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in quorum-sensing bacteria
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Bacteria often face fluctuating environments, and in response many species

have evolved complex decision-making mechanisms to match their behav-

iour to the prevailing conditions. Some environmental cues provide direct

and reliable information (such as nutrient concentrations) and can be

responded to individually. Other environmental parameters are harder to

infer and require a collective mechanism of sensing. In addition, some

environmental challenges are best faced by a group of cells rather than an

individual. In this review, we discuss how bacteria sense and overcome

environmental challenges as a group using collective mechanisms of sen-

sing, known as ‘quorum sensing’ (QS). QS is characterized by the release

and detection of small molecules, potentially allowing individuals to infer

environmental parameters such as density and mass transfer. While a

great deal of the molecular mechanisms of QS have been described, there

is still controversy over its functional role. We discuss what QS senses and

how, what it controls and why, and how social dilemmas shape its evol-

ution. Finally, there is a growing focus on the use of QS inhibitors as

antibacterial chemotherapy. We discuss the claim that such a strategy

could overcome the evolution of resistance. By linking existing theoretical

approaches to data, we hope this review will spur greater collaboration

between experimental and theoretical researchers.
1. Introduction
Bacteria are prodigious decision-makers, responding to multiple abiotic and

biotic environmental challenges with changes in gene expression [1]. The

extent of investment in decision-making varies across bacterial species but is

often impressive, with gene regulatory elements comprising between 1 and

10% of the genome [2,3]. For instance, the classic bacterial decision-making

mechanism, the lac operon, controls whether Escherichia coli cells invest in the

metabolism of lactose, as a function of its availability in the environment [4].

The regulation of the lac operon and lactose metabolism links directly
sensed environmental information (nutrient concentrations) to an individually
orchestrated response (catabolic pathway expression). Such decision-making

phenomena can therefore be studied at the level of the individual bacterial

cell and the intracellular molecular network underlying the decision-making

process (figure 1a).

Over the past few decades, it has become increasingly clear that bacterial

decision-making routinely exceeds the two limits of (i) individual sensing

and (ii) individual responses exemplified by the lac operon. In addition to indi-

vidually sensing directly assessable environmental properties such as nutrient

concentrations or temperature, many bacterial species engage in indirect mech-

anisms of environment sensing, via emission and detection of diffusible small

molecules, in a process known as ‘quorum sensing’ (QS) [5–7]. The information

provided by the extracellular titre of signal molecules then shapes large-scale

changes in gene expression, controlling both intracellular (individual) and

extracellular (collective) responses (figure 1b).

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.0882&domain=pdf&date_stamp=2014-12-10
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Figure 1. Individual sensing versus collective sensing and responses. (a) An individually sensed environmental parameter such as lactose concentration is sensed by
an individual cell and affects an individual response. The lac operon is upregulated, and lactose transport and metabolism is enhanced. Such a decision can be made
by directly sensing the nutrient concentration and an effective response is not contingent upon the action of others. (b) By contrast, environmental parameters that
cannot be directly sensed such as population density and mass transfer can affect the concentration of QS molecules. Multiple individuals contribute to a common
pool of molecular environmental probes generating information at the group level, via a collective mechanism of sensing. The resulting change in behaviour involves
both individual traits and group traits (in particular, secretions) that favourably modify the environment.
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Behaviour under the management of QS includes spectacu-

lar feats of group activity, including social motility (swarming),

colony luminescence, biofilm formation and extracellular

digestion [8]. QS also controls a range of individual traits,

including specific nutrient catabolism [9] and genetic compe-

tence [10]. In this review, we examine the collective nature of

both the harvesting of information by QS mechanisms, and

of the response to QS signal inputs. We discuss what infor-

mation is harvested by QS, and why QS preferentially

controls collective and coordinated responses. We review the

evolutionary dynamics of QS in particular in the context of

social conflict in genetically mixed groups. Finally, we com-

ment on the growing interest in using QS as a novel target

for antibacterial chemotherapy, highlighting the potential

evolutionary responses to ‘QS-interference’ drugs and the

possibility of ‘evolution proof’ treatments.

