Pulmonary function and risk of Alzheimer dementia

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.chest.2020.11.056

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Chest Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
RESEARCH LETTER: Pulmonary function and risk of Alzheimer dementia: two-sample Mendelian randomization study

Tom C. Russ,1-4 * Sarah E. Harris,4 G. David Batty1,5

1. Alzheimer Scotland Dementia Research Centre, University of Edinburgh;
2. Edinburgh Dementia Prevention Group, University of Edinburgh;
3. Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh;
4. Lothian Birth Cohorts, Department of Psychology, University of Edinburgh;
5. UCL Research Department of Epidemiology & Public Health, University College London

* Correspondence to: Dr Tom Russ, Alzheimer Scotland Dementia Research Centre, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
Telephone: +44 (0)131 650 4340; Email: T.C.Russ@ed.ac.uk

Manuscript statistics: 998 words with one table

Funding: This article received no specific funding. The Alzheimer Scotland Dementia Research Centre is funded by Alzheimer Scotland. The Lothian Birth Cohorts are funded by Age UK. TCR is employed by the UK National Health Service and the Scottish Government. GDB is supported by the UK Medical Research Council (MR/P023444/1) and the US National Institute on Aging (1R56AG052519-01; 1R01AG052519-01A1). All researchers are independent of their funders.

Conflicts of interest: none
Author contributions: TCR and GDB conceived the study, SEH obtained and analysed the data, TCR drafted the manuscript and all authors revised it for intellectual content. TCR is the guarantor of the article.
Dementia is a major growing global public health problem.1 Alzheimer disease risk is thought to be raised in the presence of relatively few environmental and genetic factors including lower educational attainment, hypertension, obesity, diabetes, cigarette smoking, and the $APOE \varepsilon 4$ allele.2

Recent findings also suggest that impaired pulmonary function is consistently associated with \textasciitilde40\% elevation in later dementia risk.3 While there is mechanistic evidence to support this — including hypoxia from extended sub-optimal ventilatory function4 — crucially, given the observational nature of these studies, it is unclear if this relationship is causal. An obstacle to drawing causal inference from such studies is the perennial problem of confounding — that characteristics of people poorer pulmonary function differ from the unexposed in various ways that may explain the association. Investigators attempt to include as many relevant covariates as possible but the possibility of confounding by unmeasured/imprecisely quantified factors is universal. Mendelian randomisation (MR) has been seen as a possible remedy to this problem5 and has been extended to two-sample MR where genetic associations for the exposure and outcome are obtained from independent samples.6 Accordingly, for the first time to our knowledge, we present a two-sample MR study to clarify whether the observed association between poorer pulmonary function and subsequent Alzheimer dementia (AD) is causal.

\textbf{METHODS}

We ran a two-sample MR using summary data from the UKBiobank/SpiroMeta Consortium Genome-Wide Association Study (GWAS) comprising 400,102 individuals.7 We derived two genetic instruments for lung function: Forced Expiratory Volume in one second (litres; FEV_1) and Forced Vital Capacity (litres;
FVC). Of the 279 SNPs associated with lung function, but not smoking, only those
related to the relevant trait with $P<5 \times 10^{-8}$ and the same direction of effect in
UKBiobank and SpiroMeta were used as genetic instruments. In addition, we
included a more exploratory measure: the FEV$_1$/FVC ratio — which has been used in
the diagnosis of chronic obstructive pulmonary disease whereby lower values are
more suggestive of this condition. For the outcome we used summary data from the
most recent GWAS which included 21,982 people with AD and 41,944 controls. The
models used the TwoSampleMR R package. Since this study used publicly available
data, no ethical approval was required.

RESULTS

Table 1 shows the relationship between lung function and subsequent AD risk.
There was no evidence of a causal effect of poorer lung function — using FEV$_1$ or FVC
— on AD risk (both $P>0.35$). However, each SD increase in FEV$_1$/FVC ratio
(indicating superior lung function) was associated with an increased AD risk
(OR, 95%CI 1.12, 1.02-1.23; $P=0.016$). The MR Egger intercept for the latter indicates
little horizontal pleiotropy ($\beta=0.0002, P=0.96$) and the inverse-variance weighted Q-
value (177.7, $P=0.08$) suggests no substantial heterogeneity. Using the weighted
median method gave a similar result (1.15, 1.00-1.31; $P=0.048$).

