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MULTI-LEVEL MODELLING VIA STOCHASTIC MULTI-LEVEL

MULTISET REWRITING

NICOLAS OURY AND GORDON PLOTKIN

Abstract. We present a simple stochastic rule-based approach to multilevel modelling
for computational systems biology. Populations are modelled using multilevel multisets;
these contain both species and agents, with the latter possibly containing further such
multisets. Rules are pairs of such multisets, but now allowing variables to occur (as well
as species and agents), together with an associated stochastic rate.

We give two illustrative examples. The first is an extracellular model of virus infection,
coupled with an intracellular model of viral reproduction; this model can demonstrate
successive waves of infection. The second is a model of cell division in which a repressor
protein is diluted in successive generations, when repression no longer occurs.

The multilevel multiset approach can also be seen in terms of stochastic term rewriting
for the theory of a commutative monoid, equipped with extra constants (for the species)
and unary operations (for the agents). We further discuss the relationship of this ap-
proach with two others: Krivine et al.’s stochastic bigraphs, restricted to Milner’s place
graphs, and Coppo et al.’s Stochastic Calculus of Wrapped Compartments. These various
relationships provide evidence for the fundamental nature of the approach.

1. Introduction

We present a simple rule-based formalism for multilevel modelling of biological processes.
We are thinking particularly of modelling both inter- and extra-cellular events, for example
signalling and cell division. To that end we present a stochastic rule-based formalism of
multilevel multisets. These are, essentially, nested multisets; more exactly they are finite
multisets whose elements are either species names or pairs of an agent name, e.g., Cell, and
a multilevel multiset, with this multiset nesting carried on only to finite depth. The agents
serve to indicate a lower level and its kind. The rules use similar multisets, additionally
allowing variables.

Multilevel modelling involves multiscale modelling and much work has been done on
both. For reviews, see [MFK09, BBP09, GS09, CRT10, Nob02]; some particular systems
are BioCharts [KLH10, HK10], Simmune [MXA06], and CompuCell3D [CAS07]. Most of
these systems have specific modelling scenarios in mind. The computer science community
has provided general purpose formalisms, often taking ideas from process calculus. The
first of these is Regev et al.’s BioAmbients [RPS04], which has features of the stochas-
tic pi-calculus [PR01] and constructs that enable the movement of agents into and out of
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2 NICOLAS OURY AND GORDON PLOTKIN

other agents. Another is Cardelli’s Brane Calculi [Car04], which has, essentially, our mul-
tilevel multisets in algebraic form together with other structure, including actions, thereby
distinguishing it from rule-based approaches.

There are also rule-based formalisms, such as Mjolsness and Yosiphon’s Dynamical
Grammars [MY06], Milner’s bigraphs [Mil09], adapted to biological ends in [KMT08],
and the Stochastic Calculus of Wrapped Compartments of Coppo et al. [CD10a, CD10b], a
descendent of the Stochastic Calculus of Looping Sequences [BCM08, BMM08]. Pǎun in-
troduced dynamic compartments into membrane computing, which can also be considered
a rule-based formalism: see, e.g., [Pau01, Pau08, Fri09], and see also [SMC08] for work on
stochastic dynamic compartments. The present work is closely related, although, as so far
formulated, the range of rules in membrane computing seems less varied. Bitonal mem-
brane systems [Car08] are in the brane calculi family, but stripped of actions and instead
equipped with rules; they can therefore be seen as particular rule-based systems, more or
less of the kind considered here.

A standard formalism for reactions is multiset rewriting over a set of constants standing
for various species. If each rule is given a rate, one obtains stochastic multiset rewriting,
which is equivalent to stochastic Petri nets. All this is well-known, as are the uses of
multiset rewriting and Petri nets for modelling biological systems. Here, as indicated
above, we extend these ideas in just one way: we we add unary function symbols to the
rewriting formalism: that single extension enables one to do multilevel modelling.

Here is an example stochastic multiset rewriting rule:

Glucose,ATP
k1−→ Gluc-6-P,ADP

It models a reaction from the glycolysis pathway with stochastic rate k1. Suppose we
further wish to indicate that the reaction only takes place inside cells. Then we introduce
a unary function symbol Cell and write the same rule “one level down”:

Cell(Glucose,ATP, x)
k1−→ Cell(Gluc-6-P,ADP, x)

The variable x is used to indicate that, other than the molecule of glucose and the molecule
of ATP, the contents of the cell remain unchanged. We can also write rules that mix levels.
For example, a rule of the form

H2O,Cell(x)
k2−→ Cell(H2O, x)

might be used for the passive transport of water into cells.
Multiset rewriting with species can be viewed algebraically as rewriting modulo an

associative-commutative (AC) operation with a zero and with additional constants [The03].
Similarly our multilevel multiset rewriting can be seen as rewriting modulo an AC opera-
tion with a zero, with additional constants, and with additional unary function symbols.
As stochasticity is also present, we are led to consider stochastic term rewriting. Curiously,
although very natural, the idea of stochastic term rewriting seems novel; there is however,
work on probabilistic term rewriting [BK02, BH03, AMS06].

We give a more detailed comparison of our formalism with Krivine et al.’s and Coppo
et al.’s in Section 5 below; in particular it corresponds to “half” of Milner’s bigraphs,
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his place graphs. There is no doubt that the three formalisms are very closely related.
We would argue that ours is particularly simple to understand, and easy and natural to
use when modelling mutlilevel biological systems. Furthermore, by working within term
rewriting, with its algebraic setting, one employs a very standard approach; this contrasts
with other rule-based approaches which, while perfectly sound, are, perhaps, somewhat ad
hoc. We expect the term rewriting approach to provide a sound basis for further extension;
this point is discussed further in the concluding Section 6. Overall, the fact that all three
approaches are very much the same encourages us to think that multilevel multisets provide
a fundamental structure for multilevel rule-based modelling.

We begin, in Section 2, with an illustrative example of viral infection and reproduction.
The model demonstrates a second wave of infection; it seems to be the first multilevel
model to do so. Spicher et al [SMC08] have also given a stochastic viral model, a stochastic
dynamical P systems model of the Semliki viral life cycle. We have implemented our rule-
based formalism using a version of the standard Gillespie direct method [Gil77], and we give
illustrative runs of our examples. We present our stochastic multilevel multiset rewriting
formalism in Section 3. Populations are, as we have seen, modelled as multilevel multisets.
Each rule has a given base rate, and the rate at which it applies in a given population is
the product of the base rate and its activity, that is, the number of ways in which it can
match the population.

We present another example in Section 4, again giving illustrative runs; this example
was inspired by [RYA05], and features cell division. Next, we give the comparisons with
the previous work of Krivine et al., and Coppo et al. in Section 5; we also discuss the
algebraic formulation of stochastic multilevel multiset rewriting there. Finally, possibilities
for future work are discussed in Section 6.

2. An Example: Viral Infection

We consider a simple model of viral infection, taken from [SYS02, HRY05]. There are
two levels: intracellular and extracellular. A simple intracellular model of infected cells
is given in [SYS02], and this is combined with an extracellular model of viral infection
in [HRY05]. Intracellularly, infected cells can incorporate viral protein into their genome,
and then produce viral structural protein and genomic viral nucleic acid, both of which
may degrade. Extracellularly, viruses can invade uninfected cells, and infected cells can
produce viruses, from viral structural protein and genomic viral nucleic acid, or die.

