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Quantifying Uncertainty for Long Range Forecasting Scenarios

with Model Errors in Non-Gaussian Systems with Intermittency.

Michal Branicki∗ and Andrew J. Majda

Department of Mathematics and Center for Atmosphere and Ocean Science,
Courant Institute of Mathematical Sciences, New York University, New York, USA,

Abstract

This article discusses a range of important mathematical issues arising in applications of a newly emerging
stochastic-statistical framework for quantifying and mitigating uncertainties associated with prediction of
partially observed and imperfectly modelled complex turbulent dynamical systems. The need for such a
framework is particularly severe in climate science where the true climate system is vastly more complicated
than any conceivable model; however, applications in other areas, such as neural networks and materials
science, are just as important. The mathematical tools employed here rely on empirical information
theory and fluctuation-dissipation theorems and it is shown that they seamlessly combine into a concise
systematic framework for measuring and optimizing consistency and sensitivity of imperfect models. Here,
we utilize a simple statistically exactly solvable ‘perfect’ system with intermittent hidden instabilities and
with time-periodic features to address a number of important issues encountered in prediction of much
more complex dynamical systems. These problems include the role and mitigation of model error due to
coarse-graining, moment closure approximations, and the memory of initial conditions in producing short,
medium and long range predictions. Importantly, based on a suite of increasingly complex imperfect
models of the perfect test system, we show that the predictive skill of the imperfect models and their
sensitivity to external perturbations is improved by ensuring their consistency on the statistical attractor
(i.e., the climate) with the perfect system. Furthermore, the discussed link between climate fidelity and
sensitivity via the fluctuation-dissipation theorem opens up an enticing prospect of developing techniques
for improving imperfect model sensitivity based on specific tests carried out in the training phase of the
unperturbed statistical equilibrium/climate.

1 Introduction

Contemporary climate change science is rapidly becoming a hotbed for the development of new math-
ematical ideas and techniques for dealing with the ‘inevitable reality’ when it comes to predicting the
dynamical behavior of complex nonlinear systems given a limited knowledge of the system itself and par-
tial observations. The Earth’s climate is a perfect example of such an extremely complex and only partially
known system coupling physical processes for the atmosphere, ocean, and land over a wide range of spatial
and temporal scales (e.g., [11, 45]). The dynamical equations for the actual climate system are obviously
unknown and all that is available are imperfect models and some coarse-grained observations of quantities
like the mean or variance of temperature or greenhouse gases, or the large scale horizontal winds. Thus,
a fundamental practical difficulty in estimating the sensitivity of the climate system lies in predicting the
coarse-grained forced response of a nonlinear high-dimensional system from partial observations of the
present unperturbed climate/attractor and imperfect models. The problem of mitigating the model error
in imperfect predictions of complex nonlinear systems is an important and challenging one from both
the practical and theoretical viewpoint. Many high-dimensional, nonlinear, multi-scale models display a
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subtle but complex interplay between sensitivity to the perturbations and the nature of chosen parame-
terizations [22, 23, 44]. For example, contemporary cutting-edge projections of climate change are carried
out through comprehensive coupled atmosphere-ocean simulation (AOS) models which necessarily param-
eterize some physical features such as clouds, sea ice cover, etc., as well as turbulent fluxes due to subgrid
processes in the resolved dynamics [47, 45, 11, 51]. Consequently, the inevitable presence of intrinsic errors
in these complex models makes the assessment of predictions for the coarse-grained, large-scale, long time
trends a serious challenge. In turbulent systems this is compounded by the fact that energy often flows
intermittently from the smaller unresolved scales to impact much larger and longer spatio-temporal scales
of motion of interest [33]. Nevertheless, a systematic way of minimizing model error and improving the
predictive performance of the imperfect models based the information obtained from the present climate
remains a ‘high priority target’ driving developments in atmospheric/climate sciences, engineering, neural
science, and applied mathematics.

Recently, a stochastic-statistical framework linking the unperturbed statistical attractor fidelity and
sensitivity of imperfect models for capturing the true forced response in the ‘climate change’ scenario was
proposed in [37, 38, 39, 17]. This newly emerging viewpoint blends detailed dynamical physical modeling
and purely statistical analysis by combining empirical information theory with an appropriate fluctuation
dissipation theorem and has at least two mathematically desirable features:

• The measure of skill in this approach is based on the relative entropy which, unlike other metrics
predominantly based on RMS errors, is unbiased and invariant under the general change of variables
[28, 27, 40, 41].

• The optimization principles based on the relative entropy ‘metric’ systematically minimize the lack of
information in the imperfect model probability density relative to the perfect density. In contrast to
independent tuning of the individual moments like the mean or covariance, this procedure minimizes
the lack of information in the whole probability density over a subset of tunable parameters in the
model.

Such an unambiguous and systematic procedure is particularly important when dealing with nonlinear
high-dimensional models where responses of the statistical moments to parameter variations are nontriv-
ially coupled. The use of relative entropy to improve imperfect models in a dynamic climate change
context builds on earlier use of such concepts by statisticians for improving imperfect models [2, 6].

The goal of this paper is more modest in scope than developing practical implementations of this
framework for use in comprehensive AOS or other high-dimensional models with a large number of both
observables and physically constrained interdependent parameters. Before such attempts can be made, it
is necessary to first understand various aspects of this approach in a hierarchy of controllable, simplified
scenarios mimicking increasingly complex features of the vastly more complex true system. Here, we
consider a simple, yet physically relevant and mathematically tractable, non-Gaussian test model with
intermittently positive Lyapunov exponent due to transient instabilities in the resolved component; more
realistic and complex analysis of this framework on a testbed combining the output an Atmospheric Global
Cirulation Model (GCMs) and simplified spatially extended turbulent tracer models [36] are planned next.
The single mode, non-Gaussian test model used here is given by a quadratically nonlinear system of cou-
pled SDEs [46, 13] for a complex scalar with intermittent transient instabilities induced by stochastic
fluctuations in the damping of the resolved component. Such transient instabilities are characteristic of
turbulent nonlinear interactions between the resolved and unresolved scales and this work naturally com-
plements the analysis initiated in [17] for Gaussian systems. This system has a surprisingly rich dynamics
mimicking turbulent signals in various regimes of the turbulent spectrum (see figure 1), ranging from
the energy transfer range with a very non-Gaussian dynamics with intermittency due to abundant short-
lasting instabilities to a nearly-Gaussian laminar regime with essentially no instabilities. The imperfect
models are obtained through various moment closure approximations and/or dimensional reduction. We
show, using the tools of empirical information theory, that the imperfect models optimized for unperturbed
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climate/attractor consistency also have a significantly improved skill for predicting the forced response in
the ‘climate change’ scenario.

The important points discussed and illustrated throughout the paper for nonlinear, non-Gaussian systems
with intermittency include the following:

• The information-theoretic optimization advocated here can dramatically improve predictive per-
formance and forced response sensitivity of imperfect models to external perturbations (see also
[37, 38, 39, 17]).

• Statistical attractor fidelity of imperfect models on the coarse-grained subset of resolved variables is
necessary but not sufficient for high skill in predicting the true forced response to external pertur-
bations in turbulent forced dissipative systems (see also [39]).

• There exist barriers to improvements within a given class of imperfect models beyond which the loss
of information cannot be reduced except when this class is expanded to allow for more degrees of
freedom (see [34, 17] for even simpler examples of information barriers).

• The information-theoretic optimization requires tuning the imperfect model marginal probability
densities for the resolved variables to the densities of the perfect system on the unperturbed attractor.
In the simplest Gaussian framework such a procedure implies simultaneous tuning of means and
covariances [38, 39].

• The sensitivity of imperfect models for capturing the true forced response can be tested via algo-
rithms exploiting a suitable fluctuation-dissipation theorem and experiments in the training phase in
the unperturbed attractor/climate (see also [39, 17] and [22, 23] for implementations in atmospheric
general circulation model (AGCM)).

• Nonlinear, non-Gaussian systems can have long memory of initial conditions, including the initial
conditions for the unresolved processes, which might lead to significant errors in short and medium
range predictions.

• Linear Gaussian imperfect models cannot reproduce the true nonlinear system response in the vari-
ance to forcing perturbations (see also [38, 39]).

The last fact pointed above is often overlooked in climate science literature (e.g., [50, 53, 48, 3, 49, 26]);
consequences of these obvious shortcomings of the use of linear models for predicting forced response of
nonlinear systems with positive Lyapunov exponents are illustrated in this paper in the simplest possible
but revealing setting of non-Gaussian systems with hidden/unresolved intermittent instabilities. The first
application of this stochastic-statistical framework was discussed in [17] for Gaussian systems which pos-
sessed a number of relevant features for geoscience and climate science applications such as seasonal cycle in
both mean and covariance, a turbulent energy spectrum, and eddy diffusivity. This information-theoretical
framework allowed for illustrating the impact of coarse-graining on quantifying model uncertainty at var-
ious spatial scales, the effects of over-dissipation of the imperfect turbulent velocity field, as well as the
nontrivial dependence of the uncertainty in predictions for a turbulent tracer on the temporal structure of
the zonal jet and the role of seasonality in making ensemble predictions. While the nomenclature of this
paper is biased towards the climate science applications, there are many immediately obvious analogies
throughout the text to problems involving high-dimensional nonlinear dynamical systems with non-trivial
attractors in neural science, material science, or engineering.

