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Non-Gaussian Test Models for Prediction and State Estimation

with Model Errors

M. Branicki∗, N. Chen, and A.J. Majda
Department of Mathematics and Center for Atmosphere Ocean Science,

Courant Institute of Mathematical Sciences

New York University, New York, USA

Abstract

Turbulent dynamical systems involve dynamics with both a large dimensional phase space and a large
number of positive Lyapunov exponents. Such systems are ubiquitous in applications in contemporary
science and engineering where statistical ensemble prediction and real-time filtering/state estimation are
needed despite the underlying complexity of the system. Statistically exactly solvable test models have a
crucial role to provide firm mathematical underpinning or new algorithms for vastly more complex scientific
phenomena. Here a class of statistically exactly solvable non-Gaussian test models are introduced where
a generalized Feynman-Kac formulation reduces the exact behavior of conditional statistical moments to
the solution of inhomogeneous Fokker-Planck equations modified by linear lower order coupling and source
terms. This procedure is applied to a test model with hidden instabilities and combined with information
theory to address two important issues in contemporary statistical prediction of turbulent dynamical
systems: coarse-grained ensemble prediction in a perfect model and improving long range forecasting in
imperfect models. The models discussed here should be useful for many other applications and algorithms
for real time prediction and state estimation.

1 Introduction

Turbulent dynamical systems involve dynamics with both a large dimensional phase space and a large
number of positive Lyapunov exponents. Such extremely complex systems are ubiquitous in many disci-
plines of contemporary science and engineering such as climate-atmosphere-ocean science, neural science,
material science, and engineering turbulence. Topics of wide contemporary interest involve statistical
ensemble prediction [31] and real time state estimation/filtering [34] for the extremely complex systems
while coping with the fundamental limitations of model error and the curse of small ensemble size [22].

An important role of mathematics in applied sciences is to develop simpler exactly or easily solvable
test models with unambiguous mathematical features which nevertheless capture crucial features of vastly
more complex systems in science and engineering. Such models provide firm underpinning for both
advancing scientific understanding and developing new numerical or statistical understanding. One of
the authors has been developing this approach with various collaborators over the past few years for
paradigm problems for turbulent dynamical systems. For example, simple statistically exactly solvable
test models have been developed for slow-fast systems [12, 13], turbulent tracers [21, 14, 2, 33] and as
stochastic parameterization algorithms for real-time filtering of turbulent dynamical systems with judicious
model error [9, 8, 15, 35, 34]. Such models have been utilized as unambiguous test models for improving
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prediction with imperfect models in climate science through empirical information theory [10, 28, 29, 30, 5]
and for testing algorithms for uncertainty quantification [5, 4, 25].

Here, we study non-Gaussian statistics in a class of test models which are statistically exactly solvable
through a generalized Feynman-Kac formula [16, 21] which reduces the exact behavior of conditional
statistical moments to the solution of inhomogeneous Fokker-Planck equations modified by linear lower-
order coupling terms and source terms. This exact procedure is developed in section 2 below and involves
only marginal averaging and integration by parts. In section 3 elementary test models are introduced
where the general procedure from section 2 can be evaluated through elementary numerical solutions of
the coupled generalized Fokker-Planck equations (CGFPE). Section 4 contains a brief introduction to the
use of information theory to quantify model error in a framework adapted to the present context. Section
5 contains two applications of the material in section 3 and 4 to statistical ensemble forecasting: the first
application involves coarse-grained ensemble prediction in a perfect model with hidden instabilities; the
second application involves the use of imperfect models for long range forecasting.

2 Test Models with Exactly Solvable Conditional Moments

Here, we consider a special class of test models and illustrate the evolution of the exact conditional
statistical moments can be calculated through the solution of coupled generalized Fokker-Planck equations
(CGFPE). Our elementary derivation follows the philosophy of generalized Feynman-Kac framework [16,
21] although we do not know any specific reference for the general principle developed below.

Consider a vector uuu ∈ IRM partitioned into components uuu = (uuui,uuuii) with uuui ∈ IRMi , uuuii ∈ IRMii , and
M = Mi +Mii. We focus on the special class of test models given by the system of (Itô) SDE’s,

duuui = F1(uuui, t) dt+ σi(uuui, t) dWi(t),

duuuii =
(
Fii(uuui, t) + Γ(uuui, t)uuuii

)
dt+ σii(uuui, t) dWi(t) + σii,a(uuui, t)dWii,a(t)

+
(
σii,0 + σii,m(uuui, t)uuuii

)
dWii,m,

(1)

where Wi is an Mi-dimensional Wiener process and Wii,a,Wii,0,Wii,m are independent Mii-dimensional
Wiener processes. Note that the dynamics of uuui is arbitrary while the dynamics of uuuii is quasilinear, i.e.,
linear in uuuii in both the drift and noise but with general nonlinear coefficients depending on uuui. Also, note
that the noise for uuui and uuuii can be correlated through Wi appearing in both the equation for uuui and uuuii.
All of the nonlinear test models for slow-fast systems [12, 13], turbulent tracers [21, 14, 2, 33] and exactly
solvable stochastic parameterized filters [9, 8, 15, 35, 34] have the structural form as in (1). Such systems
are known to have exactly solvable non-Gaussian statistics for filters where uuui is observed conditionally
over a time interval [1, 20]. Below, we derive explicit closed equations for the evolution of conditional
moments of uuu2 through CGFPE.

The Fokker-Planck equation for the probability density p(uuui,uuuii, t) associated with (1) is given by [7, 36]

pt = −∇i · (Fi p)−∇ii ·
(

(Fii + Γuuuii)p
)

+ 1
2∇·∇(Qp) + 1

2∇i ·∇i(Qa p) + 1
2∇ii ·∇ii(Qm p), (2)

where ∇ = (∇i,∇ii), and

Q = (σi, σii)⊗ (σTi , σ
T
ii ), Qa = σii,a ⊗ σTii,a, Qm = (σii,0 + σii,muuuii)⊗ (σTii,0 + uuuTii σ

T
ii,m). (3)

We are interested in developing exact statistical approximations for p(uuui,uuuii, t) which, by Bayes theorem,
can be written as

p(uuui,uuuii, t) = p(uuuii|uuui, t)π(uuui, t) (4)
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where π(uuui, t) is the marginal distribution

π(uuui, t) ≡
∫
p(uuui,uuuii, t)duuuii. (5)

We first integrate (2) with respect to uuuii and use the divergence theorem to calculate that the marginal
density, π(uuui, t), satisfies the Fokker-Planck equation

πt = Lfp,i π, (6)

with

Lfp,i π = −∇i · (Fi π) + 1
2∇i ·∇i(Qi π), Qi = σi ⊗ σTi . (7)

Next, we derive the closed system of Coupled Generalized Fokker-Planck Equations (CGFPE) for the
conditional moments

Mααα(uuui, t) ≡
∫
uuuαααii p(uuui,uuuii, t) duuuii = π(uuui, t)

∫
uuuαααii p(uuuii|uuui, t) duuuii. (8)

Note that M0(uuui, t) = π(uuui, t) is just the marginal density of (1) in uuui. Here and below, we use the
standard multi-index notation ααα = (α1, α2, . . . , αMii

) ∈ IRMii with

uuuαααii ≡ (uuuii)
α1
1 (uuuii)

α2
2 . . . (uuuii)

αMii

Mii
. (9)

We have the following general principles for computing the vector ,MMMααα(uuui, t) ≡
(
Mααα(uuui, t)

)
, |ααα| = N , of

conditional moments of order N :

Proposition 2.1 (Generalized Feynman-Kac formula) The vectorMMMN (uuui, t) of conditional moments
of order N associated with the probability density of (1) satisfies the CGFPE

∂MMMN (uuui, t)

∂t
= LfpMMMN (uuui, t) + LN (uuui, t)MMMN (uuui, t)

+ FN

(
uuui,MMMN−1(uuui, t),∇iMMMN−1(uuui, t),MMMN−2(uuui, t)

)
, (10)

with the conventionMMM−2 =MMM−1 = 0 where FN is an explicit linear function with coefficients depending
on uuui of the lower order moments; LN is an N × N Feynman-Kac matrix potential which is an explicit
linear function with coefficients depending on uuui of the quantities

Γ(uuui, t), Qii,m = σii,m ⊗ σTii,m, (11)

which vanishes when both Γ = 0, Qii,m = 0.

The proof below immediately yields explicit formulas for LN and FN in any concrete application (see
section 3 below) but a general notation for these coefficients would be tedious and unnecessary to develop
here. The advantage of CGFPE in (10) is that high resolution numerical integrators can be developed
for (10) to find these statistics provided Mi is low-dimensional or has special algebraic structure (see
section 3).

