Edinburgh Research Explorer

Bounding Rationality by Discounting Time

Citation for published version:

Fortnow, L & Santhanam, R 2010, Bounding Rationality by Discounting Time. in Innovations in Computer
Science - ICS 2010. Tsinghua University Press, Tsinghua University, Beijing, China, pp. 143-155.
<http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/12.html>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Innovations in Computer Science - ICS 2010

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 30. Apr. 2024


http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/12.html
https://www.research.ed.ac.uk/en/publications/b60a0902-faa5-4bbe-9efb-b3e5c5e165ca

Bounding Rationality by Discounting Time
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Abstract: Consider a game where Alice generates an integer and Bobifwiescan factor that integer. Tradi-
tional game theory tells us that Bob will always win this gagwen though in practice Alice will win given our
usual assumptions about the hardness of factoring.

We define a new notion of bounded rationality, where the ffayaff players are discounted by the computation
time they take to produce their actions. We use this notigiMe a direct correspondence between the existence of
equilibria where Alice has a winning strategy and the hasdr# factoring. Namely, under a natural assumption
on the discount rates, there is an equilibrium where Alicedwinning strategy iff there is a linear-time samplable
distribution with respect to which Factoring is hard on ags.

We also give general results for discounted games over ableaction spaces, including showing that any game
with bounded and computable payoffs has an equilibrium imoadel, even if each player is allowedauntable
number of actions. It follows, for example, that the Lardestger game has an equilibrium in our model though
it has no Nash equilibria a-Nash equilibria.

Keywords. Bounded rationality; Discounting; Uniform equilibria; €aring game

1 Introduction is universal, and is also generally considered to be re-

alizable in Nature. Furthermore, it capture complexity

~ Game theory studies the strategic behavior of selfyy running time and can be used to realize games with
interested rational agents when they interact. In tgyntaple action spaces, unlike say if we were to use fi-
traditional setting of game theory, agents are supposggb automata: the model typically considered by game
to be perfectly rational, in terms of knowing whajneorists when studying bounded rationality.

their strategic options and the consequences of choosy, this paper, we usexponentiabliscounting, mean-
ing these options are, as well as being able to model PR that the payoff goes down by a factdr— o)* after
fectly the rationality of other agents with whom they ingme 4, wheres is a constant. Our main results also hold

teract. However, often in practice, when human beings; oiher notions of discounting, as we discuss in Sec-
are involved in a strategic game-playing situation, they, 1 .

ffail to make perfef:tly rational dec_ision_s. Herbert S?mon The notion of discounting is far from new [9-11] -
first developed this “bounded rationality” perspective.jnqeed much of economic theory depends on it. Itis a
In the past couple of decades various models lg4sic economic assumption that people value a dollar a
bounded rationality [2—7] have been defined and studigélar from now less than a dollar today. The discount
by game theorists and computer scientists. In this papet, § for a specific period is chosen so that an agent is
we introduce a new notion of bounded rationality basegdifferent between receiving — § dollars now and 1
on the perspective of computational complexity. We agtollar at the end of the period.
gue that it is natural, and prove that it has some nicepiscounting is commonly used for computing cumu-
properties and can be used to obtain new connectigagve payoffs in repeated games. We emphasize that
between game theory and computational complexity.we discount based ocomputatiortime, which means
The main idea is to discount the payoffs of playetbat the notion of discounting can now even be used for
in a game based on how much time they take to plape-shot games even when there is no natural notion
their actions, with different players possibly discounteaf input size. The idea of discounting based on com-
at different rates. Of course, we need to define whatpititation time was developed by Fortnow [12], where he
means for a player to take time to play its action. Thissed it for a variaton on the “program equilibria” frame-
naturally pre-supposes that each player has some cavo+k devloped by Tennenholtz [13]; moreover, a single
putational mechanism for playing its strategy - in thidiscount rate is used for all players.
paper, as in the recent work by Halpern and Pass[8], weDur notion of discounted time has several benefits.
adopt the probabilistic Turing machine as our compéHrst, it bounds rationalitgndogenouslyather than ex-
tational model. This is a computational model whichgenously. By this, we mean that the bound on an



agent's rationality is not imposed from outside, bwdequately by traditional game theory. Not only do we
rather arises from the agent’s own need to maximize itsodel this via the discount rates, but our notion of uni-
utility. form equilibrium also implicitly models how technol-
Second, discounting has some nice mathematicaly evolveswith time.
properties. It's time-independent - discounting for  Our model exhibits some nice phenomena for gen-
steps starting at a timg yields the same relative de-eral classes of games. We define a new notion of equi-
crease in payoff as discounting forsteps starting at librium for our model, which we call “uniform equilib-
an earlier or later time. Given a discount faclor 4, rium”. We show that for finite games, there’s a uniform
the discounted payoff behaves like a linear function fequilibrium corresponding to every Nash equilibrium.
small ¢ and like an exponential function for large For games where each player has a countable action
which accords well with our intuitions for how we valuespace, the situation is even more interesting. It's known
computational resources in the real world. We miglitat Nash equilibria do not exist in general in this case.
only be marginally more gratified by a computationadiowever, under mild assumptions, namely that the pay-
task finishing in 1 second than one finishing in 2 seoffs are bounded and computable, we show that uniform
onds, but we would certainly be far more annoyed if equilibriaalwaysexist even in this case.
task finished in 20 minutes than in 10 minutes. As an example, consider the Largest Integer game,
Also, the discounting model is philosophically elewhere each player outputs a number and the player out-
gant in that itunifiestime as viewed by economists angbutting the largest number wins the entire pot of money
time as viewed by computer scientists. Time is an inat stake (with the players sharing the pot equally if they
portant concept both in economics and in computatioraltput the same number). This is an archetypal example
complexity, and we model it in a way that is consisteiof a game which has no Nash equilibria or even approx-
with the perspectives of both fields. imate Nash equilibria. The absence of Nash equilibria
We use asymmetric discounting in our model - diffemeans that traditional game theory provides no predic-
ent players may have different discount factors. Thetige or explanatory framework for how the game will
are a couple of reasons for this. First, players mighattually play out.
have asymmetric roles in a game, and in this case itThe Largest Integer game does have a uniform equi-
is natural to give them discount factors. For exampliérium in our framework, and there is an intuitive ex-
a cryptographic protocol can be interpreted as a gampianation of this. Essentially, the Largest Integer game
where players are either honest or adversarial. In tlmgdels oneupmanship, where each player is trying to
setting, it makes sense to model the adversary as mouwtdo the other. What is not modeled by traditional
patient and therefore having discount rateloser to 1. game theory is that the players expend considerable re-
However, even if all the players are equally patiesburces in this process, which affects their “effective
with respect to real time, it still makes sense to giyeayoff”. Indeed, as more and more resources are re-
them different discount factors. This is because diguired, at some point the players become essentially in-
counting is done as a function cbmputationatime different between winning and losing. In our case, the
rather than real time, and the relationship between coresource is time; the equilibrium situation corresponds
putational time and real time depends on the power tofboth players spending so much time coming up with
technology. If one player has a much faster comput@nd writing down a large number that their payoffs are
than the others, then it is effectively more patient, idriven to zero by their discount factors.
that it has a smaller discount factor. For example, con- )
sider a two-player game where the players are equalyt  The Factoring Game
patient in that the payoff for each player halves after 1 Perhaps the most interesting results in this paper
second of real time. Suppose, however, that Playecdncern a close relationship between equilibria in dis-
has a computer with a clock rate of® operations per counted games and the computational complexity of
second, and Player 2 has a computer with a clock rablems. We illustrate this using the Factoring game.
of 10'2? operations per second. Then the discount rateThe Factoring game is a puzzle in the theory of
4, for Player 1 is approximately0—% and the discount bounded rationality. Consider the following game be-
rated, for Player 2 is approximately0—12. tween two players Alice and Bob. Alice sends an inte-
This is a further advantage of our model, in that gern > 2 to Bob, who attempts to find its prime fac-
factors in the power of technology. Many games tderization. If Bob succeeds, he “wins” - he gets a large
day play out in a virtual setting, eg. the game betwegayoff and Alice gets a small payoff; if he fails, the op-
someone sending their credit card information andpasite happens.
malicious adversary seeking to steal their identity, or anIf formulated as a game in the conventional way, Bob
electronic auction, or even computer chess. In all theslevays has a winning strategy. However, in practice,
cases, the power of technology has a critical impact one would expect Alice to win, since factoring is be-
strategy and success in the game, which is not modeliested to be computationally hard. This is the puzzle:



