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Abstract We use satellite observations to document rapid acceleration and ice loss from a formerly
slow-flowing, marine-based sector of Austfonna, the largest ice cap in the Eurasian Arctic. During the past
two decades, the sector ice discharge has increased 45-fold, the velocity regime has switched from
predominantly slow (~ 101m/yr) to fast (~ 103m/yr) flow, and rates of ice thinning have exceeded 25m/yr.
At the time of widespread dynamic activation, parts of the terminus may have been near floatation.
Subsequently, the imbalance has propagated 50 km inland to within 8 km of the ice cap summit. Our
observations demonstrate the ability of slow-flowing ice to mobilize and quickly transmit the dynamic
imbalance inland; a process that we show has initiated rapid ice loss to the ocean and redistribution of ice
mass to locations more susceptible to melt, yet which remains poorly understood.

1. Introduction

Ice caps and glaciers separate from the Greenland and Antarctic ice sheets have contributed approximately
one third of recent sea level rise [Gardner et al., 2013]. Models project continued ice loss from these systems
throughout the 21st century under climate warming scenarios [Radic and Hock, 2011; Marzeion et al., 2012;
Meier et al., 2007], although the future dynamic response of marine-terminating sectors remains highly
uncertain [Pfeffer et al., 2008]. In Greenland and Antarctica, changing boundary conditions have driven rapid
velocity fluctuations of fast-flowing marine-based glaciers [Holland et al., 2008; Nick et al., 2009; Joughin et al.,
2012]. Changes in the dynamics of marine-terminating ice streams of a Russian Arctic ice cap have also been
observed [Moholdt et al., 2012], demonstrating the high variability in ice discharge from these fast-flowing
systems. In contrast, the capacity of slow-flowing ice to become dynamically active and to rapidly contribute
ice mass to the ocean remains poorly understood.

The largest contribution from glaciers and ice caps to sea level rise, considering surface mass balance alone, is
projected to come from the Arctic [Radic and Hock, 2011], where recent atmospheric warming has been
particularly strong [Bekryaev et al., 2010]. Smaller bodies of ice in these regions, such as Arctic ice caps
(104–105 km2), exhibit regions of fast and slow flow and are potentially more exposed to changing
climatic conditions than the larger ice sheets of Greenland and Antarctica. Continued monitoring of
these smaller ice masses not only constrains their ongoing contribution to sea level rise but also provides
analogies for anticipated changes within larger ice sheet settings [Joughin et al., 2014]. This study documents
rapid ice loss from a marine-based sector of Austfonna, the largest ice cap in the Eurasian Arctic. Using
observations from eight satellite missions, we present a two decade record of ice mass and velocity fluctuations
and investigate the development of widespread dynamic imbalance within this region.

2. Study Area

Austfonna is located in northeastern Svalbard. Containing approximately 2500 km3 of ice, it is drained by
both land- and marine-terminating glacier systems [Dowdeswell et al., 2008]. About 28% of the ice cap bed
lies below sea level and over 200 km of its southern and eastern margin terminates in the ocean [Dowdeswell,
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1986;Dowdeswell et al., 2008], with parts resting on a retrograde slope. During the 1990s and 2000s, increased
transport of Atlantic Water into the Barents Sea has been accompanied by a northward retreat of sea ice
[Smedsrud et al., 2013]. Model simulations of atmospheric conditions over the same period suggest no
statistically significant trend in summer warming over this region, because of the increased frequency of
northerly atmospheric flows associated with negative phases of the North Atlantic Oscillation [Fettweis et al.,
2013a]. Repeat airborne [Bamber et al., 2004] and satellite [Moholdt et al., 2010] altimetry measurements have
recorded slight thickening (up to 0.5m/yr) of the ice cap interior and moderate thinning (1–3m/yr) at its
margin. The majority of Austfonna flows slowly (typically below 25m/yr) [Dowdeswell et al., 2008], although
isolated units of faster flow do exist. Historical records indicate episodic glacier surges lasting 3–10 years in
some sectors [Schytt, 1969; Dowdeswell et al., 1991; Hagen et al., 1993], and marine surveys off the eastern
shore suggest past ice margin instability [Robinson and Dowdeswell, 2011]. In the southeast, observations
have revealed summertime acceleration of a 1160 km2 region (hereafter basin 3 [Dowdeswell, 1986]) linked to
the supply of meltwater to the subglacial system [Dunse et al., 2012].