The paper is organized as follows. In Section 2, we discuss the general principles of information
theory in the context of improving climate/attractor fidelity of imperfect models (§22.1-2.2), as well as an
important link [37, 38, 39] via the fluctuation-dissipation theory between the climate fidelity of imperfect
models and their sensitivity to external perturbations (§22.3). In Section 3 we introduce the nonlinear
and non-Gaussian ‘perfect’ test system with intermittently positive Lyapunov exponents which combines
physically relevant features of turbulent systems with mathematical tractability. We then introduce a
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suite of imperfect models associated with the non-Gaussian dynamics of the perfect system. Two of these
imperfect models are nonlinear in the state variables but their statistics is ‘Gausianized’ through different
moment closure approximations; the third imperfect model is linear and Gaussian. Next, in Section 4
we illustrate the utility of the stochastic-statistical framework in tough regimes with intermittency for
optimization of the imperfect models and reduction of uncertainty in imperfect predictions. Conclusions
and future research directions are presented in Section 5.

2 General principles of empirical information theory and fluctuation-
dissipation theorems (FDT)

Applications of empirical information theory and the fluctuation-dissipation framework to climate change
science have been addressed at length in [37, 38, 39, 17]. Therefore, below we only briefly summarize
some concepts and notations for self-completeness of the present analysis. The fluctuation-dissipation
framework is treated in more detail since it is crucial for the assessment of the forced response of the
imperfect models based on information obtained from the unperturbed climate/statistical attractor, as
discussed in the following sections.

2.1 Uncertainty quantification through empirical information theory

Consider for concreteness the Earth’s climate system. While the actual equations governing climate
dynamics on earth are unknown, it is natural to assume that these dynamics are Markovian, i.e., the
future state depends only on the present state, on a suitably large space of variables vvv ∈ IRP , P � 1.
Thus, it is reasonable to assume that the perfect dynamical system for the climate is given by

v̇vv = fff(vvv, t) + σ(vvv)Ẇ (t), (1)

where σ is a P ×K noise matrix with covariance Σ and Ẇ ∈ IRK is K-dimensional white noise. The use
of statistical descriptions for the climate system dates back to early predictability studies for simplified
atmosphere models [30, 31, 32, 12].

The imperfect models are given by a known dynamical system

v̇vvm = fffm(vvvm, t) + σm(vvvm)Ẇm(t), (2)

which has a similar structure to (1) but its phase space, IRM , is typically completely different from that
of the perfect system with M � P ; the perfect system and its model share, however, the coarse-grained
variables uuu ∈ IRN where N 6 P−M . Throughout the following analysis we are interested in characterizing
the statistical departures of the imperfect model dynamics relative to the perfect model on the subspace
of the coarse-grained, resolved variables uuu.

The evolution of the probability densities associated with the perfect and imperfect models satisfy
appropriate Fokker-Planck equations which we omit here for brevity. The natural way [28, 41] to measure
the lack of information in one probability density, say q, compared with the other, say p, is through the
relative entropy, P(p, q), given by

P(p, q) =

∫
p ln

p

q
. (3)

Despite the lack of symmetry in its arguments, the relative entropy, P(p, q) provides an attractive frame-
work for assessing model error in AOS applications [27, 40, 7, 9, 1, 37, 5, 52, 20, 21, 38, 39] due to its two
‘distance-like’ properties: (i) P(p, q) is always positive unless p = q, and (ii) it is invariant under any in-
vertible change of variables [40, 41]. Thus, in the context of uncertainty quantification, and especially in in
AOS applications, the relative entropy (3) restricted to marginal densities on the common coarse-grained
variables uuu ∈ IRN provides the following useful diagnostic definitions:
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• Model error is defined through the relative entropy as P(π, πm) and it characterizes the lack of
information in the marginal probability density of the imperfect model, πm, relative to the true marginal
density, π, on the coarse-grained variables uuu [37].

• Internal prediction skill of an imperfect model quantifies the role of initial conditions in the imperfect
prediction of a future state of a system [27, 20, 21] and it represents the gain of information beyond the
imperfect model climate (i.e., the probability density on the attractor). The internal prediction skill is
expressed via the relative entropy as P(πm(·|t0), πm

att) where πm(uuu, t|t0) is the density with a given initial
condition at time t0 and πm

att(uuu, t) is the climate for the imperfect system on the coarse-grained variables
uuu. For the perfect system the additional information in the conditional density π(·, t|t0) relative to the
perfect climate πatt, given by P(π(·|t0), πatt), is simply called the prediction skill. Note that high internal
prediction skill (of the imperfect model) is only meaningful if the corresponding model error is small.

•Model sensitivity [37] quantifies the gain of information in the probability density of a perfect/imperfect
system in response to external perturbations from its climate (attractor); it is expressed via the relative
entropy as P(πδ, πatt) for the perfect system, or as P(πm

δ , π
m
att), where πδ, π

m
δ are, respectively, the per-

turbed perfect and imperfect densities and πattr, π
m
att are the corresponding marginal densities for the

unperturbed (perfect and model) climate.

2.2 Improving climate fidelity of imperfect models

The framework of empirical information theory provides a convenient and unambiguous way of improving
the performance of imperfect models both in terms of minimizing their error and increasing their sensitivity
to external perturbations; the main facts are outlined below (see [38, 39] for additional details).

Consider first a class of imperfect models,M; the best imperfect model on the coarse-grained variables
uuu is characterized by the marginal density πm∗ , m∗ ∈ M, so that the perfect model with the marginal
density π has the smallest additional information beyond the imperfect model density [37], i.e.,

P(π, πm∗) = min
m∈M

P(π, πm). (4)

An important issue to contend with in any realistic scenario is the fact that the perfect model density,
π, in (4) is not known and only its best unbiased estimate, πL, based on L measurements ĒEEL of the
perfect system during the training phase is available. The following general principle [35, 37] facilitates
the practical calculation of (4)

P(π, πm
L′) = P(π, πL) + P(πL, π

m
L′), (5)

where L′ ≤ L. Note that P(πL, π
m
L′) exactly gives the lack of information in a ‘coarse-grained’ probability

density associated with fewer constraints, πm
L′ ; this is an example of an information barrier which cannot

be overcome unless more measurements are incorporated. Consequently, the optimization principle (4)
can be computed by replacing the unknown π by the hypothetically known πL so that the optimal model
satisfies

P(πL, π
m∗
L′ ) = min

m∈M
P(πL, π

m
L′), L′ 6 L. (6)

Climate fidelity [37, 38, 10], or statistical equilibrium fidelity, of an imperfect model consistent with the L
measurements of the coarse-grained variables uuu arises when

P(πL, π
m∗
L′ ) = 0. (7)

For simplicity in notation, and due to the form of (4) and (6), we skip the subscripts L and L′ in the
following discussion; the remaining assumption is that the number of the coarse-grained measurements of
the imperfect model does not exceed the number of analogous measurements of the perfect system (i.e.,
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L′ 6 L). It turns out, as shown in the following sections, that even when the time-averaged climate fidelity
is achieved, i.e.,

P(π, πm) ≡
∫ T

0

P(π, πm)� 1, (8)

with T the period on the attractor of the perfect system, a significant improvement in the model prediction
skill and sensitivity can be achieved.

The most practical setup for utilizing the framework of empirical information theory in AOS appli-
cations arises when both the measurements of the perfect system and its imperfect model involve only
the mean and covariance of the resolved variables uuu so that πL is Gaussian with climate mean ūuu and
covariance R, whereas πm is Gaussian with model mean ūuum and covariance Rm. In this case, P(πL, π

m)
has an explicit formula [27, 41] which is extensively used throughout this study

P(πL, π
m) =

[
1
2 (ūuu− ūuum)R−1

m (ūuu− ūuum)
]

+ 1
2

[
tr[RR−1

m ]−N − ln det[RR−1
m ]
]
. (9)

The first term in brackets in (9) is the signal, reflecting the model error in the mean but weighted by the
inverse of the model variance, Rm, whereas the second term in brackets, the dispersion, involves only the
model error covariance ratio, RR−1

m . The signal and dispersion terms in (9) are individually invariant
under any (linear) change of variables which maps Gaussian distributions to Gaussians; this property is
very important for unbiased model calibration.

2.3 The link between climate fidelity and sensitivity of imperfect models

We briefly outline here the framework developed in [38, 39] which directly links the uncertainty in the
imperfect model projections for the forced response with the imperfect model fidelity to the unperturbed
statistical equilibrium/climate.

Assume that the perfect system or the imperfect model or both are perturbed so that πδ(uuu, t) the
unknown perfect distribution, πL,δ(uuu, t), its least-biased density based on L measurements, and πm

δ (uuu, t)
the model distribution all vary smoothly with the parameter δ, i.e.,

πL,δ(uuu) = πL(uuu) + δπL(uuu),

∫
IRN

δπL(uuu)duuu = 0,

πm
δ (uuu) = πm(uuu) + δπm(uuu),

∫
IRN

δπm(uuu)duuu = 0,

(10)

where we skipped the explicit time dependence of the densities. For stochastic dynamical systems rigorous
theorems guarantee this smooth dependence under minimal hypothesis [24]. A simple instructive example
corresponds to the Gaussian framework based on the measurements of the means and covariances only
with πL,δ = πG,δ ≡ N (ūuu,R), and πm

δ = πm
G,δ ≡ N (ūuum, Rm). Assuming further perfect fidelity in the

unperturbed climate, P(πG, π
m
G) = 0, and diagonal covariance matrices R and Rm, the leading order

Taylor expansion in the (small) parameter δ of the error in the perturbed model density πm
G,δ relative to

the true perturbed density πG,δ leads to

P(πG,δ, π
m
G,δ) = S(πG,δ)− S(πδ)

+
1

2

∑
|k|≤N

(δūk − δūmk )R−1
k (δūk − δūmk )

+
1

4

∑
|k|≤N

R−2
k (δRk − δRm

k )
2

+O(δ3). (11)
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(For a more general result for arbitrary densities see [38, 17].) The entropy difference, S(πδ,G) − S(πδ),
in (11) corresponds to the intrinsic error due to measuring only the mean and covariance of the perfect
system while the remaining terms characterize the uncertainty due to the external perturbation; the first
(second) summation in (11) is the signal (dispersion) contribution to the model error.