to find a natural formulation of the game that capturdgrther insight. For comparative purposes, in the context
the intuition that Alice should win if factoring is indeedodf the Factoring game, one can think of some alterna-
computationally hard. tive models that predict a win for Alice. For example,
The Factoring game was first introduced by Bemne could imagine that the players have a fixed finite
Sasson, Kalai and Kalai [14] and also considered bynount of time to make a decision, with Alice given
Halpern and Pass [8]. Neither gives an explicit solgay 10 seconds to choose her number, and Bob 100 sec-
tion to the puzzle, instead they give general frameworkads to respond with the prime factors. It's clear that
in which to study games with computational costs. lif-Bob can’t factor a random large number (which could
deed, Ben-Sasson, Kalai and Kalai say in the Futlre generated quickly by Alice), he loses, however this is
Work section of their paper that “it would be interestan unsatisfactory model in many respects. First, it deals
ing to make connections between asymptotic algoritith a very specific situation, so it cannot say anything
mic complexity and games”. about computational complexity or how equilibria de-
We show that the structure of equilibrium payoffs ipend on the power of technology. Second, the model
the discounted time version of the game corresponidsnherently non-robust. Bob might be able to factor
closely to the computational complexity of factoringAlice’s number in 101 seconds - in a real-life situation,
Specifically, if Factoring is in probabilistic polynomialthis difference shouldn’t affect his payoff too much, but
time on average, Bob always wins; if not, there are equii this model, it does. By adopting fiexible model
libria in which Alice gets a large payoff. This resulof bounded rationality, where payoffs degrade contin-
assumes that the discount rates of the two players amisly with time, we avoid such pathological effects.
polynomially related - we motivate this assumption in One way to make the fixed-time model more general
Section 4. |If there’s a different relationship betweeis quantify over the time limit: to say, for example, that
the discount rates, then there’s a corresponding differélice is allowedt units of time, then Bob is allowed
complexity assumption which characterizes when Aligé units of time. This kind of approach is taken when
has a winning strategy. In the simplest interpretation fifirmulating the notion of “computational equilibrium”
our model, where discount rates are determined by &, 17] where they limit the set of machines being used
power of technology, it can be empirically tested hoto those that run in some security parameter where our
discount rates vary with each other. model makes no such restriction on machines but con-
What makes this connection with asymptotic control time with utility. Another problem with the com-
plexity somewhat surprising is that the notion of inpytutational equilibrium model is that though it might be
length is not explicitly present in our model. Instead, @onsistent with the observed phenomenon, it's unclear
arises naturally from the discounting criterion and owvhythe assumptions the model makes should hold. In
notion of uniform equilibrium. such a case, the model is simply a way to re-formulate
The Factoring game is relevant not only to game tha-phenomenon, rather than an explanation for it. In
ory, but also to the foundations of cryptography. Themontrast, in our model, there are clear motivations for
has been a lot of research into the connections betwdea choices made. Discounting is based on time prefer-
game theory and cryptography [15, 16], but much ehce of utility, which is well established and extensively
this has focused on multi-party computation. One cased in economics [11]. Also our interpretation of dis-
define an analogue of the Factoring game for any ormunt rates in terms of the power of current technology
way function and obtain similar results; there’s nothingnatches the intuition that a player armed with a more
special about Factoring being used in the proofs. Thiswerful computer should be able to make a more ratio-
game-theoretic perspective might be useful in studyingl decision, i.e., more in its self-interest. Finally, our
the tradeoff between efficiency of encryption and secuse of asymmetric discount rates models asymmetries
rity in cryptosystems. In general, it would be interestn the roles of players and in the power of technology
ing to investigate a perspective where the success ai\ailable to them.
cryptosystem depends on the adversary being “boundedRegarding some of the more specific choices made,
rational” rather than computationally bounded in son@ne could question why we use exponential discount-

specific sense. ing rather than some other form of discounting. Ex-
) ) ponential discounting is still the discounting model of
1.2 Further Discussion of the Model choice in economics and game theory, but there have
Here, we further discuss various features of obeen arguments made that other models such as “hy-
model and compare it to alternative ones. perbolic discounting” more accurately represent human

