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Parchments for CafeOBJ logics?
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Andrzej Tarlecki4

1 Faculty of Computer Science, University of Magdeburg
2 Institute of Informatics, University of Gdańsk

3 Laboratory for Foundations of Computer Science, University of Edinburgh
4 Institute of Informatics, University of Warsaw

Abstract. This paper addresses issues arising in the systematic con-
struction of large logical systems. We rely on a model-theoretic view of
logical systems, captured by institutions that are in turn presented by
parchments. We define their categories, and study constructions that may
be carried out in these categories. In particular we show how limits of
parchments may be used to combine features involved in various logical
systems, sometimes necessarily augmenting the universal construction
by additional systematic adjustments. We illustrate these developments
by sketching how the logical systems that form the logical foundations
of CafeOBJ may be built in this manner.

1 Introduction

This paper is written as a tribute to Professor Kokichi Futatsugi, the leader of
the algebraic specification community in Japan, whom we have had a chance to
meet many times over the years. One of his major undertakings was the very
successful CafeOBJ project [DF98], which led to the development of a system
that implements and executes algebraic specifications, in the tradition of the
OBJ family [GWM+00]. The system is based on solid logical foundations given
by a family of logical systems linked by a number of logic morphisms, referred
to as the CafeOBJ cube [DF02]:

MSA RWL

OSA OSRWL

HA HRWL

HOSA HOSRWL
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���� H = hidden

A = algebra
O = order
M = many
S = sorted
RWL = rewriting logic
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The eight logical systems listed above and the twelve arrows that link them are
formalised as, respectively, institutions and institution morphisms [GB92]. The
institution diagram above may be viewed as an indexed institution; the actual
logical system that underlies CafeOBJ is given as the Grothendieck institution
[Dia02] built out of it. Even if we prefer to think of the cube above as a heteroge-
neous logical environment [MT09] and work with heterogeneous specifications,
technically the differences are negligible and the main point is to understand
properly the CafeOBJ cube of institutions and their morphisms.

As far as we are aware, while the CafeOBJ literature presents the institu-
tions involved in a manner that is sufficient to understand and work with them
well, there is no document that presents the institutions involved formally in
complete detail; this applies even more to the institution morphisms that link
them. In a way, this is rather expected, as the details appear to be quite obvi-
ous, largely routine and repetitive from one institution to another, and from one
morphism to another. So, the CafeOBJ authors present the interesting aspects
of the institutions, leaving out the details.1

The main point of the present paper concerns the methodology of logic defi-
nitions. [DF02] defines the CafeOBJ cube in a top-down manner. Although in the
literature, the concepts of order-sorting, rewriting logic and hidden algebra have
been defined and studied (and integrated) separately, the technical presentation
in [DF02] starts with a large combined institution, from which suitable subinsti-
tutions are obtained subsequently. A drawback of this approach is the difficulty
of changing individual feature components in a simple way. For example, [Dia07]
claims that the base institution of equational logic could be replaced by mem-
bership equational logic, but to our knowledge, this has never been worked out.
Indeed, working this out would imply a lot of tedious repetition of the original
CafeOBJ definitions. However, even if the details seem routine and repetitive, one
cannot just leave them out without a risk of unforeseen interactions between the
modifications and the other features.

We therefore propose a bottom-up approach to the CafeOBJ cube. We present
each of the features separately, and obtain the combined institution via a general
universal construction. At each step of the combination, the details may be fine-
tuned, if needed. This approach has the benefit of increased modularity: we
can change certain feature components and then automatically re-generate the
whole picture by repeating the universal constructions involved. In this paper, we
concentrate on the methodology of this approach and therefore take the liberty
of deviating from some details of the CafeOBJ institutions as defined in [DF02].

Like CafeOBJ, we follow Goguen and Burstall [GB92] and work within the
theory of institutions as a formal framework to study and use logical systems.
We will, however, look more closely at the structure of logical sentences and their
semantics, and consider institutions to be presented by parchments [GB86]. We
employ the version of parchments introduced in [MTP98] to avoid the technically

1 We should stress though that this point may be due to our lack of complete knowledge
of the CafeOBJ literature.



unnecessary and methodologically dubious blending of models into the syntactic
aspects of logical systems.

We study various ways to extend, combine and modify these model-theoretic
parchments, thus obtaining new logical systems and morphisms between them.
We sketch how the logical systems in the CafeOBJ cube and morphisms between
them may be obtained in such a way.

We start by recalling some standard algebraic notions (Sect. 2) and the basic
concepts of the theory of institutions (Sect. 3). Then the less standard notions
of model-theoretic parchment and parchment morphism are recalled in Sect. 4.
The crucial property here is that when such parchments and their morphisms are
institutional, they present institutions and institution morphisms, respectively.
In Sect. 5 we discuss some simple ways to extend, combine and modify model-
theoretic parchments and their morphisms, and in particular the use of limits in
various parchment categories to combine institutions presented by parchments.
We show how this works on some simple examples, sketching how the institutions
and morphisms in the CafeOBJ cube may arise.

2 Algebraic preliminaries

We briefly recall the key concepts and notations used throughout this paper; we
refer to [ST12] for details omitted here.

First-order signatures are triples Θ = 〈S,Ω,Π〉, consisting of a set S of sorts,
set Ω of operation names classified by their profiles (we write f : s1×· · ·×sn → s,
n ≥ 0, to indicate that f has the arity s1. . .sn ∈ S∗ and result sort s ∈ S) and set
Π of predicate names classified by their profiles (we write p : s1×· · ·×sn, n ≥ 0,
to indicate that the predicate p has arity s1. . .sn ∈ S∗). First-order signature
morphisms map sorts, operation and predicate names to sorts, operation and
predicate names, respectively, preserving their arities and result sorts. This yields
the category FOSig.

Given a first-order signature Θ = 〈S,Ω,Π〉, a Θ-structure A consists of an
S-sorted carrier set |A| = 〈|A|s〉s∈S , for each operation name f : s1×· · ·×sn → s,
a function fA : |A|s1 × · · · × |A|sn → |A|s, and for each predicate name p : s1 ×
· · · × sn, a relation pA ⊆ |A|s1 × · · · × |A|sn . A Θ-homomorphism h : A → B
between two such Θ-structures is a family of maps h = 〈hs : |A|s → |B|s〉s∈S
that preserves results of operations and predicate relations; h is closed if it also
reflects predicate relations. Str(Θ) is the category of Θ-structures and their (not
necessarily closed) homomorphisms. For any first-order morphism θ : Θ → Θ′,
we have the usual reduct functor Str(θ) : Str(Θ′) → Str(Θ), often written as

θ. This yields a functor Str : FOSigop → Cat.2

2 Cat denotes the (quasi-)category of all categories. We will gloss over fine foun-
dational distinctions between categories at various levels of the hierarchy of uni-
verses [Mac71], and use the same term category to refer to (quasi-)categories of all
categories, of all institutions, etc.



For any signature morphism θ : Θ → Θ′, the θ-reduct has a left adjoint
Fθ : Str(Θ) → Str(Θ′); for any A ∈ |Str(Θ)|, Fθ(A) ∈ |Str(Θ′)| is its free
extension with unit ηθ : A→ Fθ(A) θ.

Logic denotes a special signature with ∗ as the only sort, no operations and a
unique predicate D : ∗. FOSig∗ is the subcategory of FOSig that has signatures
that extend Logic and signature morphisms that are identities on Logic.

The category FOSig is cocomplete, with the standard colimit construction.
The functor Str is continuous, which in particular implies that the amalgama-
tion property holds. This carries over to FOSig∗ and the restriction of Str to
FOSig∗.

For any signature Θ, Θ-terms and their evaluation in Θ-structures are defined
as usual. In particular, the algebra TΘ of terms with predicates interpreted as
empty relations is initial in Str(Θ). For any (ground) term t ∈ |TΘ| and structure
A ∈ |Str(Θ)|, we write tA ∈ |A| for the value of t in A (which is the value of the
unique homomorphism !A : TΘ → A on t).

Θ-equations and predicate applications, as well as their satisfaction in Θ-
structures, are defined as usual.

Any signature morphism θ : Θ → Θ′ determines the obvious translation of
Θ-terms to Θ′-terms, given by θ : TΘ → T ′Θ θ. This translation further extends

to Θ-equations and predicate applications. Then for any term t ∈ |TΘ|, and Θ′-
structure A′, the crucial property is that θ(t)A′ = t

A′
θ
. This yields the famous

satisfaction condition for equations and predicate applications: given any Θ-
equation or predicate application ϕ and structure A′ ∈ |Str(Θ′)|, A′ |=Θ′ θ(ϕ)
iff A′ θ |=Θ ϕ.