Given a class of imperfect modelsM, the error (11) in predicting the true system’s response to external
perturbations is minimized for the model which is the most consistent with the unperturbed climate, i.e.,
the model m∗ ∈M satisfying (4) or (6). In fact, climate consistency of an imperfect model is a necessary
but not a sufficient condition for its predictive skill, as shown in [38], where simple yet instructive examples
reveal the possibility of intrinsic barriers to improving model sensitivity even with perfect climate fidelity.
The only way to overcome such barriers is by extending the class of imperfect models to account for more
degrees of freedom. In the following sections, we will present further examples of such situations in more
complex non-Gaussian models.

2.3.1 FDT as a link between fidelity and sensitivity

The attractive feature of the fluctuation-dissipation framework for forced dissipative systems is that it
allows one to estimate the expected response of the system to external perturbations by collecting lag-
covariance statistics of the unperturbed attractor/climate. Below we list the most important features
of this framework (see [35, 42, 16] for details) which will be necessary for the subsequent analysis of
the sensitivity of the imperfect model sensitivity discussed in §4.3.3. For applications of the fluctuation
dissipation theorem to estimate the linear response of the system defined by an atmospheric general
circulation model (AGCM) see [22, 23].

Consider the time-periodic probability density such that patt(vvv, s) = patt(vvv, s+ T0) on the attractor of
the perfect system (1) satisfying the Fokker-Planck equation

∂patt
∂s

+∇vvv[patt fff(vvv, s)]− 1

2
∇vvv · ∇vvv[σσT patt] = 0. (12)

Existence of such a statistical attractor with time-periodic density patt can be established in systems which
are dissipative in an appropriate sense [42]. Consequently, the statistics of some functional A(vvv) on the
attractor are determined by

〈̃A〉̃ =
1

T0

∫ T0

0

∫
IRP

A(vvv, s)patt(vvv, s)dvvvds. (13)

Note that in such a framework patt becomes an invariant probability measure on IRp × S1 with

1

T0

∫ T0

0

∫
IRP

patt(vvv, s)dvvvds = 1. (14)

Next, perturb both the perfect model (1) and the imperfect model (2) by δwww(vvv, s)f(t) to generate the
perfect probability density, pδ(vvv, t), and the imperfect probability density, pmδ (vvvM , t) with the marginal
densities on the common coarse-grained variables uuu given by

πm(uuu, s, t) = πm
att(uuu, s) + δπm(uuu, s, t),

π(uuu, s, t) = patt(uuu, s) + δπ(uuu, s, t).
(15)

Then, the time-periodic FDT [42] states that if the perturbation is small enough (and under some minimal
hypothesis of smoothness of the unperturbed measure), the leading order correction to the statistics in
(13) becomes

δ 〈̃A〉̃ (t) =

∫ t

0

RA(t− s)δf(s)ds, (16)
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where R(t) is the linear response operator computed via the correlations in the unperturbed climate as

R(t) = 〈̃A(vvv(t+ s), t+ s)⊗B(vvv(s), s)〉̃. (17)

with vvv(t+ s) the solution of (1) with vvv|t0 = u(s). The functional B in (17) is given by

B(vvv, s) = −divvvv(www(vvv, s)patt(vvv, s))

patt(vvv, s)
. (18)

We are interested in the best imperfect models which minimize P(πδ(t), π
m
δ (t)) for a given prediction

horizon t and perturbed forcing scenario, δwww(vvv, s)f(t). Assuming a smooth dependence of the perturbed
densities on the parameter δ (as in (10)), the corresponding perturbed values of the coarse-grained func-

tionals ĒEEδ,L(t) and ĒEE
m
δ,L(t) are defined through (13) and (15) by

a) ĒEEL,δ(t) =

∫
EEEL(uuu)π +

∫
EEEL(uuu)δπ(t),

b) ĒEE
m
L,δ(t) =

∫
EEEL(uuu)πm +

∫
EEEL(uuu)δπm(t).

(19)

A potentially practical quantitative link between climate fidelity and prediction skill is defined through
the fluctuation dissipation formulas in (16)-(18). First, by assuming the validity of FDT and a sufficiently
small perturbation strength, δf(t), one obtains∫

EEEL(uuu)δπ(t) =

∫ t

0

REEE(t− s)δf(s)ds+O(δ2), (20)

where REEE is the corresponding linear response operator for the perfect system defined in (17); analogous
formula holds for the imperfect system with Rm

EEE and δπm. Now, with statistical equilibrium fidelity from
(7) satisfied by the imperfect model the leading term in (19a) equals the leading order term in (19b)
so that P(πL,δ, π

m
δ ) vanishes identically at δ = 0 and the perturbation formulas in (11) and (17) can be

applied directly with the approximation in (20) from FDT. For example, if u is a scalar variable like the
global temperature with the two measurements ĒEE = (ū, σ2) of the mean ū and the variance σ2, then
combining (11) with the FDT formulas (15) and (20) yields

P(πδ(t), π
m
δ (t)) = S(πG,δ(t))− S(πδ(t)), (21)

+
1

2
σ−2

(∫ t

0

(
Rū(t− s)−Rm

ū(t− s)
)
δf(s)ds

)2

+
1

4
σ−4

(∫ t

0

(
Rσ̄2(t− s)−Rm

σ̄2(t− s)
)
δf(s)ds

)2

+O(δ2).

In (21), σ2 is the statistical equilibrium variance of both the perfect and imperfect models which coincide
for perfect equilibrium fidelity and Rū, Rm

ū and Rσ̄2 , Rm
σ̄2 are the mean and variance linear response

operators. The formula in (21) and its generalizations to the multi-dimenisonal case illustrate that the
skill of an imperfect model in predicting forced changes for the statistical equilibrium with general external
forcing is directly linked to the skill in estimating the linear response operators for the mean and variance
in a suitably weighted fashion as dictated by information theory.

2.3.2 Quasi-Gaussian FDT

In any realistic situation the exact density, patt, on the unperturbed attractor of the perfect system is
not known and some approximation is needed. The simplest approach relies on assuming a Gaussian
density with the same mean and covariance as in the original system (e.g., [29, 35, 22, 23, 39]. In such a
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quasi-Gaussian approximation (qG-FDT) the functional B in (18) is evaluated with patt = pGatt, while the
lag-covariances in (17) are computed over the true non-Gaussian equilibrium measure from time averages
assuming mixing and ergodicity. High skill of this approach was reported for estimating the linear response
of a system defined by the atmospheric general circulation model (AGCM) in [22, 23].

2.3.3 Kicked FDT

The advantage of utilizing the FDT approximation is that the predictive skill of the imperfect model
response operator Rm

EEE(t) to external forcing can be evaluated through specific experiments in the training
period where the fidelity with observed data of the perfect model can be monitored [39]. To see this,
perturb the initial data for the perfect system and its imperfect model in the direction δuuu in a statistical
fashion so that one generates statistical solutions, p(vvv, s, t) and pm(vvv, s, t), on IRP × T 2 and IRM × T 2

respectively with perturbed initial data,

∂pm

∂t
= LMFP p

m, pm
∣∣∣
t=t0

= pmatt(vvv
m − δuuu, s),

∂p

∂t
= LFP p, p

∣∣∣
t=t0

= patt(vvv − δuuu, s).
(22)

It is a general mathematical fact [35, 39] that for δ small enough the linear response operators can be
calculated from (22) as

δRm
EEE(t) =

1

T0

∫ T0

0

∫
EEE(uuu)δπm(uuu, s, t)duuuds+O(δ2), (23)

where δπm is the perturbation of the marginal distribution in uuu of pm given by (15); analogous result holds
for the perfect model response operator REEE . Thus, model errors in the training period for a given imperfect
model can be assessed with the tools of information theory [37, 35, 41] such as (11) and (17) above by
utilizing super-ensembles for the specific kicked ensemble perturbations for pm given in (22); furthermore,
in this training period, REEE(t) does not need to be calculated explicitly but only the statistical fidelity of∫ ∫

EEE(uuu)δpm(uuu, s, t)duuuds with the actual observed data in nature.