Our criteria for a reasonable model is that it shouliiine preference of utility [11]. As it turns out, the exact
begenerali.e., be relevant to a class of situations rathehoice of discounting model does not matter very much
than a single specific situation, and that it should hate@us - our main results on the Factoring game and the
explanatory poweri.e., not only should it simply cor- general result on bounded-payoff games (Theorems 3,
respond to an observed phenomenon but provide soinend 7) go through even in the hyperbolic discounting



model and, we suspect, in any reasonable model of di@mics literature studying the consequences for eco-
counting. nomics of the constraint that agents actomputable
Another issue which can be debated is whether eaghys [4, 24, 25], but these works do not deal with com-
player’s utility is discounted only by its own compuputational complexity.
tational time or by some function of its computational Recently there has been a resurgence of interest in
time and the computational time of the other playemhodeling strategies as general Turing machines. We
In a strategic situation, it seems natural to penalizenate especially the two papers [8, 14] which discuss the
player only for its own computation. Consider a twoFactoring game. Rather than specifying an explicit so-
player simultaneous-move game, where each playetion to the puzzle of the Factoring game, these works
plays without knowledge of the other player’s actiorprovide general frameworks and results for taking com-
Suppose Player 1 plays first in this game. Should Playmrtational costs into account when playing games. Our
1 be charged for Player 2’s time as well, since the owentribution in this paper is in providing a concrete and
come is determined only after Player 2 has played? \Watural model which captures the cost of computational
think not, since Player 1 can use its extra time doingne, and using it to solve the Factoring puzzle.
other things, garnering utility in other ways. Of course, Other recent works [12, 13] consider computer pro-
if one player plays first, that might seem to “sequentiagrams as strategies, but in the context of a different
ize” the game. For our model to apply, there has to beimd of equilibrium known as the program equilibrium,
mechanism in place to ensure that the players do in fagtere rationality is modeled by letting each player's
act independently. program have as input the code of the other player's
Our model can, in principle, deal with both positiverogram. As mentioned earlier, Fortnow [12] consid-
and negative payoffs - discounting predicts, as seesars discounted computation time in this context to ob-
intuitive, that positive payoffs should motivate agentain a broader range of program equilibria rather than
to play quickly, while negative payoffs should caus® model bounded rationality, and he allows only for a
agents to procrastinate. However, in this paper, we deaigle discount factor.
only with games with positive payoffs. This is because The idea of discounting time has also been proposed
it's tricky to define what happens if the first player'sn the completely different context of verification [26].
computation finishes within a finite time but the sec-
ond playe_rs strategy computation never halts. In SOME b dliminaries
sense, this corresponds to the second player not play-
ing the game at all. With strictly positive payoffs, we We review standard concepts for two-player games.
can be guaranteed that in an equilibrium situation, &br a more detailed treatment, refer to the books by
players will play within a finite time - it is in the inter- Osborne and Rubinstein [18] and Leyton-Brown and
est of all players to play as quickly as possible. A wa§hoham [27].
to avoid the issue with positivity of payoffs would be In this paper, we only consideme-shotgames of
to give players preference orderings on outcomes ratiperfect informationwhere each player makes a single
than ascribing real payoffs, as is often done in game theeve. We represent these gamesormal formas a
ory [18], and have the preference orderings vary wiflour tupleG = (A1, Aa, u1, uz), where4; is the action
computational time. Though perhaps a more accurafgace for playei. The utility functionu; : A1 x Ay —
model, this has the disadvantage of being very cumb&z" is a payoff function specifying the payoff that ac-

some mathematically. crues to player depending on the actions played by
the two players. We consider both the simultaneous
13 Related Work version where both players play their actions simulta-

Bounded rationality is a rich area, with lots of workieously and the sequential version where player 2 can
in the past couple of decades. We survey some of tlaise his action on the action taken by player 1.
work and clarify the relationship to our ideas, with an As mentioned before, we assume in this paper that
emphasis on more recent work. There are several @ayoff functions are always non-negative.
cellent surveys and references on bounded rationalityStrategies describe how the player’s choose their ac-
[4, 19-21]. tions. A pure strategy for Player 1 is simply an element
Early work focused mainly on bounded rationalef A;. For simultaneous-move games, a pure strategy
ity in the context of the repeated Prisoner’s Dilemniar player 2 is just an element of,. For sequential
game, where strategies are modeled as finite automgaaes, a pure strategy for player 2 is a function from
[2, 3, 6, 22]. There were some works during thigl; into A;. We useS; to represent the pure strategy
period which modeled strategies by Turing machinspace for playei and we extend the utility functions
[5, 23], but these works were concerned with Turintp strategies in the natural way.
machine size as a complexity measure rather than timeA mixed strategy for a player is a probability distri-
There has also been a good deal of work in the edmition over its pure strategies. The payoff for a game



using the mixed strategies is just the expected payaeffstringx with probability p(z), this is interpreted as
when each player chooses their strategies independeRtlgyer 1 playing a strategy with probability p(z) in
from their chosen distributions. the games.

A pure-strategy Nash equilibrium (NE) is a pair of Now that strategies are Turing machines, computa-
strategiegs1, s2) € S1 x Sz such that for any; € 51 tional issues can be factored into the game, even though
ands; € S, u1(s1,s2) > ui(sy, s2) andua(s1,s2) > for a fixed game, there is no natural notion of an “in-
uz(s1,s3). A pair of strategies is an-NE if neither put size” We address this issue by discounting each
player can increase its payoff by more thaby play- player's payoff by the time taken to produce a (repre-
ing a different strategy, given that their opponent plaggntation of a) strategy. The discount factors for the
the same strategy as before. For smalthe players two players might be different, reflecting the possibili-
might be satisfied with an-NE rather than a pure NE, ties that the game is asymmetric between the two play-
since they might be indifferent to small changes in theits, and that the two players have differing amounts of
payoff function. computational resources.

A mixed-strategy Nash equilibrium is a pair of mixed Gjyen a game = (A;, Ay, uy,us), we formally
strategies for which neither player can increase their €xsfine the(e, §)-discounted version ofs. This is the
pected payoff by playing a different mixed strategy, agiscounted time machine metagame corresponding to
suming that their opponent plays the same mixed strgf-\yhere the player’'s computation times are discounted
egy as befpre. _The notion of aaNE for mixed strate- py 1 — ¢ and1 — J respectively. In this game, each
gies is defined in an analogous way to the definition fgfayer's action space is the class of all probabilistic Tur-
pure strategies. ing machines. Each player’s Turing machine gets as in-

The famous theorem_of Nash [28] states that eVeit [1/¢] and [1/8] in binary - this corresponds to the
game over compact action spaces has a mixed-stratggiers having full information about the game. If the
Nash equilibrium. When we say “Nash equilibrium” iyame s extensive, Player 2's Turing machine gets as ad-
this paper, we mean a mixed-strategy Nash equilibriitional input the output of Player 1’s Turing machine.

unless otherwise stated. We formally specify how payoffs are determined. We
first consider the case where both player's Turing ma-

3 Our Mode chines halt on all computation paths. Given a compu-

tg{ion pathz of a probabilistic TM, lett(z) denote the

The nor_mal-form representation of_a game dqes ength of the computation path (i.e., the time taken by
say anything about how a strategy is actually imple: mputation A th tion inA "
mented by a player. Depending on the method of imple. computatio )f1(2) € A the actio L corre-

mentation used, there might be further costs incurreﬁfondmg to the output of the path and f;(z) € A,

the analysis of these costs may itself be game-theore ic action inA, corresponding to the output of the