3 Institutions

Goguen and Burstall [GB92] formalised the notion of a logical system as an
institution, thus starting a line of important developments of adequately ab-
stract and general approaches to the foundations of software specifications and
formal system development (as envisaged by the work on Clear [BG80], and
carried forward by [ST88], see [ST12]), as well as a modern and elegant version
of very abstract model theory (as proposed in [Tar86], see [Dia08]). Another
important line of work which exploits institutions and their various morphisms
[GR02] aims at moving between logical systems within a heterogeneous logical
environment, comparing logical systems, and building complex logical systems
in a systematic manner. In our view, in spite of work on various aspects of this
area [Tar96,MTP97,MTP98,Tar00,CMRS01,CGR03,Mos03,Mos05,MT09], there
is much to add here. The current paper is a contribution to this field.

An institution INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 consists of:

– a category Sign of signatures;
– a functor Sen : Sign → Set which for any signature Σ ∈ |Sign| yields a

set Sen(Σ) of sentences, and for any signature morphism σ : Σ → Σ′, a
σ-translation of sentences, often written as σ : Sen(Σ)→ Sen(Σ′);



– a functor Mod : Signop → Class3 which for any signature Σ yields a class
Mod(Σ) of models, and for any morphism σ : Σ → Σ′, a σ-reduct of models
often written as σ : Mod(Σ′)→Mod(Σ); and

– a satisfaction relation |=Σ ⊆ Mod(Σ)× Sen(Σ) for any signature Σ ∈
|Sign|

such that the following satisfaction condition holds: for any signature morphism
σ : Σ → Σ′, sentence ϕ ∈ Sen(Σ) and model M ′ ∈Mod(Σ′), M ′ |=Σ′ σ(ϕ) iff
M ′ σ |=Σ ϕ.

For simplicity of presentation, we will look at examples of logical systems
drawn from the CafeOBJ cube in their ground versions, without variables:

GMSA GRWL

GOSA GOSRWL

GHA GHRWL

GHOSA GHOSRWL
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�

�

�
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?

?
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����

�
���� G = ground

H = hidden
A = algebra
O = order
M = many
S = sorted
RWL = rewriting logic

Variables and (universal) quantification may be introduced in a rather standard
way, see Sect. 6 for some hints. Moreover, we will simplify all of the logical
systems involved by disregarding the fact that all statements in CafeOBJ may
be conditional [DF02] — hence there are no conditional statements in the logics
below. Adding conditions to the sentences of each of the logics considered is
straightforward. Thus, we consider ground atomic sentences of CafeOBJ logics.

Furthermore, we will only attempt to capture the essential features of the
logics in the CafeOBJ cube, rather than follow their published definitions. Con-
sequently, the exact details of the logics presented below may depart from their
CafeOBJ inspirations.

Finally, the logics of CafeOBJ seem to be set up incrementally, so that for in-
stance strict equations, behavioural (hidden) equations and rewriting statements
coexist rather than replacing one another [DF02]. So, the version of rewriting
logic we consider covers equations (inherited from many-sorted equational logic)

3 Class is the quasi-category of all classes (or discrete categories). The standard def-
inition of institution puts Cat here. There would be no problem in doing the same,
and we realise that this is important for the semantics of CafeOBJ specifications.
However, since model morphisms are orthogonal to the issues discussed in this paper,
we decided to leave them out to simplify the technicalities and notation somewhat.



as well as rewriting statements. For presentation purposes, we will introduce
another logical system, GPRWL, capturing ground rewriting statements only.4

Example 3.1. A trivial algebraic institution: A = 〈AlgSig,Sen∅,Alg, |=∅〉, with
algebraic signatures (i.e., first-order signatures with no predicates, so that AlgSig
is the full subcategory of FOSig), with algebras (i.e., structures over algebraic
signatures) as models (with reducts inherited from the definition of algebras
as first-order structures, so that Alg is a “subfunctor” of Str), and with no

sentences whatsoever (so that Sen∅(Σ) = ∅).

Example 3.2. Ground equational institution: GMSA = 〈AlgSig,GEQ,Alg, |=〉,
where for each algebraic signature Σ ∈ |AlgSig|, GEQ(Σ) is the set of ground
(no variables) Σ-equations, with the translations along signatures morphisms
and the satisfaction of equations in algebras defined in the standard way (as
recalled in Sect. 2).

Example 3.3. The institution of ground order-sorted equational logic: GOSA =
〈OSSig,GOSEQ,OSAlg, |=〉, where

– An order-sorted signature 〈Σ,≤〉 is an algebraic signature Σ with a partial
ordering ≤ on its set of sorts. Order-sorted signature morphisms are like
algebraic signature morphisms which in addition must preserve the order-
ing. This yields the category OSSig of order-sorted signatures and their
morphisms.

– For each order-sorted signature 〈Σ,≤〉:
• 〈Σ,≤〉-terms are built as usual, except that in addition to the operations

in Σ, a subsort inclusion ιs≤s′ : s→ s′ and retract rs≤s′ : s′ → s is avail-

able when s ≤ s′. Then SenGOSA(〈Σ,≤〉) contains equations between
such ground terms.

• An order-sorted 〈Σ,≤〉-algebra A is a Σ-algebra where for any sorts
s ≤ s′, |A|s ⊆ |A|s′ .

• Evaluation of order-sorted 〈Σ,≤〉-terms is as usual, except that the in-
clusions ιs≤s′ are interpreted as inclusions from |A|s to |A|s′ ⊇ |A|s, and
retracts rs≤s′ as maximal partial identities from |A|s′ to |A|s ⊆ |A|s′ . So,
term evaluation is partial.5 A ground order-sorted equation t = t′ holds
in an order-sorted algebra A, written as usual A |= t = t′, if the values
in A of both t and t′ are defined and equal.

Example 3.4. Ground rewriting institution GPRWL = 〈AlgSig,GRW,RAlg, |=〉
with algebraic signatures, and then for each signature Σ ∈ |AlgSig|,

– sentences in GRW(Σ) are rewritings (or transitions) t⇒ t′ between (ground)
terms of a common sort,

4 P stands for “pure”.
5 We depart here from CafeOBJ, which to handle partiality either refers to the order-

sorted [GM92] tradition, relying on the use of “error supersorts”, with retracts yield-
ing “erroneous terms” rather than being undefined, or vaguely mentions membership
equational logic [Mes98].



– models in RAlg(Σ) are rewriting algebras6, i.e., Σ-algebras A ∈ Alg(Σ)
additionally equipped with a rewriting relation �s ⊆ |A|s × |A|s on the
carrier of each sort s in Σ, where the family of the rewriting relations is
required to be a precongruence on A, i.e., a preorder that is preserved (in
the obvious sense) by all of the operations in A,

– a Σ-rewriting t⇒ t′ holds in a rewriting algebra A ∈ RAlg(Σ), written as
usual A |= t⇒ t′, if tA � t′A.

Example 3.5. The institution of ground behavioural equational logic GHA =
〈BehSig,GBEQ,Alg, |=〉, where:7

– A behavioural signature 〈Σ,OBS 〉 consists of an algebraic signature Σ to-
gether with the indicated set OBS of observable sorts in Σ. Behavioural
signature morphisms are those algebraic signature morphisms that preserve
the sets of observable and of non-observable sorts and, stating the extra
condition somewhat informally, add no new terms leading from an “old”
non-observable sort to an observable sort. This defines the category of be-
havioural signatures BehSig.

– For each behavioural signature 〈Σ,OBS 〉,
• sentences are pairs of (ground) terms of a common sort, just like Σ-

equations, but we write them here as t ∼ t′,
• models are just Σ-algebras,
• for each Σ-algebra A, let ≈A be the indistinguishability relation, i.e.,

the largest congruence on the subalgebra of A generated by the sorts
in OBS that is the identity on the carriers of sorts in OBS (so that
a ≈A b iff, relying on standard concepts and notation, for all contexts
C of an observable sort, CA[a] = CA[b]). A ground Σ-equation t ∼ t′

behaviourally holds in A, written A |= t ∼ t′, if tA ≈A t′A.

Given institutions INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 and INS′ =
〈Sign′,Sen′,Mod′, 〈|=′Σ′〉Σ′∈|Sign′|〉, an institution morphism µ : INS → INS′

consists of

– a functor µSig : Sign→ Sign′,
– a natural transformation µSen : µSig ;Sen′ → Sen, and
– a natural transformation µMod : Mod→ (µSig)op ;Mod′

such that the following satisfaction condition holds: for any signature Σ ∈
|Sign|, sentence ϕ′ ∈ Sen′(µSig(Σ)) and model M ∈Mod(Σ), M |=Σ µSen

Σ (ϕ′)
iff µMod

Σ (M) |=′µSig(Σ) ϕ
′.

