

Edinburgh Research Explorer

Computing Optimal Coverability Costs in Priced Timed Petri Nets

Citation for published version:
Abdulla, PA & Mayr, R 2011, Computing Optimal Coverability Costs in Priced Timed Petri Nets. in 26th
Annual IEEE Symposium on Logic in Computer Science (LICS 2011). Institute of Electrical and Electronics
Engineers (IEEE), pp. 399-408, 26th Annual IEEE Symposium on Logic in Computer Science, Toronto,
Canada, 21/06/11. https://doi.org/10.1109/LICS.2011.40

Digital Object Identifier (DOI):
10.1109/LICS.2011.40

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
26th Annual IEEE Symposium on Logic in Computer Science (LICS 2011)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 29. Apr. 2024

https://doi.org/10.1109/LICS.2011.40
https://doi.org/10.1109/LICS.2011.40
https://www.research.ed.ac.uk/en/publications/81446983-5567-41df-804f-dd46e2e65965

Computing Optimal Coverability Costs in Priced
Timed Petri Nets

Parosh Aziz Abdulla
Uppsala University, Sweden

Richard Mayr
University of Edinburgh, UK

Abstract—We consider timed Petri nets, i.e., unbounded Petri
nets where each token carries a real-valued clock. Transition arcs
are labeled with time intervals, which specify constraints on the
ages of tokens. Our cost model assigns token storage costs per
time unit to places, and firing costs to transitions. We study the
cost to reach a given control-state. In general, a cost-optimal run
may not exist. However, we show that the infimum of the costs
is computable.

Keywords-Formal verification; Petri nets; Timed Automata

I. INTRODUCTION

Petri nets [1], [2] are a widely used model for the study and
analysis of concurrent systems. Many different formalisms
have been proposed which extend Petri nets with clocks
and real-time constraints, leading to various definitions of
Timed Petri nets (TPNs). A complete discussion of all these
formalisms is beyond the scope of this paper and the interested
reader is referred to the surveys in [3], [4].

An important distinction is whether the time model is dis-
crete or continuous. In discrete-time nets, time is interpreted as
being incremented in discrete steps and thus the ages of tokens
are in a countable domain, commonly the natural numbers.
Such discrete-time nets have been studied in, e.g., [5], [6].
In continuous-time nets, time is interpreted as continuous,
and the ages of tokens are real numbers. Some problems for
continuous-time nets have been studied in [7], [8], [9], [10].

In parallel, there have been several works on extending
the model of timed automata [11] with prices (weights) (see
e.g., [12], [13], [14]). Weighted timed automata are suitable
models for embedded systems, where we have to take into
consideration the fact that the behavior of the system may be
constrained by the consumption of different types of resources.
Concretely, weighted timed automata extend classical timed
automata with a cost function Cost that maps every location
and every transition to a nonnegative integer (or rational)
number. For a transition, Cost gives the cost of performing the
transition. For a location, Cost gives the cost per time unit for
staying in the location. In this manner, we can define, for each
computation of the system, the accumulated cost of staying in
locations and performing transitions along the computation.

Here we consider a very expressive model that subsumes
all models mentioned above. Priced Timed Petri Nets (PTPN)

Supported by Royal Society grant JP080268. The authors, their organiza-
tions and project funding partners are authorized to reproduce and distribute
reprints and on-line copies notwithstanding any copyright annotation hereon.

are a generalization of classic Petri nets [1] with real-valued
(i.e., continuous-time) clocks, real-time constraints, and prices
for computations.

Each token is equipped with a real-valued clock, represent-
ing the age of the token. The firing conditions of a transition
include the usual ones for Petri nets. Additionally, each arc
between a place and a transition is labeled with a time-interval
whose bounds are natural numbers (or possibly ∞ as upper
bound). These intervals can be open, closed or half open.
When firing a transition, tokens which are removed/added
from/to places must have ages lying in the intervals of the
corresponding transition arcs. Furthermore, we add special
read-arcs to our model. These affect the enabledness of
transitions, but, unlike normal arcs, they do not remove the
token from the input place. Read arcs preserve the exact age
of the input token, unlike the scenario where a token is first
removed and then replaced. Read arcs are necessary in order
to make PTPN subsume the classic priced timed automata of
[14]. We assign a cost to computations via a cost function
Cost that maps transitions and places of the Petri net to
natural numbers. For a transition t, Cost(t) gives the cost of
performing the transition, while for a place p, Cost(p) gives
the cost per time unit per token in the place.

PTPN are a continuous-time model which subsumes the
continuous-time TPN of [7], [8], [9], [10] and the priced timed
automata of [12], [13], [14]. It should be noted that PTPN are
infinite-state in several different ways. First, the Petri net itself
is unbounded. So the number of tokens (and thus the number
of clocks) can grow beyond any bound, i.e., the PTPN can
create and destroy arbitrarily many clocks. In that PTPN differ
from the priced timed automata of [12], [13], [14], which have
only a finite number of control-states and only a fixed finite
number of clocks. Secondly, every single clock value is a real
number of which there are uncountably many.
Our contribution. We study the cost to reach a given
control-state in a PTPN. In Petri net terminology, this is
called a control-state reachability problem or a coverability
problem. The related reachability problem (i.e., reaching a
particular configuration) is undecidable for (continuous-time
and discrete-time) TPN [5], even without taking costs into
account. In general, a cost-optimal computation may not exist
(e.g., even in priced timed automata it can happen that there
is no computation of cost 0, but there exist computations of
cost ≤ ε for every ε > 0). However, we show that the infimum
of the costs is computable.

This cost problem had been shown to be decidable for the
much simpler model of discrete-time PTPN in [15]. However,
discrete-time PTPN do not subsume the priced timed automata
of [14]. Moreover, the techniques from [15] do not carry over
to the continuous-time domain (e.g., arbitrarily many delays
of length 2−n for n = 1,2, . . . can can happen in ≤ 1 time).
Outline of Used Techniques. Since the PTPN model is very
expressive, several powerful new techniques are developed to
analyze them. These are interesting in their own right and can
be instantiated to solve other problems.

In Section II we define PTPN and the priced coverability
problem, and describe its relationship with priced timed au-
tomata and Petri nets. Then, in Sections III–V, we reduce the
priced coverability problem for PTPN to a coverability prob-
lem in an abstracted untimed model called AC-PTPN. This
abstraction is done by an argument similar to a construction
in [14], where parameters indicating a feasible computation
are contained in a polyhedron, which is described by a totally
unimodular matrix. However, our class of matrices is more
general than in [14], because PTPN allow the creation of new
clocks with a nonzero value. The resulting AC-PTPN are still
much more expressive than Petri nets, because their configu-
rations are arbitrarily long sequences of multisets. Moreover,
the transitions of AC-PTPN are not monotone, because larger
configurations cost more and might thus exceed the cost limit.
In order to solve coverability for AC-PTPN, we develop a very
general method to solve reachability/coverability problems in
infinite-state transition systems which are more general than
the well-quasi-ordered/well-structured transition systems of
[16], [17]. We call this method the abstract phase construction,
and it is described in abstract terms in Section VI. In particular,
it includes a generalization of the Valk-Jantzen construction
[18] to arbitrary well-quasi-ordered domains. In Section VII,
we instantiate this abstract method with AC-PTPN and prove
the main result. This instantiation is nontrivial and requires
several auxiliary lemmas, which ultimately use the decidability
of the reachability problem for Petri nets with one inhibitor
arc [19]. There exist close connections between timed Petri
nets, Petri nets with one inhibitor arc, and transfer nets.

II. PRICED TIMED PETRI NETS

a) Preliminaries: We use N,R≥0,R>0 to denote the
sets of natural numbers (including 0), nonnegative reals, and
strictly positive reals, respectively. For a natural number k, we
use Nk and Nkω to denote the set of vectors of size k over N and
N∪{ω}, respectively (ω represents the first limit ordinal). For
n ∈ N, we use [n] to denote the set {0, . . . , n}. For x ∈ R≥0,
we use frac (x) to denote the fractional part of x. We use a
set Intrv of intervals. An open interval is written as (w ∶ z)
where w ∈ N and z ∈ N∪{∞}. Intervals can also be closed in
one or both directions, e.g. [w ∶ z] is closed in both directions
and [w ∶ z) is closed to the left and open to the right.

For a set A, we use A∗ and A⊙ to denote the set of finite
words and finite multisets over A, respectively. We view a
multiset b over A as a mapping b ∶ A ↦ N. Sometimes,
we write finite multisets as lists (possibly with multiple

occurrences), so both [2.4,2.4,2.4,5.1,5.1] and [2.43 , 5.12]
represent a multiset b over R≥0 where b(2.4) = 3, b(5.1) = 2
and b(x) = 0 for x ≠ 2.4,5.1. For multisets b1 and b2 over
A, we say that b1 ≤ b2 if b1(a) ≤ b2(a) for each a ∈ A. We
define b1 + b2 to be the multiset b where b(a) = b1(a)+ b2(a),
and (assuming b1 ≤ b2) we define b2 − b1 to be the multiset
b where b(a) = b2(a) − b1(a), for each a ∈ A. We use
a ∈ b to denote that b(a) > 0. We use ∅ or [] to denote
the empty multiset and ε to denote the empty word. Let
(A,≤) be a poset. We define a partial order ≤w on A∗ as
follows. Let a1 . . . an ≤w b1 . . . bm iff there is a subsequence
bj1 . . . bjn of b1 . . . bm s.t. ∀k ∈ {1, . . . , n}. ak ≤ bjk . A subset
B ⊆ A, is said to be upward closed in A if a1 ∈ B,a2 ∈ A
and a1 ≤ a2 implies a2 ∈ B. If A is known from the
context, then we say simply that B is upward closed. For
B ⊆ A we define the upward closure B ↑ to be the set
{a ∈ A∣ ∃a′ ∈ B ∶ a′ ≤ a}. A downward closed set B and the
downward closure B ↓ are defined in a similar manner. We
use a↑, a↓, a instead of {a}↑, {a}↓, {a}, respectively. Given
a transition relation Ð→, we denote its transitive closure by
+Ð→ and its reflexive-transitive closure by

∗Ð→. Given a set of
configurations C, let PreÐ→(C) = {c′ ∣ ∃c ∈ C. c′ Ð→ c} and
Pre∗Ð→(C) = {c′ ∣ ∃c ∈ C. c′ ∗Ð→ c}.

b) Priced Timed Petri Nets: A Priced Timed Petri Net
(PTPN) is a tuple N = (Q,P,T,Cost) where Q is a finite
set of control-states and P is a finite set of places. T
is a finite set of transitions, where each transition t ∈ T
is of the form t = (q1, q2, In,Read ,Out). We have that
q1, q2 ∈ Q are the source and target control-state, respectively,
and In,Read ,Out ∈ (P × Intrv)⊙ are finite multisets over
P × Intrv which define the input-arcs, read-arcs and output-
arcs of t, respectively. Cost ∶ P ∪ T → N is the cost function
assigning firing costs to transitions and storage costs to places.
Note that it is not a restriction to use integers for time bounds
and costs in PTPN. By the same standard technique as in timed
automata, the problem for rational numbers can be reduced
to the integer case (by multiplying all numbers with the lcm
of the divisors). To simplify the presentation we use a one-
dimensional cost. This can be generalized to multidimensional
costs; see Section X. We let cmax denote the maximum
integer appearing on the arcs of a given PTPN. A configuration
of N is a tuple (q,M) where q ∈ Q is a control-state and M
is a marking of N . A marking is a multiset over P ×R≥0, i.e.,
M ∈ (P ×R≥0)⊙. The marking M defines the numbers and
ages of tokens in each place in the net. We identify a token
in a marking M by the pair (p, x) representing its place and
age in M . Then, M(p, x) defines the number of tokens with
age x in place p. Abusing notation, we define, for each place
p, a multiset M(p) over R≥0, where M(p)(x) =M(p, x).

For a marking M of the form [(p1, x1) , . . . , (pn, xn)]
and x ∈ R>0, we use M+x to denote the marking
[(p1, x1 + x) , . . . , (pn, xn + x)].

c) Computations: We define two transition relations on
the set of configurations: timed transition and discrete tran-
sition. A timed transition increases the age of each token

by the same real number. Formally, for x ∈ R>0, q ∈ Q,
we have (q,M1)

xÐ→Time (q,M2) if M2 = M+x
1 . We use

(q,M1) Ð→Time (q,M2) to denote that (q,M1)
xÐ→Time

(q,M2) for some x ∈ R>0.
We define the set of discrete transitions Ð→Disc as

⋃t∈T Ð→t, where Ð→t represents the effect of firing the
discrete transition t. To define Ð→t formally, we need the
auxiliary predicate match that relates markings with the
inputs/reads/outputs of transitions. Let M ∈ (P ×R≥0)⊙ and
α ∈ (P × Intrv)⊙. Then match(M,α) holds iff there exists
a bijection f ∶ M ↦ α s.t. for every (p, x) ∈ M we
have f((p, x)) = (p′,I) with p′ = p and x ∈ I. Let
t = (q1, q2, In,Read ,Out) ∈ T . Then we have a discrete tran-
sition (q1,M1) Ð→t (q2,M2) iff there exist I,O,R,M rest

1 ∈
(P ×R≥0)⊙ s.t. the following conditions are satisfied:

● M1 = I +R +M rest
1

● match(I, In), match(R,Read) and match(O,Out).
● M2 = O +R +M rest

1

We say that t is enabled in (q1,M1) if the first two conditions
are satisfied. A transition t may be fired iff for each input-
arc and each read-arc, there is a token with the right age in
the corresponding input place. These tokens in I matched to
the input arcs will be removed when the transition is fired,
while the tokens in R matched to the read-arcs are kept.
The newly produced tokens in O have ages which are chosen
nondeterministically from the relevant intervals on the output
arcs of the transitions. This semantics is lazy, i.e., enabled
transitions do not need to fire and can be disabled again.

We write Ð→=Ð→Time ∪ Ð→Disc to denote all transitions.
For sets C,C ′ of configurations, we write C

∗Ð→ C ′ to denote
that c

∗Ð→ c′ for some c ∈ C and c′ ∈ C ′. A computation
π (from c to c′) is a sequence of transitions c0 Ð→ c1 Ð→
. . . Ð→ cn such that c0 = c and cn = c′. We write c

πÐ→ c′

to denote that π is a computation from c to c′. Similarly, we
write C

πÐ→ C ′ to denote that ∃c1 ∈ C, cn ∈ C ′. c1
πÐ→ cn.

d) Costs: The cost of a computation consisting
of one discrete transition t ∈ T is defined as
Cost ((q1,M1) Ð→t (q2,M2)) ∶= Cost (t). The cost of
a computation consisting of one timed transition is defined by
Cost ((q,M) xÐ→ (q,M+x)) ∶= x ∗ ∑p∈P ∣M(p)∣ ∗ Cost (p).
The cost of a computation is the sum of all transition costs in
it, i.e., Cost ((q1,M1) Ð→ (q2,M2) Ð→ . . .Ð→ (qn,Mn)) ∶=
∑1≤i<nCost ((qi,Mi) Ð→ (qi+1,Mi+1)). We write C

vÐ→ C ′

to denote that there is a computation π such that C
πÐ→ C ′

and Cost (π) ≤ v. We define OptCost (C,C ′) to be the
infimum of the set {v∣ C vÐ→ C ′}, i.e., the infimum of the
costs of all computations leading from C to C ′. We use the
infimum, because the minimum does not exist in general. We
partition the set of places P = Pc ∪ Pf where Cost (p) > 0
for p ∈ Pc and Cost (p) = 0 for p ∈ Pf . The places in Pc are
called cost-places and the places in Pf are called free-places.

e) Relation of PTPN to Other Models: PTPN subsume
the priced timed automata of [12], [13], [14] via the following
simple encoding. For every one of the finitely many clocks of
the automaton we have one place in the PTPN with exactly one

token on it whose age encodes the clock value. We assign cost
zero to these places. For every control-state s of the automaton
we have one place ps in the PTPN. Place ps contains exactly
one token iff the automaton is in state s, and it is empty
otherwise. An automaton transition from state s to state s′

is encoded by a PTPN transition consuming the token from
ps and creating a token on ps′ . The transition guards referring
to clocks are encoded as read-arcs to the places which encode
clocks, labeled with the required time intervals. Note that open
and half-open time intervals are needed to encode the strict
inequalities used in timed automata. Clock resets are encoded
by consuming the timed token (by an input-arc) and replacing
it (by an output-arc) with a new token on the same place with
age 0. The cost of staying in state s is encoded by assigning
a cost to place ps, and the cost of performing a transition
is encoded as the cost of the corresponding PTPN transition.
Also PTPN subsume fully general unbounded (i.e., infinite-
state) Petri nets (by setting all time intervals to [0 ∶ ∞) and
thus ignoring the clock values).

Note that (just like for timed automata) the problems for
continuous-time PTPN cannot be reduced to (or approximated
by) the discrete-time case. Replacing strict inequalities with
non-strict ones might make the final control-state reachable,
when it originally was unreachable.

f) The Priced Coverability Problem: We will consider
two variants of the cost problem, the Cost-Threshold problem
and the Cost-Optimality problem. They are both characterized
by an initial control state qinit and a final control state qfin .

