane; all amplitudes have been normalized by the average amplitude over all events. Bottom: evolution of event rate in the
run-up to failure; left, all events; right, only events in damage zone around final failure plane; black curves, raw data; green (light gray)
curves, data pertaining to second acceleration regime; blue (dark gray) curves, data from first acceleration regime with shifted failure time
t ′
f = tf − (t1 − t2); black lines in the top figures, Eq. (3) with AE amplitude ∝C and ν = 1/20; black straight lines in the bottom figures,

Eq. (9).

Eq. (9), with the parameter a taken from the fit to the
exponential acceleration regime, extremely well. This implies
that acoustic emissions associated with localization on the
ultimate fault plane are temporarily stabilized or switched
off while deformation shifts to an alternate plane. When the
process restarts on the first plane it retains a strong memory
of the previous history. This memory effect is well known in
acoustic emission studies involving controlled external stress
relaxation and is known as the “Kaiser effect” [23,24]. To our
knowledge this is the first time the Kaiser effect has been seen
as a consequence of emergent internal stress redistribution
within a deforming sample.

We can also see that the reverse Omori law ceases to hold
within the last second of the failure sequence. During this time
interval, a reduction in the event rate is accompanied by a
drastic and sudden increase in the event amplitude (top graphs
in Fig. 8). This is associated with an increase in the mean event
size and is most likely due to “masking” of smaller events
by longer and larger events that begin to overlap in time. The
dynamic behavior in the final second is complex and cannot be
explained in a simple way by the quasistatic theory presented
here.

We now consider the implications of our findings for
the dynamics of damage accumulation in the failure plane
and investigate to what extent this can be envisaged as a
coherent crack propagation and growth process. Taking Eq. (3)
together with Eq. (9) yields for the velocity of subcritical crack

growth

Ċ(t) = dC

dt
= νC(0)

tf
(1 − t/tf )−ν−1

= νaC(t)ṅ(t), (10)

where C(t) is the length of the macroscopic crack or growing
fault. To interpret this equation, we recur to the concept of
scale-invariant crack growth [25] as established in fracture
mechanics: For an elastic material, linear elastic fracture
mechanics states that ahead of a crack of length C the
material is elastically deformed under a stress that decays
according to σ ∝ √

C/r with distance r from the crack
tip [1,12,26,27]. But real materials are not ideally elastic:
within a zone where σ exceeds the yield stress of the material
(thus within a radius proportional to the crack length) plastic
deformation occurs (Dugdale-Barrenblatt model [7]) in the
form of an increasing number of micro cracks. This zone
is called process zone or damage zone and also appears in
natural fault growth [25]. Scale-invariant crack growth thus
simply means that the extension of the “damage zone” where
damage accumulates around the tip of a growing crack is
proportional to the length of the crack. Equation (10) follows
from this idea if we make the assumptions that (i) crack
growth occurs by the same damage accumulation processes
that cause acoustic emission and that (ii) the amount of damage
corresponding to a single AE event is proportional to the
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extension of the damage zone, hence to the crack length. It
then follows that the crack growth rate is proportional both
to the crack length and to the AE event rate, as stated by
Eq. (10).

The idea that the damage per event is proportional to the
crack length is supported by studying the increase of the mean
AE amplitude, which we may use as as a proxy for the mean
amount of damage per AE event. By fitting Eq. (3) to the AE
amplitude increase we find, in the regimes where Eq. (9) is
expected to hold, a small exponent ν ≈ 1/20 [black curves
in Fig. 8(top)]. With such small ν, Eq (10) is consistent with
the observation of similar Charles’ law exponents for event
rate and crack growth rate in double torsion tensile tests [2].
Equation (10) thus unifies the outcome of Charles’ law for
subcritical crack growth [Eq. (3)] with the time-reversed
Omori law with exponent 1 [Eq. (9)] and scale-invariant crack
growth into a single model.

FIG. 9. (Color online) Plan view of the final failure plane of the
Clashach sandstone specimen. The symbols indicate the location
of acoustic emissions measured around the final plane for (a)
events 500–1 500, (b) 1 500–2 500, (c) 5 000–6 000, (d) 6 000–7 000,
and (e) 6 500–7 500. Events with small amplitudes (m/〈m〉 � 1.1)
are indicated by circles, medium-sized events (1.1 < m/〈m〉 � 2.2)
are indicated by squares, and triangles indicate events with large
amplitudes (2.2 < m/〈m〉).

Equation (10) implies that the crack is growing exponen-
tially with respect to the event number:

C(n) = Bebn, (11)

with b = νa. If we take the measured values 0.00028–0.0017
for the parameter a, and the typical value of ν = 1/20,
the parameter b is of the order of 10−5–10−4). Therefore,
for �n = 1 000, the relative increase of the crack size,
�C(n,�n)/C(n) = (eb�n − 1) ≈ 0.01–0.1, is very small.
Again, this is consistent with the experimental observations
of a slowly growing crack front associated with the slow
movement of a crescent-shaped “process zone,” in turn inferred
from the evolution of AE locations in Fig. 9. The zone of
clustered damage increased only slightly with respect to event
number as expected from Fig. 1 until very near the failure time.