This insight is formalized by the notion ofraetagame pathz. Then the payoffus (M, N) of Player 1 cor-

Given a game?, the metagame is a new game WhiChesponding to Player 1 playing a probabilistic Turing

augmentsy by modeling outside factors which are rel:nachmeM and Player 2 playingV is the expecta-

evant to playingG. Thus a metagame aims to be jon over computatlorg paths and w of M.a‘.‘d N

more accurate model of ho@ might play out in the respectively of(1 — €)*u1(f1(2), f2(w)). Similarly,

real world. the pa;;offug(M, N) of Player 2 is the expectation of
We consider thenachine metagamehich presumes (1-9) w,u?(fl(’z)’ f2(w_))‘ )

that a strategy is implemented by some computational” addition, we require a convention for payoffs on

process. We model the computational process as a proBf-halting paths. In this case, a player whose machine

abilistic Turing machine, which is a very general mod&0€s not halt gets payoff 0 (corresponding to discount-

of computation. By the Church-Turing thesis, probd?9 for infinite time), and if the othgr player’s machlne

bilistic Turing machines can compute any function th40€s halt, the player gets the maximum possible payoff

is effectively computable. The motivation for consideRVe" all actions ind; of playing its action, discounted

ing probabilistic machines is the idea that randomne%the computation time of playing its action.

is also a resource available in the real world. We define two new equilibrium concepts, which cor-

In the machine metagame Corresponding to a gaﬁ%pond to equilibria that are robust when the discount
G = (A1, Az, u1,uy), actions for Playes are prob- ratese and¢ tend to zero. Our motivation for being in-
abilistic Turing machines rather than elementsAf terested in this limiting case is that computational costs
Since we only consider countable strategy sets, for egi®w smaller and smaller with time (or equivalently,
i the elements of4; may be represented by binangomputational power increases with time) - this corre-
strings in some canonical way, with each string repréPonds ta: andé approaching 0.
senting a strategy and each strategy represented by e say that a pair of probabilistic machingd, V)
string. If a probabilistic TM played by Player 1 outputss a uniform Nash equilibrium (NE) if for every pair of



machinegM’, N'), Note that analogues of our results also go through for
other dependences éfon e. The choice we make is

1i€Ig1iI(1)f ur(M,N) —u;(M',N) >0 partly intended to illustrate that our model can capture
" one of the typical assumptions of complexity-theoretic
and cryptography.
lim inf us (M, N) — ug(M, N') > 0. We first show that if Factoring is easy in the worst
€,6—0 case, then every uniform NE of the discounted game

We say thaf M, N) is a strong uniform NE of the dis-Yields payoff 2 to Bob.
counted game if there is a functighsuch that{ 1/, N)

is an f(e, §)-NE for the (e, §)-discounted game, for'_rheorem 1 fpr all linear-time s_amplable_ _di_stribu—
some functionf where f(c, §) tends to 0 when both tions D, Factoring can be solved in probabilistic poly-
ands tend to 0 ’ nomial time with success probability— o(1) over D,

fhen for all sufficiently larger, the (¢, ¢©)-discounted
NE is a stronger concept since it requires a fixed eq grston o-ft:]he Facf:;olrlgg gargethas.atl:]nlforrln Na?h equl-
librium strategy pair to be resilient in the limit against>' /M With payo (1,2), and(1,2) is the only uniform

deviating strategies which might dependcoandd. In equilibrium payoff.
contrast, a uniform NE is only required to be resilientin 15 result follows from the following lemma, which

the limit against other fixed strategies. gives a tighter connection between the feasibility of

The definition of uniform equilibrium above assUMeE,ctoring and the uniform equilibrium payoffs of the
thate andd are independent - i.e., the equilibrium congiscounted game.

dition holds irrespective of how varies withe, as long
as they both tend to 0. In some of our results, we willemma 2 If, for all linear-time samplable distributions
be concerned with the situation whevés a function of D. Factoring can be solved in probabilistic tinagn©)
e such that — 0 whene — 0. We will abuse notation with success probability— o(1) overD, then there is a
by referring to the corresponding notion of equilibriumuniform Nash equilibrium of thé&, ¢¢)-discounted ver-
where the limit is now taken only as— 0, also as a sion of the Factoring game yielding a payoff(af 2).
uniform equilibrium. Moreover, ifc > 1, then every uniform equilibrium
We say that a payoff pait, v) is a uniform equilib- yields payoff1, 2).
rium payoff if there is a uniform equilibriuniM, N)
such thatu; (M, N) — u anduy(M, N) — v in the Proof. — We first show the existence of the claimed
discounted game whend — 0 uniform equilibrium giving a payoff of1, 2), and then
The above equilibrium concepts are defined for pus@ow that this is the only uniform equilibrium payoff
strategy NEs, but the definitions extend easily to mixéghievable.
strategy NEs. The following pair of probabilistic machingd/, N)
All the definitions above can be generalized easily fives a pure-strategy uniform equilibrium with payoff
N-player games foV > 2 and indeed the results of the(1,2). M simply outputs the number 2V uses the

Section 5 all hold fotV-player games as well. trivial deterministic algorithm for Factoring running in
exponential time to find a prime factorization for the

. number produced b/ .

4 TheFactoring Game As e — 0, the payoff for this pair of strategies tends
In our formulation of the Factoring game, the winto (1,2). We now show tha{M, N) is a uniform NE

ning player receives a payoff of 2 (before discountingdr the game.

and the losing player receives a payoff of 1. The preciseSince the payoff for Bob is bounded abovehyrre-

values of these payoff are not important for our maispective of what it does, it's clear that the advantage it

results. can gain from playing a different strategy tends to zero
The (e, §)-discounted time version of the Factoringse tends to zero. We still need to show that Alice can't

game is defined in the usual way. In our presentatidio any better in the limit.

here, we choosé = ¢¢, for some constant > 1. The Let S be any (mixed) strategy for Alice$ is a prob-

Factoring game is naturally asymmetric. First, it is sebility distribution over probabilistic TMs. Whenevsr

guential: Alice chooses an number, and then Bob actstputs a number, player 1 gets payoff at most 1, since

based on knowledge of Alice’s number. Also, the natiob factors the number. Wheihdoes not output a num-

ral application of the Factoring game is to cryptographlger, player 1 gets payoff O; thus, in either case, Alice’s

with Alice using a cryptosystem and Bob trying to breagayoff is at most 1. This shows that Alice can’t do better

it. In this context, by the polynomial-time Churchthan playing) .