6 This terminology follows [DF02], even though recently some CafeOBJ authors go
back to the more traditional term (pre)ordered algebras.

7 This is a crude version of the behavioural (hidden) equational logic of CafeOBJ
presented in [DF02], which has a more subtle treatment of observability, specifying
the set of operations that may be used as observers rather than indicating observable
sorts, much in the style of constructor observational logic COL [BH06], going back
perhaps to [SW83,ST87]. We omit here coherence statements, which are trivial in
our behavioural institution.



Institution morphisms compose in the obvious, component-wise manner. We
thus have a category INS of institutions and their morphisms.

Example 3.6. There are evident institution morphisms from the institutions
GMSA, GOSA, GPRWL, GHA given in Examples 3.2, 3.3, 3.4 and 3.5, respec-
tively, to the institution A of Example 3.1; in each case signatures are mapped
to their underlying algebraic signatures, and models to their underlying algebras
(some of these mappings are identities, of course).

Example 3.7. The trivial morphism from GOSA to A of Example 3.6 extends
easily to a morphism from GOSA to GMSA, with the translation of (ground)
equations in GMSA to order-sorted equations being the identity.

Example 3.8. The trivial morphism from GHA to A of Example 3.6 does not
extend to an institution morphism from GHA to GMSA — one may try to map
equations t = t′ to behavioural equations t ∼ t′ and check that one implication
of the satisfaction condition would in general fail.

However, we may construct a different morphism, based on a signature func-
tor that maps any behavioural signature 〈〈S,Ω〉,OBS 〉 to the algebraic signature
〈OBS , ΩOBS 〉 with observable sorts only and operations limited to observable op-
erations, i.e., operations with observable arity and result sorts. Algebras are then
mapped to their appropriate reducts, and (ground) equations over such limited
signatures are mapped to their behavioural versions. It is easy to see that the
satisfaction condition holds for such equations.

It is relatively easy to show completeness of the category INS of institutions
and their morphisms:

Theorem 3.9 ([Tar86]). INS is complete.

In essence, the limit of a diagram of institutions is built by first defining the cat-
egory of signatures as the limit of the categories of signatures of the institutions
in the diagram. Signatures so defined in essence combine individual signatures
in the institutions in the diagram linked by the signature functors of the insti-
tution morphisms involved. Then for each such “combined” signature, the set of
sentences is defined as the colimit of the sets of sentences over the correspond-
ing individual signatures with sentence translations between them given by the
institution morphisms. Dually, the class of models is defined as the limit of the
model classes over the corresponding individual signatures with model transla-
tions between them given by the institution morphisms. Finally, the satisfaction
relation is defined uniquely so that the satisfaction condition holds for each of
the resulting projection morphisms.

Example 3.10. The institution GRWL is defined as a pullback of GMSA and
GPRWL over A (via the trivial morphisms of Example 3.6). It has algebraic
signatures (common to GMSA and GPRWL), rewriting algebras of GPRWL as
models (mapped onto the class of algebras of GMSA) and sentences that are
either equations (coming from GMSA) or rewritings (from GPRWL), with satis-
faction inherited from the appropriate component institutions.



Example 3.11. Similarly, we may consider a pullback of GMSA and GHA over A
(via the morphisms of Example 3.6). It has behavioural signatures as signatures,
behavioural algebras as models, and sentences that are either (ground) equations
of GMSA or behavioural equations of GHA. The morphism from GHA to GMSA of
Example 3.8 is not involved here, and the two sets of sentences remain separate,
even though one might want to identify equations between terms of observable
sorts with their behavioural versions.

Example 3.12. We may also form a pullback of GOSA and GRWL over GMSA
(via the morphism of Example 3.7 and the morphism given by the pullback
construction of GRWL in Example 3.10). This would not be quite satisfactory
though: in such a pullback institution, sentences would be either equations be-
tween order-sorted terms, as expected, or rewritings, but only between ordinary
many-sorted terms. There would be no rewritings between order-sorted terms
that involve subsort inclusions and retracts, which we would like to include in a
combination of order-sorted algebra and rewriting logic as well. On the positive
side: as expected, equations between the terms we have in GRWL would be glued
together with their corresponding order-sorted equations.

Example 3.13. Another interesting pullback that is not adequate as a logic com-
bination is the pullback of GHA and GRWL over GMSA (via the morphism of
Example 3.8 and the morphism given by the pullback construction of GRWL
in Example 3.10). The pullback institution has behavioural signatures as signa-
tures (that map to the algebraic signatures in GRWL as in the morphism given
in Example 3.8), and as models algebras with carriers equipped with a rewriting
preorder on observable sorts only, preserved by observable operations. As sen-
tences, we would get behavioural equations, here including standard equations
between terms built using solely observable operations, and rewritings between
such terms only. Clearly, what would be “missing” are rewritings between terms
involving operations with non-observable result sorts.

4 Model-theoretic parchments

Examples 3.12 and 3.13 illustrate a major problem with using institutions and
their limits as a tool for combining logical systems. Since logical sentences in
institutions are regarded as unstructured entities, this works as expected only
when we put together logical systems with sentences that capture distinct prop-
erties that do not interact with each other, as in Examples 3.10 and 3.11. Oth-
erwise, we would prefer to combine the ways sentences are built, rather than
sets of sentences as such. Consequently, we have to look more closely at sentence
construction. To capture this, Goguen and Burstall [GB86] introduced parch-
ments, an algebraic way to present institutions, where the syntax of sentences
is given by the initial (term) algebra over a signature that lists the operations
for constructing sentences and other auxiliary syntactic phrases. Parchments
also presented models as signature morphisms into a special “large” signature,
naming all potential denotations for signature components, with an indicated



Procrustean structure comprising all these denotations. Semantics of syntactic
phrases is then captured by mapping the initial syntax to the corresponding
reduct of the Procrustean algebra. The disadvantage is not only the need to use
such “large” objects (with all the foundational worries they bring) but also that
we inherently mix together model-theoretic and syntactic aspects of logical sys-
tems presented in such a way. To avoid this, in [MTP98] we proposed a version of
parchments that keeps the models separate and splits the Procrustean semantic
object into smaller objects appropriate for each model considered.

This means that model-theoretic parchments comprise signatures and models
in the same way as institutions do. However, while in institutions sentences are
given directly by the sentence functor, model-theoretic parchments feature a
language functor that maps each signature of the model-theoretic parchment to
a first-order signature with an algebraic part representing the abstract syntax
of sentences8; sentences are then generated as terms of the distinguished sort ∗.
Moreover, instead of a satisfaction relation, model-theoretic parchments, for each
signature and model, feature an evaluation structure that gives interpretation for
the syntactic constructs used to build sentences. The interpretation of terms in
the evaluation structure determines the meaning of syntactic phrases used in
sentences, and of sentences themselves. A sentence holds in a model when in the
evaluation structure for this model the sentence as a term evaluates to a logical
value designated by the special predicate D. Finally, the satisfaction condition is
ensured by suitable coherence homomorphisms between evaluation structures.

A model-theoretic parchment (or briefly: parchment) P = 〈Sign,L,Mod,G〉
consists of:

– a category Sign of signatures;
– a functor L : Sign → FOSig∗ that for any signature Σ ∈ |Sign| yields a

first-order signature L(Σ) that gives the abstract syntax for sentences;
– a functor Mod : Signop → Class (as for institutions); and
– a family G that in turn consists of:9

• for any signature Σ ∈ |Sign| and model M ∈ Mod(Σ), an L(Σ)-
structure GΣ(M) ∈ |Str(L(Σ))|; and

• for any signature morphism σ : Σ → Σ′ and model M ′ ∈Mod(Σ′), an
L(Σ)-homomorphism Gσ(M ′) : GΣ(M ′ σ)→ GΣ′(M ′) L(σ)

such that for any signature morphisms σ1 : Σ0 → Σ1, σ2 : Σ1 → Σ2 and
model M2 ∈Mod(Σ2), Gσ1;σ2

(M2) = Gσ1
(M2 σ2

);Gσ2
(M2) L(σ1).