Let Cinit = (qinit , []) be the initial configuration and
Cfin = {(qfin ,M) ∣M ∈ (P ×R≥0)⊙} the set of final configu-
rations defined by the control-state qfin . I.e., we start from a
configuration where the control state is qinit and where all the
places are empty, and then consider the cost of computations
that takes us to qfin . (If Cinit contained tokens with a non-
integer age then the optimal cost might not be an integer.)

In the Cost-Threshold problem we ask the question whether
OptCost (Cinit ,Cfin) ≤ v for a given threshold v ∈ N.

In the Cost-Optimality problem, we want to compute
OptCost (Cinit ,Cfin). (Example in Appendix A.)

III. COMPUTATIONS IN δ-FORM

We show that, in order to solve the cost problems it is sufficient
to consider computations of a certain form where the ages of
all the tokens are arbitrarily close to an integer.

The decomposition of a PTPN marking M into its fractional
parts M−m, . . . ,M−1,M0,M1, . . . ,Mn, is uniquely defined by
the following properties:

● M =M−m + ⋅ ⋅ ⋅ +M−1 +M0 +M1 + ⋅ ⋅ ⋅ +Mn.
● If (p, x) ∈ Mi and i < 0 then frac (x) ≥ 1/2. If (p, x) ∈
M0 then frac (x) = 0. If (p, x) ∈ Mi and i > 0 then
frac (x) < 1/2.

● Let (pi, xi) ∈ Mi and (pj , xj) ∈ Mj . Then frac (xi) =
frac (xj) iff i = j, and if −m ≤ i < j < 0 or 0 ≤ i < j ≤ n
then frac (xi) < frac (xj).

● Mi ≠ ∅ if i ≠ 0 (M0 can be empty, but the other Mi must
be non-empty in order to get a unique representation.)

We say that a timed transition (q,M) xÐ→ (q,M ′) is detailed
iff at most one fractional part of any token in M changes
its status about reaching or exceeding the next higher integer
value. Formally, let ε be the fractional part of the token ages
in M−1, or ε = 1/2 if M−1 does not exist. Then (q,M) xÐ→
(q,M ′) is detailed iff either 0 < x < 1 − ε (i.e., no tokens
reach the next integer), or M0 = ∅ and x = ε (no tokens
had integer age, but those in M−1 reach integer age). Every
computation of a PTPN can be transformed into an equivalent
one (w.r.t. reachability and cost) where all timed transitions are
detailed. Thus we may assume w.l.o.g. that timed transitions
are detailed. This property is needed to obtain a one-to-one
correspondence between PTPN steps and the steps of A-PTPN,
defined in the next section.

For δ ∈ (0 ∶ 1/5] the marking [(p1, x1) , . . . , (pn, xn)] is
in δ-form if, for all i ∶ 1 ≤ i ≤ n, it is the case that either (i)
frac(xi) < δ (low fractional part), or (ii) frac(xi) > 1−δ (high
fractional part). I.e., the age of each token is close to (within
< δ) an integer. We choose δ ≤ 1/5 to ensure that the cases (i)
and (ii) do not overlap, and that they still do not overlap for
a new δ′ ≤ 2/5 after a delay of ≤ 1/5 time units.

The occurrence of a discrete transition t is said to be in
δ-form if its output O is in δ-form, i.e., the ages of the newly
generated tokens are close to an integer. This is not a property
of the transition t as such, but a property of its occurrence,
because it depends on the particular choice of O.

Let N = (Q,P,T,Cost) be a PTPN and Cinit = (qinit , [])
and Cfin = {(qfin ,M) ∣M ∈ (P ×R≥0)⊙} as in the last section.

For 0 < δ ≤ 1/5, the computation π is in δ-form iff (1) every
occurrence of a discrete transition ci Ð→t ci+1 is in δ-form,
and (2) for every timed transition ci

xÐ→ ci+1 we have either
x ∈ (0 ∶ δ) or x ∈ (1 − δ ∶ 1). We show that, in order to
find the infimum of the possible costs, it suffices to consider
computations in δ-form, for arbitrarily small values of δ > 0.

Lemma 1. Let Cinit
πÐ→ Cfin , where π is Cinit = c0 Ð→

. . . Ð→ clength ∈ Cfin . Then for every δ > 0 there exists a

computation π′ in δ-form where Cinit
π′Ð→ Cfin , where π′ is

Cinit = c′0 Ð→ . . .Ð→ c′length ∈ Cfin s.t. Cost (π′) ≤ Cost (π),
π and π′ have the same length and ∀i ∶ 0 ≤ i ≤ length. ∣ci∣ =
∣c′i∣. Furthermore, if π is detailed then π′ is detailed.

Corollary 2. For every δ > 0 we have OptCost (Cinit ,Cfin) =
inf{Cost (π) ∣Cinit

πÐ→ Cfin , π in δ-form}.

IV. ABSTRACT PTPN

We now reduce the Cost-Optimality problem to a simpler
case without explicit clocks by defining a new class of
systems called abstract PTPN (for short A-PTPN), whose
computations represent PTPN computations in δ-form, for
infinitesimally small values of δ > 0. For each PTPN
N = (Q,P,T,Cost), we define a corresponding A-PTPN
N ′ (sometimes denoted by aptpn (N)). The A-PTPN N ′ is
syntactically of the same form (Q,P,T,Cost) asN . However,
N ′ induces a different transition system (its configurations and
operational semantics are different). Below we define the set

of markings of the A-PTPN, and then describe the transition
relation. We will also explain the relation to the markings and
the transition relation induced by the original PTPN.

g) Markings and Configurations: Fix a δ ∶ 0 < δ ≤
2/5. A marking M of N in δ-form is encoded by a
marking aptpn (M) of N ′ which is described by a triple
(whigh , b0,w

low) where whigh ,wlow ∈ ((P × [cmax + 1])⊙)∗

and b0 ∈ (P × [cmax + 1])⊙. The ages of the tokens in
aptpn (M) are integers and therefore only carry the integral
parts of the tokens in the original PTPN. However, the marking
aptpn (M) carries additional information about the fractional
parts of the tokens as follows. The tokens in whigh represent
tokens in M that have high fractional parts (their values are at
most δ below the next integer); the tokens in wlow represent
tokens in M that have low fractional parts (their values at most
δ above the previous integer); while tokens in b0 represent
tokens in M that have zero fractional parts (their values are
equal to an integer). Furthermore, the ordering among the
fractional parts of tokens in whigh (resp. wlow) is represented
by the positions of the multisets to which they belong in whigh

(resp. wlow). Let M = M−m, . . . ,M−1,M0,M1, . . . ,Mn be
the decomposition of M into fractional parts. Then we define
aptpn (M) ∶= (whigh , b0,w

low) with whigh = b−m . . . b−1,
and wlow = b1 . . . bn, where bi((p, ⌊x⌋)) = Mi((p, x)) if
x ≤ cmax . (This is well defined, because Mi contains
only tokens with one particular fractional part.) Furthermore,
bi((p, cmax +1)) = ∑y>cmax M((p, y)), i.e., all tokens whose
age is > cmax are abstracted as tokens of age cmax + 1,
because the PTPN cannot distinguish between token ages
> cmax . Note that whigh and wlow represent tokens with
fractional parts in increasing order. An A-PTPN configuration
is a control-state plus a marking. If we apply aptpn to a set
of configurations (i.e., aptpn(Cfin)), we implicitly restrict this
set to the subset of configurations in 2/5-form.

h) Transition Relation: The transitions on
the A-PTPN are defined as follows. For every
discrete transition t = (q1, q2, In,Read ,Out) ∈
T we have (q1, b−m . . . b−1, b0, b1 . . . bn) Ð→t
(q2, c−m′ . . . c−1, c0, c1 . . . cn′) if the following conditions
are satisfied: For every i ∶ −m ≤ i ≤ n there exist
bIi , b

R
i , b

rest
i , Ô, bO0 ∈ (P × [cmax + 1])⊙ s.t. for every

0 < ε < 1 we have

● bi = bIi + bRi + brest
i for −m ≤ i ≤ n

● match((∑i≠0 b
I
i)+ε + bI0, In)

● match((∑i≠0 b
R
i)+ε + bR0 ,Read)

● match(Ô+ε + bO0 ,Out)
● There is a strictly monotone injection f ∶ {−m, . . . , n} ↦

{−m′, . . . , n′} where f(0) = 0 s.t. cf(i) ≥ bi − bIi and
c0 = b0 − bI0 + bO0 and ∑i≠0 ci = (∑i≠0 bi − bIi) + Ô.

The intuition is that the A-PTPN tokens in bi for i ≠ 0
represent PTPN tokens with a little larger, and strictly positive,
fractional part. Thus their age is incremented by ε > 0 before
it is matched to the input, read and output arcs. The fractional
parts of the tokens that are not involved in the transition stay
the same. However, since all the time intervals in the PTPN

have integer bounds, the fractional parts of newly created
tokens are totally arbitrary. Thus they can be inserted at
any position in the sequence, between any positions in the
sequence, or before/after the sequence of existing fractional
parts. This is specified by the last condition on the sequence
c−m′ . . . c−1, c0, c1 . . . cn′ .

Lemma 3. Let (q,M) be a PTPN configuration in δ-form
for some δ ≤ 1/5. There is an occurrence of a discrete
transition in δ-form (q,M) Ð→t (q′,M ′) if and only if
aptpn((q,M)) Ð→t aptpn((q′,M ′)).

Additionally there are A-PTPN transitions that encode the
effect of PTPN detailed timed transitions

xÐ→ for x ∈ (0 ∶ δ) or
x ∈ (1−δ ∶ 1) for sufficiently small δ > 0. We call these abstract
timed transitions. For any multiset b ∈ (P × [cmax + 1])⊙
let b+ ∈ (P × [cmax + 1])⊙ be defined by b+((p, x + 1)) =
b((p, x)) for x ≤ cmax and b+((p, cmax +1)) = b((p, cmax +
1)) + b((p, cmax)), i.e., the age cmax + 1 represents all
ages > cmax . There are 4 different types of abstract timed
transitions. (In the following all bi are nonempty.)

Type 1(q1, b−m . . . b−1, b0, b1 . . . bn) Ð→
(q1, b−m . . . b−1,∅, b0b1 . . . bn). This simulates a
very small delay δ > 0 where the tokens of integer
age in b0 now have a positive fractional part, but no
tokens reach an integer age.

Type 2(q1, b−m . . . b−1,∅, b1 . . . bn) Ð→
(q1, b−m . . . b−2, b

+
−1, b1 . . . bn). This simulates a

very small delay δ > 0 in the case where there were
no tokens of integer age and the tokens in b−1 just
reach the next higher integer age.

Type 3(q1, b−m . . . b−1, b0, b1 . . . bn) Ð→
(q1, b

+
−m . . . b

+
−2b

+
−1b0 . . . bk,∅, b+k+1 . . . b

+
n) for

some k ∈ {0, . . . , n}. This simulates a delay in
(1 − δ ∶ 1) where the tokens in b0 . . . bk do not quite
reach the next higher integer and no token gets an
integer age.

Type 4(q1, b−m . . . b−1, b0, b1 . . . bn) Ð→
(q1, b

+
−m . . . b

+
−2b

+
−1b0 . . . bk, b

+
k+1, b

+
k+2 . . . b

+
n) for

some k ∈ {0, . . . , n − 1}. This simulates a delay in
(1− δ ∶ 1) where the tokens in b0, . . . bk do not quite
reach the next higher integer and the tokens on bk+1

just reach the next higher integer age.

Lemma 4. Let (q,M) be a PTPN configuration in δ-form for
some δ ≤ 1/5 and x ∈ (0 ∶ δ). There is a PTPN detailed
timed transition (q,M) xÐ→ (q,M+x) if and only if there
is a A-PTPN abstract timed transition of type 1 or 2 s.t.
aptpn((q,M)) Ð→ aptpn((q,M+x)).

Lemma 5. Let (q,M) be a PTPN configuration in δ-form for
some δ ≤ 1/5 and x ∈ (1 − δ ∶ 1). There is a PTPN timed
transition (q,M) xÐ→ (q,M+x) if and only if there is a A-
PTPN transition of either type 3 or 4 s.t. aptpn((q,M)) Ð→
aptpn((q,M+x)).

The cost model for A-PTPN is defined as follows. For every
transition t ∈ T we have Cost ((q1,M1) Ð→t (q2,M2)) ∶=

Cost (t), just like in PTPN. For abstract timed transitions of
types 1 and 2 we define the cost as zero. For abstract timed
transitions (q,M1) Ð→ (q,M2) of types 3 and 4, we define
Cost ((q,M1) Ð→ (q,M2)) ∶= ∑p∈P ∣M1(p)∣ ∗Cost (p) (i.e.,
as if the elapsed time had length 1). The intuition is that, as δ
converges to zero, the cost of the PTPN timed transitions of
length in (0 ∶ δ) (types 1 and 2) or in (1− δ ∶ 1) (types 3 and
4) converges to the cost of the corresponding abstract timed
transitions in the A-PTPN. The following Lemma 6, which
follows from Lemmas 3,4,5, shows this formally.

Lemma 6.
1) Let c0 be a PTPN configuration where all tokens have

integer ages. For every PTPN computation π = c0 Ð→
. . . Ð→ cn in detailed form and δ-form s.t. n ∗ δ ≤ 1/5
there exists a corresponding A-PTPN computation π′ =
aptpn(c0) Ð→ . . .Ð→ aptpn(cn) s.t.

∣Cost (π)−Cost (π′) ∣ ≤ n∗δ∗(max
0≤i≤n

∣ci∣)∗(max
p∈P

Cost (p))

2) Let c′0 be a A-PTPN configuration (ε, b0, ε). For every
A-PTPN computation π′ = c′0 Ð→ . . . Ð→ c′n and every
0 < δ ≤ 1/5 there exists a PTPN computation π = c0 Ð→
. . .Ð→ cn in detailed form and δ-form s.t. c′i = aptpn(ci)
for 0 ≤ i ≤ n and

∣Cost (π)−Cost (π′) ∣ ≤ n∗δ∗(max
0≤i≤n

∣c′i∣)∗(max
p∈P

Cost (p))

Theorem 7. The infimum of the costs in a PTPN coincide
with the infimum of the costs in the corresponding A-PTPN.
inf{Cost (π) ∣Cinit

πÐ→ Cfin} =
inf{Cost (π′) ∣aptpn(Cinit)

π′Ð→ aptpn(Cfin)}
V. ABSTRACTING COSTS IN A-PTPN

Given an A-PTPN, the cost-threshold problem is whether
there exists a computation aptpn(Cinit)

πÐ→ aptpn(Cfin) s.t.
Cost (π) ≤ v for a given threshold v.

We now reduce this question to a question about simple
coverability in a new model called AC-PTPN. The idea is to
encode the cost of the computation into a part of the control-
state. For every A-PTPN and cost threshold v ∈ N there is a
corresponding AC-PTPN that is defined as follows.

For every A-PTPN configuration
(q, b−m . . . b−1, b0, b1 . . . bn) there are AC-PTPN
configurations ((q, y), b−m . . . b−1, b0, b1 . . . bn) for all
integers 0 ≤ y ≤ v, where y represents the remaining allowed
cost of the computation. We define a finite set of functions
acy for 0 ≤ y ≤ v that map A-PTPN configurations to AC-
PTPN configurations s.t. acy((q, b−m . . . b−1, b0, b1 . . . bn)) =
((q, y), b−m . . . b−1, b0, b1 . . . bn).

For every discrete transition t = (q1, q2, In,Read ,Out) ∈
T with (q1, b−m . . . b−1, b0, b1 . . . bn) Ð→t
(q2, c−m′ . . . c−1, c0, c1 . . . cn′) in the A-PTPN, we
have instead ((q1, y), b−m . . . b−1, b0, b1 . . . bn) Ð→t
((q2, y − Cost (t) , c−m′ . . . c−1, c0, c1 . . . cn′) in the AC-
PTPN for v ≥ y ≥ Cost (t). I.e., we deduct the cost of the
transition from the remaining allowed cost of the computation.

For every A-PTPN abstract timed transition of the types
1 and 2 (q1, . . .) Ð→ (q1, . . .) we have corresponding AC-
PTPN abstract timed transitions of types 1 and 2 where
((q1, y), . . .) Ð→ ((q1, y), . . .) for all 0 ≤ y ≤ v. I.e.,
infinitesimally small delays do not cost anything.

For every A-PTPN abstract timed transition
of type 3 (q1, b−m . . . b−1, b0, b1 . . . bn) Ð→
(q1, b

+
−m . . . b

+
−2b

+
−1b0 . . . bk,∅, b+k+1 . . . b

+
n) we have

corresponding AC-PTPN abstract timed transitions of
type 3 where ((q1, y), b−m . . . b−1, b0, b1 . . . bn) Ð→
((q1, y − z), b+−m . . . b+−2b

+
−1b0 . . . bk,∅, b+k+1 . . . b

+
n) where

z = ∑ni=−m∑p∈P ∣bi(p)∣ ∗Cost (p) and v ≥ y ≥ z.
Transitions of type 4 are handled analogously.

Lemma 8. There is an A-PTPN computation
aptpn(Cinit)

πÐ→ aptpn(Cfin) with Cost (π) ≤ v
iff there is a corresponding AC-PTPN computation

acv(aptpn(Cinit))
π′Ð→ ⋃0≤y≤v acy(aptpn(Cfin))

Proof: Directly from the definition of AC-PTPN.
Note that, unlike A-PTPN, AC-PTPN are not monotone.