Turing thesis, the computational model Bob uses is atShowing that(1, 2) is the only uniform equilibrium

most polynomially faster than that of Alice. payoff possible is more involved. For the purpose of

As the name indicates, the notion of a strong unifor



contradiction, let(a, b) be a uniform equilibrium pay- off of at least2(1 — e~*) in the limit (since he suc-
off, where eithern # 1 orb # 2. We derive a contra- cessfully factors while usingo(1/6) time), which for
diction. large enouglt is strictly better than it did when playing
We first consider the case # 1. It cannot be the strategyl’, given our assumption that Alice had a prob-
case thatt < 1, since Alice can always get payoff agbility bounded away from 0 of outputting a number at
least 1 in the limit by just outputting 1, irrespective ofmost1/e bits long and getting a payoff greater than 1
what Bob does. Thus it must be the case thata < 2. (which would imply Bob got a payoff less than 2). This
Now we show thab = 2. Let (S,7T') be a uniform is a contradiction tq.S, 7") being a uniform NE.
NE with payoff(a,b). Let~(e) be the probability that Thus, we get thaty(¢) — 1 ase — 0. But then
S outputs a number with length at maste, where the the strategy of Bob which simply applies thg:°) fac-
probability is over the randomness of choosing a strabring algorithm to the number output by Alice gets a
egy, as well as the randomness in playing one (singayoff of 2 in the limit. This implies thai = 2.
a pure strategy is a probabilistic TM). We show that If « > 1 andb = 2, it must be the case that
~v(e) — 1 ase — 0. For the sake of contradiction, sup{a,b) = (1,2) for the uniform NE(S,T), since the
pose that the limit infimum ofi(¢) is less tharx < 1. expected payoff of any pair of strategies in this game is
This means that we can choosearbitrarily small for bounded above by. O

which 5 outputs a number with length at leaste with Next, we show an essentially converse. If Factorin
probability at leasti — «. Conditioned on outputting . ' y ' 9

such a number, the payoff of Alice is at magt —e) /s is hard on average, then there is a uniform NE for the
. ’ pay . discounted game with payofg, 1).
which tends t®2/e < 1 ase — 0. From the previous

p;’:lra_, we khnow tr:cat Alice gets p_ayoff at least 1 froni‘heorem 3 Suppose there is a linear-time samplable
phaylng S b_enC(_eI rom ﬁrf] avekr]{agr:n?] argument, k\;veb_(l:qﬂstributionD for which there is no probabilistic poly-
choose: ar itrarily small for whic _t €re IS a probabll, 5 mja| time algorithm correctly factoring with success
ity 5 bounded away from 0 that Alice outputs a numb%rrobabilityﬂ(l) over D on inputs of length: for in-

of length at mqsﬂ/ ¢ and gets a payo.ff greate.r than ]T'B-witely manyn. Then for every constant > 1, there
We show tha_t in this case, BOb. can improve its payqll | niform NE for thee, e¢)-discounted version of the
by a non-trivial amount by playing a different strategy:

T actoring game with payof®, 1).

When defining’”, we use the assumption that Factor- The key to the proof of Theorem 3 is in the follow-
ing is easy on average for all linear-time samplable dig | emma 4 which, similar to above, makes a stronger
tributions (note that this assumption was not used in thgnnection betweenand the running time of a factor-
argument that there’s a uniform equilibrium with payoff,q aigorithm. The uniform NE which we show to ex-
(1,2)). Consider the linear-time samplable distributiop; js a simple one where Alice plays a random number
D on inputs of length1/¢| defined as follows: Sim- of |ength approximately /e and Bob halts immediately
ulate S’ independently:/(5 times forl/e computation yithout output. We show that any deviating strategy for
steps (wheret is a constant to be decided later), anfloh which gets him an improved payoff in the limit can
output the first number produced Byof length at most pe transformed into a probabilistic polynomial-time al-
|1/¢[, padded up to lengtfl /€|, outputting an arbitrary gorithm which factors well on average.
number of that length if all the runs ¢f give numbers
that are too long. Clearly) is linear-time samplable. | emma 4 Suppose there is no algorithm for factoring
Here we use the fact that Factoringpaddableto any running in timen‘polylog(n) for large enough input
given length (padding here just involves multiplicatioengthn, and succeeding on &(1) fraction of inputs
by a power of two). There is some algorithshthat for infinitely many input lengths. Then there is a uni-
works with success probability — o(1) over D, by as- form NE for the(e, ¢)-discounted version of the Fac-
sumption. toring game with payoff2, 1).

Consider the following strategy’ for Bob: it looks
at the number output by Alice. If this number is at mofroof.  The following pair of strategie$M, N) is
1/e bits long, it appliesA to this number. If the numbera uniform NE. M selects a number of lengti(e) =
is longer, it plays strategy’. The process of looking at[1/¢][1/1og([1/€])] at random and outputs the num-
the number and deciding what to do based on its lendtér. N halts immediately without output.
takes timeD(1/¢), butifc > 1, then(1—¢%)?1/9) — 1 First we show that this gives paydf?, 1). It's clear
whene — 0, and hence this additive term incurs a neglthat the payoff forV is 1 since it halts without output.
gible discount for Bob. Conditioned on Alice outputting herefore the undiscounted payoff fof is 2. We show
a number that's at leadt/e bits long, Bob’s payoff is that the discounting makes a negligible difference to
the same in the limit when playing strategy as when this, sinceM doesn’t need to spend too much time gen-
playing strategyl". In the other case, Bob gets a payerating a random number of lengti{e). Specifically,