Informally, for any signature Σ ∈ |Sign| and model M ∈ Mod(Σ), the evalu-
ation structure GΣ(M) determines semantic evaluation of L(Σ)-phrases in the
modelM . Then the mediating homomorphisms Gσ(M ′) : GΣ(M ′ σ)→ GΣ′(M ′) L(σ)

8 This relies on the usual correspondence between context-free grammars and algebraic
signatures.

9 G may be viewed as a signature-preserving functor between Grothendieck categories
built by “flattening” Mod : Signop → Class and Lop ;Str : Signop → Cat, respec-
tively, cf. [TBG91]. We prefer to indicate the components of G explicitly, so we refrain
from spelling out and using this alternative formulation.



ensure that this evaluation changes smoothly when we move from one signature
to another, and so is in a sense uniform for the entire logical system presented
by the parchment. However, the uniformity as captured by the mediating homo-
morphisms implies that semantic properties are preserved, but not necessarily
reflected, by model reducts w.r.t. signature morphisms.

We think of the set |GΣ(M)|∗ as the set of logical values for evaluation of
Σ-sentences in M ∈ Mod(Σ). By allowing arbitrary sets of values here we
naturally accommodate various forms of many-valued logics, with non-standard
logical values permitted. Then the predicate D : ∗ designates the logical values
that indicate which sentences “hold” in the model, thus enabling a classical two-
valued understanding of satisfaction on top of possibly many-valued sentence
evaluation.

A parchment as above is institutional if for any signature morphism σ : Σ →
Σ′ and model M ′ ∈ Mod(Σ′), Gσ(M ′) : GΣ(M ′ σ) → GΣ′(M ′) L(σ) is a closed

L(Σ)-homomorphism on the subsignature Logic, that is |Gσ(M ′)|∗ preserves and
reflects the predicate D : ∗.10 Then, such an institutional parchment is Boolean if
for any signature Σ ∈ |Sign| and model M ∈Mod(Σ), |GΣ(M)|∗ = Bool , where
Bool = {tt ,ff }, and DGΣ(M) = {tt} (it follows that the homomorphisms Gσ(M ′)
are identities on the sort ∗). We say that a parchment is strict if for any signa-
ture morphism σ : Σ → Σ′ and model M ′ ∈ Mod(Σ′), Gσ(M ′) : GΣ(M ′ σ) →
GΣ′(M ′) L(σ) is the identity; in particular, all strict parchments are institutional.

Any institutional parchment P = 〈Sign,L,Mod,G〉 presents the institution
J (P) = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉, which inherits signatures and models
directly from P, and

– for Σ ∈ |Sign|, Sen(Σ) = |TL(Σ)|∗, where TL(Σ) is the initial L(Σ)-structure
(so that Σ-sentences are ground L(Σ)-terms of sort ∗),

– for σ : Σ → Σ′, Sen(σ) = (!σ)∗, where !σ : TL(Σ) → TL(Σ′) L(σ) is the unique

L(Σ)-homomorphism given by the initiality of TL(Σ), and
– for Σ ∈ |Sign|, ϕ ∈ |TL(Σ)|∗, and M ∈ Mod(Σ), M |=Σ ϕ iff ϕGΣ(M) ∈

DGΣ(M) (i.e., in GΣ(M) the predicate D holds on the value of ϕ viewed as a
L(Σ)-term of sort ∗).

One can check now that J (P) so defined is indeed an institution, where for
σ : Σ → Σ′, ϕ ∈ Sen(Σ) and M ′ ∈Mod(Σ′), the satisfaction condition follows
since the homomorphism Gσ(M ′) preserves and reflects the predicate D : ∗.

A parchment P = 〈Sign,L,Mod,G〉 is atomic if for all Σ ∈ |Sign|, the
first-order signature L(Σ) has no operations with ∗ in their arity. In that case,
no sentence is constructed out of other sentences, and so, informally, all the
sentences are atomic.

Example 4.1. A Boolean parchment that presents the institution A of Exam-
ple 3.1 is PA = 〈AlgSig,LA,Alg,GA〉 with algebraic signatures, with alge-
bras as models, and where for any Σ ∈ |AlgSig|, LA(Σ) extends Logic by

10 This requirement is deliberately weaker than that imposed on “logical” parchments
in [MTP98].



adding (the sorts and operations of) Σ, and then for any algebra A ∈ Alg(Σ),
GAΣ(A) ∈ Str(LA(Σ)) coincides with A on Σ, with identity mediating homomor-
phisms.

Example 4.2. A Boolean parchment that in essence presents the institution GMSA
of Example 3.2 is PGMSA = 〈AlgSig,LGMSA,Alg,GGMSA〉, with algebraic signa-
tures, with algebras as models, and where for any Σ ∈ |AlgSig|:

– LGMSA(Σ) extends Logic by adding Σ and for each sort s in Σ, a binary
operation eq : s× s→ ∗;

– for any algebra A ∈ Alg(Σ), GGMSA
Σ (A) ∈ Str(LGMSA(Σ)) is A on Σ, and in-

terprets eq as the diagonal function, yielding tt if its two arguments coincide,
and ff if they are distinct; and

– mediating homomorphisms are identities.

Now, LGMSA(Σ)-terms of sort ∗ are of the form eq(t, t′), for Σ-terms t and t′

of a common sort. Such a term evaluates to tt in GGMSA
Σ (A) if the terms t and

t′ evaluate in GGMSA
Σ (A) (or equivalently, in A) to equal values. Consequently,

the parchment PGMSA presents the institution GMSA, modulo the details of the
actual notation used for sentences (we will disregard such differences from now
on).

Example 4.3. A Boolean parchment that presents the institution GOSA of Ex-
ample 3.3 is PGOSA = 〈OSSig,LGOSA,OSAlg,GGOSA〉, with order-sorted sig-
natures, with order-sorted algebras as models, and then for any order-sorted
signature 〈Σ,≤〉:

– LGOSA(〈Σ,≤〉) extends Logic byΣ and all the subsort inclusions and retracts,
as well as the operation eq : s× s→ ∗ for each sort s in Σ;

– for each order-sorted algebra A ∈ OSAlg(〈Σ,≤〉), GGOSA
〈Σ,≤〉(A) expands A on

Σ by adding an “undefined” element ⊥ to the carrier of each sort s in Σ and
extending the interpretation of all operations in A so that they are strict on
⊥ (yield ⊥ as the result on any tuple of arguments that contains ⊥), and
interprets subsort inclusions and retracts in the obvious way (retracts map
to ⊥ the elements of the supersort that are not in the subsort) and the eq
operations as the diagonal on the “defined” elements in |A| and yielding ff
when any of its arguments is ⊥; and

– mediating morphisms are identities again.

Now, an order-sorted 〈Σ,≤〉-term with a defined value in an order-sorted 〈Σ,≤〉-
algebra A evaluates to the same value in GGOSA

〈Σ,≤〉(A); if it is undefined in A then

in GGOSA
〈Σ,≤〉(A) it has the value ⊥. Hence, eq(t, t′) evaluates to tt in GGOSA

〈Σ,≤〉(A) iff

the values of t and t′ in A are defined and equal. Consequently, the parchment
PGOSA indeed presents the institution GOSA.

Example 4.4. A Boolean parchment that presents the institution GPRWL of Ex-
ample 3.4 is PGPRWL = 〈AlgSig,LGPRWL,RAlg,GGPRWL〉, with algebraic signa-
tures, with rewriting algebras as models, and where for any Σ ∈ |AlgSig|:



– LGPRWL(Σ) extends Logic by adding Σ and for each sort s in Σ a binary
operation rwrt : s× s→ ∗,

– for any rewriting algebra A ∈ RAlg(Σ), GGPRWL
Σ (A) ∈ Str(LGPRWL(Σ) is the

standard algebra part of A on Σ, and interprets each rwrt so that it yields
tt if its two arguments are in the rewriting precongruence, and ff otherwise,
and

– mediating homomorphisms are identities.

Example 4.5. A Boolean parchment that presents the institution GHA of Exam-
ple 3.5 is PGHA = 〈BehSig,LGHA,Alg,GGHA〉, with behavioural signatures and
algebras as models, and where for any Σ ∈ |AlgSig|:

– LGHA(Σ) extends Logic by adding Σ and for each sort s in Σ a binary
operation beq : s× s→ ∗, and

– for any algebra A ∈ Alg(Σ), GGHAΣ (A) ∈ Str(LGHA(Σ)) is A on Σ, and
interprets beq to capture the indistinguishability relation, yielding tt if its
two arguments are related by ≈A, and ff otherwise, and

– mediating homomorphisms are identities.11

Clearly, all parchments in Examples 4.1–4.5 are atomic and strict.
Given two parchments P = 〈Sign,L,Mod,G〉 and P′ = 〈Sign′,L′,Mod′,G′〉,

a parchment morphism γ : P→ P′ consists of:

– a functor γSig : Sign→ Sign′,
– a natural transformation γLan : γSig ;L′ → L,
– a natural transformation γMod : Mod→ (γSig)op ;Mod′,
– a family of homomorphisms γGΣ,M : G′γSig(Σ)(γ

Mod
Σ (M)) → GΣ(M) γLan

Σ
, for

Σ ∈ |Sign| and M ∈ Mod(Σ), such that for any signature morphism
σ : Σ1 → Σ2 in Sign and model M2 ∈Mod(Σ2) we have

γG
Σ1,M2 σ

;Gσ(M2) γLan
Σ1

= G′σ′(γMod
Σ2

(M2));γGΣ2,M2 L′(σ′)

where σ′ = γSig(σ) : Σ′1 → Σ′2.