The intracellular part of the model involves the following species:

gen genomic viral nucleic acid
str viral structural protein
tem template viral nucleic acid
V1,V2 viral enzymes

These take part in the following reactions, modelled in the standard way as stochastic
multiset rewriting rules:
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gen,V1
k1−→ tem,V1

tem,V2
k2−→ str, tem,V2

tem
k3−→ gen, tem

str
k4−→

gen
k10−−→

Turning to the extracellular part of the model, we introduce two new species, Virus and
Cell, again modelled by constants, together with an “infected cell agent” ICell, modelled by
a unary function symbol. (We may consider uninfected cells as species as the only internal
activity we are modelling is that of infected cells which are rather modelled using the agent
ICell.)

The rules are as follows:

Virus,Cell
k6−→ ICell(gen, 80V1, 40V2)

ICell(gen, str, x)
k5−→ Virus, ICell(x)

Virus
k7−→

ICell(x)
k8−→

Cell
k9−→

The first rule describes the infection of previously uninfected cells; note that there is no
reinfection of infected cells in this model. If we wished to allow infected cells to be further
infected, then, instead of working with a constant for uninfected cells and a unary function
symbol for infected ones, we would simply work with a unary function symbol for cells —
uninfected or not.

The second rule describes viral production; it can be read as saying that, given an
infected cell whose population contains one molecule each of gen and str, and the rest of
whose population is x, then a virus is produced and the population of the infected cell
becomes x. The last three rules concern viral and cell death.

The intracellular reactions can only happen inside (multilevel multisets representing)
infected cells, as it is only there that the relevant (sub)-populations will occur. Of course
this can only be seen from the model as a whole. If we wished to make the matter explicit,
then we could replace the intracellular part of the model by rules involving ICell. For
example, the first rule would be replaced by the following rule:

ICell(gen,V1, x)
k1−→ ICell(tem,V1, x)

We illustrate the model by showing the results of a few example simulations of this
system. Each run shows the number of cells and of the different molecules, plotted against



MULTI-LEVEL MODELLING VIA STOCHASTIC MULTI-LEVEL MULTISET REWRITING 5

k1 3.125 10−4 k6 5
k2 25 k7 0.08
k3 1 k8 0.005
k4 1.99 k9 0
k5 7.5 10−6 k10 0.25

Figure 1. The stochastic rates used for the simulation

the time in days. Figure 1 gives the stochastic rates, in day−1; they are taken from the
original papers.

We first simulate the model with an initial population of one cell and one virus. The
virus infects the cell and the mechanism to produce more virus is started inside the cell.
The result of one such run is shown in Figure 2. In this simulation, we set k9 to 0, in order
to prevent the infected cell from dying before the end of the simulation.

As we simulate a stochastic system, different runs will give different results. For example,
the delay before the first new virus is produced usually varies from 30 to 100 days. This
simulation is similar to those obtained in [SYS02].

Next, we simulate an infection of many cells by many viruses. Figure 3 shows the result
of the infection of 100 cells by 200 viruses. This simulation is similar to the problem
studied in [HRY05]. However there, in order to be able to construct differential equations,
the species in the different cells were averaged. Here, benefiting from multilevel multiset
rewriting, we compute an exact stochastic simulation of every cell.

But the real benefit from this framework comes with the simulation of the infection of
many cells with few viruses. In this situation, the averaging used in [HRY05] is no longer
valid: 10% of cells being infected is different from each cell being 10% infected, which does
not make much sense. In particular it is not clear how one would adapt the framework to
simulate two or more rounds of viral infection. Figure 4 shows the result of the infection
of 100 cells by 5 viruses. In particular, this simulation shows a second wave of infection
starting after 125 days (this delay varies stochastically from simulation to simulation),
when enough viral proteins have been made inside the cells infected during the first wave.

3. Stochastic Multilevel Multiset Rewriting

We explain successively: multilevel multiset terms, which we use to model population
states; rules and their application, which we use to model system transformations such as
reactions, transport and cell creation and division; and the activity of rules, which together
with their application, determines a stochastic rate matrix. Our implementation samples
a run from the corresponding stochastic process.

We need some notation and conventions for multisets. We may identify objects with their
corresponding singleton multisets; we use possibly empty, lists M0, . . . ,Mn−1 of multisets
to denote their multiset sum; and we write nM (where n ∈ N) for the n-fold multiset sum
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(a) Virus

(b) tem

(c) str and a low level of gen

Figure 2. Simulation of the infection of one cell by one virus
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(a) uninfected, infected and dead cells

(b) Virus

Figure 3. Simulation of the infection of 100 cells by 200 viruses
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(c) tem

(d) str and a low level of gen

Figure 3. Simulation of the infection of 100 cells by 200 viruses – Continued
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(a) uninfected, infected and dead cells

(b) Virus

Figure 4. Simulation of the infection of 100 cells by 5 viruses
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(c) tem

(d) str and a low level of gen

Figure 4. Simulation of the infection of 100 cells by 5 viruses – Continued
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of a multiset M with itself. We also use standard notation such as 0, M +N , or
∑n−1

i=0 Mi

for various sums of multisets.
Beginning with states, we assume given two disjoint sets, Spec of species and Agent of

agents (a more neutral terminology, emphasizing the algebraic point of view, would be
constants and unary function symbols). We then define multilevel multisets and atomic
multilevel multisets as follows, where we further assume available a countably infinite set
of variables (disjoint from Spec and Agent):

• Every finite multiset a0, . . . , an−1 (n ≥ 0) of atomic multilevel multisets is a multi-
level multiset.
• Every S in Spec is an atomic multilevel multiset.
• Every variable x is an atomic multilevel multiset.
• If t is a multilevel multiset and A ∈ Agent then A(t) is an atomic multilevel multiset.

It is convenient to refer to multilevel multisets (respectively atomic multilevel multisets)
simply as terms (respectively atomic terms). A term, or atomic term, is ground if it contains
no variables. Ground terms are used to model populations. For example:

Virus, 20Cell, ICell(gen, 80V1, 40V2), ICell(gen, tem, str, 80V1, 40V2)

models a population consisting of one virus, twenty uninfected cells, a cell which has
(perhaps) just been infected and an infected cell which is ready to produce a virus.

A term of the form A(t) is said to be an agent atomic term (with agent A). We define
the height of terms and atomic terms by setting:

|a0, . . . , an−1| =
n−1
max
i=0
|ai|

|S| = |x| = 0

and

|A(t)| = 1 + |t|
The subterm relation between terms is defined to be the least reflexive relation between

them such that if t is a subterm of t′ then it is a subterm of both A(t′) and t′ + t′′. The
wide subterm relation between terms is defined to be the least reflexive relation between
them such that if t is a wide subterm of t′ then it is a wide subterm of A(t′). Both relations
are easily seen to be partial orders. As an example S, x is a wide subterm of A(S, x), but
S is only a subterm of it.

Rules, ranged over by R, are pairs of terms l, r, together with an associated stochastic
rate k ∈ R, and are written:

l
k−→ r

The height of such a rule is the maximum of the heights of l and r. For example the kind
of rules used above for modelling reactions between species have height 0, with both sides
ground.