given the numbef1/e] on its input tapeM computes tation pathz of N when givenz, let I,, = 1 if path
n(e) in unary and stores it on a separate tape - this carterminates in a correct factoring af and 0 other-
be done in timeD(n(¢)). It then generates a randonwise, ¢,, be the time taken along path andp,. be
number on the output tape, using the computed valuetbé probability of taking path. We have that, for any
n(e) to ensure the number is of the right length. The, X.p,. = 1. Let f(z) = 3, (1 + L;2)pa.(1 — §)'==,
total time taken byM/ is O(n(¢)) = O(1/(elog(1/¢))), wheres = ¢°. Then the payoff of Bob i&,, f (x)/2"().
and the discounting due to this(is — €)°("(<)), which By assumption, this quantity is at least- v/2. By a
is 1 in the limit asc — 0. Markov argument, this implies that for at leastyg4
Next we show(M, N) is a uniform NE. Alice has fraction of stringsz of lengthn(e), f(z) > 1+ /4.
payoff bounded above by 2 for any strategy it plays, soFix any suchz. We classify the computation paths
clearly it cannot do better with a different strate§y for the computation ofV on z into three classes. The
The bulk of the work is showing that Bob cannot déirst is the set of: for which I, = 0. This set con-
better. tributes at mos®.p,.(1 — §)== < X.p,, < 1to
Suppose, on the contrary that there is a straledyr  f(x). The next class is the set offor which 7., = 1
Bob such that the strategy pdi¥/, T') yields payoff at andt,, > 2log(1/d)/d. This set contributes at most
least1 + ~ for Bob for arbitrarily smalle, wherey > %.2p,.(1 — §)218(1/0)/0 < 3,256 < 26 = o(1)
0. We show how to extract frorfi” an algorithm that to f(z) (here theo(1) refers to dependence or{e) as
factors efficiently on average on infinitely many input — 0). Thus we have that.czp.. > v/4 — o(1),
lengths. where 7 is the set ofz for which I, = 1 andt,, <
Choose a infinite sequeneg, e ... such that for 2log(1/§)/6.
eachi,1 < i < oo, the strategy pai()M,T') yields  This means that with probability at leasy4 over
payoff at leastl + ~ for Bob in the(e;, €)-discounted stringsz of sizen(e) € B, N halts in time at most
game, andh(e;) > n(e;—1). Such a sequence exists by log(1/5)/§ and outputs factors of with probability
the assumption that\/, N) is not a uniform NE. atleasty/4—o(1). Thisimplies that for all large enough
We show that there must exist a pure stratégyor , ¢ B, with probability at leasty/4 — o(1) over num-
Bob such that there is an infinite sefor which (M, N)  bers of sizen, N halts in time at most[log(n)°*?]
yields payoff at least + /2 for Bob for all¢; such that and factors: with probability at leasty /4 — o(1) (we're
i € I. This argumenttakes advantage of the fact that tgnply upper bounding the time as a functiomafther
Factoring game has payoffs bounded above by 2. Byran ofs).
Markov argument, it must be the case for eacB N Since A4 amplifies the success probability of by
that the pure strategies in the supportfofhich yield running itlog(n) times independently, the success prob-
payoff at least + ~/2 must have probability weight atapility of A is at leastl — o(1) on af(1) fraction of

leasty/2. Now, if each pure strategy only yields payoffnputs, for infinitely many input lengths. O
at leastl + ~/2 finitely often, then we can choose

large enough so that the pure strategies yielding payoffEssentially the same proof gives a more general ver-
at leastl + v/2 in the (e;, €5)-discounted game havesion of Lemma 4 - if there isomdinear-time samplable
probability weight less than/2 in the support of the distribution D such that no probabilistic algorithm run-

mixed strategyl’, which is a contradiction. ning in time n“polylog(n) achieves arf2(1) success
Let B = {n(e;),i = 1 € I'}. Bis an infinite set, by probability for Factoring oveD, then there is a uni-
assumption. form Nash equilibrium for thee, e°)-discounted Fac-

We useN to define a probabilistic algorithm for toring game achieving a limit payoff ¢2, 1). The only
solving Factoring well on average on all large enougdtifference is thafl/ plays a random number selected ac-
input lengths inB, contradicting the assumption of thecording toD, and we argue with respect to this distribu-
theorem. Given an number of lengthn, A simply tion rather than with respect to the uniform distribution
runs N on z log(n) times independently, halting eachwhen defining the factoring algorithm. Theorem 3
run after timen¢[log(n)°*?]. If any of these runs out- follows immediately from this more general version.
puts numberg; andys such that; sy, = x, Aoutputs  Unlike in the case of Lemma 2, this is not the only
these numbers, otherwise it outputs nothing. The rumaiform Nash equilibrium when Factoring is hard. In-
ning time of A is O(n°log(n)<*3). We prove that for at deed, an examination of the proof of Lemma 2 shows
least arf2(1) fraction of strings of length for infinitely ~ that we did not actually use the assumption when show-
manyn, A factors correctly with probability — o(1).  ing there was a uniform NE with payofi, 2); the as-

The idea is to analyze the payoff for Bob from theumption was only to prove the second part of the the-
strategy (M, N), and show that an expected payoffrem. Thus, even when Factoring is hard, there is a
greater than 1 means that a significant fraction of comniform NE with payoff(1, 2).
putation paths must halt quickly and factor correctly. However, an important point to note is that the dis-
Given a number: of lengthn(e¢) € B and a compu- counted Factoring game is a sequential game, where



Alice plays first Thus, even though there might be aroofinvolvesit playing strategies whose sizes grow ex-
uniform NE with payoff(1, 2), Alice can control which ponentially in1 /¢! For small values o, this is clearly
Nash equilibrium is reached, and it is natural for it tonfeasible.
select the equilibrium giving it a higher payoff. The key The issue here is that there is a tradeoff between hard-
qguestion in the discounted Factoring game is whethgare and time. Computations can be made very effi-
thereexistsa uniform NE giving Alice a payoff greatercient by exponentially increasing hardware, but in the
than 1 - Lemma 2 shows that when Factoring is eaphysical world, both hardware and time are costly. Our
there isn’t, and Lemma 4 shows that when Factoringnsodel explicitly captures the idea of time being costly
hard on average, there is. This is somewhat relatedthwough discounting, but the expense of hardware is
the notion ofsubgame-perfeaquilibria in traditional captured implicitly in the uniform equilibrium concept.
game theory [27]. It's an interesting challenge to de- There are other ways of defining equilibrium con-
fine an appropriate notion of subgame-perfection foepts which can capture the cost of hardware in a
our model which could also be used in a variation ofiore explicit manner. For instance, we could define
our model where both Alice and Bob are discounted lay f (¢, §)-resilient uniform NE as a uniform NE where
the total time taken by the two of them. no player gains in the limit by playing a pure strategy
If one interprets Alice getting a payoff higher than Whose size is bounded bf(e, ). Since a pure strat-
as Player 1 “winning” the game, this result is in closegy is just a probabilistic Turing machine, “size” has a
accordance with intuition. Alice wins the game if an@atural representation - it's the number of bits required
only if Factoring is hard. In practice, Factoring is beto explicitly present the state space, transition function
lieved to be hard, and therefore in practice, we expewtd alphabet of the Turing machine. A uniform NE as
Alice to win the game, and not Bob as traditional gamee define it arO(1)-resilient uniform NE, while strong
theory would predict. uniform NE aref (e, d)-resilient uniform NE forf arbi-
The uniform equilibrium in the statement ofrarily large.
Lemma 2 yielding a payoff of1,2) is in fact also a Now let us considerf (e, §)-resilient NE wherej
strong uniform equilibrium - this follows easily from is polynomially bounded irx, and f is polynomially
the proof. Can Alice hope for a strong uniform equilibbounded inl /e. By using essentially the proof of Theo-
rium yielding it a payoff of 2 in the case that Factoringem 4, as well as the fact that a probabilistic Turing ma-
is hard? The answer is no. chine of size K and operating in time T can be simulated
by a probabilistic Boolean circuit of siz@(K + T)?,