The naturality condition in the last item captures the identity of two composed
L′(Σ′1)-homomorphisms of type

G′Σ′
1
(γMod
Σ1

(M2 σ))=G′Σ′
1
(γMod
Σ2

(M2) σ′)→GΣ2(M2) γLan
Σ1

;L(σ) =GΣ2(M2) L′(σ′);γLan
Σ2
.

This may look scary, but we encourage the reader to “type” the morphisms in
question and make sure that the condition is not only correctly stated, but is
indeed natural.12

11 The extra condition imposed in Example 3.5 on signature morphisms in BehSig
plays a crucial role here: for signature morphisms that add new contexts to “observe”
old sorts, the identity map indicated here as the mediating homomorphism may fail
to preserve the operation beq .

12 In fact, γG is a natural transformation between suitably re-indexed functors G′ and
G, see footnote 9.



As with parchments, where only institutional parchments presented institu-
tions, not every parchment morphism presents an institution morphism. We say
that a parchment morphism as above is institutional if all homomorphisms γGΣ,M
are closed on the subsignature Logic.13 It follows that in institutional parchment
morphisms14 between Boolean parchments, the homomorphisms γGΣ.M are iden-
tities on the subsignature Logic. If all homomorphisms γGΣ.M are identities, we
say that the parchment morphism is strict.

For institutional parchments P and P′ as above, each institutional parchment
morphism γ = 〈γSig , γLan , γMod , γG〉 : P→ P′ presents an institution morphism
J (γ) : J (P)→ J (P′), defined as follows:

– (J (γ))Sig = γSig ,
– (J (γ))Mod = γMod ,
– for Σ ∈ |Sign|, let Σ′ = γSig(Σ); then (J (γ))SenΣ : |TL′(Σ′)|∗ → |TL(Σ)|∗ is

given as the ∗ component of the unique L′(Σ′)-homomorphism !Σ : TL′(Σ′) →
TL(Σ) γLan

Σ
.

One can check now that J (γ) so defined is indeed an institution morphism
J (γ) : J (P)→ J (P′). In particular, the satisfaction condition follows since for
any signature Σ ∈ |Sign| and M ∈Mod(Σ), the homomorphism γGΣ,M reflects
and preserves the predicate D : ∗.

Example 4.6. There are evident parchment morphisms from the parchments
PGMSA, PGOSA, PGPRWL, PGHA, given in Examples 4.2, 4.3, 4.4, and 4.5, re-
spectively, to PA given in Example 4.1, presenting the corresponding institution
morphisms from Example 3.6. In each case signatures are mapped to their under-
lying algebraic signatures, models are mapped to the underlying algebras, and
the maps on abstract syntax signatures are simply inclusions. All these parch-
ment morphisms are strict (i.e., all the γG homomorphisms are identities) except
for the morphism from PGOSA to PA, where for any order-sorted signature 〈Σ,≤〉
and A ∈ OSAlg(〈Σ,≤〉), γG〈Σ,≤〉,A : GAΣ(A) → GGOSA

〈Σ,≤〉(A) LA(Σ) is identity on ∗
and inclusion on sorts from Σ (“adding” undefined elements ⊥).

Example 4.7. The parchment morphism from PGOSA to PA extends to the ob-
vious strict parchment morphism from PGOSA to PGMSA, where the abstract
syntax signatures are mapped by inclusions. This parchment morphism presents
the institution morphism from GOSA to GMSA given in Example 3.7.

Example 4.8. The institution morphism from GHA to GMSA given in Exam-
ple 3.8 is presented by a strict parchment morphism from PGHA to PGMSA: sig-
natures and models are mapped as in the institution morphism (so, forgetting
about non-observable parts of behavioural signatures and their algebras), and
abstract syntax signatures are mapped essentially by inclusions, except that the
eq operations are renamed to beq .

13 Again, this is weaker than the corresponding condition imposed in [MTP98].
14 To clarify: institutional parchment morphism refers to a parchment morphism that is

institutional (rather than to an institutional-parchment morphism, i.e., a morphism
between institutional parchments).



5 Constructions in parchment categories

The rather straightforward composition of parchment morphisms γ1 : P0 → P1

and γ2 : P1 → P2 is the parchment morphism γ : P0 → P2 defined as follows:

– γSig = γSig1 ;γSig2 ,

– γLan = (γSig1 ·γLan2 );γLan1 ,

– γMod = γMod
1 ;((γSig1 )op ·γMod

2 ),

– for any P0-signature Σ0 and any Σ0-model M0, let Σ1 = γSig1 (Σ0) and
M1 = (γMod

1 )Σ0
(M0); then γGΣ0,M0

= (γG2 )Σ1,M1
;(γG1 )Σ0,M0 (γLan

2 )Σ1
.

This defines a category PAR of parchments and their morphisms. IPAR de-
notes the subcategory of institutional parchments with institutional parchment
morphisms. The construction of institutions and institutions morphisms from in-
stitutional parchments and their institutional morphisms, respectively, as given
in Sect. 4, yields a functor J : IPAR→ INS.

We can combine parchments using limits:

Theorem 5.1 ([MTP98]). PAR is complete.

Instead of a detailed proof (which may be found in the full version of [MTP98]),
let us just mention that the construction of limits in PAR essentially follows the
same idea as for institutions, see Thm. 3.9, and illustrate how this works for
pullbacks.

Given parchments P0 = 〈Sign0,L0,Mod0,G0〉, P1 = 〈Sign1,L1,Mod1,G1〉,
P2 = 〈Sign2,L2,Mod2,G2〉 and parchment morphisms γ1 : P1 → P0 and
γ2 : P2 → P0, we sketch the construction of their pullback in PAR as a parch-
ment P = 〈Sign,L,Mod,G〉 with morphisms γ3 : P→ P1 and γ4 : P→ P2:

– The category Sign of signatures with γSig3 : Sign→ Sign1 and γSig4 : Sign→
Sign2 is obtained as a pullback of γSig1 : Sign1 → Sign0 and γSig2 : Sign2 →
Sign0 in Cat.

– For each signature Σ ∈ |Sign|, with Σ1 = γSig3 (Σ), Σ2 = γSig4 (Σ) and

Σ0 = γSig1 (Σ1) (= γSig2 (Σ2)):

• the abstract syntax signature L(Σ) with (γLan3 )Σ : L1(Σ1)→ L(Σ) and
(γLan4 )Σ : L2(Σ2)→ L(Σ) is given as a pushout of (γLan1 )Σ1

: L0(Σ0)→
L1(Σ1) and (γLan2 )Σ2

: L0(Σ0)→ L2(Σ2) in FOSig∗,

• the class of models Mod(Σ) with (γMod
3 )Σ : Mod(Σ)→Mod1(γSig3 (Σ))

and (γMod
4 )Σ : Mod(Σ) → Mod2(γSig4 (Σ)) is obtained as a pullback

of (γMod
1 )Σ1 : Mod1(Σ1) → Mod0(Σ0) and (γMod

2 )Σ2 : Mod2(Σ2) →
Mod0(Σ0) in Class, and

• for each model M ∈Mod(Σ), in an attempt to make the construction
of GΣ(M) readable, let us introduce a number of abbreviations:
∗ M1 = (γMod

3 )Σ(M), M2 = (γMod
4 )Σ(M) and M0 = (γMod

1 )Σ1
(M1)

(= (γMod
2 )Σ2

(M2)),
∗ G1 = (G1)Σ1(M1), G2 = (G2)Σ2(M2), and G0 = (G0)Σ0(M0),



∗ θ1 = (γLan1 )Σ1
: L0(Σ0)→ L1(Σ1), θ2 = (γLan2 )Σ2

: L0(Σ0)→ L2(Σ2),
θ3 = (γLan3 )Σ : L1(Σ1) → L(Σ), θ4 = (γLan4 )Σ : L2(Σ2) → L(Σ),
and θ = θ1;θ3 (= θ2;θ4).