We refer often to examples from the environmental general-

ist and opportunistic pathogen Pseudomonas aeruginosa, because

it is a model organism for social behaviour and communication

in microbes [11–16]. However, the ideas are broadly appli-

cable and the organism shares fundamental similarities with

many other QS bacteria. This is not an exhaustive review of

QS, our focus is on understanding the population-scale proper-

ties of QS and we refer the reviewer to several excellent papers

on the intracellular properties of QS, both theoretical and

empirical [7,17–19].
2. What does quorum-sensing sense?
While the mechanistic underpinnings of QS have been described

for many species in exquisite detail, the functional significance
of QS is still disputed, with several hypotheses competing to

explain how QS contributes to bacterial fitness [20–22]. The clas-

sical view is that QS allows bacteria to sense and respond

appropriately to different levels of bacterial population density.

It is clear that all else being equal, more cells in a defined space

will lead to higher concentrations of signal molecule, allowing

the signal molecule to serve as a proxy for cell density [23].

The main alternative ‘diffusion sensing’ (DS) hypothesis [20]

argues that variation in the concentration of extracellular

signal molecules will primarily be shaped by physical mass

transfer forces such as diffusion or advection, rather than bac-

terial density. Redfield [20] argues that the focus on density

has been spurred by undue attention to the artificial growth con-

ditions in most laboratory work; the high-density, clonal growth

of a single lineage in large volumes of sterile rich media is very

different from bacterial growth in natural populations. Outside

the laboratory, bacterial growth is typically constrained to far

lower densities, and so she argues the primary information

encoded by variation in signal concentration is variation in the

mass transfer properties of the local environment. For example,

QS molecules are more likely to accumulate in viscous environ-

ments where their rate of removal is reduced [24]. Cells are

then able to use QS molecules as cheap environmental probes

and limit the production of costly secreted products such as

exoenzymes to when they will remain nearby.

The ‘DS’ argument and the classical QS argument stand

in conflict because neither can be true in their purest form.

If cells attempt to infer their density by sensing QS molecule

concentration, their inferences would be confounded by vari-

ation in the mass transfer properties of the environment and

vice versa. Box 1 and figure 2a illustrate the basic argument

schematically. With one signal molecule and a predictable

http://rsif.royalsocietypublishing.org/


Box 1. Dynamics of extracellular signal concentrations.

We will consider very simple models for the extracellular dynamics of signal molecule concentrations, taken from Cornforth

et al. [25]. In our models, signal molecules are lost by two factors: decay of the molecules themselves at rates specific to each

secreted molecule, and mass transfer (specifically, advection). In our model of signal density, the local density of signal (S)

is increased by the production (at baseline per capita rate p) of signal by local bacteria (at density N) and is decreased by

mass transfer (at rate m; independent of molecular design) and by physical decay (at rate u; sensitive to molecular design). Auto-

induction is represented by aS, which is the rate of increased signal induction dependent on present signal concentration. Note

that we can conveniently assume that bacterial density N is static, as P. aeruginosa only responds to signal when growth is lim-

ited [26]. In short, QS is used as a device to diagnose and overcome road-blocks preventing further growth. The dynamics of

two distinct signal molecules is given by the equations:

dS1

dt
¼ (pþ a1S1)N � (mþ u1)S1

and

dS2

dt
¼ (pþ a2S2)N � (mþ u2)S2:

For each, the equilibrium is given by S*k¼ Np/(m 2 akN þ uk). At sufficiently low-density and/or high-mass transfer

regimes, the equilibrium is stable (when Nak , m þ uk), and we consider the autoinduction process to be ‘off’. By contrast,

when Nak . m þ uk , the equilibrium becomes unstable (leading to an unconfined increase in Sk), and we consider autoinduction

to be ‘on’ (figure 2a,b).

A simple model describing the dynamics of extracellular signal molecule concentration. The model highlights that the ambiguity between

different environmental axes of variation can be resolved by using multiple signals and combinatorial response rules (see figure 2a,b).
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mass transfer regime (i.e. a known value of mass transfer rate

m), signal concentration is informative of whether bacterial

density is above or below a threshold value of N (i.e. classic

QS). However, it is also true that for the same signal molecule

and a predictable density (i.e. a known value of N ), signal

concentration is also informative of the mass transfer

regime (DS). For bacteria experiencing uncertainty over

both N and m, estimates of either parameter are confounded

by uncertainty over the other, so that high-density, high-

mass transfer environments can be indistinguishable from

low-density, low mass transfer environments.