3 Complex scalar model with intermittently positive Lyapunov
exponent

In order to illustrate the utility of the stochastic-statistical framework summarized above to non-Gaussian
systems and their imperfect models, we first introduce a non-Gaussian exactly solvable model for a complex
scalar with hidden transient instabilities and intermittency in the dynamics of the resolved component.
Here, the resolved variable can be regarded as a single Fourier mode of a turbulent spatially extended
system with the complex nonlinear interactions between various scales replaced by a stochastic drag and
additive white noise forcing [43, 8]. This stochastic approach allows for analyzing many properties which
are relevant for Uncertainty Quantification (UQ) and prediction in high-dimensional turbulent systems
in a greatly simplified one-mode setting. Below we introduce three imperfect models which are obtained
from the perfect system via various moment closure approximations and/or dimensional reduction; two
of these models are nonlinear with ‘Gaussianized’ statistics while the simplest model is both linear and
Gaussian. Analysis of model errors introduced by these different approximations and ways of mitigating
these errors are discussed in §4.
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3.1 The nonlinear model

Consider a single Fourier mode of a turbulent signal modeled by the following stochastic system (see
[15, 14, 4])

(a) du(t)=
[
(−γ(t)+iω)u(t)+b(t)+F (t)

]
dt+σudWu(t),

(b) db(t)=
[
(−γb+iωb)(b(t)−b̂)

]
dt+σbdWb(t),

(c) dγ(t)=−dγ(γ(t)−γ̂)dt+σγdWγ(t),

(24)

where Wu,Wb are independent complex Wiener processes and Wγ is a real Wiener process. There are
nine parameters in the system (24): two damping parameters γb, dγ > 0, two oscillation frequencies ω and

ωb, two stationary mean terms b̂ and γ̂ and noise amplitudes σu, σb, σγ > 0; F is a deterministic forcing
which we assume to have the following special time-periodic form with a non-zero mean A0 and given by

F (t) = A0 +A1 cos(ωt+ φ1) +A2 cos(2ωt+ φ2), (25)

where ω = π/6 which ensures that the period T0 = 12 so that it can be interpreted as a year consisting of
12 months; the forcing has two frequencies so that the equilibrium statistics of (24) has a more variable
structure.

Here, we regard u(t) as representing one of the resolved modes in a turbulent signal where the nonlinear
mode-interaction terms are replaced by a stochastic drag γ(t) and an additive noise term b(t), as is often
done in turbulence models [43, 8]. The nonlinear system (24), introduced first in [15] for filtering multiscale
turbulent signals with hidden instabilities, has a number of attractive properties as a test model in our
analysis. Firstly, it has a surprisingly rich dynamics mimicking turbulent signals in various regimes of
the turbulent spectrum, including intermittently positive finite-time Lyapunov exponents, as discussed
below [4]. Secondly, due to the particular structure of the nonlinearity in (24), exact path-wise solutions
and exact second-order statistics of this non-Gaussian system can be obtained analytically, as discussed in
[18, 19, 15]. The mathematical tractability of this model and its rich dynamical behavior provides a perfect
test bed for analyzing effects of errors due to various moment closure approximations and dimensional
reduction in a suite of imperfect models introduced in §3b.

3.1.1 Dynamical regimes of the perfect model

A number of dynamical regimes of the model (24) characterized by stability of the mean dynamics were
determined in [4]. The physically relevant dynamical regimes of (24) satisfying the mean-stability condition

χ = −γ̂ +
σ2
γ

2d2
γ

< 0, (26)

with γ̂ the mean damping in u(t), and dγ , σγ the damping and the noise variance in (24c), respectively,
are (see also figure 1 for an illustration):

(I) Regime of plentiful, short-lasting transient instabilities in the resolved component u(t) with fat-tailed
marginal equilibrium PDF. This type of dynamics is characteristic of the turbulent energy transfer
range and in the model (24); it occurs for σγ , dγ � 1, σγ/dγ ∼ O(1) and γ̂ sufficiently large so that
χ < 0. This is a regime of rapidly decorrelating damping fluctuations γ(t) and the decorrelation
time of u(t) given approximately by 1/γ̂ (see [4]).

(II) Regime of intermittent large-amplitude bursts of instability in u(t) with fat-tailed marginal equilib-
rium PDF. This regime is characteristic of turbulent modes in the dissipative range and it occurs
for small σγ , dγ , with σγ/dγ ∼ O(1) and γ̂ sufficiently large so that χ < 0.

Here, the decorrelation time of the damping fluctuations γ(t) is long but the decorrelation time of
fluctuations in u(t) can vary widely, as in regime (I).
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Figure 1: Perfect system dynamics. Schematic illustration of path-wise dynamics (left) and time-
periodic statistics (at fixed time) on the attractor (right) in two intermittent regimes of system (24); the
intermittent regimes are discussed in §3.1.1.

(III) ‘Laminar’ regime with nearly Gaussian equilibrium PDF. This regime is characteristic of the laminar
modes in the turbulent spectrum. Here, the transient instabilities in u(t) occur very rarely. This
type of dynamics occurs in (24) for γ̂2 � σ2

γ/2dγ and χ < 0.

3.2 The imperfect models

We describe here three imperfect models derived from (24) which introduce model errors through moment
closure approximations or a dimensional reduction of the perfect system. We first note that, with the state
vector vvv = (u, b, γ)T with one resolved component u and two hidden components (b, γ), the deterministic
part in (24) can be written as

fff(vvv, t) = L̂(t)vvv + B(vvv,vvv, t) + F(t), (27)

with L̂ a linear operator, B a bilinear function, and F a spatially uniform term representing generalized
deterministic forcing; the exact form of these terms can be easily obtained by comparing (27) with (24)
and (1). In what follows we will skip the explicit dependence on time in fff in order to simplify the notation.

It can be easily shown (e.g., [25, 4]) that by adopting an analogue of the averaged Reynolds decom-
position of the state vector, vvv = v̄vv + vvv′, such that vvv′ = 0 and v̄iv′j = 0, the evolution of the mean v̄vv and
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covariance R ≡ vvv′ vvv′T for the process vvv satisfying (1) is given by

a) ˙̄vvv = fff(v̄vv) + B(vvv′, vvv′),

b) Ṙ = RAT (v̄vv)+A(v̄vv)R+Σ + vvv′BT (vvv′, vvv′)+B(vvv′, vvv′)vvv′T ,
(28)

where A is the Jacobian of fff at v̄vv, i.e., A(v̄vv) ≡ ∇fff(v̄vv) and the overbar denotes an ensemble average.
Due to the particular form of the quadratic nonlinearity in the perfect system (24), exact formulas

for the second-order statistics and path-wise solutions can be derived [15] without the explicit knowledge
of the associated time-dependent probability density. Derivation of imperfect models in this framework
utilizes some type of moment closure approximation of the terms

B(vvv′, vvv′) and vvv′BT (vvv′, vvv′) + B(vvv′, vvv′)vvv′T ,

in (28) which involve the second and third moments of the fluctuations, respectively. Below we describe
two nonlinear and one linear imperfect model of the system (24) which introduce model error due to various
moment closure approximations applied to (28) and/or due to a dimensional reduction. The effects of
errors introduced by these models on the short, medium and long range prediction skill, as well as ways
of mitigating these errors via inflation of stochastic forcing, are discussed in the following sections. It is
important to foreshadow the following discussion and stress that while all the imperfect models considered
below have Gaussian statistics due to the moment closure approximations, the first two models remain
nonlinear in the state variables vvv = (u, b, γ).

3.2.1 Gaussian Closure model (GCm)

The quasi-Gaussian closure approximation (e.g., [25]) results in a model which is nonlinear in the state
variables and has Gausianized statistics; this simple closure familiar from turbulence theory implies ne-
glecting the third and higher moments of the true probability density p(vvv, t) associated with the process
vvv satisfying (24). For quadratic models and, in particular, for (24) only the third moments have to be
neglected, i.e., GCm assumes

vvv′m BT (vvv′m, vvv′m) + B(vvv′m, vvv′m)vvv′m
T = 0 (29)

in (28b) with vvvm = (um, bm, γm), vvvm = v̄vvm + vvv′m. The closure (29) results in a fully coupled dynamical
system for the second-order statistics given by

a) ˙̄vvvm = fff(v̄vvm) + B(vvv′m, vvv′m),

b) Ṙm = RmA
T (v̄vvm)+A(v̄vvm)Rm + Σm,

(30)

with A(v̄vvm) = ∇fff(v̄vvm). Note that the system (30) represents the exact evolution of the second-order
statistics for any Gaussian process where (29) is satisfied identically. Otherwise, the closure introduces a
model error due to (29). Details on deriving GCm from the perfect system (24) are discussed in [4].

3.2.2 Deterministic-Mean model (DMm)

The mean and covariance in DMm evolve according to

a) ˙̄vvvm = fff(v̄vvm),

b) Ṙm = RmA
T (v̄vvm) +A(v̄vvm)Rm + Σm,

(31)

with A(v̄vvm) ≡ ∇fff(v̄vvm) and initial conditions vvvm(t0) = vvv0, Rm(t0) = R0. Similarly to GCm, DMm neglects
the third and higher moments in the evolution of the covariance, Rm, but it also neglects correlations in
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the evolution of the mean, effectively assuming that fff(vvvm) = fff(v̄vvm); thus, this ad-hoc closure corresponds
to imposing

a) vvv′mBT (vvv′m, vvv′m) + B(vvv′m, vvv′m)vvv′m
T = 0,

b) B(vvv′m, vvv′m) = 0.
(32)

in (28). Note that the constraint (32b) is inconsistent with the nontrivial evolution of the covariance in
(31b); see [4] for more details.