This is because steps of type 3/4 with more tokens on
cost-places cost more, and thus cost-constraints might block
transitions from larger configurations.

VI. THE ABSTRACT COVERABILITY PROBLEM

We describe a general construction for solving reachabil-
ity/coverability problems under some abstract conditions.
Later we will show how this construction can be applied to
AC-PTPN (and thus the A-PTPN and PTPN cost problems).

A. The Generalized Valk-Jantzen Construction

Theorem 9. (Valk & Jantzen [18]) Given an upward-closed
set V ⊆ Nk, the finite set Vmin of minimal elements of V is
effectively computable iff for any vector u⃗ ∈ Nkω the predicate
u⃗↓ ∩ V ≠ ∅ is decidable.

We now show a generalization of this result.

Theorem 10. Let (Ω,≤) be a set with a decidable well-quasi-
order (wqo) ≤, and let V ⊆ Ω be upward-closed and recursively
enumerable. Then the finite set Vmin of minimal elements of V
is effectively constructible if and only if for every finite subset
X ⊆ Ω it is decidable if V ∩X ↑ ≠ ∅ (i.e., if ∃v ∈ V. v ∉X ↑).

Proof: Vmin is finite, since ≤ is a wqo. For the only-if
part, since X ↑ is upward-closed, it suffices to check for each
of the finitely many elements of Vmin if it is not in X ↑. This
is possible, because X is finite and ≤ is decidable.

For the if-part, we start with X = ∅ and keep adding
elements to X until X ↑ = V . In every step we do the check
if ∃v ∈ V. v ∉ X ↑. If no, we stop. If yes, we enumerate V
and check for every element v if v ∉ X ↑ (this is possible
since X is finite and ≤ decidable). Eventually, we will find
such a v, add it to the set X , and do the next step. Consider
the sequence of elements v1, v2, . . . which are added to X
in this way. By our construction vj /≥ vi for j > i. Thus the
sequence is finite, because ≤ is a wqo. Therefore the algorithm

terminates and the final set X satisfies /∃ v ∈ V. v ∉ X ↑, i.e.,
V ⊆ X ↑. Furthermore, by our construction X ⊆ V and thus
X ↑ ⊆ V ↑= V . Thus X ↑ = V . Finally, we remove all non-
minimal elements from X (this is possible since X is finite
and ≤ decidable) and obtain Vmin .

Corollary 11. Let Σ be a finite alphabet and V ⊆ Σ∗ a recur-
sively enumerable set that is upward-closed w.r.t. the substring
ordering ≤. The following three properties are equivalent.

1) The finite set Vmin of minimal elements of V is effectively
constructible.

2) For every finite subset X ⊆ Σ∗ it is decidable if ∃v ∈
V. v ∉X ↑.

3) For every regular language R ⊆ Σ∗ it is decidable if
R ∩ V = ∅.

Proof: By Higman’s Lemma [20], the substring order ≤ is
a wqo on Σ∗ and thus Vmin is finite. Therefore the equivalence
of (1) and (2) follows from Theorem 10. Property (1) implies
that V is an effectively constructible regular language, which
implies property (3). Property (2) is equivalent to checking
whether V ∩X ↑ ≠ ∅ and X ↑ is effectively regular because X
is finite. Therefore, (3) implies (2) and thus (1).

Note that Theorem 10 (and even Corollary 11, via an
encoding of vectors into strings) imply Theorem 9.

B. The Abstract Phase Construction
We define some sufficient abstract conditions on infinite-

state transition systems under which a general reachabil-
ity/coverability problem is decidable. Intuitively, we have
two different types of transition relations. The first relation
is monotone (w.r.t. a given quasi-order) on the whole state
space, while the second relation is only defined/enabled on
an upward-closed subspace. The quasi-order is not a well
quasi-order on the entire space, but only on the subspace. In
particular, this is not a well-quasi-ordered transition system in
the sense of [16], [17], but more general.

We call the following algorithm the abstract phase construc-
tion, because we divide sequences of transitions into phases,
separated by occurrences of transitions of the second kind.

Definition 1. We say that a structure (S,C,≤,→,→A,→B
, init , F) satisfies the abstract phase construction requirements
iff the following conditions hold.

1. S is a (possibly infinite) set of states, C ⊆ S is a
finite subset, init ∈ S is the initial state and F ⊆ S
is a (possibly infinite) set of final states.

2. ≤ is a decidable quasi-order on S. Moreover, ≤ is a
well-quasi-order on the subset C ↑ (where C ↑ = {s ∈
S ∣ ∃c ∈ C. s ≥ c}).

3. →=→A ∪ →B
4. →A⊆ S×S is a monotone (w.r.t. ≤) transition relation

on S.
5.a. →B⊆ C ↑ × C ↑ is a monotone (w.r.t. ≤) transition

relation on C ↑.
5.b For every finite set X ⊆ C ↑ we have that the finitely

many minimal elements of the upward-closed set
Pre→B(X ↑) are effectively constructible.

6.a Pre∗→A(F) is upward-closed and decidable.
6.b The finitely many minimal elements of Pre∗→A(F) ∩

C ↑ are effectively constructible.
7.a For any finite set U ⊆ C ↑, the set Pre∗→A(U ↑) is

decidable.
7.b For any finite sets U,X ⊆ C ↑, it is decidable if

X ↑ ∩ Pre∗→A(U ↑) ∩ C ↑ ≠ ∅. (In other words, it is
decidable if ∃z ∈ (X ↑ ∩C ↑). z →∗

A U ↑.)
(Note that Pre∗→A(U ↑) is not necessarily constructible,

because ≤ is not a well-quasi-order on S. Note also that F
is not necessarily upward-closed.)

Theorem 12. If (S,C,≤,→,→A,→B , init , F) satisfies the
abstract phase construction requirements of Def. 1, then the
problem init →∗ F is decidable.

Proof: By Def. 1 (cond. 3), we have init →∗ F iff (1)
init →∗

A F , or (2) init →∗
A (→B→∗

A)+F .
Condition (1) can be checked directly, by Def. 1 (cond. 6.a).
In order to check condition (2), we first construct a sequence

of minimal finite sets Uk ⊆ C ↑ for k = 1,2, . . . such that
Uk ↑ = {s ∈ S ∣ ∃j ∶ 1 ≤ j ≤ k. s(→B→∗

A)jF} and show that
this sequence converges.

First we construct the minimal finite set U ′
1 ⊆ C ↑ s.t. U ′

1 ↑ =
Pre∗→A(F)∩C ↑. This is possible by conditions 6.a and 6.b of
Def. 1. Then we construct the minimal finite set U1 ⊆ C ↑ s.t.
U1 ↑ = Pre→B(U ′

1 ↑). This is possible by conditions 5.a and
5.b of Def. 1. For k = 1,2, . . . we repeat the following steps.

● Given the finite set Uk ⊆ C ↑, we construct the minimal
finite set U ′

k+1 ⊆ C ↑ s.t. U ′
k+1 ↑ = Pre∗→A(Uk ↑)∩C ↑. This

is possible because of Theorem 10, which we instantiate
as follows. Let Ω = C ↑ and V = Pre∗→A(Uk ↑) ∩ C ↑.
Using the conditions from Def. 1 we have the following:
By condition 2, ≤ is a decidable well-quasi-order on C ↑.
By condition 4, V = Pre∗→A(Uk ↑)∩C ↑ is upward-closed,
since →A is monotone. By conditions 7.a and 2, V is
decidable, and by condition 7.b the question X ↑ ∩ V ≠
∅ is decidable. Thus, by Theorem 10, the finitely many
minimal elements of V , i.e., the set U ′

k+1, are effectively
constructible.

● Given U ′
k+1, we construct the minimal finite set U ′′

k+1 ⊆
C ↑ s.t. U ′′

k+1 ↑ = Pre→B(U ′
k+1 ↑). This is possible by

conditions 5.a and 5.b of Def. 1.
Then let Uk+1 be the finite set of minimal elements of
U ′′
k+1 ∪Uk.

The sequence U1 ↑, U2 ↑, . . . is a monotone-increasing se-
quence of upward-closed subsets of C ↑, where Uk is the finite
set of minimal elements of Uk ↑. This sequence converges,
because ≤ is a well-quasi-order on C ↑ by condition 2 of Def. 1.
Therefore, we get Un = Un+1 for some finite index n and
Un ↑ = {s ∈ S ∣ s(→B→∗

A)∗F}, because transition →B is only
enabled in C ↑ by Def. 1 (cond. 5.a).

Finally, by Def. 1 (cond. 7.a) we can do the final check
whether init ∈ Pre∗→A(Un ↑) and thus decide condition (2).

In the following section we use Theorem 12 to solve the
optimal cost problem for PTPN. However, it also has many

other applications, when used with different instantiations.

Remark 1. Theorem 12 can be used to obtain a simple proof
of decidability of the coverability problem for Petri nets with
one inhibitor arc. Normal Petri net transitions are described
by Ð→A, while the inhibited transition is described by Ð→B .
(This uses the decidability of the normal Petri net reachability
problem [21] to prove conditions 7.a and 7.b).

A different instantiation could be used to show the decidabil-
ity of the reachability problem for generalized classes of lossy
FIFO-channel systems, where, e.g., an extra type of transition
Ð→B is only enabled when some particular channel is empty.

VII. THE MAIN RESULT

Here we state the main computability result of the paper. Its
proof refers to several auxiliary lemmas that will be shown in
the following sections.

Theorem 13. Consider a PTPN N = (Q,P,T,Cost) with
initial configuration Cinit = (qinit , []) and set of final con-
figurations Cfin = {(qfin ,M) ∣ M ∈ (P ×R≥0)⊙}. Then
OptCost (Cinit ,Cfin) is computable.

Proof: OptCost (Cinit ,Cfin) = inf{Cost (π) ∣Cinit
πÐ→

Cfin} = inf{Cost (π′) ∣aptpn(Cinit)
π′Ð→ aptpn(Cfin)}, by

Theorem 7. Thus it suffices to consider the computations

aptpn(Cinit)
π′Ð→ aptpn(Cfin) of the corresponding A-PTPN.

In particular, OptCost (Cinit ,Cfin) ∈ N.
To compute this value, it suffices to solve the cost-threshold

problem for any given threshold v ∈ N, i.e., to decide if
aptpn(Cinit)

πÐ→ aptpn(Cfin) for some π with Cost (π) ≤ v.
To show this, we first decide if aptpn(Cinit)

πÐ→
aptpn(Cfin) for any π (i.e., reachability). This can be reduced
to the cost-threshold problem by setting all place and transition
costs to zero and solving the cost-threshold problem for v = 0.
If no, then no final state is reachable and we represent this by
inf{Cost (π) ∣Cinit

πÐ→ Cfin} = ∞. If yes, then we can find
the optimal cost v by solving the cost-threshold problem for
threshold v = 0,1,2,3, . . . until the answer is yes.

Now we show how to solve the cost-threshold problem.
By Lemma 8, this question is equivalent to a reachability
problem acv(aptpn(Cinit))

∗Ð→ ⋃0≤y≤v acy(aptpn(Cfin)) in
the corresponding AC-PTPN. This reachability problem is
decidable by Lemma 16.

Before showing the auxiliary lemmas, we give a lower
bound on the cost-threshold problem.

Theorem 14. Consider a PTPN N = (Q,P,T,Cost) with
initial configuration Cinit = (qinit , []) and set of final states
Cfin = {(qfin ,M) ∣ M ∈ (P ×R≥0)⊙}. Then the question if
OptCost (Cinit ,Cfin) = 0 is at least as hard as the reachability
problem for Petri nets with one inhibitor arc.

Theorem 14 implies that OptCost (Cinit ,Cfin) = 0 is at
least as hard as the reachability problem for standard Petri
nets and thus EXPSPACE-hard [22].

To prove Lemma 16, we need some auxiliary definitions.

Definition 2. We define the partial order ≤f on AC-
PTPN configurations. Given two AC-PTPN configura-
tions β = (qβ , (b−m . . . b−1, b0, b1 . . . bn)) and γ =
(qγ , (c−m′ . . . c−1, c0, c1 . . . cn′)) we have β ≤f γ iff qβ =
qγ and there exists a strictly monotone function f ∶
{−m, . . . , n} ↦ {−m′, . . . , n′} where f(0) = 0 s.t.

1) cf(i) − bi ∈ (Pf × [cmax + 1])⊙, for −m ≤ i ≤ n.
2) cj ∈ (Pf × [cmax + 1])⊙, if /∃ i ∈ {−m, . . . , n}. f(i) = j.

(Intuitively, γ is obtained from β by adding tokens on free-
places, while the tokens on cost-places are unchanged.) In
this case, if α = (qβ , (c−m′ − bf−1(−m′), . . . , c−1 − bf−1(−1), c0 −
b0, c1 − bf−1(1), . . . , cn′ − bf−1(n′))) then we write α⊕β = γ.
(Note that α is not uniquely defined, because it depends on
the choice of the function f . However one such α always exists
and only contains tokens on Pf .)

The partial order ≤c on configurations of AC-PTPN is
defined analogously with Pc instead of Pf , i.e., γ is obtained
from β by adding tokens on cost-places.

The partial order ≤fc on configurations of AC-PTPN is
defined analogously with P instead of Pf , i.e., γ is obtained
from β by adding tokens on any places, and ≤fc=≤c ∪ ≤f .

Lemma 15. ≤f , ≤c and ≤fc are decidable quasi-orders on the
set of all AC-PTPN configurations.

For every AC-PTPN configuration c, ≤f , is a well-quasi-
order on the set {c}↑ = {s ∣ c ≤f s} (i.e., here ↑ denotes the
upward-closure w.r.t. ≤f).
≤fc is a well-quasi-order on the set of all AC-PTPN

configurations.

Lemma 16. Given an instance of the PTPN cost problem
and a given threshold v ∈ N, the reachability question
acv(aptpn(Cinit))

∗Ð→ ⋃0≤y≤v acy(aptpn(Cfin)) in the cor-
responding AC-PTPN is decidable.

Proof: We instantiate a structure (S,C,≤,→,→A,→B
, init , F), show that it satisfies the requirements of Def. 1,
and then apply Theorem 12.

Let S be the set of all AC-PTPN configurations of the form
((q, y), b−m . . . b−1, b0, b1 . . . bn) where y ≤ v.

Let C be the set of all AC-PTPN configurations of the
form ((q, y), b−m′ . . . b−1, b0, b1 . . . bn′) where y ≤ v, and
bi ∈ (Pc × [cmax + 1])⊙ and ∑n

′
j=−m′ ∣bj ∣ ≤ v. In other words,

the configurations in C only contain tokens on cost-places and
the size of these configurations is limited by v. C is finite,
because Pc, cmax and v are finite.

Let ≤∶=≤f of Def. 2, i.e., in this proof ↑ denotes the upward-
closure w.r.t. ≤f . By Lemma 15, ≤ is decidable, ≤ is a quasi-
order on S, and ≤ is a well-quasi-order on {c}↑ for every
AC-PTPN configuration c. Therefore ≤f is a well-quasi-order
on C ↑, because C is finite.

Let init ∶= acv(aptpn(Cinit)) and F ∶=
⋃0≤y≤v acy(aptpn(Cfin)). In particular, F is upward-
closed w.r.t. ≤f and w.r.t. ≤fc. Thus conditions 1 and 2 of
Def. 1 are satisfied.

Let →A be the transition relation induced by the discrete
AC-PTPN transitions and the abstract timed AC-PTPN tran-

sitions of types 1 and 2. These are monotone w.r.t. ≤f . Thus
condition 4 of Def. 1 is satisfied.

Let →B be the transition relation induced by abstract timed
AC-PTPN transitions of types 3 and 4. These are monotone
w.r.t. ≤f , but only enabled in C ↑, because otherwise the
cost would be too high. (Remember that every AC-PTPN
configuration stores the remaining allowed cost, which must be
non-negative.) Moreover, timed AC-PTPN transitions of types
3 and 4 do not change the number or type of the tokens in a
configuration, and thus →B⊆ C ↑ ×C ↑. So we have condition
5.a of Def. 1. Condition 5.b is satisfied, because there are only
finitely many token ages ≤ cmax and the number and type of
tokens is unchanged.

Condition 3 is satisfied, because →=→A ∪ →B by the
definition of AC-PTPN.

