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Abstract: Consider a game where Alice generates an integer and Bob winsif he can factor that integer. Tradi-
tional game theory tells us that Bob will always win this gameeven though in practice Alice will win given our
usual assumptions about the hardness of factoring.
We define a new notion of bounded rationality, where the payoffs of players are discounted by the computation
time they take to produce their actions. We use this notion togive a direct correspondence between the existence of
equilibria where Alice has a winning strategy and the hardness of factoring. Namely, under a natural assumption
on the discount rates, there is an equilibrium where Alice has a winning strategy iff there is a linear-time samplable
distribution with respect to which Factoring is hard on average.
We also give general results for discounted games over countable action spaces, including showing that any game
with bounded and computable payoffs has an equilibrium in our model, even if each player is allowed acountable
number of actions. It follows, for example, that the LargestInteger game has an equilibrium in our model though
it has no Nash equilibria orǫ-Nash equilibria.

Keywords: Bounded rationality; Discounting; Uniform equilibria; Factoring game

1 Introduction

Game theory studies the strategic behavior of self-
interested rational agents when they interact. In the
traditional setting of game theory, agents are supposed
to be perfectly rational, in terms of knowing what
their strategic options and the consequences of choos-
ing these options are, as well as being able to model per-
fectly the rationality of other agents with whom they in-
teract. However, often in practice, when human beings
are involved in a strategic game-playing situation, they
fail to make perfectly rational decisions. Herbert Simon
first developed this “bounded rationality” perspective.

In the past couple of decades various models of
bounded rationality [2–7] have been defined and studied
by game theorists and computer scientists. In this paper,
we introduce a new notion of bounded rationality based
on the perspective of computational complexity. We ar-
gue that it is natural, and prove that it has some nice
properties and can be used to obtain new connections
between game theory and computational complexity.

The main idea is to discount the payoffs of players
in a game based on how much time they take to play
their actions, with different players possibly discounted
at different rates. Of course, we need to define what it
means for a player to take time to play its action. This
naturally pre-supposes that each player has some com-
putational mechanism for playing its strategy - in this
paper, as in the recent work by Halpern and Pass[8], we
adopt the probabilistic Turing machine as our compu-
tational model. This is a computational model which

is universal, and is also generally considered to be re-
alizable in Nature. Furthermore, it capture complexity
via running time and can be used to realize games with
countable action spaces, unlike say if we were to use fi-
nite automata: the model typically considered by game
theorists when studying bounded rationality.

In this paper, we useexponentialdiscounting, mean-
ing that the payoff goes down by a factor(1 − δ)t after
timet, whereδ is a constant. Our main results also hold
for other notions of discounting, as we discuss in Sec-
tion 1.2.

The notion of discounting is far from new [9–11] -
indeed much of economic theory depends on it. It is a
basic economic assumption that people value a dollar a
year from now less than a dollar today. The discount
1 − δ for a specific period is chosen so that an agent is
indifferent between receiving1 − δ dollars now and 1
dollar at the end of the period.

Discounting is commonly used for computing cumu-
lative payoffs in repeated games. We emphasize that
we discount based oncomputationtime, which means
that the notion of discounting can now even be used for
one-shot games even when there is no natural notion
of input size. The idea of discounting based on com-
putation time was developed by Fortnow [12], where he
used it for a variaton on the “program equilibria” frame-
work devloped by Tennenholtz [13]; moreover, a single
discount rate is used for all players.

Our notion of discounted time has several benefits.
First, it bounds rationalityendogenouslyrather than ex-
ogenously. By this, we mean that the bound on an
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agent’s rationality is not imposed from outside, but
rather arises from the agent’s own need to maximize its
utility.

Second, discounting has some nice mathematical
properties. It’s time-independent - discounting forr
steps starting at a timet0 yields the same relative de-
crease in payoff as discounting forr steps starting at
an earlier or later time. Given a discount factor1 − δ,
the discounted payoff behaves like a linear function for
small t and like an exponential function for larget,
which accords well with our intuitions for how we value
computational resources in the real world. We might
only be marginally more gratified by a computational
task finishing in 1 second than one finishing in 2 sec-
onds, but we would certainly be far more annoyed if a
task finished in 20 minutes than in 10 minutes.

Also, the discounting model is philosophically ele-
gant in that itunifiestime as viewed by economists and
time as viewed by computer scientists. Time is an im-
portant concept both in economics and in computational
complexity, and we model it in a way that is consistent
with the perspectives of both fields.

We use asymmetric discounting in our model - differ-
ent players may have different discount factors. There
are a couple of reasons for this. First, players might
have asymmetric roles in a game, and in this case it
is natural to give them discount factors. For example,
a cryptographic protocol can be interpreted as a game
where players are either honest or adversarial. In this
setting, it makes sense to model the adversary as more
patient and therefore having discount rateδ closer to 1.

However, even if all the players are equally patient
with respect to real time, it still makes sense to give
them different discount factors. This is because dis-
counting is done as a function ofcomputationaltime
rather than real time, and the relationship between com-
putational time and real time depends on the power of
technology. If one player has a much faster computer
than the others, then it is effectively more patient, in
that it has a smaller discount factor. For example, con-
sider a two-player game where the players are equally
patient in that the payoff for each player halves after 1
second of real time. Suppose, however, that Player 1
has a computer with a clock rate of106 operations per
second, and Player 2 has a computer with a clock rate
of 1012 operations per second. Then the discount rate
δ1 for Player 1 is approximately10−6 and the discount
rateδ2 for Player 2 is approximately10−12.

This is a further advantage of our model, in that it
factors in the power of technology. Many games to-
day play out in a virtual setting, eg. the game between
someone sending their credit card information and a
malicious adversary seeking to steal their identity, or an
electronic auction, or even computer chess. In all these
cases, the power of technology has a critical impact on
strategy and success in the game, which is not modeled

adequately by traditional game theory. Not only do we
model this via the discount rates, but our notion of uni-
form equilibrium also implicitly models how technol-
ogyevolveswith time.

Our model exhibits some nice phenomena for gen-
eral classes of games. We define a new notion of equi-
librium for our model, which we call “uniform equilib-
rium”. We show that for finite games, there’s a uniform
equilibrium corresponding to every Nash equilibrium.
For games where each player has a countable action
space, the situation is even more interesting. It’s known
that Nash equilibria do not exist in general in this case.
However, under mild assumptions, namely that the pay-
offs are bounded and computable, we show that uniform
equilibriaalwaysexist even in this case.

As an example, consider the Largest Integer game,
where each player outputs a number and the player out-
putting the largest number wins the entire pot of money
at stake (with the players sharing the pot equally if they
output the same number). This is an archetypal example
of a game which has no Nash equilibria or even approx-
imate Nash equilibria. The absence of Nash equilibria
means that traditional game theory provides no predic-
tive or explanatory framework for how the game will
actually play out.