The sketch of the proof below emphasizes the main contributions to the operator LN in (10). As in
the derivation of (6), we first multiply the Fokker-Planck equation (2) by uuuαααii and integrate with respect
to uuuii to obtain

∂MMMN (uuui, t)

∂t
= LfpMMMN (uuui, t)−

∫
uuuαααii · ∇ii

(
Γ(uuui, t)uuuii p

)
duuuii

+
1

2

∫
uuuαααii · ∇ii · ∇ii

(
σii,muuuii ⊗ uuuTii σTii,m p

)
duuuii + . . . , (12)
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where “+ . . . ” denotes all the remaining terms which define the recursive source term FN . We simplify
(12) using integration by parts of the two last terms on the right hand side; namely

−
∫
uuuαααii · ∇ii

(
Γ(uuui, t)uuuii p

)
duuuii =

∫
∇ii uuu

ααα
ii ·
(

Γ(uuui, t)uuuii

)
p duuuii = L

(1,2)
N MMMN (uuui, t), (13)

and

1

2

∫
uuuαααii · ∇ii ·∇ii

(
σii,muuuii ⊗ uuuTii σTii,m p

)
duuuii =

1

2

∫
∇ii ·∇ii uuu

ααα
ii ·
(
σii,muuuii ⊗ uuuTii σTii,m

)
p duuuii = L

(2,2)
N MMMN (uuui, t) (14)

so that LN = L
(1,2)
N + L

(2,2)
N in (10). The remaining terms in “+ . . . ” are computed explicitly by similar

integration by parts to define FN . The correlated noise terms in (1) involving Wi which defines the noise
Q in (2) determine the dependence on ∇MMMN−1(uuui, t) in FN since they have the typical form

−
∫
uuuαααii ∇i ·∇ii

(
σiσ

T
ii p
)

duuuii = ∇i ·
∫
∇iiuuu

ααα−1
ii

(
σiσ

T
ii p
)

duuuii = FN

(
uuui,∇iMMMN−1(uuui, t)

)
. (15)

It is worth pointing out that FN depends only on the point-wise values of MMMN−1(uuui, t), MMMN−2(uuui, t) if
there are non-correlated noise interactions and σii = 0.

3 Application of the Conditional Moment PDE’s to a Non-Gaussian
Test Model

Here, we develop the simplest non-Gaussian test model where we can explicitly evaluate non-trivial statis-
tical features utilizing the coupled system of PDE’s in (10) from §2 for the conditional momentsMααα(uuui, t).
We then derive and validate a numerical procedure for accurate numerical solution of the closed system
of equations in (10) for the conditional moments in several stringent test problems. This explicit solution
procedure is applied in §5 to understand the role of coarse-graining and non-Gaussian statistics with model
error in ensemble predictions.

Clearly, the simplest models to consider with the structure as in (1) have Mi = Mii = 1 so that the
recursion formulas in (10) involve scalar fields and the CGFPE are integrated in a single spatial dimension.
For uuui we choose the general nonlinear scalar Itô SDE

dui = Fi(ui, t)dt+ σi(ui, t)dWi, (16)

while for uii we utilize the quasi-linear equation

duii =
(
− uiuii + f(t)

)
dt+ σiidWii, (17)

where f(t) does not depend on ui, and the noise σii is constant. Note that ui enters in (17) as a multi-
plicative coefficient and fluctuations in ui can introduce growth and intermittent instabilities with highly
non-Gaussian behavior even when ui in (16) has a positive mean [3, 5, 25]. The stochastic models for ui in
(16) will vary from linear stochastic models (a special case of the SPEKF models for filtering [9, 34, 35, 25])
to cubic nonlinear models with additive and multiplicative noise [25]. For systems with dynamics as in
(16)-(17), the closed equations for the conditional moments Mααα in (8) become

∂

∂t
MN (ui, t) = LfpMN (ui, t)−NuiMN (ui, t) +Nf(t)MN−1(ui, t) + 1

2N(N − 1)σ2
iiMN−2(ui, t), (18)

where N = 0, 1, . . . , Nmax andM−2 =M−1 = 0. Such models illustrate a wide range of intermittent non-
Gaussian behavior mimicking that in vastly more complex systems [22]. These simple yet revealing models
will be used in §5 to study various new aspects of model error in ensemble predictions for non-Gaussian
turbulent systems.
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3.1 Validation of a Numerical Method for Solving the CGFPE

Determination of the time evolution of the conditional momentsMααα in (8) requires an accurate numerical
procedure for solving the inhomogeneous system of coupled Fokker-Planck equations (CGFPE) in (10).
The algorithms discussed below apply to the case when ui ∈ IR (i.e., Mi = 1 ) which is sufficient for our
purposes and leads to many new insights on model error in imperfect ensemble predictions of turbulent
systems with positive Lyapunov exponents, as discussed in §5. Similar to the case of the homogeneous
Fokker-Planck equation, solving the inhomogeneous CGFPE system (10) for Mi > 3 poses a formidable
challenge which, conveniently, is unnecessary here.

Here, the coupled system in (10) is solved using the third-order temporal discretization through the
backward differentiation formulas (e.g., [17]) and the second-order spatial discretization via the finite
volume method [19] (see Appendix A for details). The performance of the numerical procedure for solving
CGFPE in one spatial dimension (i.e., ui ∈ IR in (10)) is tested in the following widely varying dynamical
configurations:

(i) Dynamics with time-invariant statistics on the attractor/equilibrium with

– Nearly Gaussian marginal equilibrium PDFs in uii and linear Gaussian dynamics for ui in (16),

– Fat-tailed marginal equilibrium PDfs in uii and linear Gaussian dynamics for ui in (16),

– Highly non-Gaussian marginal equilibrium PDFs in uii and cubic dynamics for ui in (16) with
highly skewed equilibrium PDFs.

(ii) Dynamics with time-periodic statistics on the attractor with time-periodic regime switching between
nearly Gaussian and highly skewed regimes with cubic dynamics for ui in (16) and highly non-
Gaussian dynamics of uii in (17).

Below, we introduce the relevant test models in §3.1.1 and provide evidence for good accuracy of the
developed technique in §3.1.2, as well as its advantages over direct Monte Carlo sampling.

3.1.1 Non-Gaussian test models for validating CGFPE

Here, we consider two non-Gaussian models with intermittent instabilities and with the structure as in
(16)-(17) where we adopt the following notation

ui = γ, uii = u.

The first model is a simplified version of the SPEKF model developed originally for filtering turbulent
systems with stochastically parameterized unresolved variables [9, 8, 15, 35, 34] and given by

a) dγ =
(
− dγ(γ − γ̂) + fγ(t)

)
dt+ σγdWγ

b) du =
(
− γ u+ fu(t)

)
dt+ σudWu.

(19)

Note that despite the Gaussian dynamics of the damping fluctuations γ, the dynamics of u in (19) can be
highly non-Gaussian with intermittently positive Lyapunov exponents even when the equilibrium mean,
γ̂, is positive [3, 5, 4, 25]. The system (19) possesses a wide range of turbulent dynamical regimes ranging
from highly non-Gaussian dynamics with intermittency and fat-tailed marginal PDFs for u to laminar
regimes with nearly Gaussian statistics; a detailed discussion of properties of this system can be found
in [3, 5]. In the numerical tests discussed in the next section we examine the accuracy of the numerical
algorithm for solving CGFPE in the dynamical regime characterized by a highly intermittent marginal
dynamics in u associated with fat-tailed marginal equilibrium PDFs for u (see figure 1 for examples of
such dynamics).
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The second model we examine has a cubic nonlinearity in the dynamics of the damping fluctuations,
γ, and is given by

a) dγ =
[
− a γ + b γ2 − c γ3 + fγ(t)

]
dt+ (A−B γ)dWC + σγdWγ ,

b) du =
(
− γ u+ fu(t)

)
dt+ σudWu,

(20)

The above nonlinear model for γ with correlated additive and multiplicative noise WC and exactly solv-
able equilibrium statistics was first derived in [26] as a normal form for a single low-frequency variable
in climate models where the noise correlations arise through advection of the large scales by the smal-
l scales and simultaneously strong cubic damping. The nonlinear dynamics of γ has many interesting
features which were studied in detail elsewhere [25]. Here, we consider a more complex problem where
the dynamics of u in (20a) is coupled with γ through the quadratic nonlinearity. In the numerical tests
below we focus on the particularly interesting regime where the damping fluctuations γ exhibit regime
switching despite unimodality of the associated equilibrium statistics (see figure 1 for an example). This
configuration represents the simplest possible test model for the analogous behavior occurring in com-
prehensive climate models [27, 23]. Another important configuration of (20) tested below with relevance
to atmospheric/climate dynamics corresponds to time-periodic transitions in γ between a highly skewed
and a nearly Gaussian phases in γ with the dynamics in u remaining highly non-Gaussian throughout the
evolution (see figure 2 for an illustration of such dynamics).

The above two non-Gaussian models are utilized below to validate the accuracy of our numerical
method for solving the CGFPE system (10); this framework is then used to analyze model error in
imperfect predictions of turbulent non-Gaussian systems in §5.

