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Abstract

Background: It has been well-established, both by population genetics theory and direct observation in many
organisms, that increased genetic diversity provides a survival advantage. However, given the limitations of both
sample size and genome-wide metrics, this hypothesis has not been comprehensively tested in human populations.
Moreover, the presence of numerous segregating small effect alleles that influence traits that directly impact health
directly raises the question as to whether global measures of genomic variation are themselves associated with
human health and disease.

Results: We performed a meta-analysis of 17 cohorts followed prospectively, with a combined sample size
of 46,716 individuals, including a total of 15,234 deaths. We find a significant association between increased
heterozygosity and survival (P = 0.03). We estimate that within a single population, every standard deviation of
heterozygosity an individual has over the mean decreases that person’s risk of death by 1.57%.

Conclusions: This effect was consistent between European and African ancestry cohorts, men and women, and
major causes of death (cancer and cardiovascular disease), demonstrating the broad positive impact of genomic
diversity on human survival.
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Background
With the advent of genome-wide association studies
(GWAS), and more recently whole-exome and whole-
genome sequencing, remarkable progress has been made
in elucidating the genetics of complex traits, with numer-
ous genetic variants each explaining a small fraction of the
variance [1,2]. The presence of numerous segregating small
effect alleles within the genome that influence traits that
directly impact health raises the question of whether global
measures of genomic variation are themselves associated
with human health and disease. Indeed, increased fitness
has been associated with the increase of genetic diversity
across many organisms [3,4], including humans [5-8], and
is often referred to as positive Heterozygosity Fitness
Correlations (HFCs). In particular, associations have been
found between heterozygosity at the Major Histocompati-
bility Complex (MHC) (a.k.a. Human Leukocyte Antigen,
HLA) region and general health in humans [9]. In the case
of heterozygosity in the MHC region, the cause of a posi-
tive HFC being observed is believed to be the result of
increased antibody diversity conveying robust pathogen
resistance and therefore increased general health [10].
However, in the case of increased whole-genome heterozy-
gosity, the mechanism of action is less readily apparent.
Two general mechanisms that act at a genome level to in-
fluence fitness have been proposed. The first is compensa-
tion for recessive deleterious mutations [11], whereas the
second is a specific advantage of the heterozygous state
over either homozygous state (overdominance/heterozy-
gous advantage) [11], such as that observed for the sickle
cell mutation in the presence of endemic malarial disease.
It has been proposed that compensation for deleterious
mutations occurs at many loci and is the major mechanism
at work in HFCs, with overdominance occurring at few loci
but with greater effect size per occurrence [11].
Results and discussion
Various heterozygosity metrics have been proposed
[12]. The heterozygosity metric used in this study is the
sum of all heterozygous loci divided by the expected
state given the allele frequency under Hardy-Weinberg

Equilibrium t ¼
P

0;1P
2p 1−pð Þ : where p is the frequency of

the major allele in each cohort. This metric up-weights
loci where the expectation of being heterozygous is low.
Given the relationship between effect size and allele fre-
quency [13,14], up-weighting loci with low minor allele
frequencies should maximize the ability to detect a HFC
in humans under a model in which the compensation for
deleterious alleles is the major mechanism driving HFCs.
Only Single Nucleotide Polymorphisms (SNPs) on the au-
tosomes were considered.
To test for the effect of genome-wide heterozygosity
on survival, we performed a meta-analysis of 17 cohorts
(13 European ancestry, 4 African American ancestry)
followed prospectively, with a combined sample size of
46,716 individuals, including a total of 15,234 deaths
(Additional file 1: Table S1). Within each cohort, a Cox
proportional hazards model (CoxPH) was used compar-
ing age at study entry to age at study exit (death) or
most recent follow-up (alive), and included covariates
known to affect survival (sex, highest education level,
Body Mass Index (BMI), income level, center where DNA
was collected, and the first ten principal components to
adjust for population substructure). Since each cohort
used a different number of SNPs (Additional file 1: Table
S1), the variances of the heterozygosity metrics are not the
same (they are dependent on the total number of SNPs in
the metric), and effect sizes from each cohort are not dir-
ectly comparable. Using Stouffer's method to combine Z-
scores, weighted by the number of deaths in each cohort,
we find a significant association between increased hetero-
zygosity and survival (P = 0.03). To assess effect size, we
standardized the beta estimates by multiplying them by
the standard deviation of the heterozygosity metric for
each cohort [15]. This method does not completely ac-
count for the aforementioned bias; however, it is the most
appropriate method to determine an interpretable effect
size. Combining the standardized beta estimates using in-
verse variance weighting demonstrates that for every
standard deviation increase in heterozygosity a person has
over the population mean, they are expected to have a
1.57% decreased risk of death (Figure 1). There was no
evidence for heterogeneity across studies, and a direct
comparison of European Ancestry to African ancestry co-
horts showed no significant difference (Figure 2, P = 0.80);
thus, all downstream analyses combined European and
African ancestry cohorts.
To test whether all chromosomes are contributing