3.2.3 Mean Stochastic model (MSm)

The most simplified imperfect model we consider here uses the same moment closure approximations (32)
as DMm but only accounts for the dynamics of the resolved variable u(t) with the mean values of the
unresolved variables in (24a), γ = γ̂M and b = 0, resulting in the following linear, Gaussian model for the
complex scalar um

u̇m =
(
− γ̂m + iωm

)
um + Fm(t) + σm

uẆu(t). (33)

The mean um and covariance Rm for this linear model can be computed analytically in a standard fashion
leading to the mean

ūm(t) = e(−γ̂m+iωm)(t−t0)ū0 +

∫ t

t0

e(−γ̂m+iωM )(t−s)Fm(s)ds, (34)

and covariance Rm = ũuu′m ⊗ ũuu′
T

m (considered in real variables ũuu′ =
(
<e[u′m],=m[u′m]

)T
where ũuu′ = ũuu− ũuu )

Rm(t) = eÂ(t−t0)R0e
ÂT (t−t0) +

∫
eÂ(t−s)Σ̂(s)eÂ

T (t−s)ds, Â =

[
−γm −ωm

ωm −γm
]
, (35)

with Σ̂ = 1
2diag[(σm

u )2, (σm
u )2]. Note that the linearity of the MSm implies that the covariance Rm is

independent of the external forcing and, consequently, insensitive to forcing perturbations. Implications
of this fact on improving the model fidelity and sensitivity are discussed in the following sections.

4 Uncertainty quantification and optimization of imperfect mod-
els for improved prediction skill

In this section we discuss uncertainty quantification and optimization of imperfect models for various
prediction scenarios using the the stochastic-statistical framework and the suite of imperfect models in-
troduced in the previous two sections. The considered scenarios are designed to elucidate the interplay
between the climate fidelity of imperfect models and the initial conditions in short, medium and long
range probabilistic predictions, as well as the sensitivity analysis to climate change scenarios where the
system’s attractor is perturbed. First, we focus on the probabilistic predictions in the perfect model set-
ting where we point out the much longer memory of statistical initial conditions in non-Gaussian systems
with intermittency compared to Gaussian systems; these long memory effects apply also to the initial
conditions for the unresolved variables. The perfect system configuration is followed by a discussion of
improvements in the predictive skill and sensitivity of imperfect models with significant model errors and
overdamping after a simple optimization in the relative entropy metric by means of the stochastic noise
inflation; the noise inflation is just one example of model improvement in this framework and other model
parameters can be incorporated in more general approaches. Importantly, these results show usefulness
of the principles advocated here in tough turbulent regimes with intermittency and energy transfer on the
attractor.

The important points illustrated in the analysis and examples below are:
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• Information-theoretic optimization of imperfect models can significantly improve model prediction
skill and sensitivity to external perturbations (figures 4, 5). Statistical equilibrium/climate fidelity
of imperfect models is necessary but not sufficient for high skill in forced response/climate change
projections (figures 7-15).

• There exist barriers to improvements within a given class of imperfect models beyond which the loss
of information in the imperfect models cannot be reduced (see, e.g., figure 6) except when the class
of models is expanded to allow for more degrees of freedom.

• The sensitivity of imperfect models can be tested via FDT based on experiments in the training phase
in the unperturbed statistical equilibrium/climate. Kicked response FDT seems very promising and
it may be combined in the future with machine learning methods to devise kicked experiments.

• Nonlinear, non-Gaussian models can have long memory of initial conditions including the initial
conditions for the unresolved processes (figures 2, 3). Linear Gaussian imperfect models cannot
reproduce the response in the variance to forcing perturbations in climate change scenarios; the
change in variability due to perturbations of the attractor of the true nonlinear system remain
undetected by these models (see MSm in figures 7, 8, 10).

4.1 Perfect model predictions and the role of initial conditions

We study here the role of initial conditions in perfect model predictions over short, medium, and long time-
periods. In particular, we illustrate the strong influence of the unresolved variables on the system memory.
In order to mimic realistic situations, we construct a superensemble whose members consist of ensembles
of initial conditions which are normally distributed around the climate mean with the climate variance
at the initial time t0; moreover, we assume that the initial conditions in each ensemble are known with
high certainty, i.e., the variances associated with estimating the initial conditions are significantly smaller
than the climate variance at t0. In this statistical setup, two possibilities exist for making predictions of
the future state of the system. One obvious strategy relies on Monte Carlo computations of path-wise
predictions for each initial condition in every superensemble member, and subsequently collecting such
predictions to determine the future statistical state of the system and the associated uncertainties. Here,
instead of relying on the Monte Carlo estimates, we use the analytical formulas for the second-order
statistics of the perfect model derived in [15], thus representing every superensemble member by its mean
and covariance.

In figures 2-3 we show examples of such superensemble predictions together with the climate statistics
for ensembles with different initial statistical conditions; in figure 2 the initial mean of the resolved variable
〈u0〉 is varied while the means of the hidden variables, 〈b0〉 and 〈γ0〉, are kept constant, while in figure 3
the resolved mean 〈u0〉 is constant and the initial mean of the hidden damping fluctuations 〈γ0〉 is varied.
We consider predictions starting at two different times t0 of the time-periodic cycle and we assume that
the state of the system is known initially with a higher precision than given by the climate statistics, i.e.
the variances of the superensemble members at t0 are smaller than those given by the climate statistics
at t0. For clarity, the evolution of only two superensemble members with different initial means 〈u0〉 is
shown for each initial time. The bottom panels in figures 2 and 3 show the gain of information beyond
the climate statistics in the predictions with given initial conditions; the information gain is measured by
the relative entropy P(πt0 , πatt), where πt0(u, t) is the marginal density for the forecast with the initial
condition at time t0, and πatt(u, t) is the time-periodic climate statistics. Unsurprisingly, the information
gain of the forecasts approaches zero with increasing lead time; this fact is simply a consequence of the
approach to the system’s attractor and the loss of memory of the initial conditions. Since in our setup
only the external forcing is time-dependent and the system parameters are constant, there is no significant
difference in information when forecasting in different seasons.
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In figure 3 we show forecasts for three different superensemble members with the same initial means
for the resolved variable 〈u0〉 and different initial means of the hidden variable 〈γ0〉 representing the mean
initial damping fluctuations of the resolved variable u(t). Here, the gain of information beyond equilibrium
and the memory of initial conditions is strongly affected by the initial mean state 〈γ0〉 of the ‘unresolved’
damping fluctuations; these memory effects become more pronounced with increasing deviation of the
initial mean of damping fluctuations. Note that for the largest 〈γ0〉 most of the long range prediction
skill resides in the variance which is reflected in the slow decay of the dispersion. This fact points to
potentially important consequences of errors associated with treatment of unresolved damping fluctuations
in imperfect models.

4.2 Climate fidelity, model error and information barriers

In any realistic climate science applications the evolution of a natural system is not known and, instead,
imperfect models introducing various model errors must be used. Here, we consider the three imperfect
models introduced in §3b to illustrate the impact of different model errors on the prediction skill over
different lead times for the system (24) with intermittency and positive Lyapunov exponents. The two
models based solely on the moment closure approximations, GCm and DMm, serve here to illustrate the
effects of parameterization of unresolved scales; this setup can be regarded as an instructive example of
model error due to neglecting turbulent fluxes from the unresolved scales which interact with the resolved
scales in an intermittent fashion. Another common source of model error in prediction for high-dimensional
systems arises when a subset of degrees of freedom of the perfect system is completely hidden from the
family of its imperfect coarse-grained models. Here, we use MSm (§33.2), which only accounts for the
resolved variable u(t), to illustrate the effects this crude dimensional reduction on the prediction skill for
the resolved component. The optimization procedure discussed in detail below for the imperfect models of
§3 highlights the important issue of the existence of barriers to model improvement within a given class of
imperfect models beyond which the loss of information in the imperfect models cannot be reduced except
when the class of imperfect models is expanded to allow for more degrees of freedom.

4.2.1 Improving imperfect models through stochastic forcing

The moment closures employed in the derivation of GCm and DMm, or the dimensionality reduction used
in MSm, do not guarantee a-priori the climate fidelity of these imperfect models. Important issues in
this context concern (i) the effects of different moment closures on the climate statistics of the imperfect
models, (ii) the extent of improvement in climate fidelity achieved by optimizing the model parameters
through (6). Following the methodology of [38], we focus here on improving the model fidelity by inflating
the stochastic forcing in the resolved dynamics of the imperfect models in order to minimize the annually
averaged information content, P(πatt, πm

att), between the perfect and imperfect model climate. Note that
while the noise inflation is sufficient for our purposes, larger sets of model parameters can be incorporated
in more general approaches utilizing (6), depending on the model complexity and computational resources.