3.1.2 Numerical tests

Here, we use the test models introduced in the previous section to analyze the performance of the numerical
scheme for solving the CGFPE system (10) in one-spatial dimension. In order to assess the accuracy of
the algorithm, we consider following two types of relative error in the conditional moments: the point-wise
relative error in the N -th conditional moment

εN (γ, t) =

∣∣∣∣∣
Mcgfpe

N (γ, t)−Mref
N (γ, t)

Mref
N (γ, t)

∣∣∣∣∣ , (21)

and the L2 relative error for each fixed time

εN (t) =
‖Mcgfpe

N (γ, t)−Mref
N (γ, t)‖L2

‖Mref
N (γ, t)‖L2

. (22)

The reference values for the conditional moments, Mref
N , in the above formulas are obtained from either

the analytical solutions (in the case of system (19) through the formulas derived in [9]), or via the Monte
Carlo estimates. The conditional moments are normalized in the standard fashion, with the conditional
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Figure 1: (Top) Marginal statistics, peq(u), and a path-wise solution u(t) on the attractor of the system
(19) in the non-Gaussian regime with invariant measure characterized by intermittent transient instabilities
and fat-tailed marginal PDFs (dynamics of γ is Gaussian in this model). (Bottom) Marginal statistics,
peq(γ), peq(u), and a path-wise solutions, γ(t), u(t), on the attractor of the system (20) in the non-Gaussian
regime with regime switching in the path-wise dynamics despite a unimodal, skewed marginal PDF in γ.

mean, variance, skewness and kurtosis given by

M̃0(γ, t) =M0(γ, t), M̃1(γ, t) =M1(γ, t), (23)

M̃2(γ, t) =

∫
(u(t)−M1(γ, t))

2
p(u, γ, t)du =M2(γ, t)−M2

1(γ, t), (24)

M̃3(γ, t) =
1

M̃
3/2
2 (γ, t)

∫
(u(t)−M1(γ, t))

3
p(u, γ, t)du

=
M3(γ, t)− 3M1(γ, t)M2(γ, t) + 2M3

1(γ, t)

M̃3/2
2 (γ, t)

, (25)

M̃4(γ, t) =
1

M̃2
2(γ, t)

∫
(u(t)−M1(γ, t))

4
p(u, γ, t)du

=
M4(γ, t)− 4M1(γ, t)M3(γ, t) + 6M2

1(γ, t)M2(γ, t)− 3M4
1(γ, t)

M̃2
2(γ, t)

. (26)

The L2 errors for the two test models discussed in the previous section and parameters as specified
below are listed in Tables 1-3; note that the errors in the conditional moments do not exceed 6% for the
wide range of dynamical regimes considered. Moreover, comparison of the results in Tables 1-2 shows that
the numerical algorithm developed here is more efficient and accurate than the Monte Carlo estimates,
even when a relatively large sample size (∼ 107) is used in the MC simulations.
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Figure 2: (Top) Time-periodic evolution of the skewness of the marginal dynamics of γ in the non-Gaussian
system (20) with cubic nonlinearity in γ in the configuration where γ cycles between a highly skewed (top
middle) and a nearly Gaussian (top right) phases. The phases of high/low skewness in the marginal
statistics of γ are correlated with those in the marginal statistics of u; note, however, that the dynamics
of u remains highly non-Gaussian throughout the evolution. The snapshots of the marginal PDFs in u on
the bottom are shown for the times indicated on the top panel.

In figure 3 we illustrate the performance of the algorithm for computing the conditional moments
in (10) associated with the conditional equilibrium density peq(u|γ) for the system (19). The system
parameters, (dγ , σγ , γ̂, σu), in (19) are chosen to represent the non-Gaussian dynamics in the regime with
intermittent instabilities and a fat-tailed marginal equilibrium PDF in u; in particular, we choose

σγ = 10, dγ = 10, γ̂ = 3, fu = fγ = 0;

see figure 1 for an example of the corresponding dynamics.

In figures 5-6 we illustrate the performance of our algorithm for computing the conditional moments,
Mα(γ, t), of u in the system (20) with the cubic nonlinearity in γ which is coupled multiplicatively to
the dynamics in u. Here, we consider two distinct configurations. For constant forcing we choose the
parameters in (20) in such a way that γ displays regime switching with the unimodal, highly skewed
marginal equilibrium PDF for γ, while the marginal dynamics of u is highly non-Gaussian and second-
order stable; this dynamical configuration can be achieved by setting, for example,

a = 1, b = 1, c = 1, A = 0.5, B = −2, σγ = 1, σu = 1, fu = 1, fγ = 3;

see figure 1 for an illustration of such a dynamics. For time-periodic forcing, when the dynamics in γ
cycles between highly skewed and a nearly Gaussian phases while u remains highly non-Gaussian, we set

a = 1, b = 1, c = 1, A = 0.5, B = −0.5, σγ = 0.5, σu = 1, fu = −0.5,

with the time-periodic forcing in γ given by fγ(t) = 6.5 sin(πt− π/2) + 2.5.

Based on the results summarized in figures 3-6 and Tables 1-3, we make the following points:
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M0 M1 M2 M3 M4

System (19): Nearly Gaussian reg. 0.0031 0.0241 0.0494
System (19): Fat algebraic tail reg. 0.0225 0.0202 0.0593
System (20): High skewness reg. 0.0179 0.0181 0.0183 0.0196 0.0236

Table 1: Relative errors, εN (22), in the conditional moments M0–M4 (23)-(26) at equilibrium for the two test
models (19) and (20) with the reference input obtained from Monte Carlo estimates from 107 runs.

M0 M1 M2 M3 M4

System (19): Nearly Gaussian reg. 2.1520× 10−5 0 0
System (19): Fat algebraic tail reg. 3.6825× 10−6 0 0

System (20): High skewness reg. 0.0018

Table 2: Relative errors (22) in the conditional momentsM0,M1, andM3 at equilibrium for the two test models
(19) and (20) with the reference input obtained from analytical solutions.

M0 M1 M2 M3 M4

t∗ = 7.00 0.0185 0.0199 0.0218 0.0242 0.0271
t∗ = 8.40 0.0299 0.0337 0.0400 0.0447 0.0561
t∗ = 7.70 0.0309 0.0316 0.0321 0.0327 0.0332
t∗ = 9.00 0.0182 0.0196 0.0229 0.0275 0.0330

Table 3: Relative error in time-periodic conditional moments M0–M4 (23)-(26) for the test model (20) in the
regime with transitions (see figure 1) between highly skewed and nearly Gaussian marginal densities πatt(γ); the
reference input obtained from Monte Carlo estimates from 107 runs.

• The numerical algorithm for solving the coupled system (10) in the CGFPE framework with ui ∈ IR
provides robust and accurate estimates for the conditional moments (8).

• The discrepancies between the estimates obtained from (10) and direct Monte Carlo estimates with
large sample size (∼ 107) are below 6% for both time-periodic and time-invariant attractor statistics.

• The largest discrepancies in the normalized conditional moments obtained from CGFPE and Monte
Carlo estimates the in the normalized moments occur in tail regions where the corresponding prob-
ability densities are very small.

• The developed algorithm for solving the CGFPE system (10) is more efficient and more accurate
than the Monte Carlo estimates with relatively large sample sizes (∼ 107).
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Figure 3: Equilibrium conditional statistics of the system (19) with Gaussian damping fluctu-
ations, intermittent instabilities and fat-tailed marginal PDF in u. Unnormalized conditional
moments, M0(γ) −M4(γ), (8) of u at equilibrium of the two-dimensional non-Gaussian turbulent sys-
tem (19) with intermittent instabilities due to Gaussian damping fluctuations; the results of CGFPE (10)
and Monte Carlo estimates from 107 runs are compared. In the dynamical regime shown the marginal
equilibrium PDF, peq(u), is symmetric and fat-tailed due to these intermittent instabilities (see figure 1).
Note the errors in the Monte Carlo estimates in the odd moments.
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4 Quantifying Model Error Through Empirical Information The-
ory

As discussed extensively recently [28, 29, 30, 11, 25, 5], a very natural way to quantify model error in
statistical solutions of complex systems is through the relative entropy, P(p, q) > 0 for two probability
measures, p, q, given by

P(p, q) =

∫
p ln

p

q
= −S (p)−

∫
p ln q, (27)

where

S (p) = −
∫
p ln p (28)

is the Shannon entropy of the probability measure p. The relative entropy,P(p, q), measures the lack of
information in q about the probability measure p. If p is the perfect density and pm, m ∈M is a class of
probability densities, then m1 is a better model than m2 provided that

P(p, pm1
) < P(p, pm2

), (29)

and the best model m∗ ∈M satisfies

P(p, pm∗) = min
m∈M

P(p, pm). (30)

There are extensive applications of information theory to improve imperfect models in climate science
developed recently [28, 29, 30, 11, 25, 5]; the interested reader can these references. The goal here is to
develop and illustrate this information theory perspective on model error for direct application to estimate
model error for the setup developed above in sections 2, 3; these formulas are utilized in §5 below.