Now we show the conditions 6.a and 6.b. F is upward-
closed w.r.t. ≤fc and →A is monotone w.r.t. ≤fc (not only w.r.t
≤f). By Lemma 15, ≤fc is a decidable wqo on the set of AC-
PTPN configurations. Therefore, Pre∗→A(F) is upward-closed
w.r.t. ≤fc and effectively constructible (i.e., its finitely many
minimal elements w.r.t. ≤fc), because the sequence Pre≤i→A(F)
for i = 1,2, . . . converges. Let K be this finite set of minimal
(w.r.t. ≤fc) elements of Pre∗→A(F). We obtain condition 6.a.,
because K is finite and ≤fc is decidable. Moreover, Pre∗→A(F)
is also upward-closed w.r.t. ≤f . The set C is a finite set of
AC-PTPN configurations and C ↑ is the upward-closure of C
w.r.t. ≤f . Therefore Pre∗→A(F) ∩ C ↑ is upward closed w.r.t.
≤f . Now we show how to construct the finitely many minimal
(w.r.t. ≤f) elements of Pre∗→A(F) ∩ C ↑. For every k ∈ K
let α(k) ∶= {k′ ∣ k′ ∈ C ↑, k ≤c k′}, i.e., those configurations
which have the right control-state for C ↑, but whose number
of tokens on cost-places is bounded by v, and who are larger
(w.r.t. ≤c) than some base element in K. In particular, α(k) is
finite and constructible, because v is finite, and ≤c and ≤f are
decidable. Note that α(k) can be empty (if k has the wrong
control-state or too many tokens on cost-places). Let K ′ ∶=
⋃k∈K α(k), which is finite and constructible. We show that
Pre∗→A(F)∩C ↑ =K ′ ↑. Consider the first inclusion. If x ∈K ′ ↑
then ∃k′ ∈K ′, k ∈K.k ≤c k′ ≤f x, k′ ∈ C ↑. Therefore k ≤fc x
and x ∈ Pre∗→A(F). Also k′ ∈ C ↑ and k′ ≤f x and thus x ∈ C ↑.
Now we consider the other inclusion. If x ∈ Pre∗→A(F) ∩C ↑
then there is a k ∈ K s.t. k ≤fc x. Moreover, the number of
tokens on cost-places in x is bounded by v and the control-
state is of the form required by C ↑, because x ∈ C ↑. Since,
k ≤fc x, the same holds for k and thus there is some k′ ∈ α(k)
s.t. k′ ≤f x. Therefore x ∈K ′ ↑. To summarize, K ′ is the finite
set of minimal (w.r.t. ≤f) elements of Pre∗→A(F)∩C ↑ and thus
condition 6.b holds.

Conditions 7.a and 7.b are satisfied by Lemma 20.

Therefore, Theorem 12 yields the decidability of the reach-
ability problem init →∗ F , i.e., acv(aptpn(Cinit))

∗Ð→
⋃0≤y≤v acy(aptpn(Cfin)).

Lemma 20 will be shown in Section IX. Its proof uses the
simultaneous-disjoint transfer nets of Section VIII.

VIII. SIMULTANEOUS-DISJOINT-TRANSFER NETS

Simultaneous-disjoint-transfer nets (SD-TN) [10] are a sub-
class of transfer nets [23]. SD-TN subsume ordinary Petri nets.
A SD-TN N is described by a tuple (Q,P,T,Trans).
● Q is a finite set of control-states
● P is a finite set of places
● T is a finite set of ordinary transitions. Every transition
t ∈ T has the form t = (q1, q2, I,O) where q1, q2 ∈ Q and
I,O ∈ P⊙.

● Trans describes the set of simultaneous-disjoint transfer
transitions. Although these transitions can have different
control-states and input/output places, they all share the
same transfer (thus the ‘simultaneous’). The transfer is
described by the relation ST ⊆ P × P , which is global for
the SD-TN N . Intuitively, for (p, p′) ∈ ST , in a transfer
every token in p is moved to p′. The transfer transitions in
Trans have the form (q1, q2, I,O,ST) where q1, q2 ∈ Q
are the source and target control-state, I,O ∈ P⊙ are
like in a normal Petri net transition, and ST ⊆ P × P is
the same global transfer relation for all these transitions.
For every transfer transition (q1, q2, I,O,ST) the following
‘disjointness’ restrictions must be satisfied:
- Let (sr, tg), (sr′, tg′) ∈ ST . Then either (sr, tg) =
(sr′, tg′) or ∣{sr, sr′, tg, tg′}∣ = 4. Furthermore, {sr, tg}∩
(I ∪O) = ∅.

Let (q,M) ∈ Q × P⊙ be a configuration of N . The firing
of normal transitions t ∈ T is defined just as for ordinary
Petri nets. A transition t = (q1, q2, I,O) ∈ T is enabled at
configuration (q,M) iff q = q1 and M ≥ I . Firing t yields the
new configuration (q2,M

′) where M ′ =M − I +O.
A transfer transition (q1, q2, I,O,ST) ∈ Trans is enabled

at (q,M) iff q = q1 and M ≥ I . Firing it yields the new
configuration (q2,M

′) where

M ′(p) =M(p) − I(p) +O(p) if p ∈ I ∪O
M ′(p) = 0 if ∃p′. (p, p′) ∈ ST
M ′(p) =M(p) +M(p′) if (p′, p) ∈ ST
M ′(p) =M(p) otherwise

The restrictions above ensure that these cases are disjoint.
Note that after firing a transfer transition all source places of
transfers are empty, since, by the restrictions defined above, a
place that is a source of a transfer can neither be the target
of another transfer, nor receive any tokens from the output of
this transfer transition.

Theorem 17. The reachability problem for SD-TN is decid-
able, and has the same complexity as the reachability problem
for Petri nets with one inhibitor arc.

IX. ENCODING AC-PTPN COMPUTATIONS BY SD-TN

In this section, we fix an AC-PTPN N , described by the
tuple (Q,P,T,Cost) and the cost-threshold v. We use the
partial order ≤∶=≤f on AC-PTPN configurations; see Def. 2.
We describe an encoding of the configurations of N as words
over some alphabet Σ. We define Σ ∶= (P × [cmax + 1]) ∪
(Q × {y∣ 0 ≤ y ≤ v}) ∪ {#,$}, i.e., the members of Σ are

elements of P × [cmax + 1], the control-states of N , and
the two “separator” symbols # and $. For a multiset b =
[a1, . . . , an] ∈ (P × [cmax + 1])⊙, we define the encoding
enc (b) to be the word a1⋯an ∈ (P × [cmax + 1])∗. For
a word w = b1⋯bn ∈ ((P × [cmax + 1])⊙)∗, we define
enc (w) ∶= enc (bn)#⋯#enc (b1), i.e., it consists of the
reverse concatenation of the encodings of the individual
multisets, separated by #. For a marking M = (w1, b,w2),
we define enc (M) ∶= enc (w2)$enc (b)$enc (w1). In other
words, we concatenate the encoding of the components in
reverse order: first w2 then b and finally w1, separated by
$. Finally for a configuration c = ((q, y) ,M), we define
enc (c) ∶= (q, y) enc (M), i.e., we append the pair (q, y) in
front of the encoding of M . We call a finite automaton A
over Σ a configuration-automaton if whenever w ∈ L(A) then
w = enc(c) for some AC-PTPN configuration c.

Lemma 18. Given a finite set C of AC-PTPN configurations,
we can construct a configuration-automaton A s.t. L(A) =
enc (C ↑).

Lemma 19. We can construct a configuration-automaton A
s.t. L(A) = enc(S), where S is the set of all configurations
of a given AC-PTPN.

Lemma 20. Consider an instance of the PTPN cost problem,
a given threshold v ∈ N, and a structure (S,C,≤,→,→A,→B
, init , F), instantiated as in Lemma 16.

Then conditions 7.a and 7.b. of Def. 1 are decidable.

Proof:
7.a Consider a configuration c. We can trivially construct
a configuration-automaton A s.t. L(A) = {enc (c)}. Thus
the question c ∈ Pre∗→A(U ↑) can be decided by applying
Lemma 21 to A and U .
7.b Consider finite sets of AC-PTPN configurations U,X ⊆
C ↑. By Lemma 18, we can construct configuration-automata
A1,A2 with L(A1) = enc (X ↑) and L(A2) = enc (C ↑).
Furthermore, by Lemma 19, we can construct a configuration-
automaton A3 with L(A3) = enc (S). Therefore, by ele-
mentary operations on finite automata, we can construct a
configuration-automaton A4 with L(A4) = L(A1) ∩L(A3) ∩
L(A2), and we obtain that L(A4) = enc (X ↑ ∩C ↑). Note
that the complement operation on words is not the same as
the complement operation on the set of AC-PTPN configura-
tions. Thus the need for intersection with A3. The question
∃z ∈ (X ↑ ∩C ↑). z →∗

A U ↑ of 7.b can be decided by applying
Lemma 21 to A4 and U .

Lemma 21. Given a configuration-automaton A, C as in
Lemma 16, and a finite set U ⊆ C ↑, it is decidable if there
exists some AC-PTPN configuration cinit ∈ enc−1(L(A)) s.t.
cinit →∗

A U ↑
Proof: (Sketch) The idea is to translate the AC-PTPN into

an SD-TN which simulates its computation. The automaton
A is also encoded into the SD-TN and runs in parallel. A
outputs an encoding of cinit , a nondeterministically chosen
initial AC-PTPN configuration from L(A). Since the SD-TN

cannot encode sequences, it cannot store the order information
in the sequences which are AC-PTPN configurations. Instead
this is encoded into the behavior of A, which outputs parts of
the configuration cinit ‘just-in-time’ before they are used in the
computation (with exceptions; see below). Several abstractions
are used to unify groups of tokens with different fractional
parts, whenever the PTPN is unable to distinguish them. AC-
PTPN timed transitions of types 1 and 2 are encoded as SD-TN
transfer transitions, e.g., all tokens with integer age advance
to an age with a small fractional part. Since this operation
must affect all tokens, it cannot be done by ordinary Petri net
transitions, but requires the simultaneous-disjoint transfer of
SD-TN. Another complication is that the computation of the
AC-PTPN might use tokens (with high fractional part) from
cinit , which the automaton A has not yet produced. This is
handled by encoding a ‘debt’ on future outputs of A in special
SD-TN places. These debts can later be ‘paid back’ by outputs
of A (but not by tokens created during the computation).
At the end, the computation must reach an encoding of a
configuration in U ↑ and all debts must be paid. This yields a
reduction to a reachability problem for the constructed SD-TN,
which is decidable by Theorem 17.

X. CONCLUSION AND EXTENSIONS

We have shown that the infimum of the costs to reach a given
control-state is computable in priced timed Petri nets with
continuous time. This subsumes the corresponding results for
less expressive models such as priced timed automata [14] and
priced discrete-timed Petri nets [15].

For simplicity of presentation, we have used a one-
dimensional cost model, i.e., with a cost ∈ R≥0, but our result
on decidability of the Cost-Threshold problem can trivially
be generalized to a multidimensional cost model (provided
that the cost is linear in the elapsed time). However, in a
multidimensional cost model, the Cost-Optimality problem
is not defined, because the infimum of the costs does not
exist, due to trade-offs between different components. E.g.,
one can construct a PTPN (and even a priced timed automa-
ton) with a 2-dimensional cost where the feasible costs are
{(x,1 − x) ∣x ∈ R≥0,0 < x ≤ 1}, i.e., with uncountably many
incomparable values.

Another simple generalization is to make token storage costs
on places dependent on the current control-state, e.g., storing
one token on place p for one time unit costs 2 if in control-
state q1, but 3 if in control-state q2. Our constructions can
trivially be extended to handle this.

Other extensions are much harder. If the token storage costs
are not linear in the elapsed time then the infimum of the costs
is not necessarily an integer and our abstraction to A-PTPN
would not work. It is an open question how to compute optimal
costs in such cases.

Finally, some extensions make the cost-problems undecid-
able. If one considers the reachability problem (instead of
our control-state reachability problem) then the question is
undecidable for TPN [5], even without considering costs. If
one allows negative costs (i.e., rewards) in the model then

all cost-problems (even control-state reachability/coverability)
become undecidable, even for discrete-time PTPN [15].

REFERENCES

[1] C. Petri, “Kommunikation mit Automaten,” Ph.D. dissertation, Univer-
sity of Bonn, 1962.

[2] J. Peterson, “Petri nets,” Computing Surveys, vol. 9, no. 3, pp. 221–252,
1977.

[3] F. D. J. Bowden, “Modelling time in Petri nets,” in Proc. Second
Australian-Japan Workshop on Stochastic Models, 1996.

[4] B. Bérard, F. Cassez, S. Haddad, O. Roux, and D. Lime, “Comparison
of different semantics for time Petri nets,” in Proceedings of ATVA 2005,
ser. LNCS, vol. 3707. Springer, 2005, pp. 81–94.

[5] V. V. Ruiz, F. C. Gomez, and D. de Frutos Escrig, “On non-decidability
of reachability for timed-arc Petri nets,” in Proc. 8th Int. Workshop on
Petri Net and Performance Models (PNPM’99), 8-10 October 1999,
Zaragoza, Spain, 1999, pp. 188–196.

[6] D. de Frutos Escrig, V. V. Ruiz, and O. M. Alonso, “Decidability of
properties of timed-arc Petri nets,” in ICATPN 2000, ser. LNCS, vol.
1825, 2000, pp. 187–206.

[7] P. Abdulla and A. Nylén, “Timed Petri nets and BQOs,” in Proc.
ICATPN’2001: 22nd Int. Conf. on application and theory of Petri nets,
ser. LNCS, vol. 2075, 2001, pp. 53 –70.

[8] ——, “Undecidability of LTL for timed Petri nets,” in INFINITY 2002,
4th International Workshop on Verification of Infinite-State Systems,
2002.

[9] P. Abdulla, J. Deneux, P. Mahata, and A. Nylén, “Forward reachability
analysis of timed Petri nets,” in Proc. FORMATS-FTRTFT’04, ser.
LNCS, vol. 3253. Springer, 2004, pp. 343–362.

[10] P. Abdulla, P. Mahata, and R. Mayr, “Dense-timed Petri nets: Checking
zenoness, token liveness and boundedness,” Logical Methods in Com-
puter Science, vol. 3, no. 1, 2007.

[11] R. Alur and D. Dill, “A theory of timed automata,” TCS, vol. 126, pp.
183–235, 1994.

[12] R. Alur, S. L. Torre, and G. J. Pappas, “Optimal paths in weighted timed
automata,” in HSCC, 2001, pp. 49–62.

[13] K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune,
P. Pettersson, and J. Romijn, “As cheap as possible: Efficient cost-
optimal reachability for priced timed automata,” in Proc. 13th Int. Conf.
on Computer Aided Verification, ser. LNCS, vol. 2102, 2001.

[14] P. Bouyer, T. Brihaye, V. Bruyère, and J. Raskin, “On the optimal
reachability problem of weighted timed automata,” Formal Methods in
System Design, vol. 31, no. 2, pp. 135–175, 2007.

[15] P. Abdulla and R. Mayr, “Minimal cost reachability/coverability in
priced timed Petri nets,” in Proc. of FOSSACS 2009, ser. LNCS, vol.
5504. Springer, 2009.

[16] P. Abdulla, K. Čerāns, B. Jonsson, and Y. Tsay, “Algorithmic analysis
of programs with well quasi-ordered domains,” Information and Com-
putation, vol. 160, pp. 109–127, 2000.

[17] A. Finkel and P. Schnoebelen, “Well-structured transition systems ev-
erywhere!” TCS, vol. 256, no. 1-2, pp. 63–92, 2001.

[18] R. Valk and M. Jantzen, “The residue of vector sets with applications
to decidability problems in Petri nets,” Acta Inf., vol. 21, 1985.

[19] K. Reinhardt, “Reachability in Petri nets with inhibitor arcs,” in Proc.
RP08, 2nd Workshop on Reachability Problems, 2008.

[20] G. Higman, “Ordering by divisibility in abstract algebras,” Proc. London
Math. Soc. (3), vol. 2, no. 7, pp. 326–336, 1952.

[21] E. Mayr, “An algorithm for the general Petri net reachability problem,”
SIAM Journal of Computing, vol. 13, pp. 441–460, 1984.

[22] R. Lipton, “The reachability problem requires exponential space,” De-
partment of Computer Science, Yale University, Tech. Rep. 62, January
1976.

[23] G. Ciardo, “Petri nets with marking-dependent arc cardinality: Properties
and analysis,” in Proc. 15th Int. Conf. Applications and Theory of Petri
Nets, ser. LNCS, vol. 815. Springer-Verlag, 1994, pp. 179–198.

[24] G. Nemhauser and L. Wolsey, Integer and combinatorial optimization.
Wiley-Interscience Series in Discrete Mathematics and Optimization,
John Wiley & Sons Inc., New York, 1988.

[25] L. E. Dickson, “Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors,” Amer. J. Math., vol. 35, pp.
413–422, 1913.

APPENDIX

Appendix A. Example

t1

1

p22 6.5q1p1

3

3.1

3.1 2.5
q2 p3

0

0.1 0.1

t2

3

(0,
3]

[1
,
5)

(2,∞)

[0,∞) [2
,
2
]

[1,
4)

Fig. 1. A simple example of a PTPN.

Figure 1 shows a simple PTPN. We will use this PTPN to
give examples of some of the concepts that we have introduced
in the paper.

a) Places and Transitions: The PTPN has two control
states (q1 and q2) depicted as dark-colored circles, three
places (p1, p2, p3) depicted as light-colored circles, and two
transitions (t1 and t2) depicted as rectangles. Source/target
control states, input/output places are indicated by arrows to
the relevant transition. Read places are indicated by dou-
ble headed arrows. The source and target control states
of t1 are q1 resp. q2. There input, read resp. output arcs
of t1 are given by the multisets [(p1, (0,3])], [] resp.
[(p2, [1,5)) , (p3, (2,∞))]. In a similar manner, t2 is defined
by the tuple (q2, q1, [(p3, [1,4))][(p2, [2,2]) , (p1, [0,∞))]).
The prices of t1, t2, p1, p2, p3 are 1,3,3,2,0 respectively.