A possible resolution to the social environment sensing

versus physical environment sensing debate is suggested by

Hense et al. [21]. They argue that while signal molecules can

accumulate due to high population density and/or low

removal rate, the appropriate response in each case is the

same: upregulate secreted factors to exert control over the

extracellular environment. This ‘efficiency-sensing’ hypothesis

posits that the signal molecules serve as cheap test-cases for

extracellular investment; if signal concentration is high then

this implies that more costly secreted enzymes will also achieve

high concentrations, owing to a favourable combination of lim-

ited mass transfer and/or complementation from neighbouring

cell production. Consistent with this, many traits controlled by

QS are secretions [27,28]. However, the logic of efficiency

sensing alone does not account for non-secreted traits under

QS control, for example, the control of luminescence via QS

in Vibrio fischeri—the canonical QS-mediated trait [29]. The

effectiveness of group luminescence is certainly coupled to

density but is not directly affected by the mass transfer proper-

ties of the environment. Mass transfer, however, can still have a

substantial impact on QS molecule concentration. Most gener-

ally of all, the molecular properties and therefore the dynamics

of QS signal molecules are likely to differ significantly from

that of the effector proteins and molecules released in response.

This means the extracellular fate of QS molecules may not be
predictive of the extracellular fate of response proteins such

as enzymes. In addition to this, most secretions do not provide

benefits directly, but instead confer benefits on cells by modify-

ing their environment (e.g. digestion of substrates by

exoenzymes). As the final products of secretions are likely to

also be subject to mass transfer, efficiency-sensing can fail in

these scenarios (see box 2 and figure 2d).

The QS, DS and efficiency-sensing arguments summar-

ized above rely on inferring environmental parameters

using a single signal molecule. One possible solution to the

inferential challenges of using a single molecule to discrimi-

nate distinct social (density) and physical (mass transfer)

environmental regimes is to use more than one signal mol-

ecule, a common feature among generalist microbes [7]. In

a recent study, we illustrated using a mix of theory and exper-

iment that bacteria can improve discrimination of both their

physical and social environment by producing and respond-

ing to multiple signals that differ in their intrinsic chemical

stability [25]. While the absolute concentrations of both mol-

ecules increase with population density, variation in their

ratio reveals variation in mass transfer. (At low mass transfer

the more fragile molecule has time to break down in the

vicinity of the sensing cells, and so the ratio shifts in favour

of the more stable molecule. If the mass transfer is high, the

effect of decay of the fragile molecules is masked by removal

of both and the ratio does not shift in favour of the fragile

molecule.) With appropriately tuned rates of signal pro-

duction and signal decay, such a system enables enhanced

discrimination across the two environmental parameters,

density and mass transfer (box 1 and figure 2b). We would

therefore expect that (i) signal molecules vary in their rates

of chemical decay and (ii) that cells respond with combinator-

ial (non-additive) response rules to different signal molecule

distributions. Cornforth et al. [25] demonstrate that

P. aeruginosa displays diverse combinatorial gene expression

responses to two signals with differential rates of decay and

http://rsif.royalsocietypublishing.org/
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Figure 2. Signal ambiguity and multiple signals. (a) The ambiguity between population density and mass transfer is inherent when inferences are made on the
concentration of only one QS molecule. (b) With two molecules that have differing rates of chemical decay, there are non-overlapping regions in their thresholds over
population density and mass transfer allowing greater environmental resolution (see box 1), requiring combinatorial responses to the concentration of the two
molecules. (c) A two-step public goods model where a beneficial secreted product liberates nutrients in the environment. Both the secreted product and the
liberated nutrient can be lost via mass transfer (see box 2). (d ) Secretions are more effective at high concentrations and therefore at high population density
and low mass transfer. The benefit derived from secretions that liberate nutrients from the environment is affected by both the loss of the secretion and the
liberated nutrient (see box 2). This double jeopardy contributes to an accelerating penalty on the benefit of secretion with increasing mass transfer which translates
into the curved grey shaded region in panel c (the region favouring investments in secreted public goods). This region can be better approximated by two signals
and an AND-gate response rule. The thick lines represent the threshold beyond which QS is ‘on’ (1) and below which QS is ‘off ’ (0). The dark grey region in (c)
represents the mass transport and population density regimes where secretions that liberate nutrients would be favoured. Parameters for the two signal molecules
are: u1 ¼ 1.3 � 1025 s21, a1 ¼ 1.15 � 1029 cell s21, u2 ¼ 1.45 � 1024 s21, a2 ¼ 3.625 � 1029 cell s21. The parameters for the public good model in
panel c are: P ¼ 9.6 � 1029 mg ml s21, q ¼ 1021 s21, e ¼ 4 � 1023 s21, f ¼ 1.2 � 1023 s21, c ¼ 7 � 1027 ml cell s21. See box 1 for model details.
Adapted from [25].
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uses a specific AND-gate response rule to limit the expression

of costly secreted factors to the most beneficial high-density,

low mass transfer environments. This property of ‘combina-

torial communication’ is a hallmark of human language

and has recently been reported among primates [30,31].