We consider a probability density for the perfect model p(uuui,uuuii) which can be written by Bayes theorem
as

p(uuui,uuuii) = p(uuuii|uuui)π(uuui), (31)

where, here and below, π(uuui) is the marginal

π(uuui) =

∫
p(uuui,uuuii)duuuii. (32)

From the CGFPE procedure developed in sections 2, 3, we have exact expressions for the conditional
moments up to some order L for p(uuuii|uuui) evolving in time already, this is a source of information loss
through coarse graining of p(uuui,uuuii). To quantify this information loss by measuring only the conditional
moments up to order L, let

pL(uuui,uuuii) = pL(uuuii|uuui)π(uuui) (33)

where for each value uuui the conditional density pL(uuuii|uuui) satisfies the maximum entropy (least biased)
criterion [31, 24, 32]

S
(
pL(uuuii|uuui)

)
= max
πL∈L

S
(
πL(uuuii)

)
, (34)

where L is a class of marginal densities πL with identical moments up to order L, i.e.,

∫
uuuαααii πL(uuuii)duuuii =

∫
uuuαααii pL(uuui,uuuii)duuuii =

∫
uuuαααiip(uuui,uuuii)duuuii, |ααα| 6 L. (35)

Below and in section 5, we will always apply the variational problem in (34) for L = 2 which guarantees
that pL(uuuii|uuui) is a Gaussian density with specified conditional mean and variance. In general, for L even
and L > 2, it is a subtle issue as to whether the solution of the variational problem (34) exists [34] but here
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we tacitly assume this. We remark here that highly non-Gaussian densities can have Gaussian conditional
densities like pL(uuuii|uuui) as discussed in §5. Natural imperfect densities with model error have the form

pmL(uuui,uuuii) = pmL(uuuii|uuui)πm(uuui). (36)

The simplest model with model error is a Gaussian density, pG(uuui,uuuii), which is defined by its mean and
variance; the standard regression formula for Gaussian densities [7] automatically guarantees that the
form in (36) applies with L = 2 in this important case.

Another important way to generate an imperfect model with the form (36) is to have a different model
[22, 25] for the stochastic dynamics of uuui than that in (1) and compute the conditional moments up to
order L in the approximate model through CGFPE so that the model approximations automatically have
the form (36) (see section 5 below).

Here is a precise way to quantify the model error in an imperfect model in the present setup:

Proposition 4.1 Given the perfect model distribution, p(uuui,uuuii), its conditional approximation, pL(uuui,uuuii)
in (33) and the imperfect model density, pmL(uuui,uuuii) defined in (36), we have

P
(
p(uuui,uuuii), p

m
L(uuui,uuuii)

)
= P

(
p(uuui,uuuii), pL(uuui,uuuii)

)
+ P

(
pL(uuui,uuuii), p

m
L(uuui,uuuii)

)
(37)

where

0 6 P
(
p(uuui,uuuii), pL(uuui,uuuii)

)
=

∫
π(uuui)

[
S(pL(uuuii|uuui))− S(p(uuuii|uuui))

]
duuui

=

∫
π(uuui)P(p(uuuii|uuui), pL(uuuii|uuui))duuui, (38)

and

0 6 P
(
pL(uuui,uuuii), p

m
L(uuui,uuuii)

)
= P

(
π(uuui), π

m(uuui)
)

+

∫
π(uuui)

[
S(pmL(uuuii|uuui))− S(pmL(uuuii|uuui))

]
duuui

= P
(
π(uuui), π

m(uuui)
)

+

∫
π(uuui)P

(
p(uuuii|uuui), pmL(uuuii|uuui)

)
duuui. (39)

In particular, P
(
p(uuui,uuuii), pL(uuui,uuuii)

)
quantifies an intrinsic information barrier [29, 30, 11, 25, 5] for all

imperfect model densities with the form as in (36).

The proof of Proposition (4.1) is by direct calculation utilizing the general identity [6]

P
(
pL(uuui,uuuii), p

m
L(uuui,uuuii)

)
= P

(
π(uuui), π

m(uuui)
)

+

∫
π(uuui)P

(
p(uuuii|uuui), pmL(uuuii|uuui)

)
duuui, (40)

which is easily verified by the reader. Next, for each uuui, use the general identity for least biased densities
which follows from the max-entropy principle in (34) (see [24, Chapter 2])

P
(
p(uuui,uuuii), p

m
L(uuui,uuuii)

)
= P

(
p(uuui,uuuii), p

m
L(uuui,uuuii)

)
+ P

(
p(uuui,uuuii), p

m
L(uuui,uuuii)

)
, (41)

and insert this in (40). Next, computing P
(
p(uuui,uuuii), pL(uuui,uuuii)

)
and P

(
pL(uuui,uuuii), p

m
L(uuui,uuuii)

)
by the

formula in (40) once again, with simple algebra we arrive at the required formulas in (37)-(39).
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5 Non-Gaussian Test Models for Statistical Prediction with Mod-
el Error

Here, we apply the material developed in sections 3 and 4 with L = 2 to gain new insight into statistical
predictions with the effects of coarse graining and model error in non-Gaussian setting. In the first part of
this section, we consider the effect of model error through coarse graining the statistics in a perfect model
setting [18] for short, medium, and long range forecasting. In the second part of this section, we consider
the effect of model error in the dynamics of uuui [25] on the long range forecasting skill. The error in both
the full probability density as well as the marginal densities in uuuii is considered.

5.1 Choice of initial statistical conditions

As already mentioned in §4, we are particularly interested in assessing the model error due to various
coarse-grainings of the perfect statistics; these model errors arise naturally when either deriving the
approximate least-biased conditional densities through estimating the conditional moments in the CGFPE
framework of §2, or when deriving the Gaussian estimators of non-Gaussian densities. The effects of initial
conditions are clearly important in the short and medium range prediction, for both the perfect and the
coarse-grained statistics, and the choice of a representative set of statistical initial conditions requires
some care.

In the following sections we consider the least-biased conditionally Gaussian estimators (i.e., L = 2
in §4) of the true statistics p(u, γ, t), leading to the non-Gaussian densities p2(u, γ, t), as well as fully
Gaussian approximations pG(u, γ, t) of the true non-Gaussian statistics p(u, γ, t). Therefore, in order to
compare the effects of coarse-graining the structure of the PDFs in a standardized setting, we consider
the initial joint densities with identical second-order moments, i.e., any two initial densities, p̃i, p̃j , satisfy

∫
uαγβ p̃i(u, γ)dudγ =

∫
uαγβ p̃j(u, γ)dudγ, 0 6 α+ β 6 2. (42)

Here, for simplicity we choose the initial densities with uncorrelated variables,

p̃i(u, γ) = π̃i(u)π̃i(γ),

where the marginal densities π̃i(u), π̃i(γ) are given by the mixtures of simple densities (see Appendix B
for more details). This procedure is sufficient for the present purposes and reduces the complexity of
exposition. Analogous procedure can be used to generate PDFs with correlated variables by, for example,
changing the coordinate frame; such a step might be necessary when studying the model error in filtering
problems.

The following set of non-Gaussian initial conditions, shown in figure 7 and constructed in the way
described above, is used in the suite of tests discussed next (see also Appendix B):

(1) p̃1(u, γ) : Nearly Gaussian PDF with the Gaussian marginal in u being and a weakly sub-Gaussian
marginal in γ.

(2) p̃2(u, γ) : PDF with a bimodal marginal in u and a weakly skewed marginal in γ.

(3) p̃3(u, γ) : Multimodal PDF with a bimodal marginal in u and a tri-modal marginal in γ.

(4) p̃4(u, γ) : PDF with a highly skewed marginal in u and a bimodal marginal in γ.

(5) p̃5(u, γ) : PDF with a weakly skewed marginal in u and a highly skewed marginal in γ.

(6) p̃6(u, γ) : Multimodal PDF with a Gaussian marginal in u and a tri-modal marginal in γ.

(7) p̃7(u, γ) : Multimodal PDF with a bimodal marginal in u and a Gaussian marginal γ.
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Figure 7: Set of seven non-Gaussian initial conditions with identical second-order statistics used in the tests in
figures 9-20; see §5.1 and Appendix B for more details.
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5.2 Ensemble prediction with model error due to coarse-graining the perfect
dynamics

Here, we consider the dynamics of the same non-Gaussian system (19) with intermittent instabilities as in
§3.1.1 which has the general structure as in (16)-(17). The wide range of interesting turbulent dynamical
regimes [3, 5, 4, 25] makes this statistically exactly solvable system an unambiguous testbed for studying
the effects of model error introduced through various coarse-grainings of the perfect density p(u, γ, t) as
discussed in §4. In this section, following the methodology introduced in §4, we focus on the model error
arising from two particular coarse-grainings of the perfect model density p(u, γ, t):

• p2(u, γ, t): non-Gaussian density obtained through the least-biased conditionally Gaussian approxi-
mation of the true conditional densities such that the true density, p(u, γ, t), and the coarse-grained
density, p2(u, γ, t), have the same first two conditional moments, i.e., for each fixed γ and t, we set

S
(
p2(u|γ, t)

)
= max
MN,2=MN

S
(
q(u)

)
,

where

MN =

∫
uNp(u|γ, t)du, MN,2 =

∫
uNq(u)du, 0 6 n 6 2.

Note that, despite the Gaussian approximations for the conditional densities p2(u|γ, t), the coarse-
grained joint and marginal densities p2(u, γ, t) = p2(u|γ, t)π(γ, t), π2(u, t) =

∫
p2(u, γ, t)dγ can be

highly non-Gaussian.