The Largest Integer game does have a uniform equi-
librium in our framework, and there is an intuitive ex-
planation of this. Essentially, the Largest Integer game
models oneupmanship, where each player is trying to
outdo the other. What is not modeled by traditional
game theory is that the players expend considerable re-
sources in this process, which affects their “effective
payoff”. Indeed, as more and more resources are re-
quired, at some point the players become essentially in-
different between winning and losing. In our case, the
resource is time; the equilibrium situation corresponds
to both players spending so much time coming up with
and writing down a large number that their payoffs are
driven to zero by their discount factors.

1.1 The Factoring Game
Perhaps the most interesting results in this paper

concern a close relationship between equilibria in dis-
counted games and the computational complexity of
problems. We illustrate this using the Factoring game.

The Factoring game is a puzzle in the theory of
bounded rationality. Consider the following game be-
tween two players Alice and Bob. Alice sends an inte-
gern > 2 to Bob, who attempts to find its prime fac-
torization. If Bob succeeds, he “wins” - he gets a large
payoff and Alice gets a small payoff; if he fails, the op-
posite happens.

If formulated as a game in the conventional way, Bob
always has a winning strategy. However, in practice,
one would expect Alice to win, since factoring is be-
lieved to be computationally hard. This is the puzzle:
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to find a natural formulation of the game that captures
the intuition that Alice should win if factoring is indeed
computationally hard.

The Factoring game was first introduced by Ben-
Sasson, Kalai and Kalai [14] and also considered by
Halpern and Pass [8]. Neither gives an explicit solu-
tion to the puzzle, instead they give general frameworks
in which to study games with computational costs. In-
deed, Ben-Sasson, Kalai and Kalai say in the Future
Work section of their paper that “it would be interest-
ing to make connections between asymptotic algorith-
mic complexity and games”.

We show that the structure of equilibrium payoffs in
the discounted time version of the game corresponds
closely to the computational complexity of factoring.
Specifically, if Factoring is in probabilistic polynomial
time on average, Bob always wins; if not, there are equi-
libria in which Alice gets a large payoff. This result
assumes that the discount rates of the two players are
polynomially related - we motivate this assumption in
Section 4. If there’s a different relationship between
the discount rates, then there’s a corresponding different
complexity assumption which characterizes when Alice
has a winning strategy. In the simplest interpretation of
our model, where discount rates are determined by the
power of technology, it can be empirically tested how
discount rates vary with each other.

What makes this connection with asymptotic com-
plexity somewhat surprising is that the notion of input
length is not explicitly present in our model. Instead, it
arises naturally from the discounting criterion and our
notion of uniform equilibrium.

The Factoring game is relevant not only to game the-
ory, but also to the foundations of cryptography. There
has been a lot of research into the connections between
game theory and cryptography [15, 16], but much of
this has focused on multi-party computation. One can
define an analogue of the Factoring game for any one-
way function and obtain similar results; there’s nothing
special about Factoring being used in the proofs. This
game-theoretic perspective might be useful in studying
the tradeoff between efficiency of encryption and secu-
rity in cryptosystems. In general, it would be interest-
ing to investigate a perspective where the success of a
cryptosystem depends on the adversary being “bounded
rational” rather than computationally bounded in some
specific sense.

1.2 Further Discussion of the Model
Here, we further discuss various features of our

model and compare it to alternative ones.
Our criteria for a reasonable model is that it should

begeneral, i.e., be relevant to a class of situations rather
than a single specific situation, and that it should have
explanatory power, i.e., not only should it simply cor-
respond to an observed phenomenon but provide some

further insight. For comparative purposes, in the context
of the Factoring game, one can think of some alterna-
tive models that predict a win for Alice. For example,
one could imagine that the players have a fixed finite
amount of time to make a decision, with Alice given
say 10 seconds to choose her number, and Bob 100 sec-
onds to respond with the prime factors. It’s clear that
if Bob can’t factor a random large number (which could
be generated quickly by Alice), he loses, however this is
an unsatisfactory model in many respects. First, it deals
with a very specific situation, so it cannot say anything
about computational complexity or how equilibria de-
pend on the power of technology. Second, the model
is inherently non-robust. Bob might be able to factor
Alice’s number in 101 seconds - in a real-life situation,
this difference shouldn’t affect his payoff too much, but
in this model, it does. By adopting aflexible model
of bounded rationality, where payoffs degrade contin-
uously with time, we avoid such pathological effects.

One way to make the fixed-time model more general
is quantify over the time limit: to say, for example, that
if Alice is allowed t units of time, then Bob is allowed
t2 units of time. This kind of approach is taken when
formulating the notion of “computational equilibrium”
[15, 17] where they limit the set of machines being used
to those that run in some security parameter where our
model makes no such restriction on machines but con-
trol time with utility. Another problem with the com-
putational equilibrium model is that though it might be
consistent with the observed phenomenon, it’s unclear
why the assumptions the model makes should hold. In
such a case, the model is simply a way to re-formulate
a phenomenon, rather than an explanation for it. In
contrast, in our model, there are clear motivations for
the choices made. Discounting is based on time prefer-
ence of utility, which is well established and extensively
used in economics [11]. Also our interpretation of dis-
count rates in terms of the power of current technology
matches the intuition that a player armed with a more
powerful computer should be able to make a more ratio-
nal decision, i.e., more in its self-interest. Finally, our
use of asymmetric discount rates models asymmetries
in the roles of players and in the power of technology
available to them.

Regarding some of the more specific choices made,
one could question why we use exponential discount-
ing rather than some other form of discounting. Ex-
ponential discounting is still the discounting model of
choice in economics and game theory, but there have
been arguments made that other models such as “hy-
perbolic discounting” more accurately represent human
time preference of utility [11]. As it turns out, the exact
choice of discounting model does not matter very much
to us - our main results on the Factoring game and the
general result on bounded-payoff games (Theorems 3,
1 and 7) go through even in the hyperbolic discounting
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model and, we suspect, in any reasonable model of dis-
counting.

Another issue which can be debated is whether each
player’s utility is discounted only by its own compu-
tational time or by some function of its computational
time and the computational time of the other players.
In a strategic situation, it seems natural to penalize a
player only for its own computation. Consider a two-
player simultaneous-move game, where each player
plays without knowledge of the other player’s action.
Suppose Player 1 plays first in this game. Should Player
1 be charged for Player 2’s time as well, since the out-
come is determined only after Player 2 has played? We
think not, since Player 1 can use its extra time doing
other things, garnering utility in other ways. Of course,
if one player plays first, that might seem to “sequential-
ize” the game. For our model to apply, there has to be a
mechanism in place to ensure that the players do in fact
act independently.