It is interesting to consider the various forms such rules may take when used to model
cellular behaviour. Here are some possible rules of height 1:
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Transport:

M,A(N, x)
k−→M ′, A(N ′, x)

Creation:

M
k−→M ′, A(N ′, x)

Death:

M,A(N, x)
k−→M ′, N ′

where M,N , etc are multisets of species. The names indicate their possible uses for mod-
elling. One may ask if these provide sufficient possibilities for modelling extra- and intra-
cellular behaviour, at least to a first approximation. In that respect the following, taken
from [ASC08], and slightly rewritten, is germane:

We have constructed the generic base of GemCell by appreciating the fact
that any cell, in response to its surroundings, carries out only five types of
behavior:
• Export (secretion of molecules, electricity, etc.),
• Import (receiving signals, metabolites, phagocytosis, etc.),
• Death,
• Movement (including shape change and adherence), and
• Replication.

The transport rule accounts for export and import, and the death rule for death. Move-
ment and replication raise important issues, and point to the need for, and possibilities of,
a further development of our formalism. For movement we could try rules of the following
form:

M,A(N, x)
k−→M ′, B(N ′, x)

where A and B are cells in two given different places, or of given different shapes. However
this is an impoverished notion of place and shape. For adherence we might try:

M,A(N1, x), B(N2, y)
k−→M ′, C(N ′, x, y)

where C models A and B adhering to each other. Adherence is analogous to complex
formation or binding, but at a higher level; as before, this is an impoverished notion.

As regards replication, we might consider the following kind of rule:

(1) M,A(N, x, y)
k−→ A(N ′, x), A(N ′′, y)

But there is a puzzle here, as the left-hand side is non-linear, and so there is a natural
question as to how to interpret the stochastic rate: does each match of the left-hand side
have the same rate, or is the rate somehow parcelled out among the possible matches?
In the example below we follow [KMT08] and avoid the problem, preferring instead to
explicitly model the division in two of the contents of the replicating cell.

There are several natural conditions one can place on rules, and, as alluded to in [KMT08],
it is interesting to discuss which are natural when modelling biological systems, and which
are not. The first such condition is:

No creation: Var(r) ⊆ Var(l)
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with
This is standard in term rewriting; it is also required from a biological point-of-view,

for where would the value of the “new” variable come from? For the others we first define
some possible conditions on a term t.

Uniqueness: Any variable occurs at most once in t.
Unicity : t has no subterm containing two variable occurrences.
Generality : Every wide subterm of t contains a variable.

The last two conditions are equivalent to the condition that every wide subterm of t con-
tains exactly one variable. The unicity condition means that not only cannot two distinct
variables occur in the subterm, but also that any variable occurring in it can have multi-
plicity at most 1.

We say that a rule l
k−→ r satisfies the no equality, no splitting, or no emptiness condition

according as, respectively, l satisfies the first, second or third of the above conditions.
All three have a linearity flavour, and are all natural from a biological point of view.
For the first, surely no step of a modelled biological process can depend on two sub-
populations being identical? The third states that no step of a modelled biological process
can depend on a population being exactly specified (for example, that there are exactly so
many molecules rather than at least so many molecules). The “no splitting” requirement is
less clearly unnatural biologically; the questions it presents in the case of replication were
discussed above.

There are corresponding “dual” rule conditions. We say that a rule l
k−→ r satisfies the no

vanishing, no duplication, no merging, or no complete prescription condition according as,
respectively, Var(l) ⊆ Var(r), or r satisfies the first, second or third of the above conditions
on a term.

The “no duplication” condition, seems reasonable as a biological process that exactly
duplicates a population seems unlikely. However, in contrast to the corresponding possible
conditions on the left-hand side of a rule, there does not seem to be any strong reason from
a biological point of view to impose any of the other conditions. For the rest, the first, cell
death certainly does result in vanishing: it is at least natural not to be forced to model
every detail of degradation. As regards the “no merging” condition, it is surely common
for the contents of two agents to merge; equally one may wish to completely prescribe the
initial modelled part of the population of a cell, as was done, for example, in the above
example of infected cells.

Given this discussion, from now on we impose all of the first set of conditions on our
rules but only the “no duplication” condition of the second set. The rules in our examples
and discussions obey all these conditions except that they do not have a top level variable.

However this is only for the sake of presentation, and every such rule written as l
k−→ r

should be regarded as being in the form l+ x
k−→ r+ x, where x is some canonically chosen

variable not occurring in l or r.
We next turn to matching multiset terms against each other, more precisely to finding the

multiset of matches and their multiplicities. This is needed in order to define the stochastic
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process associated to a given finite set of rules. First a substitution σ is a finitely-based
function from variables to terms, that is a function which acts as the identity on all but
finitely many variables. Such a function σ can be denoted by [t0/x0, . . . , tn−1/xn−1] where
the variables x0, . . . , xn−1 are all distinct, xiσ = ti, for i = 0, . . . , n − 1 and σ acts as
the identity on any other variable (it is common to use the postfix form of application for
substitutions).

Substitutions are extended to act on all terms and atomic terms as follows:

(a0, . . . , an−1)σ = a0σ, . . . , an−1σ
Sσ = S

A(t)σ = A(tσ)

A match of a term l against another term t is a substitution σ such that lσ = t. For
example, the substitution σ = [(n −m)S/x] is a match of the term l = mS + x against
the term t = nS, assuming that n ≥ m (there is otherwise no match). This match can be
thought of as occurring in several ways according to which of the m S’s of l is matched
against which of the n S’s of t. So we say that the match has multiplicity the m-fold falling
product of n, nm =def n(n − 1) . . . (n − (m − 1)). We also define a symmetry of l to be a
permutation θ of the variables of l leaving it invariant, that is, such that lθ = l, where we
identify θ with the substitution that acts as the identity on all variables not in l.

We now define finite multisets m(l; t) and m(a; a′) of substitutions of (atomic) terms
against (atomic) ground terms; m(l; t) is intended to be the multiset of matches of the
term l against the term t, where a substitution has multiplicity its multiplicity as a match
of l against t (and similarly for m(a; a′)). The definition is only for terms l (respectively
atomic terms al) satisfying the above three conditions, and ground terms t (respectively
atomic ground terms at):

m(a0, . . . , am−1, x; a′0, . . . , a
′
n−1) =

∑
f :[m]↪→[n]m(a0, a

′
f(0)) o · · · om(am−1, af(m−1))o

[
∑

j /∈f([m]) aj/x]

and

m(S; a′) =

{
[ ] (a′ = S)
0 (otherwise)

m(A(l); a′) =

{
m(l; t) (a′ = A(t))
0 (otherwise)

where, by the composition of multisets of substitutions we mean the natural extension of
the usual composition of substitutions to multisets. Note that if m(l; t)(σ) 6= 0 then σ acts
as the identity on variables not in l.

One can show that σ is a match of l and t if, and only if, it has non-zero multiplicity in
m(l; t). This justifies its definition as far as as its elements are concerned. Below we give
a reformulation in terms of counting tree embeddings.

We can separate m(l; t) into a species and an agent part. Write l in the form X + l′+x,
and t in the form Y + t′ where X and Y are finite multisets of species, and l′ and t′ are
multisets of agent atomic terms. Define the X-fold falling multiset sequential product of
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Y to be:

Y X =def

∏
S∈Spec

Y (S)X(S)

noting that this is essentially a finite product. Then we have:

m(l; t) = Y X(m(l′ + x; t′) + [(Y −· X)/x])

allowing ourselves to add substitutions pointwise. One might rather have expected to see
the binomial of multisets (

Y

X

)
=

∏
S∈Spec

(
Y (S)

X(S)

)
This would be the case if we rather counted the number of matches up to symmetry, by
dividing m(l; t) by the number of symmetries of l.