• pG(u, γ, t): Gaussian approximation of the joint density p(u, γ, t). The error in the Gaussian esti-
mators, pG(u, γ, t) and πG(u, t) =

∫
pG(u, γ, t)dγ, arises from the least-biased approximation of the

true non-Gaussian density p(u, γ, t), which for each fixed t maximizes the entropy

S
(
pG(u, γ, t)

)
= max
Mij,G=Mij

S
(
q(u, γ)

)
,

subject to the following moments constraints

Mi,j =

∫
uiγjp(u, γ, t)dudγ, Mij,G =

∫
uiγjq(u, γ)dudγ, 0 6 i+ j 6 2.

In the above set-up the conditional approximations, p2 and π2, represent the best possible (least-biased)
estimates for the true joint and marginal densities given the first two conditional moments. Thus, the
errors P(p, p2) and P(π, π2) represent the intrinsic information barriers which cannot be overcome by
models based utilizing two-moment approximations of the true densities (see Proposition 4.1 in §4).

In figures 9-11 we show the evolution of model error (37) due to different coarse-grainings in p2 and
pG in the following three dynamical regimes of the system (19) with Gaussian damping fluctuations (see
also figure 8):

Regime I (figure 11): Regime with plentiful, short-lasting transient instabilities in the resolved com-
ponent u(t) with fat-tailed marginal equilibrium densities π(u); here, the parameters used in (19) are

γ̂ = 2, σγ = dγ = 10, σu = 1, fu = 0.

Regime II (figure 10): Regime with intermittent large-amplitude bursts of instability in u(t) with
fat-tailed marginal equilibrium densities π(u); here, the parameters used in (19) are

γ̂ = 2, σγ = dγ = 2, σu = 1, fu = 0.
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Figure 8: Three dynamical regimes of the non-Gaussian system (19) characterized by different equilibrium
marginal densities πeq(u) used for studying the model error in coarse-grained densities in §5.2 (see figures 9-
11). Regimes I and II of (19) are characterized by intermittent dynamics of u due to transient instabilities induced
by damping fluctuations γ.

Regime III (figure 9): Regime with nearly Gaussian marginal equilibrium density π(u); here, the
parameters used in (19) are

γ̂ = 7, σγ = dγ = 1, σu = 1, fu = 0

In each regime the model error in the ensemble predictions is examined for the set of seven different initial
densities introduced in §5.1 and figure 7 with identical second order-statistics. The evolution of the true
density, p(u, γ, t), is estimated via Monte Carlo simulations with 107 samples, while the coarse-grained
joint densities p2, pG, and their marginals, π2, πG, are computed according to the moment-constrained
maximum entropy principle in (34) using the conditional moments computed from the CGFPE procedure
(10).

The top row in figures 9-11 shows the evolution of model error in the Gaussian estimators, pG(u, γ, t),
πG(u, t), of the true density. The intrinsic information barrier in the Gaussian approximation (see Propo-
sition 4.1), represented by the lack of information in the least-biased density, p2, based on two conditional
moment constraints is shown for each regime in the middle row. It can be seen in figures 9-11 that the
common feature of the model error evolution in all the examined regimes of (19) is the presence of a large
error at the intermediate lead times. The source of this phenomenon is illustrated in figure 12 in regime
III of (19) with a nearly Gaussian attractor statistics; the large error arises from the presence of a robust
transient phase of fat-tailed dynamics in the system (19) which is poorly captured by the coarse grained
statistics.

Below, we summarize the results illustrated in figures 9-12 with the focus on the model error in the
Gaussian approximations pG(u, γ, t) and πG(u, t):

• For both the Gaussian estimators pG(u, γ), πG(u) and the conditionally Gaussian estimators p2(u, γ),
π2(u), there exists a phase of large model error at intermediate lead times. This phase exists in all the
examined regimes of (19) irrespective of the initial conditions and it is arises due to a transient highly
non-Gaussian fat-tailed dynamical phase in (19) which the Gaussian estimators fail to capture.

• The trends in the model error evolution for the joint and the marginal densities are similar; this is
to be expected based on Proposition 4.1.
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• The contributions to the model error in the Gaussian estimators pG(u, γ), πG(u) from the intrinsic
information barrier, P(p, p2) (see Proposition 4.1), and from the error P(p2, pG) due to the fully
Gaussian vs conditionally Gaussian approximations depends on the dynamical regime.

– The effects of the intrinsic information barrier are the most pronounced in the non-Gaussian
regime I of (19) with abundant transient instabilities in u (see figure 11 and 8); in this regime the
information barrier dominates the total model error. In the nearly Gaussian regime the intrinsic
information barrier is negligible except at short times due to the errors in coarse-graining the
highly-non-Gaussian initial conditions; see figures 9 and 7.

– In the highly non-Gaussian regime I with abundant instabilities and fat-tailed equilibrium PDF
(figure 8) the differences in model error between different initial conditions quickly become
irrelevant; the intrinsic information barrier dominates the model error and there is a significant
error for long range predictions in both the joint and the marginal coarse-grained densities.

– In the non-Gaussian regime II of (19) with large amplitude intermittent instabilities the in-
trinsic information barrier dominates the error in the Gaussian estimators at short ranges. At
intermediate lead times the error due to the fully Gaussian vs conditionally Gaussian approxi-
mations exceeds the intrinsic barrier. The error at long lead times is significantly smaller than
in regime I with comparable contributions from P(p, p2) and P(p2, pG).

– In the nearly Gaussian regime III of (19) the intrinsic information barrier in the Gaussian
estimators error is small and dominated by the errors in coarse-graining the non-Gaussian
initial conditions.

• The intrinsic information barriers in the joint density, P(p, p2), and in the marginal density, P(π, π2),
are comparable throughout the evolution and almost identical at short lead times.

5.3 Ensemble prediction with model error due to imperfect dynamics

Here, we focus on the model error which arises through common approximations associated with ensemble
prediction: (i) errors due to imperfect/simplified dynamics and (ii) errors due to coarse-graining the
statistics of the perfect system which is used for tuning the imperfect models. While the above two
approximations are often simultaneously present in applications and are generally difficult to disentangle,
it is important to understand the effects of these two contributions in a controlled environment which is
developed below.

Similar to the framework used in the previous sections, we consider the dynamics with the structure
as in the test model (16)-(17) where the non-Gaussian perfect system, as in (20), is given by

a) dγ =
[
− a γ + b γ2 − c γ3 + fγ(t)

]
dt+ (A−B γ)dWC + σγdWγ ,

b) du =
(
− γ u+ fu(t)

)
dt+ σudWu,

(43)

with cubic nonlinearity in the damping fluctuations γ. The imperfect non-Gaussian model introduces
errors by assuming Gaussian dynamics in the damping fluctuations, as in (19),

a) dγm =
(
− dmγ (γm − γ̂m) + fmγ (t)

)
dt+ σm

γ dWm
γ ,

b) dum =
(
− γm um + fmu (t)

)
dt+ σm

udWm
u .

(44)

The imperfect model (44) is optimized by tuning its marginal attractor statistics, in either um or γm

depending on the context, to reproduce the respective true marginal statistics. This is a prototype
problem for a number of important issues; two topical examples are:
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• Reduced models with a subset of unresolved variables (here γm) whose statistics is tuned for statistical
fidelity in the resolved variables (here um),

• Simplification of parts of dynamics in complex multi-component models such as the coupled atmosphere-
ocean-land models in climate science; in the present toy-model setting γ can be regarded as the
atmospheric forcing of the ocean dynamics u.

In order to illustrate the framework developed in §2-4, we compare the model error arising in the optimized
imperfect statistics, pm∗(u, γ, t) or πm∗(u, t), associated with (44) with the model error in p2(u, γ, t) or
π2(u, t) due to the Gaussian coarse-graining of the conditional densities p(u|γ, t) of the perfect system
(43) using the CGFPE framework of §2.
In particular, we show that small model error can be achieved at medium and long lead times for imperfect
predictions of the marginal dynamics πm∗(u) using models with tuned unresolved dynamics γ models
despite a large model error in the joint density pm∗(u, γ).

5.3.1 Ensemble predictions with imperfect dynamics and time-independent statistics on
the attractor

Here, we consider the perfect system (44) and its model (44) with invariant measures at their re-
spective equilibria; this configuration is achieved by assuming constant forcing fγ=0.8220, fu= − 0.5,
fmγ =0, fmu = − 0.5 in both (43) and (44). We first examine the effects of model error associated with two
distinct ways of optimizing the imperfect model (44):

(I) Tuning the marginal equilibrium statistics of the damping fluctuations γm in (44) for
fidelity to the true statistics of γ in (43).