Our model can, in principle, deal with both positive
and negative payoffs - discounting predicts, as seems
intuitive, that positive payoffs should motivate agents
to play quickly, while negative payoffs should cause
agents to procrastinate. However, in this paper, we deal
only with games with positive payoffs. This is because
it’s tricky to define what happens if the first player’s
computation finishes within a finite time but the sec-
ond player’s strategy computation never halts. In some
sense, this corresponds to the second player not play-
ing the game at all. With strictly positive payoffs, we
can be guaranteed that in an equilibrium situation, all
players will play within a finite time - it is in the inter-
est of all players to play as quickly as possible. A way
to avoid the issue with positivity of payoffs would be
to give players preference orderings on outcomes rather
than ascribing real payoffs, as is often done in game the-
ory [18], and have the preference orderings vary with
computational time. Though perhaps a more accurate
model, this has the disadvantage of being very cumber-
some mathematically.

1.3 Related Work
Bounded rationality is a rich area, with lots of work

in the past couple of decades. We survey some of that
work and clarify the relationship to our ideas, with an
emphasis on more recent work. There are several ex-
cellent surveys and references on bounded rationality
[4, 19–21].

Early work focused mainly on bounded rational-
ity in the context of the repeated Prisoner’s Dilemma
game, where strategies are modeled as finite automata
[2, 3, 6, 22]. There were some works during this
period which modeled strategies by Turing machines
[5, 23], but these works were concerned with Turing
machine size as a complexity measure rather than time.
There has also been a good deal of work in the eco-

nomics literature studying the consequences for eco-
nomics of the constraint that agents act incomputable
ways [4, 24, 25], but these works do not deal with com-
putational complexity.

Recently there has been a resurgence of interest in
modeling strategies as general Turing machines. We
note especially the two papers [8, 14] which discuss the
Factoring game. Rather than specifying an explicit so-
lution to the puzzle of the Factoring game, these works
provide general frameworks and results for taking com-
putational costs into account when playing games. Our
contribution in this paper is in providing a concrete and
natural model which captures the cost of computational
time, and using it to solve the Factoring puzzle.

Other recent works [12, 13] consider computer pro-
grams as strategies, but in the context of a different
kind of equilibrium known as the program equilibrium,
where rationality is modeled by letting each player’s
program have as input the code of the other player’s
program. As mentioned earlier, Fortnow [12] consid-
ers discounted computation time in this context to ob-
tain a broader range of program equilibria rather than
to model bounded rationality, and he allows only for a
single discount factor.

The idea of discounting time has also been proposed
in the completely different context of verification [26].

2 Preliminaries
We review standard concepts for two-player games.

For a more detailed treatment, refer to the books by
Osborne and Rubinstein [18] and Leyton-Brown and
Shoham [27].

In this paper, we only considerone-shotgames of
perfect information, where each player makes a single
move. We represent these games innormal formas a
four tupleG = (A1, A2, u1, u2), whereAi is the action
space for playeri. The utility functionui : A1 × A2 →
ℜ>0 is a payoff function specifying the payoff that ac-
crues to playeri depending on the actions played by
the two players. We consider both the simultaneous
version where both players play their actions simulta-
neously and the sequential version where player 2 can
base his action on the action taken by player 1.

As mentioned before, we assume in this paper that
payoff functions are always non-negative.

Strategies describe how the player’s choose their ac-
tions. A pure strategy for Player 1 is simply an element
of A1. For simultaneous-move games, a pure strategy
for player 2 is just an element ofA2. For sequential
games, a pure strategy for player 2 is a function from
A1 into A2. We useSi to represent the pure strategy
space for playeri and we extend the utility functionsui

to strategies in the natural way.
A mixed strategy for a player is a probability distri-

bution over its pure strategies. The payoff for a game
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using the mixed strategies is just the expected payoff
when each player chooses their strategies independently
from their chosen distributions.

A pure-strategy Nash equilibrium (NE) is a pair of
strategies(s1, s2) ∈ S1 × S2 such that for anys∗1 ∈ S1

ands∗2 ∈ S2, u1(s1, s2) > u1(s
∗

1, s2) andu2(s1, s2) >

u2(s1, s
∗

2). A pair of strategies is anη-NE if neither
player can increase its payoff by more thanη by play-
ing a different strategy, given that their opponent plays
the same strategy as before. For smallη, the players
might be satisfied with anη-NE rather than a pure NE,
since they might be indifferent to small changes in their
payoff function.

A mixed-strategy Nash equilibrium is a pair of mixed
strategies for which neither player can increase their ex-
pected payoff by playing a different mixed strategy, as-
suming that their opponent plays the same mixed strat-
egy as before. The notion of anη-NE for mixed strate-
gies is defined in an analogous way to the definition for
pure strategies.

The famous theorem of Nash [28] states that every
game over compact action spaces has a mixed-strategy
Nash equilibrium. When we say “Nash equilibrium” in
this paper, we mean a mixed-strategy Nash equilibrium
unless otherwise stated.

3 Our Model
The normal-form representation of a game does not

say anything about how a strategy is actually imple-
mented by a player. Depending on the method of imple-
mentation used, there might be further costs incurred -
the analysis of these costs may itself be game-theoretic.
This insight is formalized by the notion of ametagame.
Given a gameG, the metagame is a new game which
augmentsG by modeling outside factors which are rel-
evant to playingG. Thus a metagame aims to be a
more accurate model of howG might play out in the
real world.

We consider themachine metagame, which presumes
that a strategy is implemented by some computational
process. We model the computational process as a prob-
abilistic Turing machine, which is a very general model
of computation. By the Church-Turing thesis, proba-
bilistic Turing machines can compute any function that
is effectively computable. The motivation for consider-
ing probabilistic machines is the idea that randomness
is also a resource available in the real world.

In the machine metagame corresponding to a game
G = (A1, A2, u1, u2), actions for Playeri are prob-
abilistic Turing machines rather than elements ofAi.
Since we only consider countable strategy sets, for each
i the elements ofAi may be represented by binary
strings in some canonical way, with each string repre-
senting a strategy and each strategy represented by a
string. If a probabilistic TM played by Player 1 outputs

a stringx with probability p(x), this is interpreted as
Player 1 playing a strategyx with probability p(x) in
the gameG.

Now that strategies are Turing machines, computa-
tional issues can be factored into the game, even though
for a fixed game, there is no natural notion of an “in-
put size.” We address this issue by discounting each
player’s payoff by the time taken to produce a (repre-
sentation of a) strategy. The discount factors for the
two players might be different, reflecting the possibili-
ties that the game is asymmetric between the two play-
ers, and that the two players have differing amounts of
computational resources.

Given a gameG = (A1, A2, u1, u2), we formally
define the(ǫ, δ)-discounted version ofG. This is the
discounted time machine metagame corresponding to
G, where the player’s computation times are discounted
by 1 − ǫ and 1 − δ respectively. In this game, each
player’s action space is the class of all probabilistic Tur-
ing machines. Each player’s Turing machine gets as in-
put ⌈1/ǫ⌉ and⌈1/δ⌉ in binary - this corresponds to the
players having full information about the game. If the
game is extensive, Player 2’s Turing machine gets as ad-
ditional input the output of Player 1’s Turing machine.