Theorem 5 Consider the(e, §) discounted version of We getthatthere there s gfife, 6)-resilient uniform NE
Factoring, wheres = o(). Let(S,T') be any strong 9iving Alice a payoff of 2 in the limit, unless Factor-
uniform NE of this game.Then the payoff pair corrdd can be solved correctly by polynomial-size circuits
sponding to(S, T) is (1, 2). on anf)(1) fraction of inputs, for large enough input
lengths.
Proof. The proof is very similar to the proof of the Thus, not only does is the difference between feasi-
second part of Lemma 2, except that we can no longdity and infeasibility of factoring captured by a dif-
use the assumption that Factoring is in polynomial timgrence in the structure of equilibria for the Factoring
But we can use an alternate strate§jyfor Bob which 9ame, but by a natural modification of the notion of
plays the role of the factoring algorithm in the proof ofniformity, we can capture the difference between uni-
Lemma 2. formity and non-uniformity! This raises the possibility
N. simply implements a look-up table, which storeg‘at there m_ight be interestirgpncrete complexityo-
the numbers whicts may output, along with their fac-ions that might be captured by game theory as well -
tors. N, need only store numbers of lengthe, together v_ve_need not restrict attention to what ha.ppens in the
with their factors. The key is that just by encoding thiMit ase — 0. Perhaps there are novel notions of com-
look-up table in its state machindl, can find the fac- PIeXity that can be extracted from the game-theoretic
tors of the number output b in time O(1/¢), and V|ewp0|nt,_V\_/h|ch give a_better understan_dlng of the_gap
sinced = o(e), this means that the discount factor {9€tween finite complexity and asymptotic complexity”?
1in the limit. The rest of the argument is the same as in V& conclude this section by discussing our choice of

the proof of the second part of Theorem 2.  Pparameters for the Factoring game, and showing that
the results are robust to the choices we make. First, we

Of course the dependence of the strategy of Bob oexamine the payoffs. Any choice of payoffs which are
is essential, since we know that there is a uniform eqaH positive and for which Bob gets strictly more (resp.
librium yielding Alice a payoff of 2 in the limit. More- Alice gets strictly less) if Bob succeeds in factoring will
over, the proof illustrates why the notion of a strong unyield essentially equivalent results.
form NE might be too strong an equilibrium concept - Second, we discuss the discount factors. Our choice
Bob can push Alice’s limit payoff down to 1, but theof dependence @fone was made to illustrate nicely the



correspondence between infeasibility and the existerides would imply that(S’, 7”) is a strong uniform NE
of equilibria yielding Alice a high payoff. But the poly-for the discounted game. We show that player 1 can-
nomiality of the dependence is not critical to our proofsot gain a significant advantage from playing a differ-
- ingeneral, ifl /6 = f(1/¢) for some functionf, then ent mixed strategys; - the analogous result holds for
our results hold when feasibility means solvability ifPlayer 2 as well.
time o(f(n)) and infeasibility means unsolvability on Any mixed strategys; in the discounted game can be
average in time slightly more thaf(n). transformed into a mixed strated@y in G - each pure

In the special case that= ¢, we get that Alice has astrategy is given the same probability of being played in
winning strategy under the natural assumption that Fag-as it has of being output by a probabilistic TM in the
toring is not in quasi-linear time on average. discounted game (the probability weight of non-halting

computation paths is assigned to an arbitrary strategy in

5 Propertiesof Discounted Time Games  S1)- Because of the discounting, the payoff that Player
1 can get by playing] in the discounted game is at

The most fundamental results in a theory of games « 1ha payoff that he can get by playifigin G. But
of a given form concern existence of equilibria. Herg, payoff by playings in G is at least the payoff by
we prove a couple of results of this form. The fir laying S in G, and the payoff by playing’ in the
result shows that the concept of uniform equilibriufgiSCOLInted garr;e approaches the payoff by plaiiig
for the discounted version of a finite game correspon ase, § — 0. This shows that the advantage of playing

nicely to the concept of Nash equilibrium for the origiz/ i the discounted game must tend to zere,dsend
nal game. The second result complements this by sh%}- :

H ! H ! AN
ing that discounted games might have equilibria that t@ﬁcz)ﬁ;()ﬂ:i)fr()?rrr]] zrg I:g?ﬁg éggcl)ylﬂ?e?g;(rié.T ) |sDa
original game does not possess.

We show that any Nash equilibrium in a finite game Consider the Largest Integer Game where both play-
G translates to a strong uniform Nash equilibrium yielders simultaneously play integers. The player playing the
ing the same uniform payoff in the discounted versidargestinteger receives a payoff of 100 with each receiv-
of G. ing 50 if they play the same integer. This game has no

Nash equilibrium or even an almost Nash equilibrium

Theorem 6 Let G be a finite two-player game. Giverynash's theorem doesn’t apply because the action space
any Nash equilibriuniS, 7') of G, there is a strong uni- ;5 not compact).

. o )
form Nash equilibrium(S’, T") of the discounted ver- Next we show that almost-NEs exist, not only for

sion of G which yields the same payoff in the limit a%e Largest Integer game for but any countable game
€0 —0. with bounded payoffs. The basic idea of the proof is to

Proof. We assume thag is a finite two-player game in approximate the discounted c_ountable game by a fi.n.ite
normal form. IfG is sequential and given in extensiv§@Me, and then reduce the existence of uniform equilib-
form, we just consider the image normal-form gam&2 m_the discounted cquntqb_le game to the existence of
which is known to inherit its equilibria from the sequenNES in the corresponding finite game.

tial game. _

Let (S, T) be a (possibly mixed-strategy) NE 6f. Theorem 7 LetG be a two-player game with bounded
We define a strategy paiiS’, ") for the discounted pa;_/offs where both players have a countable number of
version of G, and argue that this is a strong unifornctions. Then for each,§ > 0, the (¢, §)-discounted
Nash equilibrium for the discounted version, with théme version otz has an(e + 6)-NE.
same payoffs for both players in the limit. Given any
pure strategy; of a player inG, choose in an arbitrary Proof. LetG be as stated in the theorem, andAet 1
way a Turing machiné/,, which ignores its input and b€ an upper bound on payoffs f6t Consider thee, 6)-
halts after outputting a representationsgf If S gives discounted time version @¥. We show how to approx-
probabilityp, to strategys;, then we give maching/,, imate the discounted game by a finite gaGigs and
probability p; in S’. T is defined in an analogous Waghen use the existence of Nash equilibria in the finite
givenT. game to show the existence of approximate Nash equi-

The key point is that irrespective of the way the replbria in the discounted game.
resentative machines for strategies are chosen, they aréhe finite game=. ; is the subgame of the discounted
guaranteed to halt in finite time. Asande approach game where the first player plays probabilistic Turing
zero, the discount factors approach one, and hence th@chines of description size at maS<"/<*, and the
payoffin the discounted game from playiq§/, 7’) ap- second player plays probabilistic Turing machines of
proaches the payoff from playing,T') in G. size at mosp2K”/9*, By Nash'’s theorem, this game has

It still remains to be shown thdts’, 7”) is ann-NE a mixed-strategy Nash equilibriu(®y,77). We show
for the discounted game, where— 0 whene,§ — 0. that(S;,71) is an(e + ¢)-NE for the discounted game.
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We show that forany mixed strategy paifS,7') in Theorem 8 Let G be a two-player game where each
the discounted game, there is a mixed strategy pplayer has a countable number of actions, and suppose
(S7,T") in Ge s such thatus(S,T") > P»(S,T) — 6, the payoffs are bounded and computable. Then the dis-
andu, (S",T) > P1(S,T) — e. This implies that any counted time version & has a uniform equilibrium.