In order to tune the mean and variance of γm to coincide with the true moments, we simply set

γ̂m = 〈γ〉eq, σ2
γm/(2 dmγ ) = V areq(γ), (45)

which leads to a one-parameter family of models in (44) with correct marginal equilibrium density
in γm. Below, we choose the damping, dmγ , in (44) as the free parameter and study the dependence of
model error in the class of models satisfying (45) and parameterized by the damping/decorrelation
dime in γm (see figure 13). Note that only one model in this family can match both the equilibrium
density, π(γ), and the decorrelation time, τγ =

∫
Corrγ(τ)dτ , of the true damping fluctuations in

(43); for such a model we have, in addition to (45),

τmγ = 1/dγm = τγ . (46)

Examples of prediction error in models (44) optimized for equilibrium fidelity in γm but different
dampings dm∗γ are shown in figure 13 for the two-state unimodal regime of (43) (see figure 1). We
highlight two important observations here:

– Underdamped models (19) optimized for equilibrium fidelity in the damping fluctuations γm

have the smallest error for medium range forecasts (all models are comparable for long range
forecasts). These results are similar to those reported recently in [25] where the short and medi-
um range predictive skill of linear models with optimized marginal statistics of the unresolved
dynamics was shown to often exceed the skill of models with correct marginal statistics and
decorrelation time.

– Despite the striking reduction in model error intermediate lead times achieved through under-
damping the unresolved dynamics in (19), caution is needed when tuning imperfect models for
short range forecasts or forced response prediction where the damping, in both the resolved
and unresolved dynamics, is relevant for correct system response (e.g., [25]).
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(II) Tuning the marginal equilibrium statistics of the damping fluctuations γm in (44) for
fidelity to the true statistics of u in (43).

This case corresponds to the situation in which we construct a simplified model of a system with un-
resolved degrees of freedom (here γ); these stochastically ‘superparameterized’ unresolved dynamics
are then tuned to correctly reproduce the statistical features of the resolved dynamics (here u).

We consider this optimization in the Gaussian framework and optimize the imperfect model (44) by
tuning the dynamics of the damping fluctuations γm in order to minimize the lack of information in
the imperfect marginal density for the resolved variable, i.e., the optimal imperfect model satisfies

P
(
πG(u), πm∗

G (u)
)

= min
dmγ ,σ

m
γ ,γ̂

m
P
(
πG(u), πm

G(u)
)
, (47)

where πG and πm
G are the Gaussian estimators of the respective marginal densities associated with

(43) and (44). With the conditional moments of u in the perfect system (43), M1(γ) and M2(γ),
obtained by solving (10) in the CGFPE framework in §2, the mean and variance of pG(u) are given
by

ū =

∫
M1(γ)dγ, Ru =

∫
M2(γ)dγ − ū2. (48)

Analogous expressions hold for the mean and variance of pmG(u) which are used in the optimiza-
tion (47).

The two types of model optimization are compared in figure 14 for the two-state unimodal regime of
(43) (see figure 1); both procedures yield comparably good results at long lead times when the model error
in the marginal densities in πm∗(u, t) is considered. Unsurprisingly, optimizing the marginal dynamics of
um by tuning the dynamics of γm generally leads to a smaller model error for short and medium range
predictions but the type of the optimization largely depends on the applications.

In figures 15-18 we illustrate the evolution of model error in the imperfect statistical prediction of (43)
which is optimized according to procedure (I) above. Two non-Gaussian regimes of the true system (43)
and illustrated in figure 1 are used to analyze the error in imperfect predictions with optimized models in
(44).

5.3.2 Ensemble predictions with imperfect dynamics and time-periodic statistics on the
attractor

We finish the analysis by considering the dynamics of the perfect system (44) and of its model (44) with
time-periodic statistics on the attractor. We focus on the highly non-Gaussian regime of the perfect
system (43) with the cubic nonlinearity in the damping fluctuations periodic transitions between the
nearly Gaussian and highly skewed marginal density in the damping fluctuations γ which are induced by
the simple time-periodic forcing

fγ(t) = fγ,0 + fγ,1 sin(ωt+ φ);

this regime was previously used in §3.1.1 to validate the CGFPE framework (see figure 2). Similarly
to the configurations studied with time-independent equilibrium statistics in the previous section, we
are interested in the differences between the model error arising in the optimized imperfect dynam-
ics, pm∗(u, γ, t), πm∗(u), and the error due to the coarse-graining the perfect statistics in the densities
p2(u, γ, t), π2(u) obtained through the Gaussian approximations of the conditionals p(u|γ, t).

The issue of tuning the marginal attractor statistics of the damping fluctuations γm in the imperfect
model (44) requires more care than in the case with time-independent equilibrium statistics; this is due to
the presence of an intrinsic information barrier (see §4 or [25, 5]) when tuning the statistics of the Gaussian
damping fluctuations γm in (44) to the true statistics of (43) in γ . Similar to the time-independent case,
we aim at tuning the marginal attractor statistics in γm for best fidelity to the true marginal statistics in
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γ. Here, however, there exists an information barrier associated with the fact that the attractor variance
of the Gaussian fluctuations γm is always constant regardless of the forcing fmγ (t). One way to optimize the
imperfect statistics of γ is to tune its decorrelation time, and time-averaged mean and variance on attractor
to reproduce the true time-averaged quantities. However, such an approach is clearly insensitive to phase
variations of the respective statistical moments. Here, instead, we optimize the imperfect model by first
tuning the decorrelation times of γm and γ and then minimizing the period-averaged relative entropy
between the marginal densities for the damping fluctuations, i.e., the optimized model (44) satisfies

P
(
πG(γ, t), πm∗

G (γ, t)
)

= min
σm
γ ,{fm

γ }
P
(
πG(γ, t), πm

G(γ, t)
)
, (49)

where the overbar denotes the temporal average over one period and {fmγ } denotes a set of parameters in
the forcing fmγ in (44); in the examples below we assume the form of the forcing fmγ with the same time
dependence as the true one, i.e.,

fmγ (t) = fmγ,0 + fmγ,1 sin(ωmt+ φm), with ωm = ω, φm = φ,

so that the optimization in (49) is carried out over a three parameter space {σm
γ , fγ,0, fγ,1} (optimization

in the phase and frequency are often crucial and interesting but we skip the discussion for the sake of
brevity).

In figures 19-20 we show the model error for the coarse-grained joint and marginal densities p2, π2
and compare them with the model error in the joint and marginal densities associated with the optimized
imperfect model (44). Here, the parameters used in (43) are

a = 1, b = 1, c = 1, A = 0.5, B = −0.5, σ = 0.5, σu = 1,

fu = −0.5, fγ,0 = 2.5, fγ,1 = 6.5, ω = π, φ = −π/2. (50)

In figure 19 the decorrelation time, τm∗ = 1/dm∗γ , of the damping fluctuations γm is the same as the one
in the true dynamics while the results shown in figure 20 illustrate the dependence of model error in
the optimized imperfect model on the decorrelation time (see also figure 13 for the configuration with
time-independent equilibrium statistics).

The following points summarize the results of §5.3.1, and §5.3.2:

• Small model error can be achieved at medium and long lead times for imperfect predictions of the
marginal dynamics πm∗(u) using models with tuned unresolved dynamics γ models despite a large
model error in the joint density pm∗(u, γ); figures 13, 14, 15, 17, 19, 20.

• The error in the coarse-grained densities p2(u, γ, t), π2(u, t) is much smaller than that in the opti-
mized models with imperfect dynamics with pm∗(u, γ, t), πm∗(u, t); figures 15-18.

• The largest error in the optimized models (19) is associated with the presence of transient multimodal
phases which cannot be captured by the imperfect models in the class (19); figures 15-19.

• At long lead times the model error in the joint densities, P
(
p(u, γ, t), pm∗(u, γ, t)

)
, is largely insen-

sitive to the variation of the damping dm∗γ (figure 20).

• The model error in the marginal densities πm∗(u, t) of the optimized models has non-trivial de-
pendence on the decorrelation time 1/dm∗γ of the damping fluctuations; the overall trend is that
underdamped imperfect models have smaller error in the marginals πm∗(u, t) for constant or slow
forcing, while the overdamped imperfect models are better for strongly varying forcing (see figures
13, 20 for two extreme cases).
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Figure 9: Model error due to coarse-graining the perfect dynamics of the system (19) in the nearly
Gaussian regime (Regime III in figure 8). (Top two rows) Evolution of model error (37) due to different coarse-
grainings of the perfect dynamics in the system (19) with Gaussian damping fluctuations; the non-Gaussian joint
and marginal densities, p2, π2, are obtained through the Gaussian coarse-graining of the conditional statistics p(u|γ)
(see §3,4), while pG, πG are the joint and the marginal density of the Gaussian estimators (see §4). The information
barrier (bottom row) equals P(p, pG)− P(p2, pG) (see (37)). The respective statistical initial conditions, all with
the same second-order moments, are described in §5.1 and shown in figure 7.