We formally specify how payoffs are determined. We
first consider the case where both player’s Turing ma-
chines halt on all computation paths. Given a compu-
tation pathz of a probabilistic TM, lett(z) denote the
length of the computation path (i.e., the time taken by
the computation),f1(z) ∈ A1 the action inA1 corre-
sponding to the output of the pathz, andf2(z) ∈ A2

the action inA2 corresponding to the output of the
path z. Then the payoffu1(M, N) of Player 1 cor-
responding to Player 1 playing a probabilistic Turing
machineM and Player 2 playingN is the expecta-
tion over computation pathsz and w of M and N
respectively of(1 − ǫ)tz u1(f1(z), f2(w)). Similarly,
the payoffu2(M, N) of Player 2 is the expectation of
(1 − δ)twu2(f1(z), f2(w)).

In addition, we require a convention for payoffs on
non-halting paths. In this case, a player whose machine
does not halt gets payoff 0 (corresponding to discount-
ing for infinite time), and if the other player’s machine
does halt, the player gets the maximum possible payoff
over all actions inA1 of playing its action, discounted
by the computation time of playing its action.

We define two new equilibrium concepts, which cor-
respond to equilibria that are robust when the discount
ratesǫ andδ tend to zero. Our motivation for being in-
terested in this limiting case is that computational costs
grow smaller and smaller with time (or equivalently,
computational power increases with time) - this corre-
sponds toǫ andδ approaching 0.

We say that a pair of probabilistic machines(M, N)
is a uniform Nash equilibrium (NE) if for every pair of
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machines(M ′, N ′),

lim inf
ǫ,δ→0

u1(M, N) − u1(M
′, N) > 0

and
lim inf
ǫ,δ→0

u2(M, N) − u2(M, N ′) > 0.

We say that(M, N) is a strong uniform NE of the dis-
counted game if there is a functionf such that(M, N)
is an f(ǫ, δ)-NE for the (ǫ, δ)-discounted game, for
some functionf wheref(ǫ, δ) tends to 0 when bothǫ
andδ tend to 0.

As the name indicates, the notion of a strong uniform
NE is a stronger concept since it requires a fixed equi-
librium strategy pair to be resilient in the limit against
deviating strategies which might depend onǫ andδ. In
contrast, a uniform NE is only required to be resilient in
the limit against other fixed strategies.

The definition of uniform equilibrium above assumes
thatǫ andδ are independent - i.e., the equilibrium con-
dition holds irrespective of howδ varies withǫ, as long
as they both tend to 0. In some of our results, we will
be concerned with the situation whereδ is a function of
ǫ such thatδ → 0 whenǫ → 0. We will abuse notation
by referring to the corresponding notion of equilibrium,
where the limit is now taken only asǫ → 0, also as a
uniform equilibrium.

We say that a payoff pair(u, v) is a uniform equilib-
rium payoff if there is a uniform equilibrium(M, N)
such thatu1(M, N) → u andu2(M, N) → v in the
discounted game whenǫ, δ → 0

The above equilibrium concepts are defined for pure
strategy NEs, but the definitions extend easily to mixed
strategy NEs.

All the definitions above can be generalized easily to
N -player games forN > 2 and indeed the results of the
Section 5 all hold forN -player games as well.

4 The Factoring Game
In our formulation of the Factoring game, the win-

ning player receives a payoff of 2 (before discounting)
and the losing player receives a payoff of 1. The precise
values of these payoff are not important for our main
results.

The (ǫ, δ)-discounted time version of the Factoring
game is defined in the usual way. In our presentation
here, we chooseδ = ǫc, for some constantc > 1. The
Factoring game is naturally asymmetric. First, it is se-
quential: Alice chooses an number, and then Bob acts
based on knowledge of Alice’s number. Also, the natu-
ral application of the Factoring game is to cryptography,
with Alice using a cryptosystem and Bob trying to break
it. In this context, by the polynomial-time Church-
Turing thesis, the computational model Bob uses is at
most polynomially faster than that of Alice.

Note that analogues of our results also go through for
other dependences ofδ on ǫ. The choice we make is
partly intended to illustrate that our model can capture
one of the typical assumptions of complexity-theoretic
cryptography.

We first show that if Factoring is easy in the worst
case, then every uniform NE of the discounted game
yields payoff 2 to Bob.

Theorem 1 If for all linear-time samplable distribu-
tionsD, Factoring can be solved in probabilistic poly-
nomial time with success probability1 − o(1) overD,
then for all sufficiently largec, the (ǫ, ǫc)-discounted
version of the Factoring game has a uniform Nash equi-
librium with payoff(1, 2), and(1, 2) is the only uniform
equilibrium payoff.

This result follows from the following lemma, which
gives a tighter connection between the feasibility of
Factoring and the uniform equilibrium payoffs of the
discounted game.

Lemma 2 If, for all linear-time samplable distributions
D. Factoring can be solved in probabilistic timeo(nc)
with success probability1−o(1) overD, then there is a
uniform Nash equilibrium of the(ǫ, ǫc)-discounted ver-
sion of the Factoring game yielding a payoff of(1, 2).
Moreover, if c > 1, then every uniform equilibrium
yields payoff(1, 2).

Proof. We first show the existence of the claimed
uniform equilibrium giving a payoff of(1, 2), and then
show that this is the only uniform equilibrium payoff
achievable.

The following pair of probabilistic machines(M, N)
gives a pure-strategy uniform equilibrium with payoff
(1, 2). M simply outputs the number 2.N uses the
trivial deterministic algorithm for Factoring running in
exponential time to find a prime factorization for the
number produced byM .

As ǫ → 0, the payoff for this pair of strategies tends
to (1, 2). We now show that(M, N) is a uniform NE
for the game.

Since the payoff for Bob is bounded above by2, irre-
spective of what it does, it’s clear that the advantage it
can gain from playing a different strategy tends to zero
asǫ tends to zero. We still need to show that Alice can’t
do any better in the limit.

Let S be any (mixed) strategy for Alice -S is a prob-
ability distribution over probabilistic TMs. WheneverS
outputs a number, player 1 gets payoff at most 1, since
Bob factors the number. WhenS does not output a num-
ber, player 1 gets payoff 0; thus, in either case, Alice’s
payoff is at most 1. This shows that Alice can’t do better
than playingM .

Showing that(1, 2) is the only uniform equilibrium
payoff possible is more involved. For the purpose of
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contradiction, let(a, b) be a uniform equilibrium pay-
off, where eithera 6= 1 or b 6= 2. We derive a contra-
diction.

We first consider the casea 6= 1. It cannot be the
case thata < 1, since Alice can always get payoff at
least 1 in the limit by just outputting 1, irrespective of
what Bob does. Thus it must be the case that1 < a 6 2.