Our work highlights that combinatorial communication has

a much broader taxonomic range and is computationally

achievable in single-celled organisms.

The phenomena we have described so far classes QS as a

form of ‘emergent sensing’, where estimates of environ-

mental properties arise from social interactions at the level

of the collective, rather than based on enhancement of private

estimates [32]. This has recently been demonstrated in school-

ing fish (golden shiners, Notemigonus crysoleucas), where
collective sensing of light gradients emerges at the group

level via social interactions [32]. QS functions in a similar

manner as estimates of both cellular density and mass trans-

fer arise via the social interaction of signal production.

However, as well as this type of emergent or collective sen-

sing, QS signal molecules can in principle also transmit

private information among cells. A common feature of differ-

ent QS systems is that they are embedded in a complex

regulatory network, with both production of and responses

to QS molecules being contingent upon other environmental

conditions that can be directly sensed, such as stress and

nutrient concentrations [33,34], leading to the production of

QS molecules and the expression of QS related genes varying

dramatically across different growth media [34–36]. Thus, QS

http://rsif.royalsocietypublishing.org/


Box 2. Two-stage public goods model.

Consider a secreted exoproduct of concentration X that interacts with the environment to release a beneficial shared nutrient Y
(figure 2c). For instance, secreted iron scavenging siderophore molecules bind to iron and can then be imported by bacteria, and

secreted protease enzymes break down a protein into usable amino acids. This ‘two-stage’ public goods scenario, where the

secreted product catalyses the formation of an external and beneficial molecule, can be modelled by the production of a secreted

catalyst X at rate P (by a population at a static density N), with decay rate f, driving the production of the beneficial molecule Y,

formed when the catalyst molecules interact with another molecule in the environment (we assume this conversion to the ben-

eficial molecule occurs at rate q, proportional to the catalyst concentration). The beneficial molecule Y is consumed at rate c and

decays at rate e. Both X and Y are lost by mass transfer at rate m. These assumptions yield the following differential equations:

dX
dt
¼ PN � (mþ f)X

and

dY
dT
¼ qX � (cN þmþ e)Y:

These equations yield the equilibria

X� ¼ NP
mþ f

and

Y� ¼ PqN
(mþ f)(cN þmþ e)

:

In figure 2d, we plot the region of parameter space where the supply of the beneficial product Y* exceeds an arbitrary

threshold y, representing the break-even investment point (where costs equal benefits). When public goods are of the

two-stage type, the threshold investment contour has positive concavity (for a mathematical proof, see Cornforth et al. [25]).

A two-stage public goods model predicts the environmental regime where secretion is favourable. This environmental region can

be better estimated by two signals (see figure 2c,d).
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molecules function both as a collective sensing mechanism

and as a means of sharing private information on directly

sensed environmental variables. Taken together, the role of

QS as a mechanism of environmental sensing, and the influ-

ence of private information on signal production suggests

that the information available via QS is rich, combinatorially

integrating large numbers of environmental variables.
3. What does quorum-sensing control and why?
The response to QS can be dramatic, with estimates on the pro-

portion of the P. aeruginosa genome influenced by QS varying

between 2 and 10% [27]. Traits under control of QS include

biofilm formation [37], antibiotic production [38] and social

motility mediated via biosurfactants [39]. Across this diversity

of traits, one commonly reported theme is a preferential influ-

ence on secreted, extracellular traits [27,28]. Secreted products

are important virulence determinants and allow generalist

pathogens to colonize a wide range of environments, including

new hosts [40]. Our recent microarray results [25] are consistent

with preferential control of secretions by QS; the secretome (the

set of genes coding for secreted proteins) represents approxi-

mately 1.4% of the PA genome, and 6.1% of the PA QS

regulon (figure 3a), which is a significant enrichment (binomial

test: percentage ¼ 6.5%, 95% CI¼ 3.76% - 10.3%, p , 0.0001). It

remains possible however that while the proportion of secreted

gene products in the QS regulon is higher than in the genome at

large, that the total energetic investment in secretion is no

greater in the QS regulon than across the whole genome. The
key question is: what proportion of the energetic cost of a