22



0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t

P(πtrue(u, γ), πG(u, γ))

 

 

p̃1,0(u, γ)
p̃2,0(u, γ)
p̃3,0(u, γ)
p̃4,0(u, γ)
p̃5,0(u, γ)
p̃6,0(u, γ)
p̃7,0(u, γ)

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

t

P(πtrue(u), πG(u))

 

 

p̃1,0(u, γ)
p̃2,0(u, γ)
p̃3,0(u, γ)
p̃4,0(u, γ)
p̃5,0(u, γ)
p̃6,0(u, γ)
p̃7,0(u, γ)

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

t

P(πtrue(u, γ), π2(u, γ))

 

 

p̃1,0(u, γ)
p̃2,0(u, γ)
p̃3,0(u, γ)
p̃4,0(u, γ)
p̃5,0(u, γ)
p̃6,0(u, γ)
p̃7,0(u, γ)

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

t

P(πtrue(u), π2(u))

 

 

p̃1,0(u, γ)
p̃2,0(u, γ)
p̃3,0(u, γ)
p̃4,0(u, γ)
p̃5,0(u, γ)
p̃6,0(u, γ)
p̃7,0(u, γ)

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t

P(π2(u, γ), πG(u, γ))

 

 

p̃1,0(u, γ)
p̃2,0(u, γ)
p̃3,0(u, γ)
p̃4,0(u, γ)
p̃5,0(u, γ)
p̃6,0(u, γ)
p̃7,0(u, γ)

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

t

P(π2(u), πG(u))

 

 

p̃1,0(u, γ)
p̃2,0(u, γ)
p̃3,0(u, γ)
p̃4,0(u, γ)
p̃5,0(u, γ)
p̃6,0(u, γ)
p̃7,0(u, γ)

Figure 10: Model error due to coarse-graining perfect dynamics; system (19) in regime with inter-
mittent large amplitude instabilities.(Top two rows) Evolution of model error (37) due to different coarse-
grainings of the perfect dynamics in the system (19) with Gaussian damping fluctuations; the non-Gaussian joint
and marginal densities, p2, π2, are obtained through the Gaussian coarse-graining of the conditional statistics
p(u|γ) (see §3,4), while pG, πG are the joint and the marginal density of the Gaussian estimators (see §4). The
information barrier (bottom row) equals P(p, pG)−P(p2, pG) (see §37). The respective statistical initial conditions,
all with the same second-order moments, are described in §5.1 and shown in figure 7.
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Figure 11: Model error due to coarse-graining perfect dynamics; system (19) in regime with abun-
dant transient instabilities.(Top two rows) Evolution of model error (37) due to different coarse-grainings of
the perfect dynamics in the system (19) with Gaussian damping fluctuations; the non-Gaussian joint and marginal
densities, p2, π2, are obtained through the Gaussian coarse-graining of the conditional statistics p(u|γ) (see §3,4),
while pG, πG are the joint and the marginal density of the Gaussian estimators (see §4). The information barrier
(bottom row) equals P(p, pG)−P(p2, pG) (see §37). The respective statistical initial conditions, all with the same
second-order moments, are described in §5.1 and shown in figure 7.
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Figure 12: Three distinct stages in the statistical evolution of the system (19) illustrated for the regime with
nearly Gaussian dynamics and highly non-Gaussian multimodal initial statistical conditions p̃3(u, γ) (figure 7);
these three stages exists regardless of the dynamical regime of (19) and the form of the initial conditions (not
shown). (Top) The initial configuration projected on the marginal densities at t∗ = 0, (Middle) The fat-tailed
phase in the marginal π(u, t) corresponding to the large error phase in the coarse grained models (see figures 9-
11), (Bottom) Equilibrium marginal statistics on the attractor int the regime with nearly Gaussian statistics (see
Regime III in figure 8).
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Figure 13: Ensemble prediction of (43) with imperfect models (44); dependence of model error
on the decorrelation time in the imperfect model. Model error (37) via the relative entropy for the
imperfect prediction of the system (43) using imperfect models in (44) with correct climatology in γm but different
decorrelation times of the damping fluctuations. Note that in this case underdamped imperfect models have the
best medium range prediction skill. The results shown were obtained in the skewed two-state unimodal regime
(figure 1) of (43), starting from the the statistical initial conditions p̃1(u, γ) (see §5.1 and figure 7).
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Figure 14: Ensemble prediction of (43) with imperfect models (44); comparison of model error for
different types of model optimization. Evolution of model error (37) via the relative entropy for imperfect
models (44) where the imperfect dynamics of the damping fluctuations, γm, is (I) either tuned to correctly reproduce
the marginal equilibrium statistics of γ, or (II) γm is tuned to correctly reproduce the marginal equilibrium statistics
of u in (43). The results shown were obtained for the perfect dynamics in (43) in regime with skewed unimodal
statistics and two-state switching in the path-wise dynamics (figure 1), and for three different statistical initial
conditions: (top) initial density p̃1(u, γ), (middle) initial density p̃2(u, γ), (bottom) initial density p̃3(u, γ); see also
figure 7 and §5.1.
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Figure 15: Ensemble prediction with optimized imperfect dynamics; perfect system (43) with skewed
unimodal statistics and regime switching, imperfect model given by (44). Comparison of two types of model
error in ensemble predictions: (top row) model error (37) due to coarse-graining the perfect conditional statistics
(see §4), and (bottom row) model error due to imperfect dynamics (44) where γm is tuned for the correct marginal
equilibrium statistics and correlation time of the damping fluctuations γ in (43). The model error via the relative
entropy 37 is shown for the joint densities (left column) and the marginal densities in u (right column). The
respective initial conditions are shown in figure 7.
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Figure 16: Three distinct stages in the statistical evolution of the system (43) and its imperfect models (44) with
different contributions to model error; the example shown corresponds to the evolution from initial condition p̃3
(see §5.1) in the regime with time-invariant statistics at equilibrium with unimodal PDF and regime switching
(see figure 1). (Top) The initial configuration at t∗ = 0, (Middle) The fat-tailed phase in the true marginal π(u, t)
corresponding to the large error phase in the coarse-grained and the Gaussian models (see figure 15), (Bottom)
Equilibrium marginal statistics on the attractor with the skewed marginals π(γ), π(γm) of the damping fluctuations.
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Figure 17: Ensemble prediction with optimized imperfect dynamics; perfect system (43) with fat-tailed
statistic, imperfect model given by (44). Comparison of two types of model error in ensemble predictions: (top
row) model error due to coarse-graining the perfect dynamics (43), and (bottom row) model error due to imperfect
dynamics (44) where γm is tuned for the correct marginal equilibrium statistics and correlation time of the damping
fluctuations γ in (43). The model error via the relative entropy (37) is shown for the joint densities (left column)
and the marginal densities in u (right column). The respective initial conditions are shown in figure 7.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

u

 

 
π

true
(u)

π
2
(u)

πM*(u)

−4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

γ

p(
γ)

 

 
π

true
(γ)

π
2
(γ)

πM*(γ)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

u

 

 
π

true
(u)

π
2
(u)

πM*(u)

−4 −2 0 2 4 6
0

0.5

1

γ

p(
γ)

 

 
π

true
(γ)

π
2
(γ)

πM*(γ)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

u

 

 
π

true
(u)

π
2
(u)

πM*(u)

−4 −2 0 2 4 6
0

0.5

1

1.5

γ

p(
γ)

 

 
π

true
(γ)

π
2
(γ)

πM*(γ)

π(γ,t)π(u,t)

t
*
=0

t
*
=0.5

t
*
="∞"

Figure 18: Three distinct stages in the statistical evolution of the perfect system (43) and its imperfect models
(44) with different contributions to model error; the example shown corresponds to the evolution from initial
condition p̃3 (see §5.1) in the regime with time-invariant statistics at equilibrium and fat-tailed PDF (see figure 1).
(Top) The initial configuration at t∗ = 0, (Middle) The fat-tailed phase in the true marginal π(u, t) corresponding
to the large error phase in the coarse-grained and the Gaussian models (see figure 15), (Bottom) Equilibrium
marginal statistics on the attractor with the fat-tailed marginals π(γ), π(γm) of the damping fluctuations.
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Figure 19: Model error in imperfect optimized ensemble predictions of non-Gaussian systems with
time-periodic statistics; perfect model (43) with attractor statistics nearly Gaussian ←→ high skewness
in γ (see figure 2). Evolution of model error (37) associated with the statistical prediction of (43) in the highly
non-Gaussian regime with time-periodic statistics using two non-Gaussian models: (top row) models with coarse-
grained perfect conditional density p2(u|γ) (see §4), and (bottom row) models with imperfect dynamics of the
damping fluctuations, γm, (44) which are optimized by matching the decorrelation time of γ and minimizing the
period-averaged relative entropy (see §5.3.2 and §4 for details).
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Figure 20: Dependence of model error on decorrelation time in imperfect optimized ensemble predic-
tions of non-Gaussian systems with time-periodic statistics; perfect model (43) and its attractor statistics
as in figure (19). Evolution of model error (37) for imperfect predictions of the true dynamics (43) using the
models (44) with different decorrelation times of damping fluctuations γm; τγ = 1/dγ denotes the decorrelation
time of γ in the true dynamics (43). For a given decorrelation time 1/dmγ , the model (44) is optimized in the

remaining parameters by minimizing the period-averaged relative entropy P(p(u, γ, t), pm∗(u, γ, t)) (see §5.3.2 and
§4 for details).
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6 Concluding discussion