Now we show thatb = 2. Let (S, T ) be a uniform
NE with payoff(a, b). Let γ(ǫ) be the probability that
S outputs a number with length at most1/ǫ, where the
probability is over the randomness of choosing a strat-
egy, as well as the randomness in playing one (since
a pure strategy is a probabilistic TM). We show that
γ(ǫ) → 1 asǫ → 0. For the sake of contradiction, sup-
pose that the limit infimum ofγ(ǫ) is less thanα < 1.
This means that we can chooseǫ arbitrarily small for
whichS outputs a number with length at least1/ǫ with
probability at least1 − α. Conditioned on outputting
such a number, the payoff of Alice is at most2(1−ǫ)1/ǫ

which tends to2/e < 1 asǫ → 0. From the previous
para, we know that Alice gets payoff at least 1 from
playingS, hence from an averaging argument, we can
chooseǫ arbitrarily small for which there is a probabil-
ity β bounded away from 0 that Alice outputs a number
of length at most1/ǫ and gets a payoff greater than 1.
We show that in this case, Bob can improve its payoff
by a non-trivial amount by playing a different strategy
T ′.

When definingT ′, we use the assumption that Factor-
ing is easy on average for all linear-time samplable dis-
tributions (note that this assumption was not used in the
argument that there’s a uniform equilibrium with payoff
(1, 2)). Consider the linear-time samplable distribution
D on inputs of length|1/ǫ| defined as follows: Sim-
ulateS independentlyk/β times for1/ǫ computation
steps (wherek is a constant to be decided later), and
output the first number produced byS of length at most
|1/ǫ|, padded up to length|1/ǫ|, outputting an arbitrary
number of that length if all the runs ofS give numbers
that are too long. ClearlyD is linear-time samplable.
Here we use the fact that Factoring ispaddableto any
given length (padding here just involves multiplication
by a power of two). There is some algorithmA that
works with success probability1 − o(1) overD, by as-
sumption.

Consider the following strategyT ′ for Bob: it looks
at the number output by Alice. If this number is at most
1/ǫ bits long, it appliesA to this number. If the number
is longer, it plays strategyT . The process of looking at
the number and deciding what to do based on its length
takes timeO(1/ǫ), but if c > 1, then(1−ǫc)O(1/ǫ) → 1
whenǫ → 0, and hence this additive term incurs a negli-
gible discount for Bob. Conditioned on Alice outputting
a number that’s at least1/ǫ bits long, Bob’s payoff is
the same in the limit when playing strategyT ′ as when
playing strategyT . In the other case, Bob gets a pay-

off of at least2(1 − e−k) in the limit (since he suc-
cessfully factors while using(o(1/δ) time), which for
large enoughk is strictly better than it did when playing
strategyT , given our assumption that Alice had a prob-
ability bounded away from 0 of outputting a number at
most1/ǫ bits long and getting a payoff greater than 1
(which would imply Bob got a payoff less than 2). This
is a contradiction to(S, T ) being a uniform NE.

Thus, we get thatγ(ǫ) → 1 as ǫ → 0. But then
the strategy of Bob which simply applies theo(nc) fac-
toring algorithm to the number output by Alice gets a
payoff of 2 in the limit. This implies thatb = 2.

If a > 1 and b = 2, it must be the case that
(a, b) = (1, 2) for the uniform NE(S, T ), since the
expected payoff of any pair of strategies in this game is
bounded above by3. �

Next, we show an essentially converse. If Factoring
is hard on average, then there is a uniform NE for the
discounted game with payoff(2, 1).

Theorem 3 Suppose there is a linear-time samplable
distributionD for which there is no probabilistic poly-
nomial time algorithm correctly factoring with success
probability Ω(1) over D on inputs of lengthn for in-
finitely manyn. Then for every constantc > 1, there
is a uniform NE for the(ǫ, ǫc)-discounted version of the
Factoring game with payoff(2, 1).

The key to the proof of Theorem 3 is in the follow-
ing Lemma 4 which, similar to above, makes a stronger
connection betweenc and the running time of a factor-
ing algorithm. The uniform NE which we show to ex-
ist is a simple one where Alice plays a random number
of length approximately1/ǫ and Bob halts immediately
without output. We show that any deviating strategy for
Bob which gets him an improved payoff in the limit can
be transformed into a probabilistic polynomial-time al-
gorithm which factors well on average.

Lemma 4 Suppose there is no algorithm for factoring
running in timencpolylog(n) for large enough input
lengthn, and succeeding on aΩ(1) fraction of inputs
for infinitely many input lengthsn. Then there is a uni-
form NE for the(ǫ, ǫc)-discounted version of the Fac-
toring game with payoff(2, 1).

Proof. The following pair of strategies(M, N) is
a uniform NE.M selects a number of lengthn(ǫ) =
⌈1/ǫ⌉⌈1/ log(⌈1/ǫ⌉)⌉ at random and outputs the num-
ber.N halts immediately without output.

First we show that this gives payoff(2, 1). It’s clear
that the payoff forN is 1 since it halts without output.
Therefore the undiscounted payoff forM is 2. We show
that the discounting makes a negligible difference to
this, sinceM doesn’t need to spend too much time gen-
erating a random number of lengthn(ǫ). Specifically,
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given the number⌈1/ǫ⌉ on its input tape,M computes
n(ǫ) in unary and stores it on a separate tape - this can
be done in timeO(n(ǫ)). It then generates a random
number on the output tape, using the computed value of
n(ǫ) to ensure the number is of the right length. The
total time taken byM is O(n(ǫ)) = O(1/(ǫ log(1/ǫ))),
and the discounting due to this is(1 − ǫ)O(n(ǫ)), which
is 1 in the limit asǫ → 0.

Next we show(M, N) is a uniform NE. Alice has
payoff bounded above by 2 for any strategy it plays, so
clearly it cannot do better with a different strategyS.
The bulk of the work is showing that Bob cannot do
better.

Suppose, on the contrary that there is a strategyT for
Bob such that the strategy pair(M, T ) yields payoff at
least1 + γ for Bob for arbitrarily smallǫ, whereγ >
0. We show how to extract fromT an algorithm that
factors efficiently on average on infinitely many input
lengths.

Choose a infinite sequenceǫ1, ǫ2 . . . such that for
eachi, 1 6 i 6 ∞, the strategy pair(M, T ) yields
payoff at least1 + γ for Bob in the(ǫi, ǫ

c
i)-discounted

game, andn(ǫi) > n(ǫi−1). Such a sequence exists by
the assumption that(M, N) is not a uniform NE.

We show that there must exist a pure strategyN for
Bob such that there is an infinite setI for which(M, N)
yields payoff at least1+γ/2 for Bob for all ǫi such that
i ∈ I. This argument takes advantage of the fact that the
Factoring game has payoffs bounded above by 2. By a
Markov argument, it must be the case for eachi ∈ N

that the pure strategies in the support ofT which yield
payoff at least1 + γ/2 must have probability weight at
leastγ/2. Now, if each pure strategy only yields payoff
at least1 + γ/2 finitely often, then we can choosei
large enough so that the pure strategies yielding payoff
at least1 + γ/2 in the (ǫi, ǫ

c
i)-discounted game have

probability weight less thanγ/2 in the support of the
mixed strategyT , which is a contradiction.