We now turn to defining the application of rules to terms. First we need to define
contexts, which are terms C[ ] with a (single) hole [ ] in them. They are defined inductively,
taking [ ] to be a context, and A(C[ ]) and the multiset C[ ], t to be contexts if C[ ] is.
Ground contexts are those containing no variables. Given a context C[ ] one can obtain a
term C[u] (context C[D[ ]]) by filling-in the hole [ ] with a term u (respectively, a context
D[ ]); we omit the definition.

We can now define the transition relation −→R between ground terms of application of

rule of R = l
k−→ r, by setting

t −→R t
′

to hold when t has the form C[u], for a context C[ ] and there is a substitution σ which is a
match of l against u, and is such that t′ = C[rσ]; note that C[ ] will necessarily be ground.
A transition relation can then also be defined for a finite set R of rules by putting:

t −→R t′ ⇐⇒ ∃R ∈ R. t −→R t
′

These are qualitative relations, by which we mean that no account is taken of the rates of
the rules. To do so, we first need to define a narrower class of contexts, the wide contexts
W[ ]. They are defined inductively, taking [ ] to be a wide context, and the multiset
A(W[ ]), t to be a wide context if W[ ] is. Note that every context can be written in the
form W [[ ], t]. Using this, it is not hard to see that we get the same relation if we allow all
contexts here, as l obeys the generality condition. Note too that a context C[ ] is wide if,
and only if, every term t is a wide subterm of C[t].

Wide contexts are needed to avoid a possibility of double-counting when defining sto-
chastic rates. For example, consider the rule

R = S, x
k−→ S′, x

We have S, S′ →R 2S′, but that can be shown in two ways, using either of the contexts [ ]
or [ ], S′, and only the first of these is wide.
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We need a count occt(W[ ], u) of the number of ways in which a ground term t can have
the form W[u], for a given wide context W [ ] and term u:

occt([ ], u) =

{
1 (t = u)
0 (t 6= u)

occa0,...,an−1((A(W[ ]), l), u) =
∑n−1

i=0

∑
{occt′(W[ ], u) | ai = A(t′),
a0, . . . , ai−1, ai+1, . . . , an−1 = l}

The corresponding quantitative notion for a rule R = l
k−→ r is a stochastic matrix QR.

This is a function from pairs of ground terms to non-negative reals, where, for distinct
ground terms t, t′:

QR(t, t′) = k
∑

t=W[u]

occt(W[ ], u)
∑

u = lσ
t′ = W[rσ]

m(l;u)(σ)

and, on the diagonal QR(t, t) is, as usual, one minus the sum of the off-diagonal entries
QR(t, t′) (one easily sees that almost all the off-diagonal entries are 0). Note the use of the
representation of multisets as functions to N in this definition. Analogously to before, this
can be extended to a stochastic matrix for a finite set R of rules by defining:

QR(t, t′) =
∑
R∈R

QR(t, t′)

We next describe how to simulate the CTMC given by this stochastic rate matrix in

terms of choosing and applying rules from R. The activity of a rule R =def l
k−→ r on a

term t is defined by:

Act(R, t) =
∑
t′ 6=t

QR(t, t′)

which is equal to

k
∑

t=W[u]

occt(W[ ], u)
∑
u=lσ

m(l;u)(σ)

The simulation has a current time, initialised to 0, and a current state t, and proceeds
by cycling through the following sequence, for as many times as are required:

• If λ =def
∑

R∈RAct(R, t) is zero, stop the simulation.

• Chose τ from the exponential distribution 1− e−λτ and add it to the current time.

• Choose rule R =def l
k−→ r from R with probability λ−1Act(R, t).

• Choose a wide context W[ ] and a u such that t = W[u] and a σ such that lσ = u
with probability

k occt(W[ ], u)(m(l;u)σ)

Act(R, t)

• Update t to W[rσ].
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Normally in a simulation one graphs the species populations against time. This is fine
for species, of course, but what about agents? For example one might wish to graph the
number of agents A containing 3 molecules of species S. We can achieve this by graphing
the activity of suitable patterns given by terms l obeying the three conditions. For example,
for a species S one graphs the term S+x and for the agent example one graphs the pattern
A(3S + x) + y. The activity of a pattern l in a ground term t is defined to be:

Act(l, t) =
∑
lσ=t

m(l; t)(σ)

Returning to the question of symmetries, the activity of a rule with left-hand side mS+x
in the population nS will be nm rather than the more usual

(
n
m

)
. However it will not do

simply to divide the activity by the number of symmetries of the left-hand side. Consider
the rule:

A(x), A(y)
k−→ B(x), C(y)

where we would not wish to divide by 2 as the right-hand side distinguishes x and y. Adapt-
ing a suggestion1 of Russ Harmer made in the context of Danos and Laneve’s κ [DL03],
we may prefer to divide the activity of a rule by the number of symmetries of its left-hand
side that extend to a symmetry of its right-hand-side. In a sense the matter is only one of
convention since one can always absorb the division into the rate constant. In this paper,
we adopt the simpler position of not doing any symmetry division, but do not argue it is
the superior choice. In practice, the symmetry issue comes up for species, but, in our —
very limited — experience, not for agents.

4. Another Example

In this section, we give a model of an experiment presented by Rosenfeld et al. in
[RYA05]. We do not so much aim to model the experiment exactly as to illustrate how one
can use multilevel multiset rewriting to model a biological process in which cell division
plays an important rôle.

Rosenfeld et al. introduce a method to measure the gene regulation function of a given
promoter. They create a high concentration of a repressor protein yfp in a single cell.
This protein targets the chromosomally-integrated promoter Pro of the gene for a protein
cfp. At cell division, each daughter cell receives approximately half the population of the
repressor protein. So, after a few divisions, the concentration is low enough to allow the
production of cfp to take place.

For our model we need to represent different cells with different content evolving inde-
pendently. We begin by giving a set of rules for the reactions occurring inside cells. (For
practical reasons, our model actually uses a modified version of these rules, as explained
below.)

We first introduce two different species, yfp and cfp, for modelling the repressor protein
and the gene product. We next introduce a species mRNA for the messenger RNA; this is
used to give a (much-simplified) model of the transcription-translation of cfp,

1Personal communication.
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Modelling the promoter is less straightforward. To approximate repression cooperativity,
which has a measured value around 2 in the paper, we model the promoter as having two
binding sites. Each of them can bind to a yfp. Transcription can only occur when both
binding sites are empty. This could be modelled by using different species, one for each
of the three possible promoter states: free, one binding site occupied, both binding sites
occupied. This approach is very intuitive but would make it harder to model cell division.

Instead we use an agent Pro to model the promoter and two species FreeBS and OccBS
to represent the state (respectively free or occupied) of each of the two binding sites. For
example, a promoter with two free binding sites is modelled by Pro(2FreeBS), whereas a
promoter with one binding site occupied is modelled by Pro(OccBS,FreeBS). (The model
is symmetric in both binding sites; non-symmetric models are also possible.)

The following rules then model represent repression and transcription. (We do not model
the nucleus and transport between it and the cytoplasm.)

Pro(FreeBS, x), yfp
rfree−occ−−−−−→ Pro(OccBS, x)

Pro(OccBS, x)
rocc−free−−−−−→ Pro(FreeBS, x), yfp

Pro(2FreeBS, x)
rtranscr−−−−→ Pro(2FreeBS, x),mRNA

Note that whenever the last rule applies, x will be (matched to) 0.
Translation is modelled by the following rule:

mRNA
rtransl−−−−→ cfp

Both mRNA and cfp can degrade, and so we have the following two rules:

mRNA
rm−degrad−−−−−−→

cfp
rc−degrad−−−−−−→

This completes our representation of the rules for modeling the intracellular part of the
process. However, there is a difficulty with modelling the extracellular part: the experiment
produces an exponential number of cells, making faithful simulation impractical for our
current implementation. There were 20 cell divisions in the experiment, and so we would
have to simulate around 220 cells.