As C changes only slowly with n, it follows from Eq. (10)
that event rate is a good indicator of crack velocity. This
is consistent with Fig. 1: Since the two exponents for C

and dn/dt differ by about 1, those for dC/dt and dn/dt

are approximately equal. In practical terms, measuring event
rate is much easier than attempting to directly measure the
crack velocity from time-lapse images of AE locations, which
represent a diffuse pattern from which it is difficult to locate
the extension of the crack or fault zone.

V. DISCUSSION AND CONCLUSIONS

For guided tensile cracks we can derive the inverse power-
law acceleration-to-failure of variables such as crack growth
rate and energy release rate directly from the observation of
controlled stress intensity and the resultant crack velocity.
Here we show for the case where a fault is growing in a
compressive stress field that experimental observations of the
AE event rate show an inverse power-law acceleration, which,
in combination with the theory of the damage zone in fracture
mechanics, indicates self-similar growth of the dominant
fault with respect to the event rate as the total number of
events within the final failure plane increases according to the
logarithm of an inverse power law with time. This corresponds
to an exponential growth with respect to the event number. The
model is consistent with simultaneous observation of relatively
slow crack growth (small exponent ν) and much more rapid
increase in AE rate (exponent p = 1).

It is interesting to discuss our findings in terms of their
implication for forecasting failure based upon the recorded
AE. Localization of damage on an incipient failure plane
occurs early in the run-up to failure, but direct monitoring
of the spatial distribution of damage in the vicinity of this
plane gives little forewarning owing to the slow growth and
sudden acceleration of the incipient fault. A more promising
approach is to focus on the interevent times and use the
AE record to derive statistical estimates of the exponential
acceleration coefficient a and the mean scaled interevent time
〈τ̃ 〉, from which an estimate of the remaining time-to-failure
follows according to Eq. (6). Using a least-square fit of a linear
function xi = b − ai to the values of xi = ln τi gives, for a
sequence of l = 1 000 interevent times, a typical statistical
error of 10% for a. The value of 〈τ̃ 〉 follows for the same
event sequence as 〈τ̃ 〉 = 〈τi exp(ai)〉 with a typical statistical
accuracy of 1/

√
l. We can then estimate the time-to-failure
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TABLE I. Failure time predictions based upon Eq. (6).

R1, R2, R3, events near R4, events near
all events all events failure plane failure plane

Analyzed events i = 2500–4500 i = 19000–21000 i = 500–1500 i = 5000–6000
Start time ts 5661 s 6227.4 s 5873 s 6226.9 s
End time te 5896 s 6235.9 s 6140 s 6235.8 s
Estimated a (3.16 ± 0.4) × 10−4 (3.53 ± 0.4) × 10−4 (17.3 ± 1.4) × 10−4 (11.5 ± 1) × 10−4

Estimated 〈τ̃ 〉 (0.159 ± 0.006) s (0.0059 ± 0.0002) s (0.575 ± 0.02) s (0.0152 ± 0.0007) s
Predicted time to failure tf − ts (503 ± 85) s (16.7 ± 2.4) s (332 ± 34) s (13.2 ± 2.1) s
Actual time to failure tf − ts 579 s 12.6 s 367 s 12.7 s
Corrected time to failure t ′

f − ts 530 s 12.6 s 328 s 12.7 s

from the start of the sequence as tf ≈ 〈τ̃ 〉/a with a typical error
of �tf /tf ≈ �a/a + 1/

√
l + √

a/2, where the last term is the
intrinsic statistical scatter of tf for given 〈τ̃ 〉 and a. Typical
values of the overall error of tf as estimated for a sequence
of 1 000 events are of the order of 15%, of which the intrinsic
scatter

√
a/2 accounts only for 1–3%. This demonstrates that

the quality of predictions is limited mainly by the accuracy of
estimates of the parameters 〈τ̃ 〉 and a obtained from a limited
record.

Examples of predictions based on subsets of the four
acceleration regimes R1–R4 are compiled in Table I. We
can see that the accuracy of the prediction improves as we
approach the true failure time, in such a manner that the
relative error of the prediction remains approximately constant.
Predictions based upon analysis of events in the vicinity of the
incipient failure plane perform better than predictions which
use all events; however, it may in practice be difficult or
even impossible to identify the failure plane at an early stage
of the damage accumulation process. Finally, we note that

predictions using data from regimes R1 and R3 are biased by
the presence of a quiescent interval where the acceleration to
failure is interrupted by the activation of a second, conjugate
fault zone where most of the AE activity localizes for about 50
s. During this time interval, the final fault becomes inactive but
the acceleration resumes unchanged after AE activity returns to
the initial plane, implying significant memory retention in the
reactivation process. It is obvious that, while such confounding
effects can be easily identified in a postmortem analysis, they
may have significant impact on the accuracy of real time
predictions, which in the present case, if based on the first
acceleration sequence, would have led to a predicted failure
time that is approximately 50 s too early.
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