In figures 4-5 we show an example of such an optimization procedure carried out in regime II of
mean-stable dynamics of the perfect system (24) and compare the statistics and the model error for the
three imperfect models before and after optimal noise inflation. Clearly, for all imperfect models the
climate fidelity is significantly improved by inflating the amplitude of the stochastic forcing σm∗

u . For
GCm, the main improvement is in the dispersion part, since the signal error part for this model is very
small throughout due to its correct treatment of the turbulent flux. For DMm the signal and dispersion
contributions to model error are comparable before and after optimization with the post-optimization error
significantly reduced. For MSm the model error in the unoptimized model is dominated by the dispersion
part; after the noise inflation the signal and dispersion contributions to climate error are comparable
and significantly reduced. We note here that for all models the total uncertainty in the climate was
greatly reduced at all times although only the annually averaged climatology was used in the optimization
procedure; this was observed earlier for the Gaussian models in [17].
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Another important issue here concerns the extent to which the climate fidelity of the imperfect models
of the system (24) can be improved in its different dynamical regimes with different characteristics of the
transient instabilities. In the left column of figure 6 we show the optimal noise amplitude (σm∗

u )clim for
unperturbed climate fidelity and the corresponding annually averaged climate error as a function of the
mean damping γ̂ (top left) and as a function of the damping of fluctuations dγ (bottom left). Recall that
increasing γ̂ decreases the decorrelation time of the resolved variable u(t) and reduces the frequency of
transient instabilities, leading to a transition between regimes II and III in the perfect dynamics of (24).
For weak mean damping γ̂, associated with very intermittent dynamics of u(t) and fat-tailed marginal
equilibrium PDFs, perfect climate fidelity cannot be achieved by inflating the stochastic forcing in the
imperfect models. While the climate fidelity improves for all models for increasing γ̂, GCm retains the best
fidelity throughout. Analogous analysis for varying decorrelation time, 1/dγ , of the damping fluctuations
γ such that dγ = σγ clearly shows existence of barriers to climate fidelity improvement by noise inflation
as the hidden, transient instabilities become more abundant (see the transition between regimes II and I
of (24) for increasing dγ).

Finally, in in the right column of figure 6 we motivate and foreshadow the discussion of connections
between climate fidelity and sensitivity of imperfect models to external forcing perturbations in a “climate
change” scenario. It can be seen there that the optimized imperfect models, GCm and DMm, with good
unperturbed climate fidelity also have a good skill for the climate change predictions, while MSm has a poor
“climate change” prediction skill. A natural question here concerns the generality of such a relationship
and possible tests which can be carried out in the unperturbed climate in order to probe the imperfect
model sensitivity. The link (11) between the climate fidelity and sensitivity and its implications on long
range prediction in systems intermittently positive Lyapunov exponents is examined in the following three
sections.

4.3 Model sensitivity and climate change predictions for systems with inter-
mittently positive Lyapunov exponents

The main focus of this section is on elucidating the link, discussed in §22.3 and illustrated in figure 6,
between the climate fidelity of the imperfect models and their sensitivity to climate change scenarios
induced by perturbations of the external forcing. Consequently, we consider here long lead times so
that essentially all knowledge of the initial conditions is lost and only the perturbations to the statistical
attractor of the perfect system due to forcing perturbations are important. More general situations
involving the interplay between the memory of initial conditions and climate change, and imperfect model
optimization for the short and medium range prediction skill are discussed in §34.4.

4.3.1 Perfect model response to the ramp-type forcing perturbations

Consider first the response of the perfect system (24) to deterministic perturbations of the external forcing
δF (t) which induce a change in the system attractor; this scenario will serve as a benchmark for the
imperfect model considerations. In particular, we consider the following ramp-type perturbations of the
time-periodic forcing (25)

δF (t) = (Aδ0 −A0)
tanh(a(t− tc)) + tanh(a tc))

1 + tanh(a tc))
, (36)

with Aδ0 the perturbed mean forcing, A0 the unperturbed mean forcing, and the parameter a controlling the
time scale of the perturbation centered at time tc. In order to mimic a climate change scenario, we assume
that the system evolves initially on the unperturbed statistical attractor (climate) and subsequently, at
time t = 0, the external forcing starts changing according to (36). The sensitivity of the perfect system
to such perturbations of its attractor is quantified via the relative entropy P(πδF , πatt), as described in
§22.1.
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In the top left and bottom panels of figure 7 we show a typical example of perfect model sensitivity
(black lines) in regime II (intermittent transient instabilities; figure 1) of the system (24); the top left panel
shows the statistics of the resolved component u(t) and the bottom panel shows the model sensitivity with
corresponding signal and dispersion parts. The forcing perturbation (36) is applied with

A0 = 4, Aδ0 = 4.4, a = 0.3, tc = 20, (37)

which corresponds to the change in the mean forcing by 10% over a period of about two years; the
system evolution is monitored for another year after the forcing perturbation saturates. The nonlinearity
of the perfect model is responsible for changes in both the mean and the variance in response to the
forcing perturbations; it also induces changes in oscillation amplitudes induced by the perturbation. For
this particular model with the typical mean forcing amplitudes chosen in (37) the signal part largely
dominates the dispersion. For weaker mean forcing the effect of the dispersion on model error increases.

4.3.2 Perturbed climate predictions via imperfect models with optimal noise

We now turn to the issue of sensitivity of imperfect models with optimal noise to external forcing pertur-
bations inducing a subsequent climate change.

Figure 7 illustrates these issues in a typical configuration in regime II (intermittent transient instabil-
ities; figure 1) of the perfect model dynamics where both the perturbed statistics and perfect/imperfect
model sensitivity are shown. The sensitivity of GCm and DMm is here comparable to the perfect model
despite underestimating the response in the dispersion; as noted in the previous section this is a con-
sequence of the signal dominated response of the perfect system (24). Clearly, disregarding completely
the damping fluctuations in MSm leads to its failure in predicting the covariance response to the forcing
perturbations; this is a direct result of the inherent linearization utilized in this model and occurs in
all other dynamical regimes of the perfect system (24). This linearization has relatively little effect in
regimes with no transient instabilities in the resolved dynamics (e.g., nearly-Gaussian regime III of (24);
see figure 1), when the perfect system response in the mean is dominant; in such cases the sensitivity of
all imperfect models in our suite is comparable with the perfect system (not shown). When abundant
transient instabilities are present in the resolved dynamics u(t), as in regime I (see figure 1) of (24), the
perfect system sensitivity is dominated by the dispersion part which points to strong nonlinear effects.
In such cases the sensitivity of all imperfect models is low compared to the perfect model (24) even with
optimal stochastic forcing; this trend indicates an important role of the interaction between the third
moments of the unresolved fluctuations, which are neglected in all the imperfect models examined here,
and the resolved dynamics. Finally, we note that the sensitivity of GCm for the response in the mean
remains very good in all dynamical regimes since, unlike the other two imperfect models, GCm retains
the second moments of fluctuations in the evolution of the mean (30a).

4.3.3 FDT as a link between climate fidelity of imperfect models and their sensitivity

As already mentioned in §22.3 climate fidelity of an imperfect model does not guarantee its predictive skill
and number of simple yet instructive examples can be found in [39]. The perfect system (24) considered
here and its imperfect models GCm, DMm, and MSm are particularly interesting in this context since
they provide nontrivial examples of climate change predictions in a system with intermittently positive
Lyapunov exponents. Below, with the aim of elucidating the link discussed in §22.3, we study and compare
climate change predictions based on the perfect system (24) with predictions obtained from the imperfect
models with optimal stochastic forcing, and the corresponding predictions based on FDT. Recall that the
link via FDT between climate fidelity of an imperfect model and its skill for predicting forced changes
to the climate (unperturbed attractor) is directly linked to the skill in estimating the linear response
operators for the mean and variance via (21) which can be evaluated in the training phase based on the
measurements of the unperturbed climate.
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The main points of this section are summarized in figures 8-11 where the response to forcing perturba-
tions in the perfect and imperfect models with optimal noise is computed using both the kicked FDT and
the quasi-Gaussian FDT (see §22.3) in two different dynamical configurations characteristic of regimes II
and III (cf. §33.1 and figure 1). The forcing perturbation δF is the same in all cases and given by (36).

Figures 8-9 show an example of perfect/imperfect model predictions via FDT in regime III of (24),
characterized by nearly Gaussian dynamics on the unperturbed attractor and strong damping of fluctua-
tions in the resolved dynamics u(t) (see figure 1); here γ̂ = 8.2 and approximately 16 moments are finite
in the perfect marginal equilibrium PDF, the imperfect models are optimized for climate fidelity. The
three columns in figure 8 show the true perturbed statistics predicted directly from the models (left),
the statistics obtained using the kicked FDT (middle) and the statistics obtained from quasi-Gaussian
FDT (right). Figure 9 shows the corresponding sensitivity (left) of the perfect system, P(πδF , πatt),
and of the imperfect models P(πm

δF , π
m
att), the model errors of the kicked FDT (middle) for the perfect

system P(πδF , π
kck−FDT
δF ) and the models P(πδF , π

m, kck−FDT
δF ), as well as the errors of qG-FDT (right),

P(πδF , π
qG−FDT
δF ), P(πδF , π

m, qG−FDT
δF ) for the perfect system and the models respectively. In this regime

the sensitivity of all models is comparable to the perfect model. Moreover, the skill of the kicked FDT is
also very good in this regime for all three imperfect models; the differences between the imperfect models
are insignificant compared to the perfect model sensitivity. For the quasi-Gaussian FDT, the errors in
predictions utilizing GCm and DMm are comparable with the model sensitivity and have no skill; for the
MSm the errors far exceed the model sensitivity.