Let B = {n(ǫi), i = 1 ∈ I}. B is an infinite set, by
assumption.

We useN to define a probabilistic algorithmA for
solving Factoring well on average on all large enough
input lengths inB, contradicting the assumption of the
theorem. Given an numberx of length n, A simply
runsN on x log(n) times independently, halting each
run after timenc⌈log(n)c+2⌉. If any of these runs out-
puts numbersy1 andy2 such thaty1∗y2 = x, A outputs
these numbers, otherwise it outputs nothing. The run-
ning time ofA is O(nc log(n)c+3). We prove that for at
least anΩ(1) fraction of strings of lengthn for infinitely
manyn, A factors correctly with probability1 − o(1).

The idea is to analyze the payoff for Bob from the
strategy(M, N), and show that an expected payoff
greater than 1 means that a significant fraction of com-
putation paths must halt quickly and factor correctly.
Given a numberx of lengthn(ǫ) ∈ B and a compu-

tation pathz of N when givenx, let Ixz = 1 if path
z terminates in a correct factoring ofx and 0 other-
wise, txz be the time taken along pathz, andpxz be
the probability of taking pathz. We have that, for any
x, Σzpxz = 1. Let f(x) = Σz(1 + Ixz)pxz(1 − δ)txz ,
whereδ = ǫc. Then the payoff of Bob isΣxf(x)/2n(ǫ).
By assumption, this quantity is at least1 + γ/2. By a
Markov argument, this implies that for at least aγ/4
fraction of stringsx of lengthn(ǫ), f(x) > 1 + γ/4.

Fix any suchx. We classify the computation pathsz
for the computation ofN on x into three classes. The
first is the set ofz for which Ixz = 0. This set con-
tributes at mostΣzpxz(1 − δ)txz 6 Σzpxz 6 1 to
f(x). The next class is the set ofz for which Ixz = 1
andtxz > 2 log(1/δ)/δ. This set contributes at most
Σz2pxz(1 − δ)2 log(1/δ)/δ 6 Σz2pxzδ 6 2δ = o(1)
to f(x) (here theo(1) refers to dependence onn(ǫ) as
ǫ → 0). Thus we have thatΣz∈Zpxz > γ/4 − o(1),
whereZ is the set ofz for which Ixz = 1 andtxz <
2 log(1/δ)/δ.

This means that with probability at leastγ/4 over
stringsx of size n(ǫ) ∈ B, N halts in time at most
2 log(1/δ)/δ and outputs factors ofx with probability
at leastγ/4−o(1). This implies that for all large enough
n ∈ B, with probability at leastγ/4 − o(1) over num-
bers of sizen, N halts in time at mostnc⌈log(n)c+2⌉
and factorsx with probability at leastγ/4−o(1) (we’re
simply upper bounding the time as a function ofn rather
than ofδ).

SinceA amplifies the success probability ofN by
running itlog(n) times independently, the success prob-
ability of A is at least1 − o(1) on aΩ(1) fraction of
inputs, for infinitely many input lengths. �

Essentially the same proof gives a more general ver-
sion of Lemma 4 - if there issomelinear-time samplable
distributionD such that no probabilistic algorithm run-
ning in time ncpolylog(n) achieves anΩ(1) success
probability for Factoring overD, then there is a uni-
form Nash equilibrium for the(ǫ, ǫc)-discounted Fac-
toring game achieving a limit payoff of(2, 1). The only
difference is thatM plays a random number selected ac-
cording toD, and we argue with respect to this distribu-
tion rather than with respect to the uniform distribution
when defining the factoring algorithmA. Theorem 3
follows immediately from this more general version.

Unlike in the case of Lemma 2, this is not the only
uniform Nash equilibrium when Factoring is hard. In-
deed, an examination of the proof of Lemma 2 shows
that we did not actually use the assumption when show-
ing there was a uniform NE with payoff(1, 2); the as-
sumption was only to prove the second part of the the-
orem. Thus, even when Factoring is hard, there is a
uniform NE with payoff(1, 2).

However, an important point to note is that the dis-
counted Factoring game is a sequential game, where
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Alice plays first. Thus, even though there might be a
uniform NE with payoff(1, 2), Alice can control which
Nash equilibrium is reached, and it is natural for it to
select the equilibrium giving it a higher payoff. The key
question in the discounted Factoring game is whether
thereexistsa uniform NE giving Alice a payoff greater
than 1 - Lemma 2 shows that when Factoring is easy,
there isn’t, and Lemma 4 shows that when Factoring is
hard on average, there is. This is somewhat related to
the notion ofsubgame-perfectequilibria in traditional
game theory [27]. It’s an interesting challenge to de-
fine an appropriate notion of subgame-perfection for
our model which could also be used in a variation of
our model where both Alice and Bob are discounted by
the total time taken by the two of them.

If one interprets Alice getting a payoff higher than 1
as Player 1 “winning” the game, this result is in close
accordance with intuition. Alice wins the game if and
only if Factoring is hard. In practice, Factoring is be-
lieved to be hard, and therefore in practice, we expect
Alice to win the game, and not Bob as traditional game
theory would predict.

The uniform equilibrium in the statement of
Lemma 2 yielding a payoff of(1, 2) is in fact also a
strong uniform equilibrium - this follows easily from
the proof. Can Alice hope for a strong uniform equilib-
rium yielding it a payoff of 2 in the case that Factoring
is hard? The answer is no.

Theorem 5 Consider the(ǫ, δ) discounted version of
Factoring, whereδ = o(ǫ). Let (S, T ) be any strong
uniform NE of this game.Then the payoff pair corre-
sponding to(S, T ) is (1, 2).

Proof. The proof is very similar to the proof of the
second part of Lemma 2, except that we can no longer
use the assumption that Factoring is in polynomial time.
But we can use an alternate strategyNǫ for Bob which
plays the role of the factoring algorithm in the proof of
Lemma 2.

Nǫ simply implements a look-up table, which stores
the numbers whichS may output, along with their fac-
tors.Nǫ need only store numbers of length1/ǫ, together
with their factors. The key is that just by encoding the
look-up table in its state machine,Nǫ can find the fac-
tors of the number output byS in time O(1/ǫ), and
sinceδ = o(ǫ), this means that the discount factor is
1 in the limit. The rest of the argument is the same as in
the proof of the second part of Theorem 2. �

Of course the dependence of the strategy of Bob onǫ
is essential, since we know that there is a uniform equi-
librium yielding Alice a payoff of 2 in the limit. More-
over, the proof illustrates why the notion of a strong uni-
form NE might be too strong an equilibrium concept -
Bob can push Alice’s limit payoff down to 1, but the

proof involves it playing strategies whose sizes grow ex-
ponentially in1/ǫ! For small values ofǫ, this is clearly
infeasible.