response to QS is due to secretion? We found that genes encod-

ing secretions were more highly expressed in response to QS

than genes that do not encode secretions (figure 3b, mean

expression fold change in response to QS: non-secreted¼

2.03, secreted¼ 4.91; Welch 2 sample t-test, t16.6¼ 2.21, p ¼
0.041). This result suggests that a disproportionate amount of

the energetic cost of responding to QS is channelled into

secretions. Compelling evidence that both the diversity and

extent of secretions are enriched by QS comes from proteomic

studies where it has been observed that 23.7% of total protein

secretion is due to QS upregulation (while influencing at most

10% of the genome [27]) and that QS mutants are severely

impaired in secretion [41,42]. Analyses of Erwinia and Vibrio
species also implicate QS in the control of primarily secretions

and secretion apparatus [43,44]. In this section, we consider

the potential benefits of coupling QS regulation to the control

of secreted, collective traits. Many microbes rely on active extra-

cellular modification of their environment, secreting an array of

factors to scavenge nutrients and digest extracellular

macromolecules. The QS control of such traits hints that

environmental manipulation via secreted enzymes is more

favourable at a high local density of cells [45]. In box 2, we

assess this common claim via a simple model of extracellular

secreted factor dynamics (for more detailed analysis, see [25]).

In box 2, we illustrate that for simple assumptions on the

extracellular dynamics of secreted factor X, the concentration

of an extracellular beneficial product Y will typically be

increasing with density N, as environmental losses (of both

X and Y) become less significant as density increases.

http://rsif.royalsocietypublishing.org/
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Figure 3. The control of secretions by QS in P. aeruginosa. We analysed data
from a previous study where gene expression in a mutant in two AHL QS
systems (PAO1 DlasI/rhlI) was measured with and without the supplemen-
tation of both 3-oxo-C12-HSL and C4-HSL [25]. (a) Genes encoding secretions
are over-represented in the QS regulon (6.1%) compared to the genome as a
whole (1.4%). (b) Genes that encode secretions are activated by QS to a
higher degree than non-secretions when QS is activated by both signals.
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Conversely, the supply of Y will decrease with increasing mass

transfer as both X and Y are more rapidly removed (box 2,

figure 2c,d). Figure 2d illustrates the threshold above which

production of secreted factor X is favoured given fixed costs

and varying levels of density N and mass transfer m. The

threshold above which production is favoured curves

upward, which can make the optimal region difficult to

approximate via ‘efficiency sensing’ with one signal molecule

alone and can be better approximated using a combination

of the two molecules (using combinatorial AND-gate signal

integration, see [25]). Consistent with this prediction, we pre-

viously found an increased prevalence of combinatorial

AND-gates among the QS regulatory controls of secreted

factors [25]. However, it is worth noting that being able to

separate the density-mass transfer plane into four quadrants

can have other functional benefits as well. For instance,

approximately 30 QS regulated genes are under NOR-gate

control. Given the assumptions of our simple two-signal

model, we would predict that they are most advantageous

under conditions of low-density and high-mass transfer [25].

Detailed study of mappings between environment and gene

expression are necessary to further understand these issues.

Given the expectation that population density will have a

positive effect on the benefit of enzymatic secretions, we

would expect to observe that larger populations grow faster,

when reliant on extracellular digestion. In support of this, popu-

lations of Myxococcus xanthus growing on casein which must be

digested extracellularly, grow at a faster rate when the popu-

lation is larger [46]. A similar effect can be observed in

cultures of the yeast Saccharomyces cerevisiae when grown on

sucrose, which requires extracellular digestion via the enzyme

invertase. The yeast cultures cannot establish growth on low

concentrations of nutrients unless a sufficiently large innoculum

is used [47]. A population can overcome this by clumping

together, or flocculating, a common behaviour in naturally
isolated yeast. The implication is that efficiency of growth on

extracellular nutrients is enhanced by both increased population

size and cell clumping. A recent study reports that QS controlled

protease secretions in P. aeruginosa confer a larger benefit when

the population is large [45]. By disabling the native QS system

and experimentally reactivating it (via exogenously supplied

synthetic signal molecules), the authors demonstrate that

protease production, induced via supplemented QS signals,

leads to a higher proportional increase in growth at high density.

Similar results, supporting the conclusion of a positive density-

dependent benefit of QS-controlled exoenzymes, were found in

an entirely synthetic QS system [48].

The important point is that secretion behaviour in these

examples is reserved via QS control for high-density environ-

ments when it will be of most benefit. We note that the

functional forms of the relationships between density, exo-

product concentration and growth benefits are at present

rarely measured even crudely, and yet have important impli-

cations for the evolutionary dynamics of secreted traits, as we

explore in the following section.