The FDT predictions shown in figures 10-11 correspond to regime II of the system (24) characterized by
a much weaker mean damping; here γ̂ = 1.2, in the resolved component u(t) whose intermittent dynamics
is associated with only few finite moments and fat algebraic tails in the equilibrium PDFs (two moments
are finite for the parameters used). As before all models are optimized for the unperturbed climate fidelity.
Clearly, the sensitivity of GCm and DMm remains here very good but MSm has a substantial error in
the dispersion. This implies that completely neglecting the mean effects of the damping and forcing
fluctuations on the resolved dynamics in MSm in the presence of intermittent bursts of instability at the
resolved scales has the most detrimental effect on the prediction skill. Predictions based on kicked FDT
retain high skill for GCm and moderately high skill for DMm. Neglecting the second moments of the
unresolved fluctuations in the mean of DMm leads to a significant error in the FDT predictions which,
however, remains small compared to the sensitivity of DMm. The kicked FDT predictions using MSm
have a good skill for predicting the response in the mean in this regime but only a marginal overall skill
due to significant errors in the dispersion. The predictions based on the quasi-Gaussian FDT have no skill
in this regime, since the prediction errors far exceed the sensitivity for all models.

We note in summary that, similarly to the analysis carried out in [39] for a Gaussian turbulent tracer
model (with no positive Lyapunov exponents), the kicked FDT emerges here as the best approach to
make the forced response estimates in more realistic situations where direct predictions are impractical or
impossible. Moreover, the kicked FDT based on GCm with optimal noise shows a good overall performance
which is rivaled only by the perfect model predictions.

4.4 Predictive skill of imperfect models at short and medium ranges: Climate
change and memory of initial conditions

We finally discuss the short and medium range predictive skill of the imperfect models when both the
memory of the initial conditions and the climate change due forcing perturbations are important in the
forecasts [5, 52, 20, 21].

In order to illustrate the effects of hidden instabilities on the predictive skill of different imperfect mod-
els with intermittently positive Lyapunov exponents, we consider two distinct dynamical configurations
corresponding to (i) intermittent, large-amplitude bursts of transient instability in the resolved component
u(t) (regime II in §33.1 and in figure 1), and (ii) nearly Gaussian regime with essentially no transient in-
stabilities in u(t) (regime III in §33.1). As described in §22.1, the model error is quantified via the relative
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entropy between marginal statistics of the perfect and imperfect models, P(πδF (t|t0), πm
δF (t|t0)), and the

internal prediction skill is given by P(πm
δF (t|t0), πm

att(t));
In figure 12 we show a typical example of imperfect model predictions in regime II of the mean stable

dynamics of the system (24) for an ensemble of trajectories with statistical initial condition away from the
unperturbed attractor; the system attractor is subsequently perturbed due to the changes in the forcing
given by (36). The corresponding model error and internal prediction skill are shown in figure 13. Recall
that in regime II of (see §33.1) the perfect system (24) the unresolved damping fluctuations affecting the
resolved dynamics of u decorrelate much slower than in regime I; the resulting coarse-grained dynamics
is characterized by intermittent, large-amplitude bursts of instability and fat-tailed equilibrium marginal
PDF’s. It is clear, by comparison of the total model error and the internal prediction skill, that GCm in
this regime has a very good overall prediction skill including the short term evolution from given initial
conditions and the long term perturbed climate consistency; the model error for GCm is dominated by the
dispersion part which, however, is still smaller than the internal prediction skill for all times. Interestingly
both, GCm and DMm also have short term prediction skill for the covariances alone and the dispersion
part of their internal prediction skill is similar; however, GCm is much more skillful in this regime for
predicting the mean. DMm has a good short range, and marginal long range prediction skill but it fails
at the intermediate ranges during the forcing perturbation. MSm has no skill in this regime.

Figures 14-15 illustrate a typical situation of predictions in the nearly-Gaussian regime III of the perfect
system (24) which is characterized by the lack of transient instabilities in the resolved dynamics u(t). In
this regime all imperfect models achieve perturbed climate consistency, as already discussed in §34.2. The
model error for large lead times is dominated for all models by the signal part and it is significantly
smaller than the long range internal prediction skill. GCm and DMm are essentially the same in this
regime and have good prediction skill for all lead times. This indicates that the effects of neglecting the
second moments in the mean and third moments in the covariance in the closure approximations has little
effect in this regime. MSm, on the other hand, which completely neglects the dynamics of the unresolved
variables for the (multiplicative) fluctuations in the damping and (additive) fluctuations in the forcing has
no short range prediction skill as it fails to correctly account for the particular initial conditions; these
effects transpire in both the signal and dispersion. Finally, we mention that in regime I of the perfect
system (24), characterized by abundant short-lasting transient instabilities, GCm has a good skill for
predicting the mean but it fails, like all the other imperfect models, at predicting the covariances which
dominate the total model error.

5 Concluding remarks

Here, we discussed a range of important issues arising in applications of the newly emerging stochastic-
statistical framework [37, 38, 39] to quantifying and mitigating uncertainties associated with prediction
of partially observed and imperfectly modelled complex turbulent dynamical systems. This framework
was tested on the statistically exactly solvable nonlinear and non-Gaussian ‘perfect’ system with hidden
intermittent instabilities and large-scale, time-periodic features. The suite of imperfect models optimized
to mimic the marginal statistics of the true resolved component on the attractor was used to illustrate
various problems associated with dynamic prediction of complex turbulent dynamical systems. These
include the role and mitigation of model error due to coarse-graining and dimensional reduction, moment
closure approximations and the associated turbulent flux parameterization, and the memory of initial
conditions in producing short, medium and long range forecasts and climate change scenarios (i.e., per-
turbations of the perfect system attractor). The mathematical tools employed here relied on empirical
information theory and fluctuation-dissipation theorems and it was shown that they seamlessly combine
into a concise systematic framework for measuring and optimizing consistency and sensitivity of imperfect
models. Although this paper focused predominantly on the climate science applications, there are obvious
analogues of the discussed techniques for uncertainty quantification and prediction in other areas dealing
with complex dynamical systems with nontrivial high-dimensional attractors such as applications in neural
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networks and materials science.

The following findings are particularly worth reiterating here:

• The information-theoretic optimization of imperfect models can dramatically improve the predictive
performance and sensitivity of imperfect models to forced perturbations (see GCm in figures 7-15).
However, the statistical attractor fidelity of imperfect models on the coarse-grained subset of resolved
variables is necessary but not sufficient for high skill in climate change predictions (see DMm and
especially MSm in figures 7-15).

• The information-theoretic optimization of imperfect models requires tuning of the marginal probabil-
ity densities for the resolved variables with those of the perfect system on the unperturbed attractor
(see (4) and figures 4, 5). In the simplest Gaussian framework such a procedure implies simultaneous
tuning of means and covariances variances (see (9)) which is not substantially more expensive than
the common tuning of the means.

• There exist barriers to improvements within a given class of imperfect models beyond which the loss
of information cannot be reduced (see, e.g., figure 6). In such cases the class of imperfect models
needs to be expanded in order to achieve further improvements.

• The sensitivity of imperfect models for capturing the effects of forced perturbations of the perfect
system attractor can be tested via algorithms exploiting a suitable fluctuation dissipation theorem
and experiments in the training phase in the unperturbed climate. Kicked response FDT seems very
promising in this context (figures 9, 11) but additional work in this area is needed.

• Nonlinear, non-Gaussian models can have long memory of initial conditions, including the initial
conditions for the unresolved processes (e.g., figures 2, 3). Linear Gaussian models cannot reproduce
the forced response in the variance of the true nonlinear system. Consequently, the change in
variability due to perturbations of the system’s attractor remain undetected by linear imperfect
models of a nonlinear system (see MSm in figures 7, 8, 10).

The results presented here and in [37, 38, 39, 17] further reinforce the utility of the information-theoretic
framework for improving imperfect models through stochastic parameterization in climate change science
or engineering applications. Clearly, much more work needs to be carried out in order to establish the
usefulness of this approach in less idealized and much more complex cases such as the Global Circulation
Models (GCMs). The illustrated link between climate fidelity and sensitivity obtained via the fluctuation-
dissipation theorem opens up an enticing prospect of developing techniques for improving imperfect model
sensitivity based on specific tests carried out in the unperturbed climate, especially since similar high skill
for the kicked response FDT in the non-Gaussian tracer model has already been established in [39].
However, much more work in this area is needed in order to develop suitable techniques for detecting
nature’s kicks and monitoring their dissipation.
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Figure 2: Perfect model forecasts (top panel) and associated information beyond equilibrium (bottom
panel) with initial data sampled from the climate of the system (24). The thin lines (see legend) correspond
to different ensembles of trajectories converging to the attractor (black) with the same initial means of the
hidden variables, 〈b0〉 and 〈γ0〉, and different means of the resolved component 〈u0〉. Ensembles evolving
from two different initial times are shown with t0 = 0 (green) and t0 = 4 (red); there is no significant
difference in the information content for the forecasts starting at different phases of the cycle. This example
corresponds to regime II (intermittent transient instabilities) of the perfect system (24) with forcing given
by (25) and model parameters γ̂ = 1.2, dγ = σγ = 0.5, σu = 0.5, (2 moments finite in equilibrium PDF).
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Figure 3: Effects due to the memory of initial conditions of hidden variables in perfect model forecasts
(top) for the resolved component u(t) in (24) and the associated information beyond equilibrium (bottom)
with the initial data sampled from the climate/statistical equilibrium. The thin lines (see legend) cor-
respond to different ensembles of trajectories converging onto the attractor (black) with the same initial
means 〈u0〉, 〈b0〉 of the resolved component and the forcing fluctuations but different initial means of
the damping fluctuations 〈γ0〉. Note the significant differences in the information content beyond equilib-
rium for different hidden initial conditions 〈γ0〉; the dispersion term of P(πt0 , πatt) dominates prediction
skill 2 . t . 4 when 〈γ0〉 = 1.2〈γ〉att. This example corresponds to regime II (intermittent transient
instabilities) of the system (24) with the same parameters as in figure 2.
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Figure 4: Equilibrium statistics associated with the resolved component u(t) in the perfect and imperfect
models for the complex scalar with hidden transient instabilities before and after optimal inflation of
stochastic forcing. Note that only the variance is affected by the inflated noise. This example corresponds
to regime II (intermittent transient instabilities with large amplitudes) of mean stable dynamics of the
perfect system (24) with parameters γ̂ = 1.2, dγ = σγ = 0.5, σu = 0.5, (2 moments finite in fat-tailed
equilibrium PDF); the time-periodic forcing is given by (25).
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Figure 5: Model error in the climate expressed via the relative entropy, P(πatt, π
M
att), between the perfect