The value of cmax is 5.
b) Markings: Figure 1 shows a marking

[(p1,3.1)2
, (p1,2.5) , (p2,6.5) , (p3,0.1)2].

c) Computations and Prices: An example of a compu-
tation π is:

(q1, [(p1,3.1)2
, (p1,2.5) , (p2,6.5) , (p3,0.1)2])

Ð→t1
(q2, [(p1,3.1)2

, (p2,6.5) , (p2,1.3) , (p3,0.1)2
, (p3,2.2)])

0.7Ð→Time

(q2, [(p1,3.8)2
, (p2,7.2) , (p2,2.0) , (p3,0.8)2

, (p3,2.9)])
Ð→t2

(q1, [(p1,3.8)2
, (p1,9.2) , (p2,7.2) , (p2,2.0) , (p3,0.8)2])

1.3Ð→Time

(q1, [(p1,5.1)2
, (p1,10.5) , (p2,8.5) , (p2,3.3) , (p3,2.1)2])

The cost Cost (π) is given by

1 + 2 ∗ 3 ∗ 0.7 + 2 ∗ 2 ∗ 0.7 + 3 ∗ 0 ∗ 0.7+
3 + 3 ∗ 3 ∗ 1.3 + 2 ∗ 2 ∗ 1.3 + 1 ∗ 0 ∗ 1.3 = 27.9

The transition t2 is not enabled from any of the following
configurations:

● The marking (q1, [(p1,3.8) , (p2,2.0) , (p3,2.9)]) since it
does not have the correct control state.

● The marking (q1, [(p1,3.1)2
, (p2,2.0) , (p3,0.1)2])

since it is missing input tokens with the correct ages in
p3.

● The marking (q1, [(p1,3.1)2
, (p2,1.0) , (p3,1.1)2])

since it is missing read tokens with the correct ages in
p2.

d) Abstract Markings: Fix δ = 0.2. Then the configura-
tion

c = [(p1,2.1) , (p1,1.0) , (p1,2.85) , (p1,3.9) ,
(p2,1.1) , (p2,9.1) , (p2,1.0) , (p2,9.85) ,
(p3,8.1) , (p3,0.85) , (p3,2.9) , (p3,4.9) , (p3,9.0)]

is in δ-form. We have

c1 = aptpn (c) =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,6)
,

(p3,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p3,2)
,

(p3,4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,1)
,

(p2,1)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,1)
,

(p2,6)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Note that token ages > cmax are abstracted as cmax + 1.
Since here cmax = 5, all token ages > 5 are abstracted as 6.

Below we describe four examples of abstract computation
steps (these abstract computation steps are new examples and
are not related to the concrete computation π described in the
previous paragraph.)

(i) A type 1 transition from c1 leads to

c2 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,6)
,

(p3,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p3,2)
,

(p3,4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,∅,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,1)
,

(p2,1)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,1)
,

(p2,6)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(ii) A type 2 transition from c2 leads to

c3 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,6)
,

(p3,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,4)
,

(p3,3)
,

(p3,5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,1)
,

(p2,1)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,1)
,

(p2,6)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(iii) A type 3 transition from c3 leads to

c4 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p2,6)
,

(p3,1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,4)
,

(p3,3)
,

(p3,5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,1)
,

(p2,1)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,∅,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p2,2)
,

(p2,6)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(iv) A type 4 transition from c3 leads to

c5 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p2,6)
,

(p3,1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,4)
,

(p3,3)
,

(p3,5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,2)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p2,2)
,

(p2,6)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Below, we give three concrete timed transitions that corre-
spond to the abstract steps (i)-(iii) described above.

[(p1,2.1) , (p1,1.0) , (p1,2.85) , (p1,3.9) ,
(p2,1.1) , (p2,9.1) , (p2,1.0) , (p2,9.85) ,
(p3,8.1) , (p3,0.85) , (p3,2.9) , (p3,4.9) , (p3,9.0)]

0.01Ð→Time

[(p1,2.11) , (p1,1.01) , (p1,2.86) , (p1,3.91) ,
(p2,1.11) , (p2,9.11) , (p2,1.01) , (p2,9.86) ,
(p3,8.11) , (p3,0.86) , (p3,2.91) , (p3,4.91) , (p3,9.01)]

0.09Ð→Time

[(p1,2.2) , (p1,1.1) , (p1,2.95) , (p1,4.0) ,
(p2,1.2) , (p2,9.2) , (p2,1.1) , (p2,9.95) ,
(p3,8.2) , (p3,0.95) , (p3,3.0) , (p3,5.0) , (p3,9.1)]

0.85Ð→Time

[(p1,3.05) , (p1,1.95) , (p1,3.8) , (p1,4.85) ,
(p2,2.05) , (p2,10.05) , (p2,1.95) , (p2,10.8) ,
(p3,9.05) , (p3,1.8) , (p3,3.85) , (p3,5.85) , (p3,9.95)]

A concrete timed transitions that correspond to the abstract
step (iv) is the following

[(p1,2.2) , (p1,1.1) , (p1,2.95) , (p1,4.0) ,
(p2,1.2) , (p2,9.2) , (p2,1.1) , (p2,9.95) ,
(p3,8.2) , (p3,0.95) , (p3,3.0) , (p3,5.0) , (p3,9.1)]

0.9Ð→Time

[(p1,3.1) , (p1,2.0) , (p1,3.85) , (p1,4.9) ,
(p2,2.1) , (p2,10.1) , (p2,2.0) , (p2,10.85) ,
(p3,9.1) , (p3,1.85) , (p3,3.9) , (p3,5.9) , (p3,10.0)]

Appendix B. Proofs of Section III
Lemma 1 Let Cinit

πÐ→ Cfin , where π is Cinit = c0 Ð→
. . . Ð→ clength ∈ Cfin . Then for every δ > 0 there exists a

computation π′ in δ-form where Cinit
π′Ð→ Cfin , where π′ is

Cinit = c′0 Ð→ . . .Ð→ c′length ∈ Cfin s.t. Cost (π′) ≤ Cost (π),
π and π′ have the same length and ∀i ∶ 0 ≤ i ≤ length. ∣ci∣ =
∣c′i∣. Furthermore, if π is detailed then π′ is detailed.

Proof: Outline of the proof: We construct π′ by fixing
the structure of the computation π and varying the finitely
many real numbers describing the delays of timed transitions
and the ages of newly created tokens. The tuples of numbers
corresponding to a possible computation are contained in a
polyhedron, which is described by a totally unimodular matrix,
and whose vertices thus have integer coordinates. Since the
cost function is linear in these numbers, the infimum of the
costs can be approximated arbitrarily closely by computations
π′ whose numbers are arbitrarily close to integers, i.e., com-
putations π′ in δ-form for arbitrarily small δ > 0.
Detailed proof: The computation π with Cinit

πÐ→ Cfin con-
sists of a sequence of discrete transitions and timed transitions.
Let n be the number of timed transitions in π and xi > 0 (for
1 ≤ i ≤ n) be the delay of the i-th timed transition in π.
Let m be the number of newly created tokens in π. We fix
some arbitrary order on these tokens (it does not need to agree
with the order of token creation) and call them t1, . . . , tm. Let
yi be the age of token ti when it is created in π. (Recall
that the age of new tokens is not always zero, but chosen
nondeterministically out of given intervals.)

We now consider the set of all computations π′ that have
the same structure, i.e., the same transitions, as π, but with
modified values of y1, . . . , ym and x1, . . . , xn. Such computa-
tions π′ have the same length as π and the sizes of the visited
configurations match. Also if π is detailed then π′ is detailed.

It remains to show that one such computation π′ is in δ-form
and Cost (π′) ≤ Cost (π).

The set of tuples (y1, . . . , ym, x1, . . . , xn) for which such a
computation π′ is feasible is described by a set of inequations
that depend on the transition guards. (The initial configuration,
and the set of final configurations do not introduce any con-
straints on (y1, . . . , ym, x1, . . . , xn), because they are closed
under changes to token ages.) The inequations are derived
from the following conditions.

● The time always advances, i.e., xi > 0.

● When the token tj is created by an output arc with interval
[a ∶ b] we have a ≤ yj ≤ b, and similarly with strict
inequalities if the interval is (half) open. Note that the
bounds a and b are integers (except where b = ∞ in which
case there is no upper bound constraint).

● Consider a token tj that is an input of some discrete
transition t via an input arc or a read arc labeled with
interval [a ∶ b]. Note that the bounds a and b are integers
(or ∞). Let xk, xk+1, . . . , xk+l be the delays of the timed
transitions that happened between the creation of token
tj and the transition t. Then we must have a ≤ yj + xk +
xk+1 + ⋅ ⋅ ⋅ + xk+l ≤ b. (Similarly with strict inequalities if
the interval is (half) open.)

These inequations describe a polyhedron PH which con-
tains all feasible tuples of values (y1, . . . , ym, x1, . . . , xn). By
the precondition of this lemma, there exists a computation
Cinit

πÐ→ Cfin and thus the polyhedron PH is nonempty.
Therefore we obtain the closure of the polyhedron PH by
replacing all strict inequalities <,> with normal inequalities
≤,≥. Thus PH contains PH , but every point in PH is
arbitrarily close to a point in PH . Now we show that the
vertices of the polyhedron PH have integer coordinates.

Let v = (y1, . . . , ym, x1, . . . , xn) be a column vector of the
free variables. Then the polyhedron PH can be described by
the inequation M ⋅ v ≤ c, where c is a column vector of
integers and M is an integer matrix. Now we analyze the
shape of the matrix M . Each inequation corresponds to a row
in M . If the inequality is ≤ then the elements are in {0,1},
and if the inequality is ≥ then the elements are in {0,−1}.
Each of the inequations above refers to at most one variable
yj , and possibly one continuous block of several variables
xk, xk+1, . . . , xk+l. Moreover, for each yj , this block (if it is
nonempty) starts with the same variable xk. This is because the
xk, xk+1, . . . , xk+l describe the delays of the timed transitions
between the creation of token tj and the moment where tj is
used. xk is always the first delay after the creation of tj , and no
delays can be left out. Note that the token tj can be used more
than once, because transitions with read arcs do not consume
the token. We present the inequalities in blocks, where the
first block contains all which refer to y1, the second block
contains all which refer to y2, etc. The last block contains
those inequations that do not refer to any yj , but only to
variables xi. Inside each block we sort the inequalities w.r.t.
increasing length of the xk, xk+1, . . . , xk+l block, i.e., from
smaller values of l to larger ones. (For yj we have the same
k.) Thus the matrix M has the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0
1 0 0 0 0 1 1 1 1 0
. . .

0 1 0 0 0 0 0 0 0 0
0 −1 0 0 −1 −1 0 0 0 0
0 1 0 0 1 1 1 1 0 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Formally, the shape of these matrices is defined as follows.

Definition 3. We call a (z×m+n)-matrix a PTPN constraint
matrix, if every row has one of the following two forms.
Let j ∈ {1, . . . ,m} and k(j) ∈ {1, . . . , n} be a number
that depends only on j, and let α ∈ {−1,1}. First form:
0j−1α0m−j0k(j)−1α∗0∗. Second form: 0∗α∗0∗. Matrices that
contain only rows of the second form all called 3-block
matrices in [14].

Definition 4. [24] An integer matrix is called totally unimod-
ular iff the determinant of all its square submatrices is equal
to 0, 1 or −1.

Lemma 22. All PTPN constraint matrices are totally unimod-
ular.

Proof: First, every square submatrix of a PTPN constraint
matrix has the same form and is also a PTPN constraint
matrix. Thus it suffices to show the property for square PTPN
constraint matrices. We show this by induction on the size.
The base case of size 1 × 1 is trivial, because the single
value must be in {−1,0,1}. For the induction step consider
a square k × k PTPN constraint matrix M , with some n,m
s.t. n +m = k. If M does not contain any row of the first
form then M is a 3-block matrix and thus totally unimodular
by [14] (Lemma 2). Otherwise, M contains a row i of the
first form where M(i, j) ∈ {−1,1} for some 1 ≤ j ≤ m.
Without restriction let i be such a row in M where the number
of nonzero entries is minimal. Consider all rows i′ in M
where M(i′, j) ≠ 0. Except for M(i′, j), they just contain (at
most) one block of elements 1 (or −1) that starts at position
m+ k(j). By adding/subtracting row i to all these other rows
i′ where M(i′, j) ≠ 0 we obtain a new matrix M ′ where
M ′(i, j) is the only nonzero entry in column j in M ′ and
det(M ′) = det(M). Moreover, M ′ is also a PTPN constraint
matrix, because of the minimality of the nonzero block length
in row i and because all these blocks start at m + k(j).
I.e., in M ′ these modified rows i′ have the form 0∗1∗0∗ or
0∗(−1)∗0∗. We obtain M ′′ from M ′ by deleting column j
and row i, and M ′′ is a (k − 1) × (k − 1) PTPN constraint
matrix (because j ≤ m). By induction hypothesis, M ′′ is
totally unimodular and det(M ′′) ∈ {−1,0,1}. By the cofactor
method, det(M ′) = (−1)i+j∗M ′(i, j)∗det(M ′′) ∈ {−1,0,1}.
Thus det(M) = det(M ′) ∈ {−1,0,1} and M is totally
unimodular.

Theorem 23. [24]. Consider the polyhedron {v ∈ IRk ∣ M ⋅v ≤
c} with M a totally unimodular (p × k) matrix and c ∈ Zp.
Then the coordinates of its vertices are integers.

Since our polyhedron PH is described by a PTPN con-
straint matrix, which is totally unimodular by Lemma 22, it
follows from Theorem 23 that the vertices of PH have integer
coordinates.

Since the Cost function is linear in x1, . . . , xn (and does
not depend on y1, . . . , ym), the infimum of the costs on PH
is obtained at a vertex of PH , which has integer coordinates
by Theorem 23. Therefore, one can get arbitrarily close to
the infimum cost with values y1, . . . , ym, x1, . . . , xn which are

arbitrarily close to some integers. Thus, for every computation
Cinit

πÐ→ Cfin there exists a modified computation π′ with
values y1, . . . , ym, x1, . . . , xn arbitrarily close to integers (i.e.,

π′ in δ-form for arbitrarily small δ > 0) such that Cinit
π′Ð→ Cfin

and Cost (π′) ≤ Cost (π). (Note that the final configuration
reached by π′ possibly differs from the final configuration of
π in the ages of some tokens. However, this does not matter,
because the set of configurations Cfin is closed under such
changes.)

Appendix C. Proofs of Section IV

Lemma 3 Let (q,M) be a PTPN configuration in δ-form
for some δ ≤ 1/5. There is an occurrence of a discrete
transition in δ-form (q,M) Ð→t (q′,M ′) if and only if
aptpn((q,M)) Ð→t aptpn((q′,M ′)).

Proof: Let M =M−m + ⋅ ⋅ ⋅ +M−1 +M0 +M1 + ⋅ ⋅ ⋅ +Mn

be the unique decomposition of M into increasing fractional
parts, and aptpn (M) ∶= (b−m . . . b−1, b0, b1 . . . bn), as defined
in Section IV. Let t = (q, q′, In,Read ,Out).

Now we prove the first implication. If (q,M) Ð→t (q′,M ′)
then there exist I,O,R,M rest ∈ (P ×R≥0)⊙ s.t. the following
conditions are satisfied:

● M = I +R +M rest

● match(I, In), match(R,Read) and match(O,Out).
● M ′ = O +R +M rest .

Thus each Mi can be decomposed into parts Mi =M I
i +MR

i +
M rest
i , where I = ∑iM I

i , R = ∑iMR
i , M rest = ∑iM rest

i . Let
bIi = aptpn (M I

i), bRi = aptpn (MR
i), brest

i = aptpn (M rest
i).

Then bi = bIi +bRi +brest
i . Since the time intervals on transitions

have integer bounds, we obtain match((∑i≠0 b
I
i)+ε + bI0, In)

and match((∑i≠0 b
R
i)+ε + bR0 ,Read).

Similarly as M , the marking O can be uniquely decom-
posed into parts with increasing fractional part of the ages
of tokens, i.e., O = O−j + ⋅ ⋅ ⋅ + O−1 + O0 + O1 + ⋅ ⋅ ⋅ + Ok.
Let Ô = aptpn (O −O0) and bO0 = aptpn (O0). Thus we get
match(Ô+ε + bO0 ,Out).

Since M ′ = O +R +M rest , the sequence of the remaining
parts of the Mi is merged with the sequence O−j + ⋅ ⋅ ⋅ +O−1 +
O0 + O1 + ⋅ ⋅ ⋅ + Ok. Thus M ′ can be uniquely decomposed
into parts with increasing fractional part of the ages of tokens,
i.e., M ′ =M ′

−m′ + ⋅ ⋅ ⋅ +M ′
−1 +M ′

0 +M ′
1 + ⋅ ⋅ ⋅ +M ′

n′ . Let ci =
aptpn (M ′

i). Thus there is a strictly monotone injection f ∶
{−m, . . . , n} ↦ {−m′, . . . , n′} where f(0) = 0 s.t. cf(i) ≥
bi − bIi and c0 = b0 − bI0 + bO0 and ∑i≠0 ci = (∑i≠0 bi − bIi) + Ô.