We have two L0(Σ0)-homomorphisms (γG1 )Σ1,M1
: G0 → G1 (γLan

1 )Σ1
and

(γG2 )Σ2,M2 : G0 → G2 (γLan
2 )Σ2

. Using freeness, we get (γG1 )#Σ1,M1
: Fθ1(G0)→

G1 in Str(L1(Σ1)) and (γG2 )#Σ2,M2
: Fθ2(G0)→ G2 in Str(L2(Σ2)). Then,

since (up to natural isomorphism) Fθ3(Fθ1(G0)) and Fθ4(Fθ2(G0)) co-

incide with Fθ(G0), we may assume that Fθ3((γG1 )#Σ1,M1
) : Fθ(G0) →

Fθ3(G1) and Fθ4((γG2 )#Σ2,M2
) : Fθ(G0) → Fθ4(G2). Let now GΣ(M) with

L(Σ)-homomorphisms g1 : Fθ3(G1)→ GΣ(M) and g2 : Fθ4(G2)→ GΣ(M)
be their pushout in Str(L(Σ)). Finally, put (γG3 )Σ,M = (ηθ3)G1

;g1 θ3 : G1 →
GΣ(M) θ3 and (γG4 )Σ,M = (ηθ4)G2 ;g2 θ4 : G2 → GΣ(M) θ4 .

Then, for each signature morphism σ : Σ → Σ′:
• L(σ) : L(Σ)→ L(Σ′) is given by the pushout property of L(Σ),
• Mod(σ) : Mod(Σ′) → Mod(Σ) is given by the pullback property of
Mod(Σ), and

• for any model M ′ ∈ Mod(Σ′), Gσ(M ′) : GΣ(M ′ σ) → GΣ′(M ′) L(Σ) is

given by the pushout property of GΣ(M ′ σ).

It is routine (but very tedious!) to check that the above indeed defines a parch-
ment P = 〈Sign,L,Mod,G〉 with parchment morphisms γ3 : P → P1 and
γ4 : P→ P2 which form a pullback of γ1 : P1 → P0 and γ2 : P2 → P0.

Proposition 5.2. The limit in PAR of a diagram of institutional parchments
and institutional parchment morphisms is not necessarily an institutional parch-
ment, but the limiting cone consists of institutional parchment morphisms.

This is the first sign of worry that a programme to “just” use the standard limit
construction to put together logical systems presented by institutional parch-
ments linked by institutional parchment morphisms is doomed. Here is another
negative result, perhaps expected after Prop. 5.2, to show that this idea cannot
work in general:

Proposition 5.3 ([MTP98]). The category IPAR of institutional parchments
and their institutional morphisms is not complete.

The source of these negative results is that the free constructions involved in
building the evaluation structures in the limit parchment in general add new
values, possibly also new logical values (of sort ∗). The predicate D : ∗ does not
hold on these new values over a given signature (so that the limit projection
morphisms are institutional). However, there may be extensions of the signature
considered where the new logical values are glued together with “old” logical val-
ues (due to identification of some parts of syntax) and when D : ∗ holds on them,
the mediating homomorphism is not closed — which yields the negative part of
Prop. 5.2. Then, even when this does not happen and the limit parchment is
institutional, there may be common compatible extensions of the parchments in



the diagram (institutional cones over this diagram) that designate the predicate
D : ∗ to hold for some of the new logical values. Consequently, the unique parch-
ment morphism from such a cone to the limit in PAR need not be institutional.
This shows that for a parchment diagram in IPAR, even if its limit given by
Thm. 5.1 is an institutional parchment and so the limit cone fits entirely into
IPAR, it still does not have to be a limit of this diagram in IPAR.

In fact, this is as expected: there is nothing like a free lunch, we cannot get
meanings for essentially new combinations of syntactic constructs involved for
free. The upshot is that the new logical values added by the free constructions
involved in the limits in PAR indicate the need for some decision concerning the
meaning of such new phrases. Technically, this may take the form of consistently
choosing a family of congruences on the evaluation structures that glue together
new and old logical values.

Example 5.4. One can easily construct the combination of PGOSA and PGPRWL as
a pullback of PGOSA and PGPRWL over PA, via the parchment morphisms given in
Example 4.6. The pullback parchment has order-sorted signatures as signatures,
and order-sorted algebras as models. For any order-sorted signature 〈Σ,≤〉, the
abstract syntax signature extends Logic byΣ and subsort inclusions and retracts,
as well as by eq : s × s → ∗ and rwrt : s × s → ∗ for each sort s in Σ. So, in
contrast to Example 3.12, the abstract syntax here covers rewritings between all
order-sorted terms. Then, for any order-sorted algebra A ∈ OSAlg(〈Σ,≤〉), the
evaluation structure will comprise the carriers of A extended with the undefined
element ⊥, operations from Σ and eq interpreted as in PGOSA, and operations
rwrt interpreted as in PGPRWL on arguments from |A|, but on pairs of arguments
containing ⊥ interpreted as new “free” logical values. It is now our decision to
define how to interpret rewritings between terms with undefined values. The
obvious choice — though technically not the only one possible — is to identify
the freely added logical values with ff (thus setting rewritings between undefined
terms to never hold) which would complete an adequate combination of the
logical systems given by PGOSA and PGPRWL.

The above example captures well a general situation; let’s have a closer look
at the issue of when a parchment combination is “satisfactory”.

Consider a family P = 〈Pi = 〈Signi,Li,Modi,Gi〉〉i∈I of parchments. A
parchment P = 〈Sign,L,Mod,G〉 with parchment morphisms γi : P→ Pi, i ∈
I, is a complete joint extension of P if for all signatures Σ ∈ |Sign| and models
M ∈ Mod(Σ), the homomorphisms (γGi )Σ,M : (Gi)Σi(Mi) → GΣ(M) (γLan

i )Σ ,

i ∈ I (where Σi = γSigi (Σ), Mi = (γMod
i )Σ(M)) are jointly surjective on the

sort ∗. So, informally, a parchment P gives a complete joint extension of a
family of parchments if each logical value in P corresponds to some logical value
in at least one of the parchments jointly extended. If all of the parchments in
P are institutional, then the complete joint extension is institutional if P is
institutional and all morphisms γi are institutional as well.



Proposition 5.5. If a limit in PAR of a diagram of institutional parchments
and institutional parchment morphisms is a complete joint extension of the
parchments in the diagram, then it is a limit in IPAR as well.

Things work particularly easily when the parchment extensions involved in the
diagram do not interfere with each other. To keep the presentation relatively
simple, we look at pullbacks only.

We say that institutional parchment morphisms γ1 : P1 → P0 and γ2 : P2 →
P0 in IPAR do not interfere, if for any signatures Σ1 ∈ |Sign1| and Σ2 ∈
|Sign2| such that γSig1 (Σ1) = γSig2 (Σ2) = Σ0, we have that the term algebra
over the pushout (in FOSig∗) signature of (γLan1 )Σ1

: L0(Σ0) → L1(Σ1) and
(γLan2 )Σ2 : L0(Σ0) → L2(Σ2) has as the carrier of sort ∗ the pushout in Set of
!Σ1 : TL0(Σ0) → TL1(Σ1) (γLan

1 )Σ1
and !Σ2 : TL0(Σ0) → TL2(Σ2) (γLan

2 )Σ2
restricted

to the functions on the carriers of sort ∗.
Informally, this condition captures the fact that the new syntactic constructs

added in P1 and P2, respectively, do not interact with each other to build new
sentences that would not come from either P1 or P2. In particular, it requires
both parchments to be atomic (except for some degenerate cases). It is rather
obvious that in such a situation we can put the two parchments together without
further ado:

Proposition 5.6. If two morphisms γ1 : P1 → P0 and γ2 : P2 → P0 in IPAR

do not interfere then their pullback in PAR is also a pullback in IPAR. Moreover
the functor J : IPAR→ INS maps this pullback to a pullback in INS.

Example 5.7. Define a parchment PGRWL as the pullback of PGMSA and PGPRWL

over PA (via the morphisms sketched in Example 4.6). It is easy to see that
the two parchment morphisms do not interfere, and the pullback presents the
pullback of the corresponding institutions given in Example 3.10; in particular,
PGRWL presents GRWL.

Example 5.8. Similarly, PGHA and PGMSA over PA (via the morphisms of Ex-
ample 4.6) do not interfere. Their pullback presents the institution sketched in
Example 3.11, where standard ground equations and ground behavioural equa-
tions coexist.