3. Data and Methods

We computed decadal elevation and velocity changes of Austfonna using repeat satellite altimeter and
synthetic aperture radar (SAR) measurements. Rates of elevation change were estimated between 2002 and
2014 by applying along-track processing algorithms [Smith et al., 2009; Flament and Remy, 2012; McMillan
et al., 2014] to altimetry data acquired by the Envisat (2002–2010), ICESat (2003–2009), and CryoSat
(2010–2014) satellites (see supporting information). Elevation measurements acquired over a succession
of orbit cycles were grouped either within along-track segments (Envisat and ICESat) or 2–5 km square
geographic regions (CryoSat), and these data were then used to estimate spatial and temporal rates of
elevation change. For the period 2010–2014, when comprehensive (>96% coverage at 5 km grid
spacing) surveying of basin 3 was achieved, we estimated changes in ice volume for this sector by
spatially integrating estimates of surface elevation change and assigning the mean basin elevation rate
to the remaining (<4%) unobserved areas. We then computed mass change by assuming a dynamic
origin to the imbalance and assigning volume loss to be at a density of ice. Uncertainties were computed
from each model fit, summed within each region, and converted to mass equivalent using a density of ice.

Ice velocity and discharge were mapped using synthetic aperture radar (SAR) interferometry and feature
tracking, with data acquired by the European Remote Sensing (ERS-1 and ERS-2) satellites, the Advanced
Land Observing Satellite (ALOS), and the TerraSAR-X and Sentinel-1a satellites (see supporting information).
At each time period, discharge was computed across a flux gate positioned close to the ice front, where the
glacier thickness had been surveyed previously by radio echo sounding [Dowdeswell, 1986] and adjusted for
subsequent thinning using the altimetry data. Glacier discharge was combined with annual surface mass
balance estimates from the Regional Atmospheric Climate Model (RACMO2) [van Angelen et al., 2013]
and the Modèle Atmosphérique Régional (MAR) [Fettweis et al., 2013b] to estimate net ice mass balance
upstream of the flux gate. Ice discharge uncertainties were assumed to be 5% of the recorded discharge,
based on analysis of the residual displacements measured over stable ground, and the variance of
repeat measurements of ice thickness at survey crossing points. Surface mass balance uncertainty was
taken as the standard deviation of the annual MAR and RACMO2 predictions, therefore reflecting the
intermodel consistency of the simulations.

In addition to the altimetry and SAR observations, we used several other supporting data sets in our analysis
(see supporting information). Calving front locations were digitized from SAR data, and sea ice extent was
mapped using daily sea ice concentration data from the National Snow and Ice Data Centre (www.nsidc.org).
Annual surface mass balance and runoff estimates were compiled from daily MAR [Fettweis et al., 2013b] and
RACMO2 [van Angelen et al., 2013] simulations.

4. Results

Between 2003 and 2009, repeat altimetry measurements indicate localized surface lowering at the terminus
of basin 3, with rates exceeding 5.0 ± 0.4m/yr in places (Figure 1). Concurrently, SAR estimates of ice velocity
show changes in ice flow close to the margin of this sector. In 1995, the basin had been predominantly
slow flowing, except for a single flow unit to the north achieving amaximum speed of 150±6m/yr. Observations
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Figure 1. Austfonna surface elevation change and velocity, 1995–2014. Surface elevation change from (a, c, andd) CryoSat and
(b) Envisat (2002–2010) and ICESat (2003–2009). Ice flow velocity from (e) ERS-1/2, (f) ALOS, (g) TerraSAR-X, and (h) TerraSAR-X
and Sentinel-1a combination. (i, j) Surface elevation change and velocity along a longitudinal profile. In Figure 1a, elevation
rates are computed on a 2 km square grid and smoothed using a 6 km square median filter. The black dots delineate the
boundaries of drainage basins [Dowdeswell, 1986], and basin 3 is labeled. Bed elevation contours [Dowdeswell, 1986] at 100m
intervals are shown in white, with the thick line being 0m above sea level, the blue line locates the transect in Figures 1i and 1j,
and the green lines mark the north (N) and south (S) profiles in Figure 3. The green box indicates the area covered by
Figures 1e–1h. In Figure 1e, the white linemarks the flux gate used to estimate glacier discharge. The background image is a
backscatter intensity image acquired by Sentinel-1a on 18 April 2014. In Figure 1i, elevation rates have been averaged
over 10 km north-south strips to capture behavior across the glacier width. In Figure 1j, spaced grey dots indicate intermittent
or absent airborne survey data of the ice and bedrock surface, and ice velocity decreases close to the terminus in 2012 because
fast flow has yet to develop across the full glacier width. The current terminus position is at 497.8 km east.