Finally, it is important to remember that QS often exerts posi-

tive regulatory effects on non-secreted, intracellular traits. One

such example is the nuh gene in P. aeruginosa, which is required

for intracellular digestion of adenosine. In the case of nuh, the

benefit derived from expressing this trait is unlikely to be

affected by population density (no density dependence was

observed in an experimental manipulation of adenosine concen-

tration, [45]), rather it will be determined solely by the supply of

adenosine. We have argued that QS can restrict secretions to

favourable population densities given that the benefits of extra-

cellular environmental augmentation increase with population

density. Why then are intracellular traits whose benefits are inde-

pendent of population density under the positive control of QS?

One possibility is that selection has linked traits under the con-

trol of QS whose benefits are statistically associated with

environments where population density is high. Nucleotides

are likely to be in abundance when the environment contains

dead cells such as during infection or competition with other

bacterial colonies. The relative investment in social and asocial

traits when QS is ‘on’ requires more empirical attention.
4. Social dilemmas and quorum sensing
In the preceding sections, we have focused on the extracellular

dynamics of cell–cell signal molecules, and the secreted factors

they control. We now turn to a brief discussion on the potential

evolutionary dynamics of QS populations. Specifically, we

focus on two dimensions of adaptation—evolutionary changes

in the response to extracellular signal, specifically cooperative,

extracellular responses; and evolutionary changes in the

extent of signal investment.

4.1. Evolution of quorum-sensing-controlled
cooperation

The evolutionary puzzle posed by cooperative behaviours is

simple: how can cooperative (or helping) traits be maintained

by selection in the face of competition with ‘cheat’ individuals

that take the benefits but do not pay the costs of cooperation?

In a microbial context, cooperation is widespread in the form

of investment in the production of extracellular ‘public

goods’; secreted factors that return benefits to neighbouring

http://rsif.royalsocietypublishing.org/
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cells [49]. For every cooperative public goods trait studied,

non-producer ‘cheat’ genotypes are rapidly discovered, and

this raises the question of how social dilemmas are solved at

a microbial scale? The QS system of P. aeuruginosa presents a

valuable empirical model of QS social evolutionary dynamics.

The tight regulation of secreted protease enzymes by QS

allows QS positive populations to access nutrients in protein

media while QS negative mutants do not achieve as high a

density when grown alone as separate clones [50–52]. When

competed against each other, a rare QS mutant, unable to

respond to QS molecules with protease, can nonetheless gain

access to nutrients through the production of protease by QS

positive individuals [12,15]. These experiments highlight that

QS controlled cooperation is costly and exploitable by non-

responders or ‘cheats’, and further that the cheats reduce the

virulence of infections [53,54]. A major simplification in these

studies, however, is the limitation to only two fixed strategies,

wild-type and non-producer ‘cheats’.

In order to understand the longer term evolutionary trajec-

tories of investment in QS-controlled public goods traits, we

review an existing theoretical model of group beneficial beha-

viours with continuously varying cooperative investment

strategies using an approach termed adaptive dynamics

[55,56]. This work highlights that the outcome of the social

dilemma between more and less cooperative individuals is

highly dependent on the shape of the relationship between

the concentration of public goods and the corresponding

benefit to the group. Put another way, evolutionary dynamics

are contingent on the extent of additional benefit provided by

each additional secreted enzyme. Despite this our current

understanding of empirical cost and benefit functional forms

is extremely limited. We consider three generic benefit curves

(shown in figure 4a–c), diminishing (a), accelerating (b) and sig-

moidal benefits (c). The benefit curves are shown both as the

total benefit to the local population (a–c) and as a per capita
(per cell) benefit (d– f ). In the first two cases, the per capita
benefit of each additional unit of public good provides a smal-

ler (d) or greater (e) benefit than the previous one. In the third

case, additional units of public good provide first a greater per
capita benefit at low production levels and then decreasing

benefits at higher levels ( f ). For simplicity, in all three cases

the costs of production per unit secretion are constant.

In figure 4g– i, we illustrate the evolutionary dynamics of

public goods production, as a function of increasing group size

n. When benefits are diminishing there is a stable equilibrium

(an evolutionarily stable strategy or ESS [58]—figure 4g). This

means that selection will act on any small changes in public

goods investment to return the trait to the equilibrium value

(see arrows in figure 4g). When n ¼ 1, the stable level of invest-

ment is high as all of the available benefits are accrued to the

focal producer. However with increasing n, the equilibrium

level of investment declines as the per capita share of the required

collective effort declines. When benefits are accelerating, the

result is an evolutionary repellor, above which full cooperation

is favoured and below which cooperation collapses (figure 4h).