equally to the association between heterozygosity and sur-
vival, each study subject’s heterozygosity score was recal-
culated using only SNPs from a given chromosome. An
inverse-variance meta-analysis for each chromosome was
performed across studies, followed by a meta-analysis of
the chromosomal results (Figure 3). No significant differ-
ence was observed between effects across chromosomes
(P = 0.17). To test whether all major causes of death con-
tribute equally to our genome-wide finding, death caused
by cancer, death caused by CVD, and other causes of
death were each analyzed separately. A meta-analysis for
each cause of death was performed as described above,
followed by a test for heterogeneity and model fitting. Our
results demonstrate that heterozygosity is protective for
all causes of death, with no significant evidence for hetero-
geneity (Figure 4, P = 0.79). To assess if heterozygosity
levels impact women differently from men, meta-analyses



Figure 1 Heterozygosity meta-analysis by study. 1.57% decreased risk of death for every standard deviation increase in heterozygosity. This
is determined using an inverse variance weighted fixed effect model. Significance of P = 0.03 is determined using Stouffer's method to combine
Z-scores due to bias in inverse variance weighted fixed effect model. There are 46,716 individuals, including a total of 15,234 deaths. EA =
European Ancestry; AA = African Ancestry; AGES = Age, Gene/Environment Susceptibility cohort; ARIC = Atherosclerosis Risk In Communities
cohort; CHS = Cardiovascular Health Study; FHS = Framingham Heart Study; HealthABC = HealthABC cohort; HRS = Health and Retirement Study;
INCHINTI = InCHIANTI cohort; LBC1921 = 1921 Lothian Birth Cohort; LBC1936 = 1936 Lothian Birth Cohort; MAP = Rush Memory and Aging Project
cohort; ROS = Religious Orders Study; Rotterdam = Rotterdam Study; SHIP = Study of Health In Pomerania cohort; SE = Standard Error; HR = Hazard
Ratio; CI = Confidence Interval; W =Weight; N = Number.
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were performed separately for each sex. Our results do
not provide evidence for a differential effect of heterozy-
gosity on survival in men vs. women (Figure 5, P = 0.49).

Conclusions
In summary, this study provides evidence that the pro-
tective effect of increased heterozygosity seen in lower
organisms functions in humans as well and may have
implications for how we design future studies to identify
genetic determinants of human disease and survival. We
estimate that within a single population, every standard
deviation of heterozygosity an individual has over the
mean decreases that person’s risk of death by 1.57%.
Interestingly, this seems to be true even if the population
itself has reduced mean heterozygosity. In future studies,
limiting to heterozygosity in proximity to genes and/or
regulatory elements may reveal if some regions are more
Figure 2 Ancestry meta-analysis. Direct comparison of European Ancestry
Figure is formatted the same as Figure 1.
sensitive to heterozygosity than others. Increasing the
African ancestry sample size may increase power to see
a difference between ancestry groups. Overall the
consistency we observed between European and African
ancestry, males and females, and major causes of death
demonstrate a broad positive impact of genomic diver-
sity on human survival.

Methods
Methods for each individual cohort can be found in
Additional file 2: Text S1. Self-described Caucasian
(“white”, “Caucasian”) and African ancestry (“black”,
“African American”) individuals were included after exclud-
ing first and second degree relatives and genetic outliers.
Genetic outliers were defined by merging genotyping data
with HapMap3 data, and calculating the Euclidean dis-
tance from a combined reference HapMap3 population
to African ancestry cohorts showed no significant difference (P = 0.80).



Figure 3 Chromosome meta-analysis. A meta-analysis for each chromosome was performed across studies. No significant difference was
observed between effects across chromosomes (P = 0.17). Figure is formatted the same as Figure 1.
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(Caucasian = CEU+TSI, African ancestry = ASW+YRI +
MKK+ LWK) cluster centroid in the first 3 PC space
weighted by explained variance. Specifically, the stand-
ard deviation of Euclidean distance was determined for
each HapMap reference group, and any sample greater
than ten standard deviations away from centroid were
defined as genetic outliers and excluded.
Directly genotyped SNPs were used for all analyses

(Additional file 3: Figure S1). Imputed SNPs were not used
to avoid issues with genotype accuracy and bias towards
the reference panel. SNP exclusion criteria included:
monomorphic in the dataset, non-unique mapping to
Hg19, SNPs which are no longer in the company provided
annotation file for the SNP array, >0.5% missing data,
MAF ≤ 10%, HWE p-value ≥ 0.001, and non-autosomal
SNPs. The heterozygosity metric is the sum of all het-
erozygous loci divided by the expected state given the
Figure 4 Causes of death meta-analysis. A meta-analysis for each cause
heterogeneity (Figure 4, P = 0.79). Figure is formatted the same as Figure 1
allele frequency under Hardy-Weinberg Equilibrium:

t ¼
P

0;1P
2p 1−pð Þ where p is the frequency of the major allele.