Geophysical Research Letters 10.1002/2014GL062255

MCMILLAN ET AL. ©2014. The Authors. 8904



from 2008 showed that this flow unit had accelerated by a factor of 5 and widened, and also identified a new
area of fast flow to the south, where ice thinning was most pronounced. After 2009, rates of ice thinning
intensified and spread inland to encompass the entire drainage basin, resulting in an average thinning rate
of 2.9 ± 0.5m/yr between 2010 and 2014. Since 2012, thinning has been exceptionally high across the
basin—averaging and peaking at 5.5 ± 0.8m/yr and 29 ± 1m/yr, respectively—although there is now
evidence of localized thickening at the terminus (Figure 1d). In parallel, the regime of ice flow has
recently altered significantly, with the two distinct flow units merging to form a single stream of fast flow
across the full basin width. By 2014, we detect maximum ice flow speeds of 3800 ± 3m/yr, representing a
25-fold increase on the maximum measured in 1995. Both the magnitude and pattern of the observed
velocity evolution are broadly consistent with a shorter-period, higher-frequency record derived from
SAR data acquired during 2012–2013 [Dunse et al., 2014].

The observed changes indicate recent ice mass loss from basin 3, which we assessed using the altimeter and
SAR measurements (Figure 2). The regular altimeter sampling is well suited to deriving multiyear trends in ice
loss, whereas the episodic estimates of daily to monthly displacement provided by SAR acquisitions better
capture the evolution of ice discharge, albeit computed over much shorter time periods. For ease of
comparison, we have converted SAR-derived estimates to annual equivalent discharge rates. The SAR
measurements indicate that in 2008 basin 3 remained broadly in balance. Since then the ice imbalance has
increased substantially. In February 2014, for example, ice discharge across the defined flux gate was

Figure 2. Temporal evolution of basin 3 and its surrounding environment. (a) Mass imbalance from SAR and atmospheric
modeling (input-output method, IOM) and repeat altimetry, the calving front location (relative to 1981, negative indicates
retreat) and surface mass balance. Mass imbalance is computed directly from the IOM and altimetry methods and has
not been adjusted for mass retention due to terminus advance. Percentage of late-season (July–November) days with
sea ice cover, averaged over the periods (b) 1992–2011 and (c) 2012–2013, with the red dot marking Austfonna. (d, e)
Modeled annual surface meltwater runoff, together with the long-termmean and standard deviation (SD), computed from
MAR and RACMO2 simulations. The green dashed line indicates the long-term (1960–2013) trend. (f, g) Latitudinal limit
of late-season (July–November) sea ice coverage, defined to be the limit at which there was sea ice coverage on aminimum
of 30% of days. The data were generated from annual maps of the percentage days exhibiting sea ice cover and plotted
as the average latitude at which the 30% contour crossed the 25°E and 35°E meridians. The grey line indicates the latitude
of basin 3, and the green dashed line indicates the long-term (1992–2013) trend.
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equivalent to 8.7±0.4 Gt/yr, compared to an average modeled surface mass balance input of only 0.4±0.1 Gt/yr.
To compute longer-term average rates of imbalance, we used the 5km CryoSat elevation change measurements,
which provide comprehensive (>96%) coverage of basin 3 from 2010 onward. We estimated that the rate of
ice loss increased from 1.5±0.6 Gt/yr between July 2010 and May 2012 to 5.9±0.9 Gt/yr between June 2012 and
April 2014. These mass loss estimates do not directly account for migration of the calving front, which either
preserves ice mass within the glacier system or yields increased ice loss to the ocean. Since 2010, there has been
a net advance of the terminus of approximately 50km2, which we estimate to have retained a total of 3.7±1.1 Gt
of the ice leaving the upstream catchment (see supporting information).