The issue here is that there is a tradeoff between hard-
ware and time. Computations can be made very effi-
cient by exponentially increasing hardware, but in the
physical world, both hardware and time are costly. Our
model explicitly captures the idea of time being costly
through discounting, but the expense of hardware is
captured implicitly in the uniform equilibrium concept.

There are other ways of defining equilibrium con-
cepts which can capture the cost of hardware in a
more explicit manner. For instance, we could define
anf(ǫ, δ)-resilient uniform NE as a uniform NE where
no player gains in the limit by playing a pure strategy
whose size is bounded byf(ǫ, δ). Since a pure strat-
egy is just a probabilistic Turing machine, “size” has a
natural representation - it’s the number of bits required
to explicitly present the state space, transition function
and alphabet of the Turing machine. A uniform NE as
we define it anO(1)-resilient uniform NE, while strong
uniform NE aref(ǫ, δ)-resilient uniform NE forf arbi-
trarily large.

Now let us considerf(ǫ, δ)-resilient NE whereδ
is polynomially bounded inǫ, andf is polynomially
bounded in1/ǫ. By using essentially the proof of Theo-
rem 4, as well as the fact that a probabilistic Turing ma-
chine of size K and operating in time T can be simulated
by a probabilistic Boolean circuit of sizeO(K + T )2,
we get that there there is anf(ǫ, δ)-resilient uniform NE
giving Alice a payoff of 2 in the limit, unless Factor-
ing can be solved correctly by polynomial-size circuits
on anΩ(1) fraction of inputs, for large enough input
lengths.

Thus, not only does is the difference between feasi-
bility and infeasibility of factoring captured by a dif-
ference in the structure of equilibria for the Factoring
game, but by a natural modification of the notion of
uniformity, we can capture the difference between uni-
formity and non-uniformity! This raises the possibility
that there might be interestingconcrete complexityno-
tions that might be captured by game theory as well -
we need not restrict attention to what happens in the
limit as ǫ → 0. Perhaps there are novel notions of com-
plexity that can be extracted from the game-theoretic
viewpoint, which give a better understanding of the gap
between finite complexity and asymptotic complexity?

We conclude this section by discussing our choice of
parameters for the Factoring game, and showing that
the results are robust to the choices we make. First, we
examine the payoffs. Any choice of payoffs which are
all positive and for which Bob gets strictly more (resp.
Alice gets strictly less) if Bob succeeds in factoring will
yield essentially equivalent results.

Second, we discuss the discount factors. Our choice
of dependence ofδ onǫ was made to illustrate nicely the
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correspondence between infeasibility and the existence
of equilibria yielding Alice a high payoff. But the poly-
nomiality of the dependence is not critical to our proofs
- in general, if1/δ = f(1/ǫ) for some functionf , then
our results hold when feasibility means solvability in
time o(f(n)) and infeasibility means unsolvability on
average in time slightly more thanf(n).

In the special case thatδ = ǫ, we get that Alice has a
winning strategy under the natural assumption that Fac-
toring is not in quasi-linear time on average.

5 Properties of Discounted Time Games
The most fundamental results in a theory of games

of a given form concern existence of equilibria. Here
we prove a couple of results of this form. The first
result shows that the concept of uniform equilibrium
for the discounted version of a finite game corresponds
nicely to the concept of Nash equilibrium for the origi-
nal game. The second result complements this by show-
ing that discounted games might have equilibria that the
original game does not possess.

We show that any Nash equilibrium in a finite game
G translates to a strong uniform Nash equilibrium yield-
ing the same uniform payoff in the discounted version
of G.

Theorem 6 Let G be a finite two-player game. Given
any Nash equilibrium(S, T ) of G, there is a strong uni-
form Nash equilibrium(S′, T ′) of the discounted ver-
sion ofG which yields the same payoff in the limit as
ǫ, δ → 0.

Proof. We assume thatG is a finite two-player game in
normal form. IfG is sequential and given in extensive
form, we just consider the image normal-form game,
which is known to inherit its equilibria from the sequen-
tial game.

Let (S, T ) be a (possibly mixed-strategy) NE ofG.
We define a strategy pair(S′, T ′) for the discounted
version ofG, and argue that this is a strong uniform
Nash equilibrium for the discounted version, with the
same payoffs for both players in the limit. Given any
pure strategys1 of a player inG, choose in an arbitrary
way a Turing machineMs1

which ignores its input and
halts after outputting a representation ofs1. If S gives
probabilityp1 to strategys1, then we give machineMs1

probabilityp1 in S′. T ′ is defined in an analogous way
givenT .

The key point is that irrespective of the way the rep-
resentative machines for strategies are chosen, they are
guaranteed to halt in finite time. Asδ andǫ approach
zero, the discount factors approach one, and hence the
payoff in the discounted game from playing(S′, T ′) ap-
proaches the payoff from playing(S, T ) in G.

It still remains to be shown that(S′, T ′) is anη-NE
for the discounted game, whereη → 0 whenǫ, δ → 0.

This would imply that(S′, T ′) is a strong uniform NE
for the discounted game. We show that player 1 can-
not gain a significant advantage from playing a differ-
ent mixed strategyS′

1 - the analogous result holds for
Player 2 as well.

Any mixed strategyS′

1 in the discounted game can be
transformed into a mixed strategyS1 in G - each pure
strategy is given the same probability of being played in
G as it has of being output by a probabilistic TM in the
discounted game (the probability weight of non-halting
computation paths is assigned to an arbitrary strategy in
S1). Because of the discounting, the payoff that Player
1 can get by playingS′

1 in the discounted game is at
most the payoff that he can get by playingS1 in G. But
the payoff by playingS in G is at least the payoff by
playing S1 in G, and the payoff by playingS′ in the
discounted game approaches the payoff by playingS in
G asǫ, δ → 0. This shows that the advantage of playing
S′

1 in the discounted game must tend to zero asǫ, δ tend
to zero, for an arbitraryS′

1, implying that(S′, T ′) is a
strong uniform NE for the discounted game. �

Consider the Largest Integer Game where both play-
ers simultaneously play integers. The player playing the
largest integer receives a payoff of 100 with each receiv-
ing 50 if they play the same integer. This game has no
Nash equilibrium or even an almost Nash equilibrium
(Nash’s theorem doesn’t apply because the action space
is not compact).

Next we show that almost-NEs exist, not only for
the Largest Integer game for but any countable game
with bounded payoffs. The basic idea of the proof is to
approximate the discounted countable game by a finite
game, and then reduce the existence of uniform equilib-
ria in the discounted countable game to the existence of
NEs in the corresponding finite game.

Theorem 7 LetG be a two-player game with bounded
payoffs where both players have a countable number of
actions. Then for eachǫ, δ > 0, the (ǫ, δ)-discounted
time version ofG has an(ǫ + δ)-NE.

Proof. LetG be as stated in the theorem, and letK > 1
be an upper bound on payoffs forG. Consider the(ǫ, δ)-
discounted time version ofG. We show how to approx-
imate the discounted game by a finite gameGǫ,δ and
then use the existence of Nash equilibria in the finite
game to show the existence of approximate Nash equi-
libria in the discounted game.