Thus aptpn ((q,M)) = (q, b−m . . . b−1, b0, b1 . . . bn) Ð→t
(q′, c−m′ . . . c−1, c0, c1 . . . cn′) = aptpn ((q′,M ′)).

Now we show the other direction. If aptpn ((q,M)) Ð→t
aptpn ((q′,M ′)) then we have aptpn ((q′,M ′)) =
(q′, c−m′ . . . c−1, c0, c1 . . . cn′) s.t.

● bi = bIi + bRi + brest
i for −m ≤ i ≤ n

● match((∑i≠0 b
I
i)+ε + bI0, In)

● match((∑i≠0 b
R
i)+ε + bR0 ,Read)

● match(Ô+ε + bO0 ,Out)
● There is a strictly monotone injection f ∶ {−m, . . . , n} ↦

{−m′, . . . , n′} where f(0) = 0 s.t. cf(i) ≥ bi − bIi and
c0 = b0 − bI0 + bO0 and ∑i≠0 ci = (∑i≠0 bi − bIi) + Ô.

As before, each Mi can be decomposed into parts Mi =M I
i +

MR
i +M rest

i , where bIi = aptpn (M I
i), bRi = aptpn (MR

i),
and brest

i = aptpn (M rest
i). Let I = ∑iM I

i , R = ∑iMR
i ,

and M rest = ∑iM rest
i . So we have M = I + R + M rest .

Furthermore, since the interval bounds are integers, we have
match(I, In), match(R,Read) and match(O,Out). Finally,
due to the conditions on Ô and bO0 , there exists a marking
O s.t. Ô + bO0 = aptpn (O) and M ′ = O + R +M rest and

aptpn ((q′,M ′)) = (q′, c−m′ . . . c−1, c0, c1 . . . cn′). Moreover,
this O can be chosen to be in δ-form, for the following
reasons. The tokens in O whose fractional part is the same
as a fractional part in M are trivially in δ-form, because
M is in δ-form. The tokens in O whose fractional part is
between two fractional parts in M is also trivially in δ-form,
because M is in δ-form. Now consider the tokens in O whose
fractional part is larger than any fractional part in M1+⋅ ⋅ ⋅+Mn.
Let δ1 be the maximal fractional part in M1 + ⋅ ⋅ ⋅ +Mn. We
have δ1 < δ, because M is in δ-form. Therefore there is still
space for infinitely many different fractional parts in O in
the nonempty interval (δ1 ∶ δ). Finally consider the tokens
in O whose fractional part is smaller than any fractional part
in M−m + ⋅ ⋅ ⋅ +M−1. Let δ2 be the minimal fractional part
in M−m + ⋅ ⋅ ⋅ +M−1. We have δ2 > 1 − δ, because M is in δ-
form. Therefore there is still space for infinitely many different
fractional parts in O in the nonempty interval (1 − δ ∶ δ2).

Thus, since O is in δ-form, the transition (q,M) Ð→t
(q′,M ′) is in δ-form, as required.

Lemma 4 Let (q,M) be a PTPN configuration in δ-form for
some δ ≤ 1/5 and x ∈ (0 ∶ δ). There is a PTPN detailed
timed transition (q,M) xÐ→ (q,M+x) if and only if there
is a A-PTPN abstract timed transition of type 1 or 2 s.t.
aptpn((q,M)) Ð→ aptpn((q,M+x)).

Proof: Let M =M−m + ⋅ ⋅ ⋅ +M−1 +M0 +M1 + ⋅ ⋅ ⋅ +Mn

be the unique decomposition of M into increasing fractional
parts, and aptpn (M) ∶= (b−m . . . b−1, b0, b1 . . . bn), as defined
in Section IV. Let ε be the fractional part of the ages of the
tokens in M−1. Since (q,M) is in δ-form, we have 0 < 1−ε < δ.
Now there are two cases.

In the first case we have x < 1 − ε. Then the tokens in
M+x

−1 will have fractional part ε + x ∈ (1 − δ ∶ 1), and the
tokens in M+x

0 will have fractional part x ∈ (0 ∶ δ). There-
fore aptpn((q,M)) = (q, (b−m . . . b−1, b0, b1 . . . bn)) Ð→
(q, (b−m . . . b−1,∅, b0b1 . . . bn)) = aptpn((q,M+x)), by a A-
PTPN abstract timed transition of type 1, if and only if
(q,M) xÐ→ (q,M+x).

In the second case we must have x = 1 − ε and
M0 = ∅, because (q,M) xÐ→ (q,M+x) is a detailed
timed transition. In this case exactly the tokens in M−1

reach the next higher integer age, i.e., the tokens in M+x
−1

have integer age and the integer is one higher than the
integer part of the age of the tokens in M0. There-
fore aptpn((q,M)) = (q, (b−m . . . b−1,∅, b1 . . . bn)) Ð→
(q, (b−m . . . b−2, b

+
−1, b1 . . . bn)) = aptpn((q,M+x)), by a A-

PTPN abstract timed transition of type 2, if and only if
(q,M) xÐ→ (q,M+x).

Lemma 5 Let (q,M) be a PTPN configuration in δ-form for
some δ ≤ 1/5 and x ∈ (1 − δ ∶ 1). There is a PTPN timed
transition (q,M) xÐ→ (q,M+x) if and only if there is a A-
PTPN transition of either type 3 or 4 s.t. aptpn((q,M)) Ð→
aptpn((q,M+x)).

Proof: Let M =M−m + ⋅ ⋅ ⋅ +M−1 +M0 +M1 + ⋅ ⋅ ⋅ +Mn

be the unique decomposition of M into increasing fractional

parts, and aptpn (M) ∶= (b−m . . . b−1, b0, b1 . . . bn), as defined
in Section IV. Let εk be the fractional part of the ages of the
tokens in Mk for 0 ≤ k ≤ n. Since (q,M) is in δ-form, we
have 0 < εk < δ. Now there are two cases.

In the first case we have x ∈ (1 − εk+1 ∶ 1 − εk) ⊆ (1 − δ ∶ 1)
for some 0 ≤ k ≤ n. (If k = n we have x ∈ (1 − δ ∶ 1 − εn),
and if k = 0 we have x ∈ (1 − ε1 ∶ 1).) Then, in the step from
Mk+1 to M+x

k+1, the token ages in Mk+1 reach and slightly
exceed the next higher integer age, while the token ages in
M+x
k still stay slightly below the next higher integer. There-

fore aptpn((q,M)) = (q, (b−m . . . b−1, b0, b1 . . . bn)) Ð→
(q, (b+−m . . . b+−1b0 . . . bk,∅, b+k+1 . . . b

+
n)) = aptpn((q,M+x)),

by a A-PTPN abstract timed transition of type 3, if and only
if (q,M) xÐ→ (q,M+x).

The only other case is where x = 1 − εk+1 for
some k ∈ {0, . . . , n − 1}. Here exactly the tokens in
Mk+1 reach the next higher integer age. Therefore
aptpn((q,M)) = (q, (b−m . . . b−1, b0, b1 . . . bn)) Ð→
(q, (b+−m . . . b+−1b0 . . . bk, b

+
k+1, b

+
k+1 . . . b

+
n)) =

aptpn((q,M+x)), by a A-PTPN abstract timed transition of
type 4, if and only if (q,M) xÐ→ (q,M+x).

Lemma 6
1) Let c0 be a PTPN configuration where all tokens have

integer ages. For every PTPN computation π = c0 Ð→
. . . Ð→ cn in detailed form and δ-form s.t. n ∗ δ ≤ 1/5
there exists a corresponding A-PTPN computation π′ =
aptpn(c0) Ð→ . . .Ð→ aptpn(cn) s.t.

∣Cost (π)−Cost (π′) ∣ ≤ n∗δ∗(max
0≤i≤n

∣ci∣)∗(max
p∈P

Cost (p))

2) Let c′0 be a A-PTPN configuration (ε, b0, ε). For every
A-PTPN computation π′ = c′0 Ð→ . . . Ð→ c′n and every
0 < δ ≤ 1/5 there exists a PTPN computation π = c0 Ð→
. . .Ð→ cn in detailed form and δ-form s.t. c′i = aptpn(ci)
for 0 ≤ i ≤ n and

∣Cost (π)−Cost (π′) ∣ ≤ n∗δ∗(max
0≤i≤n

∣c′i∣)∗(max
p∈P

Cost (p))

Proof: For the first part let π = c0 Ð→ . . . Ð→ cn
be a PTPN computation in detailed form and δ-form s.t.
n∗δ ≤ 1/5. So every timed transition

xÐ→ has either x ∈ (0 ∶ δ)
or x ∈ (1 − δ ∶ 1). Furthermore, the fractional part of the
age of every token in any configuration ci is < i ∗ δ away
from the nearest integer, because c0 only contains tokens
with integer ages. Since i ≤ n these ages are < n ∗ δ ≤
1/5 away from the nearest integer. Moreover, π is detailed
and thus Lemmas 3, 4 and 5 apply. Thus there exists a
corresponding A-PTPN computation π′ = aptpn(c0) Ð→
. . . Ð→ aptpn(cn). By definition of the cost of A-PTPN
transitions, for every discrete transition ci Ð→ ci+1 we
have Cost (ci Ð→ ci+1) = Cost (aptpn(ci) Ð→ aptpn(ci+1)).
Moreover, for every timed transition ci

xÐ→ ci+1 we have
∣Cost (ci

xÐ→ ci+1)−Cost (aptpn(ci) Ð→ aptpn(ci+1)) ∣ ≤ δ∗
∣ci∣ ∗ (maxp∈P Cost (p)), because either x ∈ (0 ∶ δ) or

x ∈ (1 − δ ∶ 1). Therefore ∣Cost (π) − Cost (π′) ∣ ≤ n ∗ δ ∗
(max0≤i≤n ∣ci∣) ∗ (maxp∈P Cost (p)) as required.

For the second part let c0 be a PTPN configuration s.t.
(ε, b0, ε) = c′0 = aptpn(c0), i.e., all tokens in c0 have integer
ages. We now use Lemmas 3, 4 and 5 to construct the PTPN
computation π. Let δi ∶= δ∗2i−n for 0 ≤ ilen. The construction
ensures the following invariants. (1) c′i = aptpn(ci), and (2) ci
is in δi-form. Condition (1) follows directly from Lemmas 3,
4 and 5. For the base case i = 0, condition (2) holds trivially,
because all tokens in c0 have integer ages. Now we consider
the step from i to i + 1. Since ci is in δi-form, we obtain
from Lemmas 3, 4 and 5 that if the i − th transition in this
sequence is a timed transition

xÐ→ then either x ∈ (0 ∶ δi) or
x ∈ (1 − δi ∶ 1). Therefore, since ci is in δi-form, ci+1 is in
(2 ∗ δi)-form and thus in δi+1-form.

Now we consider the cost of the PTPN computa-
tion π. By definition of the cost of A-PTPN tran-
sitions, for every discrete transition ci Ð→ ci+1 we
have Cost (ci Ð→ ci+1) = Cost (aptpn(ci) Ð→ aptpn(ci+1)).
Moreover, for every timed transition ci

xÐ→ ci+1 we have
∣Cost (ci

xÐ→ ci+1) − Cost (aptpn(ci) Ð→ aptpn(ci+1)) ∣ ≤
δi ∗ ∣c′i∣ ∗ (maxp∈P Cost (p)), because either x ∈ (0 ∶ δi)
or x ∈ (1 − δi ∶ 1). Therefore ∣Cost (π) − Cost (π′) ∣ ≤
n ∗ δ ∗ (max0≤i≤n ∣c′i∣) ∗ (maxp∈P Cost (p)) as required.

Theorem 7 The infimum of the costs in a PTPN coincide
with the infimum of the costs in the corresponding A-PTPN.
inf{Cost (π) ∣Cinit

πÐ→ Cfin} =
inf{Cost (π′) ∣aptpn(Cinit)

π′Ð→ aptpn(Cfin)}
Proof: Let I ∶= inf{Cost (π) ∣Cinit

πÐ→ Cfin} and I ′ ∶=
inf{Cost (π′) ∣aptpn(Cinit)

π′Ð→ aptpn(Cfin)}.
First we show that I ′ /> I . By definition of I , for every

λ > 0 there is a computation Cinit
πλÐ→ Cfin , s.t. Cost (πλ) −

I ≤ λ. Without restriction we can assume that πλ is also
in detailed form. Let nλ ∶= ∣πλ∣ be the length of πλ and
πλ = c0 Ð→ . . . Ð→ cnλ . Let δλ ∶= min{1/(5nλ), λ/(nλ ∗
(max0≤i≤nλ ∣ci∣) ∗ (maxp∈P Cost (p)))}.

By Lemma 1 there exists a computation Cinit

π′′λÐ→ Cfin in
detailed form and δλ-form where ∣π′′λ ∣ = ∣πλ∣ and π′′λ = c′′0 Ð→
. . . Ð→ c′′nλ s.t. ∣c′′i ∣ = ∣ci∣ and Cost (π′′λ) ≤ Cost (πλ). It
follows that Cost (π′′λ) − I ≤ λ.

By Lemma 6 (1), there exists a corresponding A-PTPN
computation π′λ = aptpn(c′′0) Ð→ . . . Ð→ aptpn(c′′nλ)
s.t. ∣Cost (π′′λ) − Cost (π′λ) ∣ ≤ nλ ∗ δλ ∗ (max0≤i≤nλ ∣c′′i ∣) ∗
(maxp∈P Cost (p)) ≤ λ. Thus we obtain Cost (π′λ) − I ≤ 2λ.
Since this holds for every λ > 0 we get I ′ /> I .

Now we show that I /> I ′. By definition of I ′, for every

λ > 0 there is a A-PTPN computation Cinit

π′λÐ→ Cfin , s.t.
Cost (π′λ) − I ′ ≤ λ. Let nλ ∶= ∣π′λ∣ be the length of π′λ and
π′λ = c′0 Ð→ . . . Ð→ c′nλ . Let δλ ∶= min{1/(5nλ), λ/(nλ ∗
(max0≤i≤nλ ∣c′i∣) ∗ (maxp∈P Cost (p)))}.

By Lemma 6 (2), there exists a corresponding PTPN
computation πλ = c0 Ð→ . . . Ð→ cnλ in detailed form and
δλ-form s.t. c′i = aptpn(ci) and ∣Cost (πλ) − Cost (π′λ) ∣ ≤

nλ ∗ δλ ∗ (max0≤i≤nλ ∣c′i∣) ∗ (maxp∈P Cost (p)) ≤ λ. Thus we
obtain Cost (πλ) − I ′ ≤ 2λ. Since this holds for every λ > 0
we get I /> I ′.

By combining I ′ /> I with I /> I ′ we obtain I = I ′ as
required.

Appendix D. Proofs of Section VII

Lemma 15 ≤f , ≤c and ≤fc are decidable quasi-orders on the
set of all AC-PTPN configurations.

For every AC-PTPN configuration c, ≤f , is a well-quasi-
order on the set {c}↑ = {s ∣ c ≤f s} (i.e., here ↑ denotes the
upward-closure w.r.t. ≤f).
≤fc is a well-quasi-order on the set of all AC-PTPN

configurations.
Proof: For the decidability we note that

if β = (qβ , (b−m . . . b−1, b0, b1 . . . bn)) and
γ = (qγ , (c−m′ . . . c−1, c0, c1 . . . cn′)), then there
are only finitely many strictly monotone functions
f ∶ {−m, . . . , n} ↦ {−m′, . . . , n′} with f(0) = 0, which
need to be explored. Since addition/subtraction/inclusion on
finite multisets are computable, the result follows.

Moreover, ≤f , ≤c and ≤fc are quasi-orders in the set of
all AC-PTPN configurations. Reflexivity holds trivially, and
transitivity can easily be shown by composing the respective
functions f .

Now we show that ≤fc is a well-quasi-order on the set
of all AC-PTPN configurations. Consider an infinite sequence
β0, β1, . . . of AC-PTPN configurations. Since P ×[cmax + 1]
is finite, multiset-inclusion is a wqo on (P × [cmax + 1])⊙,
by Dickson’s Lemma [25]. Any AC-PTPN configuration
consists of 4 parts: A control-state (out of a finite do-
main), a finite sequence over (P × [cmax + 1])⊙, an ele-
ment of (P × [cmax + 1])⊙, and another finite sequence over
(P × [cmax + 1])⊙. Thus, by applying Higman’s Lemma [20]
to each part, we obtain that there must exist indices i < j s.t.
βi ≤fc βj . Thus ≤fc is a wqo.

Now we show that ≤f is a well-quasi-order on the set
{c}↑ = {s ∣ c ≤f s} for every AC-PTPN configuration c.
Consider an infinite sequence β0, β1, . . . of AC-PTPN con-
figurations where βi ∈ {c}↑ for every i. It follows that
there exists an infinite sequence of AC-PTPN configurations
α0, α1, . . . s.t. αi only contains tokens on Pf and βi =
c⊕αi for all i. Since Pf × [cmax + 1] is finite, multiset-
inclusion is a wqo on (Pf × [cmax + 1])⊙, by Dickson’s
Lemma [25]. Any AC-PTPN configuration αi consists of 4
parts: A control-state (out of a finite domain), a finite sequence
over (Pf × [cmax + 1])⊙, an element of (Pf × [cmax + 1])⊙,
and another finite sequence over (Pf × [cmax + 1])⊙. Thus,
by applying Higman’s Lemma [20] to each part, we obtain
that there must exist indices i < j s.t. αi ≤f αj . Therefore
βi = c⊕αi ≤f c⊕αj = βj , and thus ≤f is a wqo on {c}↑.
Definition 5. Petri nets with one inhibitor arc [19] are an
extension of Petri nets. They contain a special inhibitor arc
that prevents a certain transition from firing if a certain place
is nonempty.