We considered a class of statistically exactly solvable non-Gaussian test models where the generalized
Feynman-Kac formulation developed here reduces the exact behavior of conditional statistical moments
to the solution of inhomogeneous Fokker-Planck equations modified by linear lower order coupling and
source terms. This procedure was applied to a test models with hidden instabilities and combined with
information theory to address two important issues in contemporary statistical prediction of turbulen-
t dynamical systems: coarse-grained ensemble prediction in a perfect model and improving long range
forecasting in imperfect models. Here, the focus was on studying these model errors in conditionally
Gaussian approximations of the highly non-Gaussian test models. In particular, we showed that in many
turbulent non-Gaussian dynamical regimes small model error can be achieved for imperfect medium and
long range forecasts of the resolved variables using models with appropriately tuned statistics of the unre-
solved dynamics. The framework developed here, combining the generalized Feynman-Kac approach with
information theory, also allows for identifying dynamical regimes with information barriers and/or tran-
sient phases in the non-Gaussian dynamics where the imperfect models fail to capture the characteristics
of the true dynamics. The techniques and models developed here should be useful for quantifying and
mitigating the model error in filtering and prediction in a variety of other contexts. These applications
will be developed by the authors in the near future.
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A Numerical scheme for solving the CGFPE system (10)

Here, we outline the numerical method for solving the CGFPE system in (10) in one spatial dimension.
This is achieved by combining the third-order Backward Differentiation Formulas (e.g., [17]) with the
method of lines [19] and the second-order, finite-volume representation for (10).

Recall that the CGFPE system consists of a hierarchy of inhomogeneous Fokker-Planck equations for
the conditional moments MN (γ, t) with the forcing terms depending linearly on MN (γ, t) and inhomo-
geneities depending linearly onMN−i(γ, t), i > 1. Thus, due to the form of (10) and linearity of the forcing
and inhomogeneities, we outline here the present algorithm applied to the homogeneous Fokker-Planck
part of (10), written in the conservative form

∂ π

∂t
= − ∂

∂γ

[(
F − 1

2
Gγ

)
π − 1

2Gπγ

]
, (51)

where π(γ, t) =
∫
p(u, γ, t)du and G(γ, t) = σ̃2(γ, t). Given the spatial grid with nodes γi, i = 1, . . . , N ,

and uniform spacing ∆γ, and the approximation

Qi(t) ≡
1

∆γ

∫ γi+1/2

γi−1/2

π(γ, t) dγ, (52)
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we discretize (51) in space through the second-order finite volume formula as

dQi
dt

= − 1

∆γ

[(
F − 1

2
Gγ

)

i+1/2

(
9

16
Qi +

9

16
Qi+1 −

1

16
Qi−1 −

1

16
Qi+2

)

−
(
F − 1

2
Gγ

)

i−1/2

(
9

16
Qi−1 +

9

16
Qi −

1

16
Qi−2 −

1

16
Qi+1

)]

+
1

2

1

∆γ

[
Gi+1/2

(
−9

8
Qi +

9

8
Qi+1 +

1

24
Qi−1 −

1

24
Qi+2

)

−Gi−1/2
(
−9

8
Qi−1 +

9

8
Qi +

1

24
Qi−2 −

1

24
Qi+1

)]
. (53)

The above expression is obtained by seeking higher order interpolants for Qn+1
i+1/2 in the standard finite-

volume formulation

dQi
dt

= − 1

∆γ

[(
F − 1

2
Gγ

)

i+1/2

Qn+1
i+1/2 −

(
F − 1

2
Gγ

)

i−1/2
Qn+1
i−1/2

]

+
1

2∆γ

[
Gi+1/2Q

n+1
i+1/2 −Gi−1/2Qn+1

i−1/2

]
. (54)

The second order approximations for Qn+1
i+1/2 are obtained by determining the coefficients a, b, c, d in the

expansion
Q̃i+1/2 = aQi + bQi+1 + cQi−1 + dQi+2,

such that Q̃i+1/2 −Qi+1/2 is of order O((∆γ)3).

The time discretization of (51) or (10) is obtained using the three-step backward differentiation formula
(BDF3) [17], which belongs to the family of linear multistep methods. In particular, (51) is discretized in
time as follows

Qn+3 − 18

11
Qn+2 +

9

11
Qn+1 − 2

11
Qn =

6

11
∆tf(Qn+3). (55)

The above implicit formulation can be solved explicitly due to the linearity of (51) where we have

f(Qn+3) =

{
MQn+3 for solving M0,

MQn+3 + fQ3
for solving Mi with i > 1.

Thus, (55) can be rewritten as

Qn+3 =

{
(I − 6

11∆tM)−1( 18
11Q

n+2 − 9
11Q

n+1 + 2
11Q

n) for solving M0,

(I − 6
11∆tM)−1( 18

11Q
n+2 − 9

11Q
n+1 + 2

11Q
n + 6

11∆tfQ3
) for solving Mi with i > 1.

The (local) accuracy of the temporal discretization is O
(

(∆t)3
)

. Analogous discretization is implemented

for solving the inhomogeneous system (10).
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B Expressions for the initial densities

Here, we list the formulas used for generating the initial densities p̃i(u, γ) introduced in §5.1. Recall that
we chose the initial densities with uncorrelated variables,

p̃i(γ, u) = π̃i(γ) π̃i(u),

where the marginal densities, π̃i(γ), π̃i(u), are given by the mixtures

π̃i(γ) ∝
∑

n

Rn(γ), π̃i(u) ∝
∑

n

Qn(u),

with identical first and second moments chosen as

〈u〉 = 0, 〈u2〉 = 3, 〈γ〉 = 1.5, 〈γ2〉 = 7.5 and 〈γu〉 = 0.

In particular, the seven initial densities in §5.1 with the same joint second-order statistics are obtained as
follows:

(1) Joint density

p̃1(u, γ) = 1
2

(
R1(γ) +R2(γ)

)
Q1(u),

where

Ri(γ) ∝ exp

(
− (γ − γ̄i)2

2σγi

)
, Q1(u) ∝ exp

(
− (u− ū1)2

2σu1

)
.

(2) Joint density

p̃2(u, γ) = 1
4

(
R1(γ) +R2(γ)

)(
Q1(u) +Q2(u)

)
,

where

Ri(γ) ∝ exp

(
− (γ − γ̄i)2

2σγi

)
, Qi(u) ∝ exp

(
− (u− ūi)2

2σui

)
(2 + sin(u)).

(3) Joint density

p̃3(u, γ) = 1
4

(
R1(γ) +R2(γ)

)(
Q1(u) +Q2(u)

)
,

where

Ri(γ) ∝ exp

(
− (γ − γ̄i)2

2σγi

)(
3

2
+ sin(

πγ

2
)

)
, Qi(u) ∝ exp

(
− (u− ūi)2

2σui

)(
3

2
+ sin(

πu

2
)

)
.

(4) Joint density

p̃4(u, γ) = 1
4

(
R1(γ) +R2(γ)

)(
Q1(u) +Q2(u)

)
,

where

Ri(γ) ∝ exp

(
− (γ − γ̄i)2

2σγi

)
1

γ2 + 1
, Qi(u) ∝ exp

(
− (u− ūi)2

2σui

)
1

u2 + 1
.

(5) Joint density

p̃5(u, γ) = 1
2R1(γ)

(
Q1(u) +Q2(u)

)
,

where

Ri(γ) ∝ exp

(
− (γ − γ̄i)2

2σγi

)
1

γ2 + 1
, Qi(u) ∝ exp

(
− (u− ūi)2

2σui

)
.

32



(6) Joint density

p̃6(u, γ) = 1
2

(
R1(γ) +R2(γ)

)
Q1(u),

where

Ri(γ) ∝ exp

(
− (γ − γ̄i)2

2σγi

)(
3

2
+ sin(

πγ

2
)

)
, Q1(u) ∝ exp

(
− (u− ū1)2

2σu1

)
.

(7) Joint density

p̃7(u, γ) = 1
2R1(γ)

(
Q1(u) +Q2(u)

)
,

where

R1(γ) ∝ exp

(
− (γ − γ̄1)2

2σγ1

)
, Qi(u) ∝ exp

(
− (u− ūi)2

2σui

)(
3

2
+ sin(

πu

2
− 1)

)
.

The parameters used in (1)-(7) are listed in the table below:

γ̄1 γ̄2 σγ1 σγ2 ū1 ū2 σu1 σu2
(1) 0.0000 3.0000 3.0000 3.0000 0.0000 3.0000
(2) 0.0506 2.9494 2.6492 3.6492 −1.1667 0.5291 2.7234 1.3088
(3) 0.0167 2.9055 2.7649 3.6316 −0.9653 0.8210 2.7216 1.7763
(4) 4.0209 4.1964 21.9235 1.2482 −1.0970 5.0522 2.2703 2.0612
(5) 5.2632 11.1937 1.0204 −1.0203 1.4575 2.4603
(6) 0.0163 2.9064 2.7691 3.6204 0.0000 5.0000 3.0000 2.0000
(7) 1.5000 5.2500 −0.7417 −0.9372 1.3784 2.4465
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