DISCUSSION

We found that the observed association between lower pulmonary function and AD
risk was not supported as being causal. Thus, it is possible that the original
relationship resulted from confounding by one or more unmeasured/poorly
measured confounders. Multiple candidates exist including an adverse intrauterine
environment leading to reduced maximal lung function, exposure to environmental
factors (e.g., tobacco smoke, atmospheric pollution) affecting lung function and
development, and socioeconomic factors (poverty, educational failure, and less-
advantaged social class). In our systematic review and meta-analysis, most included
studies took account of smoking and cardiovascular disease risk factors, and slightly
fewer included height. Socioeconomic position was variably accounted for and there
was little coverage of the whole life course in terms of all included covariables.

The FEV₁/FVC ratio has not been routinely examined in relation to dementia risk. However, we found a link — albeit a weak one — between higher pulmonary function captured by this measure and increased AD risk. This may possibly be explained by survivor bias, with participants with poorer pulmonary function dying before they reach late life, but a false positive result must also be considered.

MR uses genetic variants which are randomly allocated at conception — and therefore generally independent of confounders that may otherwise bias an association when using observational methods — as proxies for environmental exposures. This assumes that genetic variants are:

(1) associated with the exposure; (2) only associated with the outcome of interest via their effect on the exposure; and 3) independent of confounders. It also relies on the exposure being accurately measured in the GWAS from which the instrument is derived. Pulmonary function was accurately measured with rigorous quality control in both UKBiobank (87.2% participants) and the individual studies of the SpiroMeta consortium. Pathway analysis suggested biological plausibility for the SNPs used as instruments with enrichment of genes relating to extracellular matrix organisation and ciliogenesis. Furthermore, a genetic risk score comprising all 279 lung function SNPs predicted COPD. It is unlikely that collider bias due to smoking and height
adjustment in the lung function GWAS explains the observed association, as SNPs associated with smoking behaviour were excluded and a sensitivity analysis excluding the 12 SNPs included in our instrument which were associated with height in UKBiobank did not affect our conclusions.

The AD GWAS included 46 case-control studies from four consortia; rates of APOE e4 carriage are not reported. These studies used various methods of ascertaining dementia, with multiple diagnostic criteria being applied. Some studies used clinical diagnoses and some identified Alzheimer-type pathology post mortem. This variation is likely to affect the applicability of the GWAS findings in our analysis.

In contrast to the instrumental AD variable used here, most observational studies use a more general category of ‘dementia.’ This lack of clarity is common and the multiple diseases causing the dementia syndrome — e.g., Alzheimer disease, cerebrovascular disease, Lewy body disease, and Fronto-Temporal Lobar Degenerative syndromes — are frequently conflated. Depending on the methodology used, clarifying an individual’s precise diagnosis can be challenging. For example, death certificates frequently only record the broad dementia syndrome. Thus, while we can conclude that there is no causal link between impaired pulmonary function and AD, our study sheds less light on potential links with other types of dementia. It is plausible that there may be a different relationship between pulmonary function and vascular dementia, for instance.
REFERENCES
Table 1. Estimates of the association between pulmonary function (FEV$_1$, FVC, and FEV$_1$/FVC ratio) and Alzheimer dementia from a two-sample Mendelian randomization

<table>
<thead>
<tr>
<th></th>
<th>N SNPs</th>
<th>F-statistic</th>
<th>Method</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV$_1$</td>
<td>179</td>
<td>70.0</td>
<td>Inverse variance weighted</td>
<td>1.06 (0.94-1.19)</td>
<td>0.355</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65.1</td>
<td>Inverse variance weighted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC</td>
<td>133</td>
<td>65.1</td>
<td>Inverse variance weighted</td>
<td>0.98 (0.85-1.14)</td>
<td>0.815</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128.3</td>
<td>Inverse variance weighted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV$_1$/FVC ratio</td>
<td>154</td>
<td>128.3</td>
<td>MR Egger estimate</td>
<td>1.12 (1.02-1.23)</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weighted median</td>
<td>1.11 (0.90-1.38)</td>
<td>0.3188</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.15 (1.00-1.31)</td>
<td>0.0480</td>
</tr>
</tbody>
</table>