To solve this problem, we model only one cell of each generation: the first simulated cell
is given a marker, only one of the two descendants of a marked cell receives a marker, and
the system simulates only cells that have been marked.

To this end, instead of a single agent Cell, we use a family of agents Cellu, where
u ⊆ {mark,dup}. The marker “mark” is used to determine the cells whose evolution is
being modelled (the marker “dup” is used to control DNA replication).

To make sure we only simulate the marked cell, we adapt the above rules by embedding
them in a marked agent: For example, the first three rules are replaced by the following
six:

Cellu(Pro(FreeBS, x), yfp, y)
rfree−occ−−−−−→ Cellu(Pro(OccBS, x), y) (mark ∈ u)

Cellu(Pro(OccBS, x), y)
rocc−free−−−−−→ Cellu(Pro(FreeBS, x), yfp, y) (mark ∈ u)

Cellu(Pro(2FreeBS, x), y)
rtranscr−−−−→ Cellu(Pro(2FreeBS, x),mRNA, y) (mark ∈ u)
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(It would evidently be preferable to allow parametric agents directly in the formalism,
thereby permitting parametric rules. For example, the above six rules would become three
parametric ones. This point is discussed further in Section 6.)

Our remaining rules model cell division. The first rule models DNA replication. However
we must ensure that this happens only once in the cell cycle. To that end we make use of
the marker dup which acts as a token allowing DNA to be replicated, but consumed in the
application of the rule.

Celldup,mark(Pro(x), y)
rreplication−−−−−−→ Cellmark(Pro(x),Pro(2FreeBS), y)

where, for example, we write Celldup,mark instead of Cell{dup,mark} (and we employ similar
notation below).

Next, we model cell division per se. Following the discussion in Section 3, we cannot use
the analogous rule to (1), viz:

Cellmark(Pro(z),Pro(z′), x, y)
rdivision−−−−−→ Cellmark,dup(Pro(z), x),Cell(Pro(z′), y)

as it does not satisfy the uniqueness condition. We therefore use a set of rules with a similar
effect. Much the same problem arose previously when applying bigraphs in a biological
setting [KMT08], where a slightly different solution was adopted.

We use the expressivity of multilevel multiset rules to randomly partition the population
of each species of a cell between its two children. To that end, we introduce a new unary
function symbol CellPrec to model cell precursors, and add the rule

Cellmark(Pro(z),Pro(z′), x)
rdivision−−−−−→ Cell(CellPrec(Pro(z)),CellPrec(Pro(z′)), x),

The mark is removed to prevent any of the above rules from being applied while the cell
species are being partitioned, i.e., during cell division.

The next three rules serve to partition the populations of the species in Cell (x in the
preceding rule) between the two precursors CellPrec.

Cell(CellPrec(y),mRNA, x)
rpartition−−−−−→ Cell(CellPrec(mRNA, y), x)

Cell(CellPrec(y), yfp, x)
rpartition−−−−−→ Cell(CellPrec(yfp, y), x)

Cell(CellPrec(y), cfp, x)
rpartition−−−−−→ Cell(CellPrec(cfp, y), x)

We want cell division to happen instantaneously, so the rate rpartition must be very high
with respect to all the other rates. It is important to understand that this high rate does
not slow down the other parts of the simulation: these rules are only applicable in the
presence of a CellPrec, which happens only when the other rules do not apply as the mark
parameter is absent.

After the precursors are introduced, we need |x| rule applications to partition all the
species in x. After these simulation steps, we want the two precursors to become two new
cells, and so might expect to use the rule:

Cell(CellPrec(x),CellPrec(y))
rseparation−−−−−−→ Celldup,mark(x),Cell(y)



20 NICOLAS OURY AND GORDON PLOTKIN

rfree−occ 1.0 rm−degrad 0.00556
rocc−free 0.001 rreplication 8.33 10−4

rtranscr 0.1 rdivision 4.17 10−4

rtransl 0.0167 rpartition 1012

rc−degrad 0 rseparation 105

Figure 5. The stochastic rates used for the simulation

However, such a rule is forbidden by the generality condition of Section 3: there is no
variable in the left-hand side Cell. We instead use the following separation rule:

Cell(CellPrec(x),CellPrec(y), z)
rseparation−−−−−−→ Celldup,mark(x, z),Cell(y)

and make sure z is very unlikely to contain any species by choosing rseparation very low with
respect to rpartition. As the separation rule has constant stochastic activity, this ensures that
it is very unlikely to be triggered if the partition rule can still be applied. The simulation
is not slowed down, as there are at most |x| steps of partition, after which separation is
the only applicable rule. The cell division can therefore be simulated in |x|+ 1 steps.

In practice, we want this process to happen instantly in simulated time, so we must fix
both rseparation and rpartition very high with respect to the other rates of the system. In
summary, we want:

rpartition >> rseparation >> r∗

where r∗ is the maximum all the other rates of the system.
We ran a simulation of the above set of rules with an initial population of one cell

containing 2500 repressor proteins:

Cellmark,dup(2500yfp)

and with the rates, in s−1, given in Figure 5. Figure 6 shows both the number of cells
and the number of molecules of yfp and cfp in the run, plotted against time, measured in
seconds

As expected, the evolution of the number of cells is linear. The run is similar to the one
presented in the original article. With each division, the concentration of yfp decreases
until the production of cfp becomes possible.

This second worked example gives some feeling for the strength and weaknesses of multi-
level multiset rewriting. It allows a very direct expression of nested dynamic compartments,
for both cell division and promoter representation, and an intuitive rule-based system ex-
pression. On the other hand, the very strict conditions on the rules make modelling cell
division awkward to express: we return to this point in Section 6.

5. Other Formalisms

We begin by looking at a term rewriting formulation. There is an evident notion of
stochastic term rewriting which seems, surprisingly, not to be in the literature. Suppose
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(a) yfp and cfp

(b) cells

Figure 6. A run of the simulation
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we have a a rule R of the form:

l
k−→ r

where l and r are terms over a given signature, with Var(r) ⊆ Var(l), and k is a nonnegative
real. Then we can define a stochastic rate matrix on ground terms by setting:

QR(t, t′) = k |{C[ ] | ∃σ. t = C[lσ] ∧ t′ = C[rσ]}|

for distinct t and t′.
However to account for our multilevel multiset terms we need rather to work modulo a

suitable equational theory. So, given the two disjoint sets, Spec of species and Agent of
agents, consider the equational signature with constants the species and 0 (not a species),
with unary operation symbols the agents, and with a binary operation symbol +. We work
modulo the equational theory T that says + is associative, commutative, and has a zero,
0. Our terms can then be seen as normal forms for the algebraic terms modulo T. More
precisely, define a map N to the former from the latter by:

N(x) = x
N(S) = S

N(A(t)) = A(N(t))
N(t+ u) = N(t),N(u)

Then N is onto and we have:

`T t = u ⇐⇒ N(t) = N(u)

Clearly a term and its normal form have the same variables. Say that an occurrence of
a variable in a term is at top level if it is not within any unary operation symbol. Then
N(t) obeys the above three conditions if, and only if, no variable occurs more than once
in it, and there is exactly one top level variable occurrence, with the same being true of
every term u such that A(u) is a subterm of t, for some unary operation symbol A.