Separate association analyses were run for Caucasian and
African ancestry samples from each cohort. The Cox Pro-
portional Hazard Model (CoxPH) included covariates for
Body Mass Index (BMI) at first visit and first ten principal
components, and the 'strata' function for sex, education
level (defined as 1. ≤11th grade, 2. high school diploma,
general equivalence diploma or some vocational school,
3. 1–4 years of college, 4. Some graduate/professional
school, and Missing), income level (defined by cohorts),
and center of DNA collection within cohorts. The CoxPH
model was set up so that the outcome was age at study
entry, age at study exit, and a binary variable coding
state of death (1: Dead, 0: Alive). Age is measured in
units of years, but is accurate to the nearest day.
of death was performed. Our results show no significant evidence for
.



Figure 5 Sex meta-analysis. A meta-analysis was performed separately for each sex. Our results do not provide evidence for a differential effect
of heterozygosity on survival in men vs. women (Figure 5, P = 0.49). Figure is formatted the same as Figure 1.
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For the meta-analysis, significance was determined by
Stouffer's method [16] calculated as a two-sided test by
incorporating Z-scores derived from two-sided tests per-
formed in each cohort. We standardized the beta esti-
mates by multiplying them by the standard deviation of
the heterozygosity metric for each cohort, to account for
the fact that the effect size is proportional to the vari-
ance in the heterozygosity metric. The variance hetero-
zygosity metric in turn is proportional to the inverse of
the square root of the number of SNPs used to determine
the heterozygosity metric. Because most cohorts used dif-
ferent genotyping arrays, a large bias is introduced into
the meta-analysis. Stouffer’s method completely removes
this bias; however, cannot estimate a combined effect size,
only the overall significance. To get an estimate of the
combined effect size (recognizing that the P-value and as-
sociated confidence intervals will be inflated), we used in-
verse variance weighting of the standardized cohort effect
sizes, which partially corrects the bias and allows for the
combined effect size to be estimated.

Ethics statements
Institutional Review Board approvals were obtained by
each participating ARIC study center (the Universities of
NC, MS, MN, and John Hopkins University) and the co-
ordinating center (University of NC), and the research
was conducted in accordance with the principles
described in the Helsinki Declaration. All subjects in
the ARIC study gave informed consent. For more infor-
mation see dbGaP Study Accession: phs000280.v2.p1.
JHSPH IRB number H.34.99.07.02.A1. Manuscript pro-
posal number MS1964.
HealthABC Human subjects protocol UCSF IRB is
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Research Institute (Baltimore, MD).
The Religious Orders Study (ORA# 91020181) and the

Rush Memory and Aging Project (ORA# 86121802)
were approved by the Institutional Review Board of Rush
University Medical Center. Written informed consent was
obtained from all the participants.
The SHIP study followed the recommendations of the

Declaration of Helsinki. The study protocol of SHIP was
approved by the medical ethics committee of the Univer-
sity of Greifswald. Written informed consent was obtained
from each of the study participants. The SHIP study is de-
scribed in PMID: 20167617.
The Rotterdam Study has been approved by the med-

ical ethics committee according to the Population Study
Act Rotterdam Study, executed by the Ministry of
Health, Welfare and Sports of the Netherlands. A writ-
ten informed consent was obtained from all participants.
The Boston University Medical Campus Institutional

Review Board approved the FHS genome-wide geno-
typing (protocol number H-226671) and genetic investi-
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number H-24912).
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Study has been funded by NIH contract N01-AG-12100,
the NIA Intramural Research Program, Hjartavernd
(the Icelandic Heart Association), and the Althingi (the
Icelandic Parliament). The study is approved by the
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063) and the Data Protection Authority. The researchers
are indebted to the participants for their willingness to
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from the Multi-Centre Research Ethics Committee for
Scotland (MREC/01/0/56) and from Lothian Research
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Additional files

Additional file 1: Table S1. Descriptive breakdown of each cohort and
summary statistics.

Additional file 2: Text S1. Additional Methods for each individual cohort.

Additional file 3: Figure S1. Heterozygosity Metrics Determined Using
Different SNP Lists. The dataset used was genome wide SNP data from
sequencing of 503 individuals with European ancestry from 1000G phase
3 release. The SNP lists used were: 1) all SNPs 2) SNPs on the Illumina 1M
3) SNPs on the Illumina 610quad 4) SNPs on the Illumina Omni2.5 and 5)
SNPs on the Affymetrix 6.0. This is to determine if SNP selection on the
arrays biases the heterozygosity metric. We see high correlation and no
systematic bias.
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