Before we return to the general case of an arbitrary combination of in-
stitutional parchments, let’s have a look at a simpler situation, when given
a parchment P = 〈Sign,L,Mod,G〉, we want to add to it some new syn-
tactic constructs, as captured by a natural transformation α : L → L′ be-
tween functors from Sign to FOSig∗. We may now build another parchment
Fα(P) = 〈Sign,L′,Mod,G′〉, with the same signatures and models as P, with
the richer abstract syntax signatures given by L′, with the evaluation structures
that freely extend the evaluation structures of P, i.e., for Σ ∈ |Sign| and M ∈
Mod(Σ), G′Σ(M) = FαΣ (GΣ(M)), and with the mediating homomorphisms de-
fined as follows. For σ : Σ1 → Σ2 and M2 ∈ Mod(Σ2), with M2 σ = M1,

we have morphisms Gσ(M2) : GΣ(M1) → GΣ2
(M2) L(σ) and ηαΣ2

: GΣ2
(M2) →



FαΣ2
(GΣ2

(M ′)) αΣ2
= G′Σ2

(M2) αΣ2
, which yield Gσ(M2);ηαΣ2 L(σ) : GΣ1

(M1)→
(G′Σ2

(M2) αΣ2
) L(σ) = (G′Σ2

(M2) L′(σ)) αΣ1
. Since G′Σ(M1) = FαΣ1

(GΣ1(M1)),

we can now define G′σ(M2) : G′Σ1
(M1)→ G′Σ2

(M2) L′(σ) as the unique morphism

such that ηαΣ1
;G′σ(M2) αΣ1

= Gσ(M2);ηαΣ2 L(σ). It is routine now to verify fur-
ther compatibility condition, so that we get:

Proposition 5.9. Given any parchment P = 〈Sign,L,Mod,G〉 and natural
transformation α : L → L′, Fα(P) = 〈Sign,L′,Mod,G′〉 as defined above is a
parchment with an institutional parchment morphism γα = 〈IdSign, α, IdMod, γ

G
α〉

from Fα(P) to P, where IdSign is the identity functor, IdMod is the identity nat-
ural transformation, and for Σ ∈ |Sign| and M ∈Mod(Σ), (γGα)Σ,M = (ηαΣ )M .

In general, Fα(P) need not be institutional, even if P is so. The problem is similar
to that indicated for Prop. 5.2: new logical values freely added over one signature
may become identified with some old logical values over another signature, and
if D : ∗ holds for those, the resulting mediating homomorphism is not closed. For
typical extensions this does not happen though.

A natural transformation α : L→ L′ (between functors from Sign to FOSig∗)
is clean if new parts of syntax are never identified with old parts of syntax, i.e.,
for any signature morphism σ : Σ1 → Σ2, for any symbol x (sort, operation or
predicate name) in L′(Σ1) that is not in the image of αΣ1

: L(Σ1) → L′(Σ1),
the symbol L′(σ)(x) is not in the image of αΣ2

: L(Σ2)→ L′(Σ2).

Proposition 5.10. Given any institutional parchment P = 〈Sign,L,Mod,G〉
and clean natural transformation α : L → L′, Fα(P) = 〈Sign,L′,Mod,G′〉 as
defined above is an institutional parchment.

This is promising, but we have not ensured that Fα(P) is a complete (joint)
extension of P — there may be, and typically there are, new logical values of
sort ∗ freely added by the construction above. To complete the extension, we
need to identify these new logical values with some old ones, used already in P.
To carry this out, another concept is useful.

Given a parchment P = 〈Sign,L,Mod,G〉, a coherent family of semantic
congruences for P is a family 〈∼=Σ,M 〉Σ∈|Sign|,M∈Mod(Σ), where for Σ ∈ |Sign|
and M ∈Mod(Σ), ∼=Σ,M is a congruence on GΣ(M) that is preserved by the me-
diating homomorphisms, i.e., for any signature morphism σ : Σ → Σ′ and M ′ ∈
Mod(Σ′) with M ′ σ = M , we have Gσ(M ′)(∼=Σ,M ) ⊆ ∼=Σ′,M ′ L(σ). Given such a

family, we may build another parchment P/∼= = 〈Sign,L,Mod,G∼=〉, where for
Σ ∈ |Sign| and M ∈Mod(Σ), G∼=Σ(M) = GΣ(M)/∼=Σ,M and for σ : Σ → Σ′ and
M ′ ∈ Mod(Σ′) with M ′ σ = M , G∼=σ (M ′) : G∼=Σ(M) → G∼=Σ′(M ′) L(σ) is defined

by G∼=σ (M ′)([a]∼=Σ,M ) = [Gσ(M ′)(a)]∼=Σ′,M′ (the coherence condition ensures that
this is well-defined).

Proposition 5.11. Given any parchment P = 〈Sign,L,Mod,G〉 and coherent
family ∼= of semantic congruences for P, P/∼= = 〈Sign,L,Mod,G∼=〉 as defined
above is a parchment, with a parchment morphism γ∼= = 〈IdSign, IdL, IdMod, γ

G
∼=〉

from P/∼= to P, where IdSign is the identity functor, IdL and IdMod are the



identity natural transformations, and for any Σ ∈ |Sign| and M ∈ Mod(Σ),
(γG∼=)Σ,M = [ ]∼=Σ,M .

The construction above simplifies considerably when the parchment is atomic:
instead of considering congruences on the evaluation structures, it is sufficient to
consider equivalence relations on the carriers of sort ∗ of these structures (which
together with identities on other sorts then form congruences).

Now, given a family P = 〈Pi = 〈Signi,Li,Modi,Gi〉〉i∈I of parchments, con-
sider a parchment P = 〈Sign,L,Mod,G〉 with parchment morphisms γi : P →
Pi, i ∈ I. A coherent family ∼= of semantic congruences for P is complete for P,
if for any signature Σ ∈ |Sign| and M ∈ Mod(Σ), for any a ∈ |GΣ(M)|∗, for
some i ∈ I and ai ∈ |(Gi)γSig

i (Σ)((γ
Mod
i )Σ(M))|∗, we have a ∼=Σ,M (γGi )Σ(M)(ai).

Proposition 5.12. Consider any family P = 〈Pi = 〈Signi,Li,Modi,Gi〉〉i∈I
of parchments, parchment P = 〈Sign,L,Mod,G〉 with parchment morphisms
γi : P → Pi, i ∈ I, and coherent family ∼= of semantic congruences for P
that is complete for P. Then the parchment P/∼= with parchment morphisms
γ∼=;γi : P/∼=→ Pi, i ∈ I, is a complete joint extension for the family P.

Furthermore, a coherent family ∼= of semantic congruences for P is insti-
tutional for P, if for any signature Σ ∈ |Sign| and M ∈ Mod(Σ), when-

ever for any i, j ∈ I, with γSigi (Σ) = Σi, γ
Sig
j (Σ) = Σj , (γMod

i )Σ(M) = Mi

and (γMod
j )Σ(M) = Mj , we have ai ∈ |(Gi)Σi(Mi)|∗, aj ∈ |(Gj)Σj (Mj)|∗,

(γGi )Σ,M (ai) ∼=Σ,M (γGj )Σ,M (aj) and ai ∈ D(Gi)Σi (Mi), then aj ∈ D(Gj)Σj (Mj)

as well. Informally: we can glue together only those “old” logical values that
either both designate sentences to hold, or both designate them not to hold.

Theorem 5.13. Consider any family P = 〈Pi = 〈Signi,Li,Modi,Gi〉〉i∈I of
institutional parchments, parchment P = 〈Sign,L,Mod,G〉 with institutional
parchment morphisms γi : P → Pi, i ∈ I, and coherent family ∼= of semantic
congruences for P that is complete and institutional for P. Then the parchment
P/∼= with parchment morphisms γ∼=;γi : P/∼= → Pi, i ∈ I, is a complete insti-
tutional joint extension for the family P.

One strength of the above result is that we show the quotient parchment to be
institutional without assuming that P is so. This follows since the parchments in
the family are institutional, and the coherent family of congruences is complete
and institutional as well.

Example 5.14. Consider a pullback of PGOSA and PGRWL over PGMSA via the
morphisms given by Example 4.7 and the pullback construction of PGRWL in
Example 5.7, respectively. In fact, the pullback parchment is the same as the
pullback parchment for PGOSA and PGPRWL over PA described in Example 5.4.
The problem is that it is not a complete joint extension of PGOSA and PGRWL, as
evaluation structures carry freely added logical values, corresponding to rewrit-
ing statements between terms with undefined values. To fix this, consider a family
of equivalences on the carriers of sort ∗ that glue values of the operations rwrt



on pairs of arguments containing ⊥ with ff . Since the parchment is atomic, this
family extends to a family of congruences by adding identities on the carriers
of other sorts. It is easy to check now that this family is coherent as well as
complete and institutional for PGOSA and PGRWL. Consequently, by Thm. 5.13,
quotienting the pullback parchment by this family yields an institutional com-
plete joint extension of PGOSA and PGRWL — this is an institutional parchment
PGOSRWL that presents the institution GOSRWL, and the institutional parch-
ment morphisms from PGOSRWL to PGOSA and PGRWL, respectively, present the
corresponding institution morphisms in the CafeOBJ cube.