Formally, a Petri net with an inhibitor arc is described
by a tuple N = (Q,P,T, (pi, ti)) where (pi, ti) describes a
modified firing rule for transition ti: it can fire only if pi is
empty.
● Q is a finite set of control-states
● P is a finite set of places
● T is a finite set of transitions. Every transition t ∈ T has

the form t = (q1, q2, I,O) where q1, q2 ∈ Q and I,O ∈ P⊙.
Let (q,M) ∈ Q × P⊙ be a configuration of N .

● If t ∈ T − {ti} then t = (q1, q2, I,O) ∈ T is enabled at
configuration (q,M) iff q = q1 and M ≥ I .

● If t = ti then t = (q1, q2, I,O) ∈ T is enabled at configu-
ration (q,M) iff q = q1 and M ≥ I and M(pi) = 0.

Firing t yields the new configuration (q2,M
′) where M ′ =

M − I +O.
The reachability problem for Petri nets with one inhibitor

arc is decidable [19].

Theorem 14 Consider a PTPN N = (Q,P,T,Cost) with
initial configuration Cinit = (qinit , []) and set of final states
Cfin = {(qfin ,M) ∣ M ∈ (P ×R≥0)⊙}. Then the question if
OptCost (Cinit ,Cfin) = 0 is at least as hard as the reachability
problem for Petri nets with one inhibitor arc.

Proof: Let (Q,P,T, (pi, ti)) be a Petri net with one
inhibitor arc with initial configuration (qinit , []) and final con-
figuration (qfin , []). We construct a PTPN (Q′, P ′, T ′,Cost)
with initial configuration Cinit = (qinit , []) and set of final
configurations Cfin = {(q′fin ,M) ∣ M ∈ (P ×R≥0)⊙} s.t.
(qinit , [])

∗Ð→ (qfin , []) iff inf{Cost (π) ∣Cinit
πÐ→ Cfin} = 0.

Let Q′ = Q∪{q′fin , q
1
wait , q

2
wait}. Let P ′ = P∪{p1

wait , p
2
wait}.

We define Cost(p) = 1 for every p ∈ P , Cost(p) = 0 for
p ∈ P ′ − P , and Cost(t′) = 0 for t′ ∈ T ′. In order to define
the transitions, we need a function that transforms multisets
of places into multisets over P × Intrv by annotating them
with time intervals. Let [p1, . . . , pn] ∈ P⊙ and I ∈ Intrv .
Then annotate([p1, . . . , pn],I) = [(p1,I), . . . , (pn,I)] ∈
(P × Intrv)⊙.

For every transition t ∈ T − {ti} with t = (q1, q2, I,O)
we have a transition t′ = (q1, q2, I

′,O′) ∈ T ′ where I ′ =
annotate(I∩(P − {pi)}⊙, [0 ∶ ∞))+annotate(I∩{pi}⊙, [0 ∶
0]) and O′ = annotate(O, [0 ∶ 0]). I.e., the age of the
input tokens from pi must be zero and for the other input
places the age does not matter. The transitions always output
tokens of age zero. Instead of ti = (qi1, qi2, Ii,Oi) ∈ T with
the inhibitor arc (pi, ti), we have the following transitions
in T ′: (qi1, q1

wait ,annotate(Ii, [0 ∶ ∞)), [(p1
wait , [0 ∶ 0])]) and

(q1
wait , q

i
2, [(p1

wait , (0 ∶ 1])],annotate(O, [0 ∶ 0])). This sim-
ulates ti in two steps while enforcing an arbitrarily small, but
nonzero, delay. This is because the token on place p1

wait needs
to age from age zero to an age > 0. If pi is empty then this
yields a faithful simulation of a step of the Petri net with
one inhibitor arc. Otherwise, the tokens on pi will age to a
nonzero age and can never be consumed in the future. I.e.,
a token with nonzero age on pi will always stay there and
indicate an unfaithful simulation.

To reach the set of final configurations Cfin , we add
the following two transitions: (qfin , q

2
wait , [], [(p2

wait , [0 ∶ 0])])
and (q2

wait , q
′
fin , [(p2

wait , [1 ∶ 1])], []). This enforces a delay of
exactly one time unit at the end of the computation, i.e., just
before reaching Cfin .

If (qinit , [])
∗Ð→ (qfin , []) in the Petri net with one in-

hibitor arc, then for every ε > 0 there is a computation
Cinit

πÐ→ (qfin , []) in the PTPN which faithfully simu-
lates it and has Cost (π) < ε, because the enforced delays
can be made arbitrarily small. The final step to Cfin =
{(q′fin ,M) ∣ M ∈ (P ×R≥0)⊙} takes one time unit, but costs
nothing, because there are no tokens on cost-places. Thus
OptCost (Cinit ,Cfin) = inf{Cost (π) ∣Cinit

πÐ→ Cfin} = 0.
On the other hand, if OptCost (Cinit ,Cfin) =

inf{Cost (π) ∣Cinit
πÐ→ Cfin} = 0 then the last step from qfin

to q′fin must have taken place with no tokens on places in P . In
particular, pi must have been empty. Therefore, the PTPN did
a faithful simulation of a computation (qinit , [])

∗Ð→ (qfin , [])
in the Petri net with one inhibitor arc, i.e., the transition ti was
only taken when pi was empty. Thus (qinit , [])

∗Ð→ (qfin , []).

Appendix E. Proofs of Section VIII
Theorem 17 The reachability problem for SD-TN is decidable,
and has the same complexity as the reachability problem for
Petri nets with one inhibitor arc.

Proof: We show that the reachability problem for SD-TN
is polynomial-time reducible to the reachability problem for
Petri nets with one inhibitor arc (see Def. 5), and vice-versa.

For the first direction consider an SD-TN N =
(Q,P,T,Trans), with initial configuration (q0,M0) and final
configuration (qf ,Mf). We construct a Petri net with one in-
hibitor arc N ′ = (Q′, P ′, T ′, (pi, ti)) with initial configuration
(q′0,M ′

0) and final configuration (q′f ,M ′
f) s.t. (q0,M0)

∗Ð→
(qf ,Mf) in N iff (q′0,M ′

0)
∗Ð→ (q′f ,M ′

f) in N ′.
Let S ∶= {sr ∣ (sr, tg) ∈ ST} be the set of source-

places of transfers. We add a new place pi to P ′ and modify
the transitions to obtain the invariant that for all reachable
configurations (q,M) in N ′ we have M(pi) = ∑sr∈SM(sr).
Thus for every transition t = (q1, q2, I,O) ∈ T in N we
have a transition t′ = (q1, q2, I

′,O′) ∈ T ′ in N ′ where
I ′(pi) = ∑sr∈S I(sr) and O′(pi) = ∑sr∈S O(sr). For all other
places p we have I ′(p) = I(p) and O′(p) = O(p). This suffices
to ensure the invariant, because no place in S is the target of
a transfer.

To simulate a transfer transition (q1, q2, I,O,ST) ∈ Trans ,
we add another control-state qi to Q′, another place p(q2)
to P ′ and a transition (q1, q

i, I ′,O′ + {p(q2)}) to T ′, where
I ′,O′ are derived from I,O as above. Moreover, for every pair
(sr, tg) ∈ ST we add a transition (qi, qi,{sr, pi},{tg}). This
allows to simulate the transfer by moving the tokens from the
source to the target step-by-step. The transfer is complete when
all source places are empty, i.e., when pi is empty. Finally, we
add a transition ti = (qi, q2,{p(q2)},{}) and let the inhibitor
arc be (pi, ti). I.e., we can only return to q2 when pi is empty

and the transfer is complete. We return to the correct control-
state q2 for this transition, because the last step is only enabled
if there is a token on p(q2).

So we have Q′ = Q ∪ {qi}, P ′ = P ∪ {pi} ∪ {p(q) ∣ q ∈ Q}
and T ′ is derived from T as described above. We let q′0 = q0,
q′f = qf and M ′

0(pi) = ∑p∈SM0(p), M ′
f(pi) = ∑p∈SMf(p)

and M ′
0(p) = M0(p) and M ′

f(p) = Mf(p) for all places
p ∈ P and M ′

0(p(q)) =M ′
f(p(q)) = 0. Note that, by definition

of SD-TN, source-places and target-places of transfers are
disjoint. Therefore, the condition on the inhibitor arc enforces
that all transfers are done completely (i.e., until pi is empty,
and thus all places in S are empty) and therefore the simulation
is faithful. Thus we obtain (q0,M0)

∗Ð→ (qf ,Mf) in N

iff (q′0,M ′
0)

∗Ð→ (q′f ,M ′
f) in N ′, as required. Since the

reachability problem for Petri nets with one inhibitor arc is
decidable [19], we obtain the decidability of the reachability
problem for SD-TN.

Now we show the reverse reduction. Consider a Petri net
with one inhibitor arc N = (Q,P,T, (pi, ti)) with initial
configuration (q0,M0) and final configuration (qf ,Mf). We
construct an SD-TN N ′ = (Q′, P ′, T ′,Trans) with initial
configuration (q′0,M ′

0) and final configuration (q′f ,M ′
f) s.t.

(q0,M0)
∗Ð→ (qf ,Mf) iff (q′0,M ′

0)
∗Ð→ (q′f ,M ′

f).
Let Q′ = Q, P ′ = P ∪ {px} where px is a new place, and

T ′ = T − {ti}. Let ti = (q1, q2, I,O). In N ′, instead of ti, we
have the Trans = {(q1, q2, I,O,ST)} where ST = {(pi, px)}.
Unlike in N , in N ′ the inhibited transition can fire even if pi is
nonempty. However, in this case the contents of pi are moved
to px where they stay forever. I.e., we can detect an unfaithful
simulation by the fact that px is nonempty. Let q′0 = q0,
q′f = qf , M ′

0(px) = 0, Mf(px) = 0 and M ′
0(p) = M0(p)

and M ′
f(p) = Mf(p) for all other places p. Thus we get

(q0,M0)
∗Ð→ (qf ,Mf) in N iff (q′0,M ′

0)
∗Ð→ (q′f ,M ′

f) in
N ′, as required. Therefore, the reachability problem for SD-
TN is equally hard as the reachability problem for Petri nets
with one inhibitor arc.

Corollary 24. Let N be an SD-TN and F a set of SD-TN
configurations, which is defined by a boolean combination of
finitely many constraints of the following forms.
(1) control-state = q (for some state q ∈ Q)
(2) exactly k tokens on place p (where k ∈ N)
(3) at least k tokens on place p (where k ∈ N)
Then the generalized reachability problem (q0,M0)

∗Ð→ F is
decidable.

Proof: First, the boolean formula can be transformed
into disjunctive normal form and solved separately for each
clause. Every clause is a conjunction of constraints of the
types above. This problem can then be reduced to the basic
reachability problem for a modified SD-TN N ′ and then
solved by Theorem 17. One introduces a new final control-
state q′ and adds a construction that allows the transition
from F to (q′,{}) if and only if the constraints are satisfied.
For type (2) one adds a transition that consumes exactly k
tokens from place p. For type (3) one adds a transition that

consumes exactly k tokens from place p, followed by a loop
which can consume arbitrarily many tokens from place p. We
obtain (q0,M0)

∗Ð→ F in N iff (q0,M0)
∗Ð→ (q′,{}) in N ′.

Decidability follows from Theorem 17.

Appendix F. Proofs of Section IX

Lemma 18 Given a finite set C of AC-PTPN configurations,
we can construct a configuration-automaton A s.t. L(A) =
enc (C ↑).

Proof: For every c ∈ C we construct an au-
tomaton Ac s.t. L(Ac) = enc ({c}↑). Remember that
here the upward-closure is taken w.r.t. ≤f . Let c =
((q, y), b−m . . . b−1, b0, b1 . . . bn). We have bi = [b1i , . . . , b

j(i)
i]

where bki ∈ P × [cmax + 1]. Let Σ1 = Pf × [cmax + 1],
i.e., only tokens on free-places can be added in the upward-
closure. Let L1 = (Σ+

1#)∗. Let wi = b1i . . . b
j(i)
i and L2 =

L1w−mΣ∗
1#L1w2Σ∗

1#L1 . . .w−1Σ∗
1(#L1)∗ and L3 = w−0Σ∗

1

and L4 = L1w1Σ∗
1#L1w2Σ∗

1#L1 . . .wnΣ∗
1(#L1)∗. Let Σ2 =

{(q, y) ∣ q ∈ Q,0 ≤ y ≤ v}. Then L(Ac) = Σ2L2$L3$L4 =
enc ({c}↑).

Finally, L(A) = ⋃c∈C L(Ac) = enc (C ↑).

Lemma 19 We can construct a configuration-automaton A s.t.
L(A) = enc(S), where S is the set of all configurations of a
given AC-PTPN.

Proof: Let Σ1 = {(q, y) ∣ q ∈ Q,0 ≤ y ≤ v} and
Σ2 = P × [cmax + 1]. Let L1 = Σ∗

2 and L2 = L1(#Σ+
2)∗

and L3 = L2$L1$L2. Then the language of A is Σ1L3, which
is a regular language over Σ.

Lemma 21 Given a configuration-automaton A, C as in
Lemma 16, and a finite set U ⊆ C ↑, it is decidable if there
exists some AC-PTPN configuration cinit ∈ enc−1(L(A)) s.t.
cinit →∗

A U ↑
Proof: We show the lemma for the case where U is

a singleton {cfin}. The result follows from the fact that U
is finite and that U ↑ = ∪c∈Uc↑. We will define an SD-TN
T = (QT , P T , T T ,TransT), a finite set CTinit of (initial)
configuration, and and a finite set (final) ω-configuration CTfinal

such that ∃cTinit ∈ CTinit∃cTfinal ∈ CTfinal .c
T
init

∗Ð→ cTfinal in
T iff there is a cinit ∈ enc−1(L(A)) s.t. cinit →∗

A U ↑.
The result follows then immediately from Theorem 17 (and
Corollary 24). Let cfin = ((qfin , yfin) ,Mfin) where Mfin

is of the form (b−m⋯b−1, b0, b1⋯bn) and bi is of the form
((pi1, ki1) , . . . , (pini , kini)) for i ∶ −m ≤ i ≤ n. Let the
finite-state automaton A be of the form (QA, TA, qA0 , FA)
where QA is the set of states, TA is the transition relation,
qA0 is the initial state, and FA is the set of final states. A
transition in TA is of the form (q1, a, q2) where q1, q2 ∈ QA
and a ∈ (P × [cmax + 1]) ∪ (Q × {y∣ 0 ≤ v ≤ yinit}) ∪ {#,$}.
We write q1

aÐ→ q2 to denote that (q1, a, q2) ∈ TA. During
the operation of T , we will run the automaton A “in parallel”
with N . During the course of the simulation, the automaton A
will generate the encoding of a configuration cinit . We know

that such an encoding consists of a control-state (qinit , yinit)
followed by the encoding of a marking Minit , say of the
form (c−m′⋯c−1, c0, c1⋯cn′). Notice that A may output the
encoding of any marking in its language, and therefore the
values of m′ and n′ are not a priori known.

To simplify the presentation, we introduce a number of
conventions for the description of T . First we define a set
X of variables (defined below), where each variable x ∈ X

ranges over a finite domain dom (x). A control-state q then
is mapping that assigns, to each variable x ∈ X, a value in
dom (x), i.e., q(x) ∈ dom (x). Consider, a state q, variables
x1, . . . ,xn where xi ≠ xj if i ≠ j, and values v1, . . . ,vn
where vi ∈ dom (xi) for all i ∶ 1 ≤ i ≤ n. We use
q[x1 ← v1, . . . ,xk ← vk] to denote that state q′ such that
q′(xi) = vi for all i ∶ 1 ≤ i ≤ k, and q′(x) = q(x) if
x /∈ {x1, . . . ,xk}. Furthermore, we introduce a set of transition
generators, where each transition generator θ characterizes a
(finite) set [[θ]] of transitions in T . A transition generator θ is
a tuple (PreCond (θ) ,PostCond (θ) ,In (θ) ,Out (θ)), where

● PreCond (θ) is a set {x1 = v1, . . . ,xk = vk}, where xi ∈ X
and vi ∈ dom (xi) for all i ∶ 1 ≤ i ≤ k.

● PreCond (θ) is a set {x′1 ← v′1, . . . ,x
′
` ← v′`}, where x′i ∈

X and v′i ∈ dom (x′i) for all i ∶ 1 ≤ i ≤ `.
● In (θ) ,Out (θ) ∈ (P T)⊙.

The set [[θ]] contains all transitions of the form
(q1, q2, In,Read ,Out) where

● q1(xi) = vi for all i ∶ 1 ≤ i ≤ k.
● q2 = q1[x′1 ← v′1, . . . ,x

′
` ← v′`].