This means that selection will act on any small deviations from

the repellor value of investment to either (a) increase investment

if above the repellor or (b) decrease the investment if below the

repellor (see arrows in figure 4h). The level of investment at

which this repellor occurs declines with n. At this point, we

have recovered a scenario in which selection would favour posi-

tive density-dependent cooperation: increasing population size

(n) increases the range of investment levels x in which full
investment in cooperation is favoured. Finally, if the benefit

curve is sigmoidal, this results in elements of both earlier figures;

both a repellor and an upper stable level of cooperative invest-

ment (figure 4i). This leads to cooperative equilibria at some

intermediate group sizes, while cooperation collapses if group

sizes are very small. In all cases, increasing the relatedness

among individuals within a group (e.g. decreasing the number

of independent colony founders) increases the equilibrium

level of cooperation and/or widens the range of conditions

under which cooperation is favoured (see [56] for full details).

Figure 4 illustrates that accelerating (synergistic) benefits

(figure 4b,c) can generate evolutionary repellors, leading to

threshold dynamics—with selection on investment sensitive to

both levels of current investment and group size [56]. In the

face of fluctuating population density, a decision-making mech-

anism that can detect and respond to population density and

constrain investment to sufficiently high population densities

(QS) represents a selective advantage. Though this mechanism

is advantageous whenever benefits are increasing (whether

accelerating or not), it is especially advantageous when there

is a repellor because QS can then protect the social trait from

potentially irreversible exploitation and selection for cheats

during periods at low densities [56].

The results summarized in figure 4 highlight the great sen-

sitivity of secreted factor evolutionary trajectories (figure 4g– i)
to the nature of the benefits resulting from these secreted invest-

ments (figure 4a–c). Gaining a better empirical understanding

of the shapes of these benefit (and cost) functions is an impor-

tant goal in this field. Specifically, more empirical work is

needed to (a) map the effect of population density and mass

transfer on public goods production, (b) map the relationship

between public goods concentration and growth rate and (c)

measure the selective benefit of density sensing mechanisms

given (a) and (b). Finally, it is worth highlighting that existing

theory on QS evolutionary dynamics has overlooked the paral-

lel investment in both collective and intracellular or ‘private’

traits governed QS. It has recently been demonstrated that

this can constrain the evolution of cheating strategies as a

cheat then incurs a pleiotropic cost to cheating as it is impeded

in its abilities to express the privately beneficial trait [16].
4.2. Evolution of signal investment
The level of QS molecule production is also potentially subject to

social conflict, driven by the costs and benefits to individuals of

producing and responding to the signal [59,60]. Experiments

with P. aeruginosa reveal that signal production itself is costly

[12], highlighting a potential individual reward for halting

signal production. Conversely, in the context of a population

of potential signal recipients wired to produce costly public

goods in response to signal, there is also a potential reward to

over-produce signal and therefore coerce neighbours

into greater or earlier investments in shared public goods.

Brown & Johnstone [59] developed a game-theoretical model

of investments into both signal production and signal response

(public goods production), and found that stable levels of invest-

ment in both signal and cooperative response can be favoured

across a range of population structures. When populations

exploit their environments clonally (high relatedness), invest-

ments in cooperation are high and conversely signal

investment is low and constant (a ‘conspiratorial whisper’, mini-

mizing collective signalling costs while maintaining a constant

signal convention to allow inference of density). However, as

http://rsif.royalsocietypublishing.org/
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within group strain mixing increases (lower relatedness) the ESS

level of cooperation declines while the ESS level of signalling

increases and then falls (figure 5). The initial increase in signal

investment is due to the benefits of coercive strategists (high sig-

nallers, low responders) in competition with more cooperative

variants (low signallers, high responders), however, as strain

mixing continues to increase (lower relatedness) the diminishing

levels of cooperative response ultimately make coercive invest-

ments unrewarding. The extent to which bacterial cells are

selected to manipulate the behaviour of their neighbours via

QS molecules has yet to be tested empirically, however, poten-

tially coercive (high signaller) strains have been identified

following experimental evolution in environments requiring

collective secretions of extracellular enzymes [13].
In addition to modifying the rates of production and

response to an existing signal molecule, bacteria might also

adapt to conditions of social conflict by modifying the

nature of the signal molecule produced, and/or their respon-

siveness to new and old signal variants [61]. Eldar [61]

developed a theoretical model of QS evolution under con-

ditions of genetic mixing to explore the idea that receptor

genes are under selection to ignore signals and signal genes

are under selection to produce variant signals that can acti-

vate the mutant receptors. The model analysis offers an

account for the reported high levels of both signal and recep-

tor diversity in several bacterial species, particularly Gram

positives [62], and suggests a potentially important role of

QS in bacterial kin recognition.
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5. Quorum-sensing and antibacterial
chemotherapy