Example 5.15. Consider now a pullback P0 = 〈Sign0,L0,Mod0,G0〉 of PGHA

and PGRWL over PGMSA via the parchment morphisms given by Example 4.8 and
the pullback construction of PGRWL in Example 5.7, respectively. As in Exam-
ple 3.13, Sign0 is the category of behavioural signatures, and Mod0(〈Σ,OBS 〉)
is the class of Σ-algebras with a rewriting preorder �o ⊆ |A|o × |A|o on ob-
servable sorts o ∈ OBS only, preserved by observable operations. For any be-
havioural signature 〈Σ,OBS 〉, the abstract syntax signature L0(〈Σ,OBS 〉) ex-
tends Logic by Σ, operations beq : s× s→ ∗ for all sorts s in Σ, and operations
rwrt : o × o → ∗ for observable sorts o ∈ OBS . Perhaps surprisingly, PGHA and
PGRWL over PGMSA do not interfere, and so P0 is a pullback of PGHA and PGRWL

over PGMSA in IPAR, and in fact is their complete institutional joint extension.
But we still “miss” rewritings on non-observable sorts!

So, let us add them: consider the natural inclusion α : L0 → LGHRWL, for any
behavioural signature 〈Σ,OBS 〉, LGHRWL(〈Σ,OBS 〉) adding to L0(〈Σ,OBS 〉)
operations brwrt : s×s→ ∗ for non-observable sorts s 6∈ OBS . Now, by Prop. 5.9,
we obtain the parchment Fα(P0), which is institutional by Prop. 5.10. However,
it is not a complete joint extension of PGHA and PGRWL, with new logical val-
ues added for behavioural rewritings between terms of non-observable sorts. Of
course, it is now our decision how to interpret such rewritings.

For any signature 〈Σ,OBS 〉 and 〈A, 〈�o〉o∈OBS 〉 ∈ Mod0(〈Σ,OBS 〉), let
- ⊆ |A| × |A| be the largest precongruence on A such that -o ⊆ �o for all
observable sorts o ∈ OBS .15 Now, consider a family of equivalences on the
carriers of sort ∗ of the evaluation structures in Fα(P0) that glue values of the
operations brwrt on arguments a, b with tt if a - b and with ff otherwise. Since
the parchment is atomic, this family extends to a family of congruences by adding
identities on the carriers of other sorts. Given the conditions on behavioural
signature morphisms, it is easy to check now that this family is coherent as well
as complete and institutional for PGHA and PGRWL. Consequently, by Thm. 5.13,
quotienting Fα(P0) by this family yields an institutional complete joint extension
of PGHA and PGRWL — this is an institutional parchment PGHRWL that presents
institution GHRWL, and the institutional parchment morphisms from PGHRWL to
PGHA and PGRWL, respectively, present the corresponding institution morphisms
in the CafeOBJ cube.

15 So that a - b iff, relying on the standard concepts and notation, for all contexts C
of an observable sort, CA[a] � CA[b].



Example 5.16. Consider now a pullback of PGHA and PGOSA over PGMSA via the
morphisms of Examples 4.8 and 4.7, respectively. Somewhat similarly to the
initial construction in Example 5.15, a signature in the resulting parchment is
a behavioural signature with ordering on the set of sorts that is non-trivial on
observable sorts only, and models over such signature are order-sorted algebras
over the obvious order-sorted signature extracted from it. For any such signa-
ture 〈Σ,OBS ,≤〉, the abstract syntax signature extends Logic by Σ, operations
beq : s × s → ∗ for all sorts s in Σ, and subsort inclusions and retracts as de-
termined by the subsorting relation on the observable sorts. No need to discuss
evaluation structures — they are given by the obvious amalgamation of the
evaluation structures in PGHA and PGOSA.

For the purposes of this presentation we stop at this point and set this parch-
ment to be PGHOSA, presenting an institution that corresponds to GHOSA. Note
though that we thus neglect adding subsorting on non-observable sorts – this
could be done much in the style of adding rewritings on non-observable sorts
in Example 5.15, except that we would need a slightly more general form of
Prop. 5.9 and Thm. 5.13, with extension of signatures (and models) permitted.

Example 5.17. Finally, let PGHOSRWL be a pullback of PGHRWL and PGOSRWL over
PGRWL via the morphisms constructed in Examples 5.15 and 5.14, respectively.
Equivalently, PGHOSRWL is the limit of the parchments and their morphisms
constructed so far. It is a complete joint extension of the parchments considered
so far, and so by Prop. 5.5, it is the limit in IPAR of the diagram constructed
so far. PGHOSRWL presents an institution that corresponds to GHOSRWL in the
cube, inheriting the comments on the lack of subsorting for non-observable sorts
from Example 5.16.

6 Final remarks

In this paper we study the problems of systematic combination of logical systems
in the framework of the theory of institutions and their presentations as parch-
ments. To begin with, we recall the notion of institution and institution mor-
phism [GB92], and the construction of limits in the category they form [Tar86].
Then we introduce a new notion of model-theoretic parchment, modifying the
original notions defined in [GB86] and [MTP98]. We sketch again how limits in
the category of such parchments are built, and argue that they do not always
offer a satisfactory way of putting logical systems together. We present a new
understanding of this phenomena via Props. 5.2 and 5.3, and the new notion of
a complete joint extension of a family of parchments. We suggest some simple
situations when the use of limits yields a desired result, as for instance captured
by Prop. 5.6. We also develop constructions that adjust such limits to a more
desired form, Props. 5.9, 5.11 and Thm. 5.13.

All these developments are extensively illustrated by referring to various logi-
cal systems that underlie CafeOBJ [DF02]. We start from simple parchments that
capture equational logic, order-sorted equational logic, behavioural equational



logic and rewriting logic, respectively, and show how to systematically combine
and modify them to obtain the remaining logical systems of the CafeOBJ cube.

To keep the presentation relatively simple and hopefully understandable, in
places we depart from the details of the logical systems as used in CafeOBJ. In
particular, we deal with their ground versions only (no variables). Adding vari-
ables would be simple: in essence, we would have to multiply the sorts in the
abstract syntax signatures by the sets of variables considered, and to parametrise
non-logical values in the evaluation structures by valuations of variables, as is
done in [Mos96]. We foresee no major difficulties with this, but it is worth spelling
out the details, of course. Another departure from the logics of CafeOBJ is elim-
ination of conditions in statements – adding those should pose no difficulties
whatsoever, although the abstract syntax signatures and the evaluation struc-
tures would again become somewhat more complex. We also simplify the view
of behavioural satisfaction, by using a set of observable sorts rather than a des-
ignated set of observer operations. The changes required to capture the more
refined view of CafeOBJ are rather obvious as well. To deal with order-sorted
algebra, we introduce explicit subsort inclusions and (partial) retracts, again
somewhat departing from what is sketched in [DF02]. The combination of be-
havioural equations with subsorting, omitted here, requires further careful study
in our view, perhaps building on [BD94].

To keep the paper to a reasonable size, we entirely omitted notions of comor-
phisms for institutions and parchments, even though there seems to have been
a shift in the presentation of the CafeOBJ cube from institution morphisms to
comorphisms [Dia11]. In the case of the logical systems considered here, these
are simple, as all the morphisms in use are based on signature functors having
left adjoints — and in such cases well-known results about duality between in-
stitution morphisms and comorphisms [FC96] carry over to parchments as well.
In general, however, the use of comorphisms in this context is not immediate.
First, there are formal problems: for instance, the category of institutions and
their comorphisms is not cocomplete due to foundational reasons, and some size
limitations have to be imposed on the institutions considered. Second, and per-
haps more to the point, comorphisms capture a different intuition concerning
the relationship between the institutions they link. Informally, while institution
morphisms indicate how a richer logical system is built over a simpler one, insti-
tution comorphisms show how a simpler logical system is encoded in a richer one.
Consequently, it is not obvious at all that comorphisms offer a proper technical
framework for the modular construction of logical systems we aim at here. We
leave this as a worthwhile topic for further investigation though, as comorphisms
open the way to the study of parchment representations in universal logics we
began in [MTP98], and link to other frameworks based on heterogeneous logi-
cal environments like Hets [MML07] and LATIN [CHK+11], which admit logic
definitions in a modular manner [CHK+12].

An interesting, far-reaching and difficult problem is how to capture in our
framework the operational ideas that underlie the CafeOBJ implementation and
are closely linked with the logical systems involved.
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