Given a rule R = l
k−→ r as above in the present signature, we can define a rewriting

relation, modulo T, between ground terms in a standard way, by putting:

t −→R t
′ ⇐⇒ ∃C[ ], σ. `T t = C[lσ] ∧ `T t′ = C[rσ]

Then setting N(l
k−→ r) = N(l)

k−→ N(r), and assuming this rule obeys the above conditions
on multilevel multiset rules, we have, for any ground terms t and t′:

t −→R t
′ ⇐⇒ N(t) −→N(R) N(t′)

However we do not know how to write the transition matrix between ground algebraic
terms, modulo T, other than to use the normal form and the above definition of stochastic
rates for multilevel multiset rules. We regard it as an interesting open problem to formulate
a notion of stochastic rewriting for algebraic terms modulo equational theories. It may well
be that one needs to restrict the class of equational theories considered; a possible such
class is that of the balanced theories, those given by equations in which the same variables
occur on each side, see [Man98].
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The algebraic approach gives a possibility of generality for the development of useful
term rewriting formalisms for computational systems biology. For example, one can argue
that agents and compartments are different. Consider the term A(B(x) + B(y) + z).
Here one has two distinct B-agents with contents x and y within an agent A. However,
if one instead takes B to be a compartment name, then the agent A should have only
one compartment with a given name; it is therefore natural to make the identification
B(x) + B(y) = B(x + y), that B commutes with the AC operation. So an extension to
our formalism of potential interest would be to add unary compartment operations that
commute with the AC operation.

We next give a reformulation in terms of forests. We very largely follow in Milner’s
footsteps, and in Krivine et al.’s for the stochastic aspects: we essentially specialise to
place graphs, making slight adaptations to allow for the presence of species. This last
is a minor difference, as one can always simulate species by agents which never contain
anything.

There are other small differences. For example we may impose slightly different con-
ditions, and we do not bring in any categorical ideas, though they are certainly there in
the background. Where appropriate we add comments on particular relationships with the
bigraphical approach.

Fix a countably infinite set V. An (n-ary) concrete(Spec,Agent)-forest, (n-ary) concrete
forest, for short, is a structure

(V,p, λ)

where

• V ⊆fin V is a finite set of nodes,
• p : [n] ·∪V → V ·∪ [1] is the parent map, and
• λ : v → Spec ∪Agent is the labelling map

where [m] =def {0, . . . ,m − 1}, for m ≥ 0. The parent map is required to be acyclic,
meaning that if pi(v) = v then i = 0, and species can only label roots, which are nodes v
such that p−1(v) = ∅.

If we drop species, these are the special case of Milner’s concrete place graphs from n to
1 in which the controls have arity 0. It will prove convenient to confuse the set of nodes V
with the entire structure (V,p, λ). We write V : n to indicate that V is n-ary; we say that
it is ground if n = 0; and we say it is an atom if p−1(0) is a singleton. A homomorphism:

h : (V,p, λ) −→ (V ′,p′, λ′)

of n-ary concrete forests is a map from V to V ′ that respects structure in the evident sense
that h(p(x)) = p′(h(x)), for any x ∈ [n] ·∪V , and λ(v) = λ′(h(v)), for any v ∈ V . We work
with isomorphism equivalence classes [(V,p, λ)] of forests; following Milner, we call them
abstract forests. This is helpful for definitions as we can always pick disjoint representatives
of different equivalence classes. We say an abstract forest is n-ary (or ground) if any of its
members is, and write [V ] : n.

We next define the composition of n-ary forests with ground forests, beginning with con-
crete ones. Given pairwise disjoint n-ary (V,p, λ) and ground (Vi, pi, λi), for i = 0, . . . , n−1,



24 NICOLAS OURY AND GORDON PLOTKIN

we define their composition

(V,p, λ)((V0,p, λ), . . . , (Vn−1,p, λ))

to be the ground forest

(V ∪
n−1⋃
i=0

Vi, p
′, λ′)

where:

p′(v) =

 v′ (v ∈ Vi,pi(v) = v′ ∈ Vi)
p(i) (v ∈ Vi,pi(v) = i)
p(v) (v ∈ V )

and:

λ′(v) =

{
λi(v) (v ∈ Vi)
λ(v) (v ∈ V )

Note that if, for a given concrete V ′, n-ary V and ground Vi (i = 0, . . . , n− 1) we have
V ′ = V (V0, . . . , Vn−1) then the Vi are uniquely determined.

It is not hard to see that if [V ] = [V ′] and [Vi] = [V ′i ], for V, V ′ : 1 and Vi, V
′
i : 0

(i = 0, n−1), then V (V0, . . . , Vn−1) = V ′(V ′0 , . . . , V
′
n−1). So one can define the composition

[[(V,p, λ)]([(V0,p, λ)], . . . , [(Vn−1, p, λ)]) of an n-ary abstract forest [(V,p, λ)] with n ground
ones [(Vi,pi, λi)] (i = 0, . . . , n− 1) to be

[(V,p, λ)((V0, p, λ)], . . . , [(Vn−1,p, λ))]

with the understanding that disjoint members of the equivalence classes have been chosen.
A stochastic rule R is an n-ary equivalence class [Vl] an m-ary equivalence class [Vr] and

a map η : [m]→ [n] and a rate k ∈ R0, written as:

[Vl]
k−→
η

[V ′r ]

where we impose the further two conditions:

• restricted to [n], the parent map of Vl is a bijection, and
• η is 1-1.

Regarding the first condition, in Krivine et al. [KMT08] the left-hand sides of rules are
restricted to being solid, which here amounts to the condition that, restricted to [n], the
parent map of Vl is 1-1 and does not have 0 in its range. We do have 0 in its range; this
causes an ambiguity in the application of rules of the kind discussed in Section 3; and the
difficulty is again handled by the introduction of a suitable notion of wide context.

The requirement that, restricted to [n], the parent map is onto, is, as will be seen, the
correlate of the generality condition. Presumably we could as well have worked in the
Krivine et al. style from the beginning, when an effectively equivalent generality condition
would be imposed.

Regarding the second condition, we are rather following Milner [Mil09] than Krivine et
al., as the latter’s rules are linear in a certain sense, which here amounts to the requirement
that η is a bijection. In the context of multilevel multiset rewriting this would correspond
to adding the “no vanishing” condition, which we do not impose.



MULTI-LEVEL MODELLING VIA STOCHASTIC MULTI-LEVEL MULTISET REWRITING 25

Qualitatively, we can assign the rule a transition relation between ground [V ], defined
by:

[V ] −→R [V ′] ⇐⇒ ∃[C] : 1, [V0] : 0, . . . , [Vn−1] : 0.
[V ] = [C]([Vl]([V0], . . . , [Vn−1]))∧
[V ′] = [C]([Vr]([Vη(0)], . . . , [Vη(m−1)]))

Quantitatively, as already remarked, we first need to restrict the “contexts” [C] : 1. We
say that a concrete forest C : 1 is wide if 0 is the only child of its parent, and that an
abstract forest [C] : 1 is wide if C is. Then we can assign the rule R a stochastic transition
matrix QR where, off the diagonal:

QR([V ], [V ′]) = k | {(C : 1, V ′′ : n, V0 : 0, . . . , Vn−1 : 0) | C is wide,
V = C(V ′′(V0, . . . , Vn−1)) ∧ [Vl] = [V ′′],
[V ′] = [C]([Vr]([Vη(0)], . . . , [Vη(m−1)]))} |

Here we count the number of factorisations of an element of [V ]. Note that the Vi are
determined, so do not enter into the count:only their existence is required. Unlike Krivine
et al., we do not divide by the number of symmetries of the left-hand-side of the instance
of the rule at hand: cf. the discussion of symmetry in Section 3.