NE for G s is an(e + 0)-NE for the discounted game.

Let (S, T) be a mixed strategy pair in the discounte@roor Sketch.The proofis similar to the proof of Theo-

. rem 7, but we take advantage of the fact that payoffs are
game. We show how to construct a stratégin G, computable. As in the proof of Theorem 7, we can de-

for Player 2 such thats(S,7") > us(S,T) — 6. The - .
. , ’ ne a finite truncated version of the game such that the
rr nding result for Player 1 follow mmet- S
corresponding result for Player 1 follows by a sy eg\lmost—Nash equilibria of the truncated game are also

ric argument. —_ :
9 . . e almost-Nash equilibria of the discounted game. In or-
The argument is a “probability-shifting” argument - . .
. . der to ensure uniformity, however, we have to produce a
we will show how to transfer probability from proba-

o . . N fixedpair of strategies such that , Neither can
bilistic machines in the support @fwith size more than P 9 8% — 0

2K2 /g2 L : ) . ._gain a non-zero amount in the limit by using a different
22K7/%" to probabilistic machines with description siz f%

rategy.
smaller than that number without damaging the payo 9y

g The basic idea is to define a strategy p@if, N)
of Player 2 too much. Specifically, the payoff of Playeg, o, that a7 and N deterministically compute an

2 will not decrease by more thanconditional on that almost-Nash equilibrium of the truncated game, with

strategy being played, and hence there will not be moyfe proceeding to play the strategy of player 1 in the
than &) decrease in tolt.al.- . . computed almost-Nash equilibrium, andproceeding
Let IV be a probabilistic machine of size more thag, jay the strategy of player 2. There are two obstacles
22K7/%" which has non-zero weight if. We define tg this approach. The first is the computational obsta-
a corresponding machin&” of size at mose>**/%*,  cle, but this can be circumvented since the entries of the
and transfer all the probability weight af to N’ in  payoff matrix for the truncated game can be estimated
T'. Essentially, N’ will be indistinguishable fromNV o any desired accuracy using sampling and the com-
relative to the discounting. putability of the payoffs of the original game, and then
The key observation is that we don't need to take inthe Lemke-Howson algorithm [29] can be used to find
account computation paths i¥ of length greater than almost-equilibria of the truncated game.
K?/5°, because the strategies output on such compuThe second obstacle is that computing an almost-
tation paths are so radically discounted that we may ldash equilibrium of the truncated game incurs a sub-
well assume they yield zero payoff, without incurringtantial time overhead, which already drives the pay-
too much damage to the overall paya¥f! behaves like offs of the two players down before they play the strate-
N “truncated” tok /2 steps, outputting a strategy foigies corresponding to the almost-Nash equilibrium, not
G if N does within that time, and looping otherwise. to mention the simulation overhead from using a sin-
We cannot simply simulat&’ using a universal ma- gle machine {/ or N) to find an almost-Nash equi-
chine and a clock, since the simulation takes too mulihrium for all ¢,6 > 0. This obstacle is overcome
of a time overhead and does not preserve the payofing the idea of “miniaturization” - given discount
to within a small additive overhead. Instead we simatese ando respectively, the players pretend that their
ulate N in hardware- this is much more time efficient.discount rates are’ and ¢’ instead, wherel /¢’ and
Specifically, we're interested in the behaviordfonly 1/ grow very slowly as a function of /e and 1/4.
for the first K2 /6% time steps. We can define a Ture’ and §’ are chosen so that the players can compute
ing machineN’ with description size at m()Q:QKQ/‘s2 an almost-Nash equilibrium of th&/7 6’)—discounted
which encodes the relevant behavior8f entirely in game quickly enough that their payoffs in tiie ¢)-
its finite state control. This simulation incurs no timéliscounted game are hardly affected by this computa-
overhead at all. tion, and that playing the strategies for the truncated
Now, we calculate the maximum damage to Play@ame takes relatively little time as well. The point is
2's payoff from playing N’ instead of N. There is thatthisis still an(e’+6")-NE for the discounted game,
no damage to the payoff from computation paths\of and thate’, 6" — 0 ase,d — 0. Hence itis a uniform

which terminate withink2/52 steps. Thus the loss inNash equilibrium. 0
payoff is bounded above by — §)X°/%° i, whichisat ~ The bounded-payoff assumption in Theorems 7 and 8
mostd if K > 1. This finishes the argument. O is essential for the conclusion to hold. Indeed, consider

the two-player game where Player 1 derives a payoff of
In case the payoffs of the gante are computable, 9i ¢om playing integeri and Player 2 a payoff ot/

we get a stronger version of Theorem 7 in that uniforg, , playing integerj. It is not hard to see that this

equilibria are guaranteed to exist. game does not even have almost-NEs in the discounted
game.
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Theorem 7 shows that the discounted version of thg®] Paul Samuelson. A note on measurement of utilRe-
Largest Integer Game does have almost-NEs. For the view of Economic Studigg:155-161, 1937.
Largest Integer game, in fact, there is a strong unifori#d] Tjalling Koopmans. Stationary ordinal utility and i

equilibrium which yields a payoff of O for both players
and every uniform equilibrium gives payoff 0 to bot

players in the limit. This is intuitive: the Largest Integer
game is a game of oneupmanship, where each player
tries to outdo the other by producing a larger number. [5_12]

the process, they exhaust their computational resources

(or alternatively, end up spending an inordinate amount
of time) and end up with nothing.

In general, uniform equilibrium is a strong notion of13]
equilibrium, since there should be no gain in deviating

irrespective ofhowe,é — 0. Suppose we know morel14

about the relationship af andd, say thaty < €2, i.e.,
Player 2 always has more computational power. In this
case there are equilibria in which Player 2 wins, SaYs)
by outputting2(1 — ¢)3/2 while Player 1 output$l —
€)3/2. This is again in accordance with intuition - if the
players are asymmetric, the more patient/computationgd)
stronger player should win this game (the discount rate

can be seen, depending on the situation, as either an
index of patience or of computational power).
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