The finite gameGǫ,δ is the subgame of the discounted
game where the first player plays probabilistic Turing
machines of description size at most22K2/ǫ2 , and the
second player plays probabilistic Turing machines of
size at most22K2/δ2

. By Nash’s theorem, this game has
a mixed-strategy Nash equilibrium(S1, T1). We show
that(S1, T1) is an(ǫ + δ)-NE for the discounted game.
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We show that forany mixed strategy pair(S, T ) in
the discounted game, there is a mixed strategy pair
(S′, T ′) in Gǫ,δ such thatu2(S, T ′) > P2(S, T ) − δ,
andu1(S

′, T ) > P1(S, T ) − ǫ. This implies that any
NE for Gǫ,δ is an(ǫ + δ)-NE for the discounted game.

Let (S, T ) be a mixed strategy pair in the discounted
game. We show how to construct a strategyT ′ in Gǫ,δ

for Player 2 such thatu2(S, T ′) > u2(S, T ) − δ. The
corresponding result for Player 1 follows by a symmet-
ric argument.

The argument is a “probability-shifting” argument -
we will show how to transfer probability from proba-
bilistic machines in the support ofT with size more than
22K2/δ2

to probabilistic machines with description size
smaller than that number without damaging the payoff
of Player 2 too much. Specifically, the payoff of Player
2 will not decrease by more thanδ conditional on that
strategy being played, and hence there will not be more
than aδ decrease in total.

Let N be a probabilistic machine of size more than
22K2/δ2

which has non-zero weight inT . We define
a corresponding machineN ′ of size at most22K2/δ2

,
and transfer all the probability weight ofN to N ′ in
T ′. Essentially,N ′ will be indistinguishable fromN
relative to the discounting.

The key observation is that we don’t need to take into
account computation paths inN of length greater than
K2/δ2, because the strategies output on such compu-
tation paths are so radically discounted that we may as
well assume they yield zero payoff, without incurring
too much damage to the overall payoff.N ′ behaves like
N “truncated” toK2/δ2 steps, outputting a strategy for
G if N does within that time, and looping otherwise.

We cannot simply simulateN using a universal ma-
chine and a clock, since the simulation takes too much
of a time overhead and does not preserve the payoff
to within a small additive overhead. Instead we sim-
ulateN in hardware- this is much more time efficient.
Specifically, we’re interested in the behavior ofN only
for the first K2/δ2 time steps. We can define a Tur-
ing machineN ′ with description size at most22K2/δ2

which encodes the relevant behavior ofN ′ entirely in
its finite state control. This simulation incurs no time
overhead at all.

Now, we calculate the maximum damage to Player
2’s payoff from playingN ′ instead ofN . There is
no damage to the payoff from computation paths ofN
which terminate withinK2/δ2 steps. Thus the loss in
payoff is bounded above by(1− δ)K2/δ2

K, which is at
mostδ if K > 1. This finishes the argument. �

In case the payoffs of the gameG are computable,
we get a stronger version of Theorem 7 in that uniform
equilibria are guaranteed to exist.

Theorem 8 Let G be a two-player game where each
player has a countable number of actions, and suppose
the payoffs are bounded and computable. Then the dis-
counted time version ofG has a uniform equilibrium.

Proof Sketch.The proof is similar to the proof of Theo-
rem 7, but we take advantage of the fact that payoffs are
computable. As in the proof of Theorem 7, we can de-
fine a finite truncated version of the game such that the
almost-Nash equilibria of the truncated game are also
almost-Nash equilibria of the discounted game. In or-
der to ensure uniformity, however, we have to produce a
fixedpair of strategies such that asǫ, δ → 0, neither can
gain a non-zero amount in the limit by using a different
strategy.

The basic idea is to define a strategy pair(M, N)
such that M and N deterministically compute an
almost-Nash equilibrium of the truncated game, with
M proceeding to play the strategy of player 1 in the
computed almost-Nash equilibrium, andN proceeding
to play the strategy of player 2. There are two obstacles
to this approach. The first is the computational obsta-
cle, but this can be circumvented since the entries of the
payoff matrix for the truncated game can be estimated
to any desired accuracy using sampling and the com-
putability of the payoffs of the original game, and then
the Lemke-Howson algorithm [29] can be used to find
almost-equilibria of the truncated game.

The second obstacle is that computing an almost-
Nash equilibrium of the truncated game incurs a sub-
stantial time overhead, which already drives the pay-
offs of the two players down before they play the strate-
gies corresponding to the almost-Nash equilibrium, not
to mention the simulation overhead from using a sin-
gle machine (M or N ) to find an almost-Nash equi-
librium for all ǫ, δ > 0. This obstacle is overcome
using the idea of “miniaturization” - given discount
ratesǫ andδ respectively, the players pretend that their
discount rates areǫ′ and δ′ instead, where1/ǫ′ and
1/δ′ grow very slowly as a function of1/ǫ and 1/δ.
ǫ′ and δ′ are chosen so that the players can compute
an almost-Nash equilibrium of the(ǫ′, δ′)-discounted
game quickly enough that their payoffs in the(ǫ, δ)-
discounted game are hardly affected by this computa-
tion, and that playing the strategies for the truncated
game takes relatively little time as well. The point is
that this is still an(ǫ′ + δ′)-NE for the discounted game,
and thatǫ′, δ′ → 0 asǫ, δ → 0. Hence it is a uniform
Nash equilibrium. �

The bounded-payoff assumption in Theorems 7 and 8
is essential for the conclusion to hold. Indeed, consider
the two-player game where Player 1 derives a payoff of
2i from playing integeri and Player 2 a payoff of2j

from playing integerj. It is not hard to see that this
game does not even have almost-NEs in the discounted
game.
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Theorem 7 shows that the discounted version of the
Largest Integer Game does have almost-NEs. For the
Largest Integer game, in fact, there is a strong uniform
equilibrium which yields a payoff of 0 for both players,
and every uniform equilibrium gives payoff 0 to both
players in the limit. This is intuitive: the Largest Integer
game is a game of oneupmanship, where each player
tries to outdo the other by producing a larger number. In
the process, they exhaust their computational resources
(or alternatively, end up spending an inordinate amount
of time) and end up with nothing.

In general, uniform equilibrium is a strong notion of
equilibrium, since there should be no gain in deviating
irrespective ofhow ǫ, δ → 0. Suppose we know more
about the relationship ofǫ andδ, say thatδ < ǫ2, i.e.,
Player 2 always has more computational power. In this
case there are equilibria in which Player 2 wins, say
by outputting2(1 − ǫ)3/2 while Player 1 outputs(1 −
ǫ)3/2. This is again in accordance with intuition - if the
players are asymmetric, the more patient/computational
stronger player should win this game (the discount rate
can be seen, depending on the situation, as either an
index of patience or of computational power).
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