We next give an equivalent definition that will help establish the relation with the
multilevel multiset approach. For any concrete forest V define an equivalence relation
on tuples (C, V0, . . . , Vn−1) such that V = C(V0, . . . , Vn−1), where C : 1 and Vi : 0 (for
i = 0, . . . , n− 1), by:

(C, V0, . . . , Vn−1) ∼V (C ′, V ′0 , . . . , V
′
n−1) ⇐⇒ [C] = [C ′] ∧

n−1∧
i=0

[Vi] = [V ′i ]

and write [C, V0, . . . , Vn−1]V for the corresponding equivalence class.

Proposition 5.1.

QR([V ], [V ′]) = k
∑

[C, Vred]V
C wide

|[C, Vred]V |
∑

[Vl, V0, . . . , Vn−1]Vred
[V ′] = [C]([Vr]([Vη(0)], . . . , [Vη(m−1)]))

[Vl] = [Vl]

|[C, V0, . . . , Vn−1]Vred |

As before, given a finite set of rules R, we can then define a transition relation and
stochastic matrix by putting:

[V ] −→R [V ′] ⇐⇒ ∃R ∈ R. [V ] −→R [V ′] QR([V ], [V ′]) =
∑
R∈R

QR([V ], [V ′])

We next need some algebra on abstract forests. We begin with two constants: merge1 : 1
is the equivalence class of the unary forest with empty node set; and, for every S ∈ Spec,
S is the equivalence class of the nullary forest with a single node labelled by S. Next, for
any agent A, we define a unary function A on abstract forests: for any forest (V,p, λ) : m,
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define A([V ]) : m to be [(V ·∪{∗},p′, λ′)] where:

p′(v) =

 v′ (v ∈ V,p(v) = v′ ∈ V )
∗ (v ∈ V,p(v) = 0)
0 (v = ∗)

and

λ′(v) =

{
A (v = ∗)
λ(v) (v ∈ V )

Next for any n ≥ 0 and bijection θ :
∑n−1

i=0 [mi] ∼= [
∑n−1

i=0 mi] we define an n-ary summa-
tion operation by putting, for abstract forests [(Vi,pi, λi)] : mi, where i = 0, . . . , n− 1:∑

i=0,n−1

(θ)
[Vi] = [( ·

n−1⋃
i=0

Vi,p, λ)]

where:

p(v) =

{
pi(j) (v = θ(i, j), j ∈ [mi])
pi(v) (v ∈ Vi)

and
λ(v) = λi(v) (v ∈ Vi)

This operation is essentially commutative, by which we mean that for any permutation
π : [i] ∼= [i] we have: ∑

i=0,n−1

(θ)
[Vi] =

∑
i=0,n−1

(θ′)
[Vπi]

where θ′(i, j) = θ(π−1i, j), for 0 ≤ i ≤ n− 1, j ∈ mπi. We say that [V ′π(0)], . . . , [V
′
π(n−1)], θ

′

is a reindexing of [V0], . . . , [Vn−1], θ.

Proposition 5.2. Let [V ] : n be an abstract forest. Then, either it is an atom, when one
of the following three mutually exclusive possibilities holds:

(1) [V ] = merge1.
(2) [V ] = S for a unique S ∈ Spec.
(3) [V ] = A([V ′]) for a unique A ∈ Agent, and abstract forest [V ′].

or else it is not an atom and:

[V ] =
∑

i=0,n−1

(θ)
[Vi]

for a unique n ≥ 0, and unique, up to reindexing, atoms [V0], . . . , [Vn−1], θ.

We now turn to linking the multilevel multiset formalism to the forest one. First we need
to translate terms to forests; we consider only terms in which no variable occurs more than
once. Variables in one will correspond to numbers in the other. We assume a fixed ordering
z0, . . . , zn, . . . of all variables, and say that i is the index of zi. For any term t write Ind(t)
for the set of indices of its variables, and set ar(t) =| Ind(t) |. The translation assigns to
every pair t, ρ of a term and a bijection ρ : Ind(t) ∼= [ar(t)] an abstract forest Fρ(t) : ar(t).
For any I ⊆fin N we fix a bijection ρI : I ∼= [|I|], and we write ρ0 for ρ[1](= 0 7→ 0).
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For atomic terms we put:

Fρ(zi) = merge1

Fρ(S) = S
Fρ(A(t)) = A(Fρ(t))

and for terms we put:

Fρ(t0, . . . , tn−1) =
∑

i=0,n−1
(θ)FρInd(ti)(ti)

where θ(i, j) = ρ(ρ−1
Ind(ti)

(j)), for 0 ≤ i ≤ n− 1, j ∈ Ind(ti). We see from the above remarks

that this is well-defined. We will omit the (trivial) ρ when translating ground terms.
It follows from Proposition 5.2 that, for any ρ : I ∼= [n], the function Fρ(−) is a bijection

between terms t with I = Ind(t) satisfying the uniqueness condition, and the ar(t)-ary
abstract forests. We note the further correspondences, where Fρ(t) = [(V,p, λ)]:

• t satisfies the unicity condition if, and only if, p�[ar(t)] is 1-1, and
• t satisfies the generality condition if, and only if, p�[ar(t)] is onto.

The translation maps substitution to composition in the following sense. Let t be a term
with variables zl0 , . . . , zln−1 , where n = ar(t), and let t0, . . . , tn−1 be ground. Then:

F (t[t0/zl0 , . . . , t0/zln−1 ]) = Fρ(F (t0), . . . , F (tn−1))

Having mapped terms to terms, we can now map mutilevel multiset rules to forest rules.
To any rule

R = l
k−→ r

and bijections ρl : Ind(l) ∼= [ar(l)] and ρr : Ind(r) ∼= [ar(r)], we assign the rule

Fρl,ρr(R) = Fρl(l)
k−→
η
Fρr(r)

where η = ρlρ
−1
r . This map is a surjection from mutilevel multiset rules and pairs of such

bijections to forest rules. According to the next proposition, the two rules are qualitatively
equivalent:

Proposition 5.3. For all ground terms t, t′ we have:

t −→R t
′ ⇐⇒ F (t) −→Fρl,ρr (R) F (t′)

Proof. Let Ind(l) = {i1, . . . , in} and Ind(l) = {j1, . . . , jm}, where n = ar(l) and m = ar(r).
First suppose that t −→R t′. Then t has the form C[u], and there is a substitution σ

which is a match of l against u, and is such that t′ = C[rσ]. Then:

t = C[lσ] = C[z0][l[σ(i0)/zi0 , . . . , σ(in−1)/zin−1 ]/z0]

and:

t′ = C[rσ] = C[z0][u[σ(j0)/zj0 , . . . , σ(jm−1)/zjm−1 ]/z0]

It follows that:

F (t) = Fρ0(C[z0])(Fρl(l)(F (σ(ρ−1
l (0))), . . . , F (σ(ρ−1

l (n− 1))))))
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and:

F (t′) = Fρ0(C[z0])(Fρr(r)(F (σ(ρ−1
r (0))), . . . , F (σ(ρ−1

r (m− 1))))))