and imperfect model statistics in the statistically steady state (see figure 4). The left column shows the
relative entropy (top) and its signal (middle) and dispersion parts (bottom) for the original imperfect
models. The right column shows analogous quantities for optimized imperfect models with inflated noise
in the resolved component u(t). Note the significant improvement, reflected in decrease of the relative
entropy, in the optimized imperfect models compared to the original models without noise inflation.
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Figure 6: (Left column) Optimal noise amplitude (σM∗u )clim for the unperturbed climate fidelity and the
corresponding model error averaged over the annual cycle as functions of the mean damping γ̂ (top left)
and damping of fluctuations dγ (bottom left) for the imperfect models GCm, DMm and MSm. The ex-
ternal forcing is given by (25) as in all previous examples. Note that for weak mean damping, γ̂ ∼ 1,
associated with very intermittent dynamics and fat-tailed marginal equilibrium PDFs for u(t), perfect
fidelity cannot be achieved by inflating the noise in the dynamics of u(t). Note also the barrier to climate
fidelity improvement by stochastic forcing inflation for increasing dγ as the hidden, transient instabili-
ties become more abundant in u(t). (Right column) Illustration of the link (11) between climate fidelity
and sensitivity showing differences between the noise amplitudes, (σM∗u )sens−(σM∗u )clim, and the error

residuals, P(πδF , π
M∗
δF )

sens
−P(π, πM∗)sens, for imperfect models optimized, respectively, for the sensitiv-

ity to climate change and for the unperturbed climate fidelity. Note that the sensitivity optimization,
which is practically unrealistic, can be achieved for GCm and DMm indirectly through optimization for
unperturbed climate fidelity.
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Figure 7: (Top left) Response of the statistics of the resolved component u(t) in the perfect model (24) to
ramp-type forcing perturbations δF given by (36) with parameters (37). (Top right) Analogous response
computed from the imperfect models with optimal noise σoptu in uM (t). (Bottom) The sensitivity of the
perfect and imperfect models to the forcing perturbations expressed via the relative entropy, P(πδF , πatt),
between the perturbed and unperturbed statistics. Note that MSm fails to reproduce the response in the
covariance due to its inherent linearization. This example represents a typical situation in regime II of
the perfect model dynamics (intermittent transient instabilities with large amplitudes in u(t)); in regime
I (abundant transient instabilities) the perfect model response is dominated by the dispersion part and
the sensitivity of all models deteriorates.
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Figure 8: Example of perfect and imperfect model predictions in the (nearly-Gaussian) regime III of the
system (24) for a climate change scenario associated with ramp-type perturbations δF (36) of constant
external forcing; the corresponding model error and sensitivity are shown in figure 9. Left column shows
the statistics of the resolved variable u(t) predicted directly from the perfect system (thick black) and
imperfect models (§33.2) with optimal noise for climate consistency. The middle and right columns
show, respectively, the analogous predictions based on the kicked FDT and quasi-Gaussian FDT. The
perturbation induces a 10% change in the forcing and the dashed vertical lines mark a region between 3%
and 97% of the perturbation. The system parameters used here are γ̂ = 8.2, dγ = σγ = 0.5, σu = 0.5 (16
moments finite in the marginal equilibrium PDF).
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Figure 9: Sensitivity and model error via relative entropy for the perfect system and its imperfect models
GCm, DMm, and MSm (see §33.2) corresponding to the climate change predictions shown in figure 8 in
regime III of the perfect system (24). The left column shows the model sensitivity, and the middle and
the right column show the error of climate change predictions using, respectively, kicked FDT and quasi-
Gaussian FDT. Note that in this nearly-Gaussian regime the overall sensitivity of all imperfect models
is comparable with that for the perfect system. However, the linear model, MSm, fails to reproduce the
response in the covariances (see the Dispersion part of model sensitivity). The kicked FDT has overall
good prediction skill for this climate change scenario for all models except for the Dispersion part of the
error for the MSm; the Dispersion part of the error is here negligible compared to the Signal. The qG-FDT
predictions (right column) have essentially no skill since the prediction errors for all models are, at best,
comparable to the model sensitivity.
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Figure 10: Example of perfect and imperfect model predictions in the regime II (intermittent, large-
amplitude bursts of instability) of the system (24) for a climate change scenario associated with ramp-
type perturbations δF (36) of constant external forcing; the corresponding model error and sensitivity are
shown in figure 11. Left column shows the statistics of the resolved variable u(t) predicted directly from
the perfect system (thick black) and imperfect models (§33.2) with optimal noise for climate consistency.
The middle and right columns show, respectively, the analogous predictions based on the kicked FDT
and quasi-Gaussian FDT. The perturbation induces a 10% change in the forcing and the dashed vertical
lines mark a region between 3% and 97% of the perturbation. The system parameters used here are
γ̂ = 1.2, dγ = σγ = 0.5, σu = 0.5 (2 moments finite in the marginal equilibrium PDF).
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Figure 11: Sensitivity and model error via relative entropy for the perfect system and its imperfect models
GCm, DMm, and MSm (see §33.2) corresponding to the climate change predictions shown in figure 10 in
regime II of the perfect system (24). The left column shows the model sensitivity, and the middle and
the right column show the error of climate change predictions using, respectively, kicked FDT and quasi-
Gaussian FDT. Note that in this regime of intermittent transient instabilities the MSm, which completely
neglects the damping fluctuations causing the instabilities, has a significantly lower sensitivity and large
prediction errors, particularly in the Dispersion, for the climate change scenario studied. The kicked FDT
has good prediction skill for GCm (very small errors for the mean response and acceptable errors for the
covariance response) and moderate skill for DMm. The qG-FDT predictions (right column) have no skill
since the prediction errors for all models far exceed the model sensitivity.
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Figure 12: Example of perfect and imperfect model predictions with statistical initial conditions away
from the attractor which is subsequently perturbed due to ramp-type changes in the external forcing; the
unperturbed time-periodic forcing is given by (25) and the perturbations are represented by (36) with
parameters (37). The dashed vertical lines mark a region between 3% and 97% of the perturbation. The
corresponding model error and sensitivity are shown in figure 13. This example is typical of predictions
in regime II (intermittent transient instabilities in the resolved component u(t)) of mean-stable dynamics
of (24). The system parameters used here are γ̂ = 1.2, dγ = σγ = 0.5, σu = 0.5 and the initial conditions
are 〈u0〉 = 1.2〈u〉att, 〈b0〉 = 0.8〈b〉att, 〈γ0〉 = 0.8〈γ〉att, R0 = 0.85Ratt.
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Figure 13: Model error via the relative entropy, P(πδF (t|t0), πMδF (t|t0)) (top panel), and the internal
prediction skill, P(πδF (t|t0), πMδF (t|t0)) (bottom panel), for the predictions of the resolved component u(t)
shown in figure 12 for initial conditions at t0 away from the attractor and a subsequent climate change
due to forcing perturbations δF (36). Note the high skill of GCm at all ranges, including the short range
skill in the dispersion. This situation is typical of regime II of the perfect model (24) where both GCm
and DMm achieve perturbed climate consistency; MSm has no short range skill and only a marginal skill
for the long range forecasts.
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Figure 14: Example of perfect and imperfect model predictions with statistical initial conditions away
from the attractor in the nearly-Gaussian regime III of the system (24). The attractor is subsequently
perturbed due to ramp-type changes in the external forcing; the unperturbed time-periodic forcing is given
by (25) and the perturbations, inducing a 10% change in the mean forcing, are represented by (36) with
parameters (37). The dashed vertical lines mark a region between 3% and 97% of the perturbation. The
corresponding model error and sensitivity are shown in figure 15. The system parameters used here are
γ̂ = 8.2, dγ = σγ = 0.5, σu = 0.5 and the initial conditions are 〈u0〉 = 1.2〈u〉att, 〈b0〉 = 0.8〈b〉att, 〈γ0〉 =
0.8〈γ〉att, R0 = 0.85Ratt.
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Figure 15: Model error via the relative entropy, P(πδF (t|t0), πMδF (t|t0)) (top panel), and the internal
prediction skill, P(πδF (t|t0), πMδF (t|t0)) (bottom panel), for the predictions of the resolved component u(t)
shown in figure 14 for initial conditions at t0 away from the attractor and a subsequent climate change
due to forcing perturbations δF (36). Note the high skill of GCm and DMm at all ranges, including the
short range skill in the dispersion. This situation is typical of the nearly Gaussian regime III of the perfect
model (24) where all the imperfect models achieve perturbed climate consistency; MSm has no short range
skill.
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