5. Discussion

Episodic surges of Austfonna basins have been previously documented [Schytt, 1969; Dowdeswell et al., 1991;
Hagen et al., 1993] and are typically understood to be triggered by internal processes rather than external
forcing. While an internally generated surgemechanismmay be responsible for the glacier evolution we have
recorded, there are several aspects that may suggest the influence of alternative factors. First, although the
temporal sampling offered by our repeat SAR measurements does not provide a continuous account of
the basin evolution, it does appear that glacier velocities have broadly increased over a period of 20 years,
which is more than twice the duration of any previous surge event, inclusive of the deceleration phase
[Dowdeswell et al., 1991]. Second, our observations suggest that acceleration and thinning may have initiated
at the glacier terminus (Figures 1b and 1f) and acceleration occurred at a time when the ice front was
either stable or in retreat. Such behavior is atypical of surge evolution and more reminiscent of a response
to changing boundary conditions at the terminus [Nick et al., 2009]. Third, the imbalance has developed at
a time of significant climatic change in the Arctic and is redolent of changes that have occurred at other
marine-terminating glaciers that have experienced external forcing [Holland et al., 2008]. Finally, we note that the
distinction between a surge and an externally forced process may not be straightforward in cases where the
glacier geometry or rheology is changing in response to its surrounding climate [Dowdeswell et al., 1995]; indeed,
the two largest surges recorded in Svalbard occurred within a 2 year period during the 1930s [Schytt, 1969;
Hagen et al., 1993] at a time of sustained atmospheric and oceanic warming [Polyakov et al., 2013].

We investigated regional climatic variations (Figure 2) to assess the extent to which they may relate to the
observed changes in ice velocity and thickness. Atmospheric warming holds the potential to influence ice
dynamics through processes of meltwater lubrication [Zwally et al., 2002], ice and bed warming [Phillips et al.,
2013; Dunse et al., 2014], or alteration of glacier geometry. Additionally, melt-induced thinning or retreat,
either by the atmosphere or the ocean, may initiate a dynamic response by reducing resistive stresses at the
ice base [Pfeffer, 2007; Joughin et al., 2014]. We therefore examined model simulations of meltwater runoff
[Fettweis et al., 2013b; van Angelen et al., 2013], together with satellite observations of sea ice extent,
which have been shown to be correlated with fluctuations in ocean heat in this region [Schlichtholz, 2011;
Arthun et al., 2012]. The basin-integrated surface mass balance has been predominantly positive over
recent decades (Figure 2a), and there is no indication of anomalously high runoff in recent years, with the
exception of 2013 (Figures 2d and 2e), by which time the imbalance was well established. These findings are
supported by previous studies [Fettweis et al., 2013a] that, excluding 2013, found no statistically significant
trend in summer warming over Svalbard during the last two decades. They are also consistent with our
glaciological observations, with the ice margin thinning, acceleration and retreat that occurred prior to 2012
appearing to better match the response expected from changing conditions at the terminus, rather than
from the enhanced inland delivery of surface melt water to the ice cap base [Nick et al., 2009]. In this
sense, we do not find in our data further support for a proposed activation mechanism related to the
increased delivery of surface melt water to the ice cap base [Dunse et al., 2014], although it remains
possible that smaller incremental changes in subglacial meltwater delivery could eventually trigger a
dynamic response.

There is evidence that ocean conditions in the Barents Sea have changed in recent years, both from
oceanographic surveys [Polyakov et al., 2005, 2013] and the recorded sea ice extent [Schlichtholz, 2011; Arthun
et al., 2012]. Given the observed correlation between these two factors [Schlichtholz, 2011; Arthun et al., 2012],
we investigated changing ocean conditions by computing interannual variations in the period of sea ice
cover (Figures 2b and 2c) and also characterized its northward migration by tracking the lateral extent of
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Arctic sea ice in the western Barents Sea
(Figures 2f and 2g). These data indicate
a marked reduction in the duration of
late-season sea ice cover east of Austfonna in
recent years, which can be attributed to the
observed inflow of warm Atlantic Water into
the Barents Sea causing the delayed onset of
winter sea ice formation [Polyakov et al., 2005;
Smedsrud et al., 2013]. In particular,
measurements from an oceanographic
survey in 2004 identified a pulse of
anomalously warm Atlantic Water offshore of
Austfonna [Polyakov et al., 2013]. Subsequent
repeat observations showed that the
warming associated with this intrusion
peaked between 2006 and 2008, with upper
ocean temperatures approximately 4°C
above the 40 year mean [Polyakov et al.,
2013]. These temperatures were the highest
ever recorded in this region [Polyakov et al.,
2005, 2013], providing the potential for
substantially enhanced ocean melting at
marine-terminating sectors of Austfonna.