As we also have F (σ(ρ−1
r (j))) = F (σ(ρ−1

l (η(j)))), it follows that F (t) −→Fρl,ρr (R) F (t′), as

required.
Conversely, suppose that F (t) −→Fρl,ρr (R) F (t′). Then we have:

F (t) = [V ]([Fρl(l)]([V0], . . . , [Vn−1]))

and

F (t′) = [V ]([Fρr(r)]([Vη(0)], . . . , [Vη(m−1)]))

for some [V ] : 1 and [V0] : 0, . . . , [Vn−1] : 0. As Fρ0 is a bijection between terms t with
Ind(t) = {0} satisfying the uniqueness condition, and the unary abstract forests, there is a
ground context C[ ] such that Fρ0(C[z1]) = [V ]. Similarly there are ground terms ti such
that F (ti) = [Vi], for i = 0, . . . , n− 1. We then have:

[V ]([Fρl(l)]([V0], . . . , [Vn−1])) = F (C[l[t0/zρ−1
l (0), . . . , tn−1/zρ−1

l (n−1)]])

So, as F is injective, setting σ = [t0/zρ−1
l (0), . . . , tn−1/zρ−1

l (n−1)] we see that t = C[lσ].

Similarly, we have:

t′ = C[r[tη(0)/zρ−1
r (0), . . . , tη(n−1)/zρ−1

r (m−1)]] = C[rσ]

and the result follows. �

We now turn to showing that the two rules are are also quantitatively equivalent. First
note that, for any context C[ ], if Fρ0(C[z0]) = [C ′], then C[ ] is wide if, and only if, C ′ is.
Next we need two lemmas:

Lemma 5.4. For any ground term t, wide context W[ ] and term u we have:

occt(W[ ], u) = |{(V1 : 1, V0 : 0) | V = V1(V0), [V1] = Fρ0(W[z0]), [V0] = F (u)}|

where V : 0 is any concrete forest such that F (t) = [V ].

Lemma 5.5. Let t be a ground term, and let l be a term with free variables zi0 , . . . , zin−1,
satisfying the above three conditions. Then for any ground terms t0, . . . , tn−1 and any
ρ : Ind(l) ∼= [n] we have:

m(l; t)([t0/zi0 , . . . , tn−1/zin−1 ]) = |{(Vl : n, V0 : 0, . . . , Vn−1 : 0) | V = Vl(V0, . . . , Vn−1),
[Vl] = Fρ(l), and [Vi] = F (ti)(i = 0, . . . , n− 1)}|

where V : 0 is any concrete forest such that F (t) = [V ].

Using Proposition 5.1, and Lemmas 5.4 and 5.5, we then obtain:

Proposition 5.6. For all ground terms t, t′ we have:

QR(t, t′) = QFρl,ρr (R)(F (t), F (t′))
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We conclude this section by briefly considering the relation between our system and the
Stochastic Calculus of Wrapped Compartments of Coppo et al. [CD10a]. This formalism
introduces wrapped compartments, denoted using an infix operation c. The compartment
notation allows one to represent both the content of a membrane, on the left of c, and the
content of a compartment, on the right of c. The content of the membrane is a multiset of
atoms, which correspond to our species. The content of the compartment is a multiset of
atoms and nested compartments.

This formalism is extended in [CD10b] by allowing a a compartment to be labelled. For
example, a cell containing an empty nucleus and having an atom a on its membrane would
be denoted:

(ac(c)Nucleus)Cell

We refer to this extended formalism as SCWC.
Both SCWC and our formalism allow one to express nested compartments containing

species, and each can be encoded by the other. Regarding species as atoms and agents
as compartment labels, a translation function C from our formalism into SCWC can be
defined by:

C(M,A0(t0), . . . , An−1(tn−1)) = (M, c(cC(t0))A0 , . . . , (cC(tn−1))An−1)∗

for any multiset of species M = S0, . . . , Sm−1, and where ∗ /∈ Agent. It is notable that we
have to make a choice for this translation: we put the species on the membrane, but we
could put them inside the compartment, or even choose depending on the species. Because
of this, the translation is not onto, though it is 1-1.

In the other direction, regarding atoms as species and compartment labels as agents, a
translation function T from SCWC into our formalism can be defined by:

T(a) = a
T((S0, . . . , Sm−1ct0, . . . , tn−1)l) = l(M(T(S0, . . . , Sm−1)),T(t0), . . . ,T(tn−1))

where M is an agent which is not a compartment label; it is thought of as a membrane
agent. The translation T from SCWC to our formalism is again 1-1 but is again not onto,
as there is no restriction on terms that only species can appear in the membrane agent M .

By using the algebraic approach we can get much closer to SCWC. Consider a two-sorted
equational theory with: sorts m and c, for membrane and compartment; an AC operation
with a zero for each sort; a unary operation over c for each compartment label; a set of
constants of sort m, for the atoms which can be on a membrane; and a set of constants of
sort c, for the atoms which can be in a compartment. If we allow overloading, in particular
allowing the two sets of constants to be the same, then SCWC terms can be seen as normal
forms for the terms of type c.

The restrictions imposed on rules in SCWC are similar to the ones we impose: for
example, forms of uniqueness and unicity are imposed on the left-hand sides of rules,
but the generality condition is only partially imposed. Based on the above translations,
we conjecture that, once the differences in the conditions imposed have been reconciled,
mutual simulation results, including stochastic rates, can be established.
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Despite their (presumed) equivalence, the two formalisms have somewhat different ori-
entations. SCWC has an elegant representation of membranes, whereas our formalism
assigns no particular rôle or structure to them. Our formalism may therefore permit a
more natural modelling of those parts of biological structures that do not involve mem-
branes. As the translation from SCWC shows, we further lose little, if any, naturality as
regards the expression of systems with membranes.

6. Discussion and Conclusion

There are several possibilities for future development. As regards related formalisms, it
would be useful to have a notion of multilevel Petri net, to enable the graphical presentation
of our multilevel multiset rule systems; indeed even such a notion for rules with terms of
height ≤ 1 would be very helpful. As regards generality, it would be interesting to develop
the algebraic approach discussed above: one should investigate both general theory and
particular systems; the addition of compartments would be of particular immediate interest.

In another direction, it would be useful to have a type system. So far, for example,
there is nothing that prevents cells being inside cells inside cells, etc., to arbitrary depths.
One could imagine such a type system based on a forest, or dag, of types. Continuing the
linguistic thought, very large lists of rules become difficult to understand and maintain,
and often obscure underlying structure. This might be alleviated by a suitable module
system. It would be interesting to design a language for multilevel systems along the lines
of LBS [PP10], which is a modular language for the rule-based description of intracellular
systems.

Facilities for parameterisation would also be useful. At the species level one could follow
LBS and use parametrised species Sx1,...,xn , where the xi run over suitable parameter
spaces describing, for example, modification states (phosphorylation, ubiquitination, etc).
Similarly, one could make use of parametrised agents Ax1,...,xn where now the parameters
might, for example, deal with cell fate, or volume, or location. Rules could make use of
these parameters; for example, the stochastic rates could depend upon them and boolean
conditions on them could determine their applicability.

Finally, it is most important to have facilities for complexes. A simple possibility would
be to add another multiset operation to deal with complexes. A more sophisticated, not to
mention more powerful, approach would be to be able to describe complexes as connected
graphs, following the lead of κ [DL03]. Together with the multilevel multisets one would
then have something very similar indeed to Milner’s bigraphs, whose potential for biological
application has, as mentioned above, already been noted in [KMT08].
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