The study of QS has a range of practical outputs, reflecting

the centrality of QS to many aspects of bacterial life. The abil-

ity of QS to link gene expression across populations of cells

has drawn attention from researchers in systems and syn-

thetic biology [63,64], and holds the promise of novel

biotechnological applications [65]. However, by far the most

significant applied context is in infection biology.

Disease-causing bacteria often control a raft of virulence

factors (VFs) via QS [66]. One of the most corroborated find-

ings in the study of P. aeruginosa QS is that mutants in key

QS components are reduced or impaired in virulence across

a wide range of host species [67]. In the light of the growing

crisis of antibiotic resistance, QS has therefore attracted a lot

of attention as a potential route to treating bacterial infections,

termed QS interference (QSI), as part of a broader initiative

towards ‘anti-virulence’ therapies [68–70]. A range of different

compounds with anti-virulence activity have been discovered,

some of which are commercially available. The criteria to

identify potential drugs are generally that the compound

reduces the extent of virulence expression while not affecting

growth in rich media. This property of QSI compounds and

other anti-virulence drugs has prompted the claim that anti-

virulence drugs will not generate selection for resistance in

the same way as traditional antibiotics [68,69,71].
A number of recent studies are beginning to shed light on

this ambitious claim [72–75]. The most favourable scenario is

that turning off the expression of specific microbial VFs (mol-

ecular determinants of virulence in humans) presents no cost

to the microbe. At first sight, it would appear unlikely that

microbes deploy entirely wasteful patterns of gene expression

within hosts. However, consider the example of opportunistic

pathogens that live in the environment or as commensals. If

selection in the non-pathogenic state is the major force main-

taining VFs, then it is indeed plausible that some VFs confer

no benefit to the pathogen during human infection [76]. One

such case is infection with extra-intestinal pathogenic E. coli.
The expression of extra-intestinal virulence is reliant upon

VFs that normally aid in the gut commensal lifestyle, but

do not contribute to growth in extra-intestinal sites [77,78],

therefore turning off the expression of these factors at the

extra-intestinal virulence site is unlikely to generate selection

for resistance [75]. Although QS-associated VFs are key to

virulence, the extent to which QS and its associated responses

are adapted to hosts or the environment is not well under-

stood. The ecology of many opportunistic pathogens would

suggest that adaptations to environmental challenges could

constitute a major selective force. More work is needed to

measure the fitness costs and benefits endowed by VFs

both in infections and in the environment or during commensal

interactions with human hosts.

In the case where VFs do indeed confer benefits to patho-

gen growth within the host, the risks of selection for resistance

are real and have been directly observed [73]. However the

social, collective component of many QS-controlled VFs pre-

sents a significant impediment to the evolution of resistance,

as resistance requires the restoration of a cooperative pheno-

type in the context of a sea of chemically induced cheats: a

resistant clone may share the benefits of resistance with neigh-

bouring cells and this could impede selection for resistance

[72]. A recent experimental study points to the increased evol-

utionary robustness of targeting collective traits, compared

with standard antibiotic treatment. Over 12 days of experimen-

tal evolution, all populations of P. aeruginosa exposed to a

variety of different antibiotics rapidly evolved resistance. By

contrast, populations exposed to a novel anti-virulence drug

that extracellularly quenches a secreted VF showed no

improvement in their ability to grow over the 12 days of treat-

ment [74]. Over this short time frame at least, evolution of

resistance was thwarted, despite the significant cost to bacterial

growth imposed by the drug.

We believe that the ecological and evolutionary dynamics

of resistance to new QSI therapeutic strategies (and other

anti-virulence drugs) presents an exciting and challenging

avenue of research. Key to progress in this field is the careful

integration of molecular, mechanistic understanding with

ecological and evolutionary dynamical modelling. With the

correct combination of mechanistic design and evolution-

informed stewardship, these approaches could greatly improve

our ability to sustainably control pathogen-induced harm.
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