Despite the apparent coincidence between
increased offshore ocean temperatures
and the dynamic activation of basin 3,
the lack of more extensive oceanographic
and glaciological measurements
prevents a direct causal link from being
definitively established or discounted.
The existing measurements do,
however, allow us to explore possible
geometrical configurations of the
terminus prior to the widespread
activation of this sector in 2012. At
this time, ice thinning and acceleration
were focused on two individual flow

units (Figure 1) and although localized had been sustained for several years. Airborne radio
echo sounding flight lines from 1983 provide longitudinal transects across these two regions (see
supporting information). These data show that the terminus rested on bedrock 50–100m below sea level,
with an ice cliff extending 25–80m above sea level (Figure 3). To estimate the subsequent evolution of
the terminus geometry, we temporally integrated our 2003–2012 elevation rate estimates at the locations
of the north and south units of fast flow (Figure 1). Prior to these measurements—for the period 1983 to
2003—we estimated a total of 15m of surface lowering, from a comparison of near terminus radio echo
sounding and ICESat elevation data (see supporting information).

Based on the observed ice thinning, we then estimated the 2012 terminus geometry of the two flow units,
assuming that the ice, once sufficiently thin, floats in hydrostatic equilibrium. This analysis suggests that the
sustained ice thinning observed prior to 2012 may have been sufficient for kilometer-scale sections of the
terminus to reach flotation, leading to partial ungrounding of the glacier from the underlying bed (Figure 3).
In the central terminus region of basin 3, however, the thicker ice and absence of sustained thinning
prior to 2012 would have prevented terminus ungrounding, meaning that any floatation was unlikely to
have been universal across the entire calving front (see supporting information). Without more extensive
measurements from this time, it is unclear exactly which part of the terminus may have achieved buoyancy, and

Figure 3. Geometry of the glacier terminus. The terminus geometry
along two airborne flight lines (Figure 1) in 1983 (observed) and in
2012 (estimated). The grounding line position is determined as the
location where the modeled surface elevation intersects the flotation
profile, computed from the bed elevation and assuming, conservatively, a
solid ice column with density 917 kgm�3. The dashed lines indicate
extrapolation beyond the limits of the radio echo sounding data, by fixing
the surface and bed elevations at their most seaward values. The
thickness of the shaded areas represents the height of the ice surface
above flotation. In 1983 the ice cap was well grounded with the surface
elevationbeing substantially in excess of the flotationprofile (light shading).
By 2012, a 1 km section of the terminusmay have reached flotation in both
the northern and southern parts of this sector (dark shading).
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whether the associated reduction in resistive stresses, with its capacity to drive further thinning and
acceleration [Nick et al., 2009; Pfeffer, 2007], could have mobilized the entire basin. As such, this analysis
does not establish a direct causal link between ocean forcing, terminus thinning, and dynamic activation
nor does it provide a process-based argument for such a mechanism. However, it does demonstrate
that based upon the available data it is possible that when widespread dynamic activation occurred in
2012, a portion of the terminus may have reached buoyancy.

6. Conclusions

To date, the observed dynamical imbalance has propagated 50 km inland to within 8 km of the ice cap
summit, producing widespread ice loss to the ocean. Currently, the glacier terminus rests on a broadly
undulating bed; however, farther inland the bed deepens, providing the potential for future instability if
further ungrounding occurs [Schoof, 2007]. The imbalance could have been triggered by a number of
processes, including an internally generated surge, increased meltwater availability at the bed [Dunse et al.,
2014], or enhanced ocean- or atmosphere-driven melting at the terminus; indeed, a combination of factors
may have contributed [Nick et al., 2009; Jenkins, 2011]. Across Austfonna, however, there is a coherent pattern
of ice margin thinning at all marine-based sectors, which is not apparent at land-terminating basins (Figure 1).
This may suggest either a common ocean forcing or the influence of bed conditions specific to marine
settings. Additional evidence of anomalously warm waters offshore [Polyakov et al., 2005, 2013] and
insignificantly increased atmospheric melting in recent years leads us to favor the former mechanism, rather
than one linked to increased melt water delivery to the bed, although a definitive link would require
dynamical modeling and measurements at the calving front. Until then, it is unclear whether the moderate
rates of thinning of other marine ice sectors are a prelude to similar widespread mass loss in these areas, or
whether the large dynamical imbalance at basin 3 will be sustained over time. Nonetheless, the behavior
recorded here demonstrates that slow-flowing ice caps can enter states of significant imbalance over very
short timescales and highlights their capacity for increased ice loss in the future.
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