● In = In (θ), and Out = Out (θ).
In the constructions we will define a set Θ of transition
generators and define T T ∶= ∪θ∈Θ[[θ]].

Below we will define the components QT , P T , T T , and
TransT in the definition of T , together with the set CTinit and
configuration cTfinal .

The set QT As mentioned above, the set QT is defined in
terms of a set X of variables. The set X contains the following
elements:

● Mode indicates the mode of the simulation. More pre-
cisely, a computation of T will consist of three phases
namely an initialization, a simulation, and a final phase.
Each phase is divided into a number of sub-phases
referred to as modes.

● A variable NState, with dom (NState) = Q, that stores
the current control-state qN .

● A variable AState, with dom (AState) = QA, that stores
the current state of A.

● A variable FState (i, j) with dom (FState (i, j)) =
{true, false}, for each i ∶ −m ≤ i ≤ n and 1 ≤ j ≤ ni. Dur-
ing the simulation phase, the systems tries to cover all the
tokens in the multisets of Mfin . Intuitively, FState (i, j)
is a flag that indicates whether the token (pi,j , ki,j) has
been covered.

● A variable CoverFlag that has one of the values on or
off. the covering of tokens in Mfin occurs only during

certain phases of the simulation. This is controlled by the
value of the variable CoverFlag.

● A variable CoverIndex with −m ≤ CoverIndex ≤ n
gives the next multiset whose tokens are to be covered.

● For each p ∈ P and k ∶ 0 ≤ k ≤ cmax + 1, we
have a variable RDebt (p, k), whose use and domain are
explained below. During the simulation, we will need
to use tokens that have still not been generated by A.
To account for these tokens, we will implement a “debt
scheme” in which tokens are used first, and then “paid
back” by tokens that are later generated by A. The
variable RDebt (p, k) keeps track of the number of tokens
(p, k) that have been used on read arcs (the debt on
tokens consumed in input operations are managed through
specific places described later.) For a place p and a
transition t, let Rmax(p, t) be the number of read arcs be-
tween p and t. Define Rmax ∶= maxp∈P,t∈T Rmax . Then,
dom (RDebt (p, k)) = {0, . . . ,Rmax}. The definition of
the domain reflects the fact the largest amount of debt
that we will generate due to tokens raveling through read
arcs is bounded by Rmax .

The set P T The set contains the following places:
● For each p ∈ P and k ∶ 0 ≤ k ≤ cmax + 1, the set
P T contains the place ZeroPlace (p, k). The number
of tokens in ZeroPlace (p, k) ∈ P T reflects (although
it may be not exactly equal to) the number of tokens in
p ∈ P whose ages have zero fractional parts.

● For each p ∈ P and k ∶ 0 ≤ k ≤ cmax +1, the set P T con-
tains the places LowPlace (p, k) and HighPlace (p, k).
These places of play the same roles as above for tokens
with ages that have low (close to 0) resp. high (close to
1) fractional parts.

● For each p ∈ P and 0 ≤ k ≤ cmax + 1, the set pT

contains the place InputDebt (p, k). The place represents
the mount of debt due to tokens (p, k) traveling through
input arcs. There is a priori no bound on the amount
of debt on such tokens. Hence, this amount is stored in
places (rather than in variables as is the case of read
tokens.)

The Set CTinit The set CTinit contains all configurations
(qTinit ,M

T
init) satisfying the following conditions:

● qTinit(Mode) = Init. The initial mode is Init

● qTinit(AState) = qA0 . The automaton A is simulated
starting from its initial state qA0 .

● qTinit(FState (i, j)) = false for all i ∶ −m ≤ i ≤ n and
1 ≤ j ≤ ni. Initially we have not covered any tokens in
Mfin .

● qTinit(RDebt (p, k)) = 0 for all p ∈ P and k ∶ 0 ≤ k ≤
cmax +1. Initially, we do not have any debts due to read
tokens.

● MT
init(p) for all places p ∈ P T . Initially, all the places of
T are empty.

Notice that the variables CoverFlag and CoverIndex are not
restricted so CoverFlag may be on or off and CoverIndex

may have any value −m ≤ CoverIndex ≤ n. Although NState

is not restricted either, its value will be defined in the first step
of the simulation (see below.)

Next, we explain how T works. In doing that, we also
introduce all the members of the set T T .

Initialization In the initialization phase the SD-TN T reads
the initial control-state and then fills in the places according to
Minit . From the definition of the encoding of a configuration,
we know that the automaton A outputs a pair (q, y) in its
first transition. The first move of T is to store this pair in its

control-state. Thus, for each transition q1
(q,y)Ð→ q2 in A where

q ∈ Q and 1 ≤ y ≤ yinit , the set Θ contains θ where:
● PreCond (θ) = {Mode = Init,AState = q1}.
● PostCond (θ) = {Mode = InitLow,NState← (q, y) ,

AState← q2}.
● In (θ) = ∅.
● Out (θ) = {LowPlace (p, k)}.

In other words, once T has input the initial control-state, it
enters a new mode InitLow. In mode InitLow, we read
the multisets c1⋯cm that represent tokens with low fractional
parts. The system starts running A one step at a time, gen-
erating the elements of cm (that are provided by A.) When
it has finished generating all the tokens in cm, it moves to
the next multiset, generating the multisets one by one in the
reverse order finessing with c1. We distinguish between two
types of such tokens depending on how they will be used in the
construction. More precisely, such a token is either consumed
when firing transitions during the simulation phase or used for
covering the multisets in Mfin . A token (of the form (p, k)),
used for consumption, is put in a place LowPlace (p, k).
Recall that the relation Ð→A in N is insensitive to the order
of the fractional parts that are small (fractional parts of the
tokens in c1, . . . , cn′ .) Therefore, tokens in c1, . . . , cn′ , that
have identical places p and identical integer parts k will all
be put in the same place LowPlace (p, k). Formally, for each

transition q1
(p,k)Ð→ q2 in A, the set Θ contains θ where:

● PreCond (θ) = {Mode = InitLow,AState = q1}.
● PostCond (θ) = {AState← q2}.
● In (θ) = ∅.
● Out (θ) = {LowPlace (p, k)}.

Each time a new multiset cj is read from A, the system
decides whether it may be (partially) used for covering the
next multiset bi in Mfin . This decision is made by checking the
value of the component CoverFlag. if CoverFlag = off then
the tokens are only used for consumption during the simulation
phase. However, if CoverFlag = on then the tokens generated
by A can also be used to cover those in Mfin . The multiset
currently covered is given by the value of the component
CoverIndex. More precisely, if CoverIndex = i for some
i ∶ 1 ≤ i ≤ n then (part of) the multiset cj that is currently being
generated by A (j ∶ 1 ≤ j ≤ n′) may be used to cover (part
of) the multiset bi. At this stage, we only cover tokens with
low fractional parts (those in the multisets b1, . . . , bn.) When
using tokens for covering, the order on the fractional parts of

tokens is relevant. The construction takes into consideration
different aspects of this order as follows:

● According to the definition of the ordering ≤f , the tokens
in a given multiset cj may only be used to cover those
in one and the same multiset (say bi.) This also agrees
with the observation that the tokens represented in cj
correspond to tokens in the original TPN that have
identical fractional parts (the same applies to bi.) In fact,
if this was not case, then we would be using tokens
with identical fractional parts (in cj) to cover tokens with
different fractional parts. Analogously, the multiset bi can
be covered only by the elements of one multiset cj .

● If i′ < i then the fractional parts of the tokens represented
by bi′ are smaller than those represented by bi. The same
applies to cj′ and cj if j′ < j. Therefore, if cj is used to
cover bi and j′ < j then cj′ should be used to cover bi′ for
some i′ < i. Furthermore, a multiset cj is not necessarily
used to cover any multiset, i.e., all the tokens represented
by cj may be used for consumption during the simulation
(none of them being used for covering.) Similarly, it can
be the case that a given bi is not covered by any multiset
cj (all its tokens are covered by tokens that are generated
during the simulation.) Also, a multiset cj may only be
partially used to cover bi, i.e., some of its tokens may be
used for covering bi while some are consumed during the
simulation. Finally, bi may only be partially covered by
cj , i.e., some of its tokens are covered by cj while the
rest of tokens are covered by tokens generated during the
simulation.

Formally, for each q1
(p,k)Ð→ q2 in A, 1 ≤ i ≤ n, 1 ≤ j ≤ ni with

(pi,j , ki,j) = (p, k), we add θ to Θ, where: where:
● PreCond (θ) = {Mode = InitLow,AState = q1,
CoverFlag = on,CoverIndex = i}.

● PostCond (θ) = {AState← q2,FState (i, j) ← true}.
● In (θ) = ∅.
● Out (θ) = ∅.

The transition sets the flag FState (i, j) to true indicating

that the token has now been covered. A transition q1
#Ð→ q2

in A indicates that we have finished generating the elements
of the current multiset bj . If CoverFlag = on then we have
also finished covering tokens in the multiset bi. Therefore,
we decide the next multiset i′ < i in which which to cover
tokens. Recall that not all multisets have to be covered and
hence i′ need not be equal to i − 1 (in fact the multisets bi′′
for i′ < i′′ < i will not be covered by the multisets in Minit .)
We also decide whether to use binit

j−1 to cover bi′ or not. In the
former case, we set CoverFlag to on, while in the latter case
we set CoverFlag equal to off. Also, if CoverFlag = off

then we decide whether to use cj−1 for covering bi or not. We
cover these four possibilities by adding the following transition
generators to Θ.

(i) For each transition q1
#Ð→ q2 in A, i ∶ 1 ≤ i ≤ n, and

i′ ∶ −m ≤ i′ < i, we add θ where:
● PreCond (θ) = {Mode = InitLow,AState = q1,
CoverFlag = true,CoverIndex = i}.

● PostCond (θ) = {AState ← q2, CoverFlag ←
off,CoverIndex← i′}.

● In (θ) = ∅.
● Out (θ) = ∅.

This is the case where CoverFlag is on and continues to be
on. Notice that no covering takes place if CoverIndex ≤ 0,
and that the new value of CoverIndex is made strictly smaller
than the current one.

(ii) For each transition q1
#Ð→ q2 in A, and each i, i′ ∶ 1 ≤

i′ < i ≤ n, we add θ where:
● PreCond (θ) = {Mode = InitLow,AState = q1,
CoverFlag = true,CoverIndex = i}.

● PostCond (θ) = {AState← q2,CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.

This is the case where CoverFlag is on but it is turned off

for the next step.
(iii) For each transition q1

#Ð→ q2 in A, we add θ where:
● PreCond (θ) = {Mode = InitLow,AState = q1,
CoverFlag = off}.

● PostCond (θ) = {AState← q2}.
● In (θ) = ∅.
● Out (θ) = ∅.

This is the case where CoverFlag is off and continues to be
off.

(iv) For each transition q1
#Ð→ q2 in A, we add θ where:

● PreCond (θ) = {Mode = InitLow,AState = q1,
CoverFlag = off}.

● PostCond (θ) = {AState← q2,CoverFlag← on}.
● In (θ) = ∅.
● Out (θ) = ∅.

This is the case where CoverFlag is off but it is turned on

for the next step.
The process of generating tokens with low fractional parts

continues until we encounter a transition of the form q1
$Ð→ q2

in A. According to the encoding of markings, this indicates
that we have finished generating the elements of the multisets
c1, . . . , cn. Therefore, we change mode from InitLow to
InitZero (where we scan the multiset b0.) We have also to
consider changing the variables CoverFlag an CoverIndex

in the same way as above. Therefore, we add the following
transition generators:

(i) For each transition q1
$Ð→ q2 in A, i ∶ 1 ≤ i ≤ n, and

i′ ∶ −m ≤ i′ < i, we add θ where:
● PreCond (θ) = {Mode = InitLow,AState = q1,
CoverFlag = true,CoverIndex = i}.

● PostCond (θ) = {Mode ← InitZero,AState ← q2,
CoverFlag← off,CoverIndex← i′}.

● In (θ) = ∅.
● Out (θ) = ∅.

(ii) For each transition q1
$Ð→ q2 in A, i ∶ 1 ≤ i ≤ n, and

i′ ∶ −m ≤ i′ < i, we add θ where:
● PreCond (θ) = {Mode = InitLow,AState = q1,
CoverFlag = true,CoverIndex = i}.

● PostCond (θ) = {Mode ← InitZero,AState ← q2,
CoverFlag = on,CoverIndex = i′}.

● In (θ) = ∅.
● Out (θ) = ∅.

(iii) For each transition q1
$Ð→ q2 in A, we add θ where:

● PreCond (θ) = {Mode = InitLow,AState = q1,
CoverFlag = off}.

● PostCond (θ) = {Mode← InitZero,AState← q2}.
● In (θ) = ∅.
● Out (θ) = ∅.

(iv) For each transition q1
$Ð→ q2 in A, we add θ where:

● PreCond (θ) = {Mode = InitLow,AState = q1,
CoverFlag = off}.

● PostCond (θ) = {Mode ← InitZero,AState ← q2,
CoverFlag = on}.

● In (θ) = ∅.
● Out (θ) = ∅.
In InitZero the places are filled according to c0. The

construction is similar to the previous mode. The only dif-
ferences are that the tokens to be consumed will be put in
places ZeroPlace (p, k) and that no tokens are covered in
Mfin .

For each transition q1
(p,k)Ð→ q2 in A, the set Θ contains θ

where:
● PreCond (θ) = {Mode = InitZero,AState = q1}.
● PostCond (θ) = {AState← q2}.
● In (θ) = ∅.
● Out (θ) = {ZeroPlace (p, k)}.

Since the tokens are not used at this stage for covering the
multisets of Mfin , no transition generators are added for that
purpose. Also, in contrast to tokens belonging to c0, . . . , cn′

we cannot generate tokens belonging to c−m′ , . . . , c−1 during
the initialization phase. The reason is that, in the former case,
we only need to keep track of the order of multisets whose
tokens are used for covering (the ordering of the fractional
parts in tokens used for consumption is not relevant.) Since
the number n is given a priori in the construction (the marking
Mfin is a parameter of the problem), we need only to keep
track of tokens belonging to at most n different multisets. This
does not hold in the case of the latter tokens, since the order
of the multisets to which the tokens belong is relevant also
in the case of tokens that will be consumed. Since m′ is not
a priori bounded, we postpone the generation of these tokens
to the simulation phase, where we generate these tokens from
A “on demand”: each time we perform a timed transition, we
allow the HighPlace (p, k) tokens with the highest fractional
part to be generated. This construction is made more precise
in the description of the simulation phase.

The mode InitZero is concluded when we the next
transition of A is labeled with $. This means that we have
finished inputting the last multiset b0. We now move on to the
simulation phase.

For each transition of the form q1
$Ð→ q2 in A, we add θ

to Θ where:

● PreCond (θ) = {Mode = InitZero,AState = q1}.
● PostCond (θ) = {Mode← Sim,AState← q2}.
● In (θ) = ∅.
● Out (θ) = ∅.

Simulation The simulation phase consists of simulating a
sequence of transitions each of which is either discrete, of type
1, or of type 2. Each type 2 transition is preceded by at least
one type 1 transition. Therefore, from Sim we next perform a
discrete or a type 1 transition. The (non-deterministic) choice
is made using the transition generators θ1 and θ2 where:

● PreCond (θ1) = {Mode = Sim}.
● PostCond (θ1) = {Mode← Disc}.
● In (θ1) = ∅.
● Out (θ1) = ∅.
● PreCond (θ2) = {Mode = Sim}.
● PostCond (θ2) = {Mode← Type1.1}.
● In (θ2) = ∅.
● Out (θ2) = ∅.

Discrete Transitions A discrete transition t =
(q1, q2, In,Read ,Out) in N is simulated by a set of
transitions in T . In defining this set, we take into consideration
several aspects of the simulation procedure as follows:

● Basically, an interval I on an arc leading from an
input place p ∈ In to t induces a set of transitions
in T T ; namely transitions where there are arcs from
places ZeroPlace (p, k) with k ∈ I, and from places
LowPlace (p, k) and HighPlace (p, k) with (k + ε) ∈ I
for some ε ∶ 0 < ε < 1. An analogous construction is made
for output and read places of t. Since a read arc does not
remove the token from the place, there is both an input
arc and output arc to the corresponding transition in T .

● We recall that the tokens belonging to c−m′ , . . . , c−1 are
not generated during the initial phase, and that these
tokens are gradually introduced during the simulation
phase. Therefore, a transition may need to be fired
before the required HighPlace (p, k)-tokens have been
produced by A. Such tokens are needed for performing
both input and read operations. In order to cover for
tokens that are needed for input arcs, we use the set of
places InputDebt (p, k) for p ∈ P and 0 ≤ k ≤ cmax + 1.
Then, consuming a token from a place HighPlace (p, k)
may be replaced by putting a token in InputDebt (p, k).
The “debt” can be paid back using tokens that are later
generated by A. When T terminates, we require all the
debt places to be empty (all the debt have been paid
back.) Also, we need an analogous (but different) scheme
for the read arcs. The difference is due to the fact that
the same token may be read several times (without being
consumed.) Hence, once the debt has been introduced
by the first read operation, it will not be increased by
the subsequent read operations. Furthermore, several read
operations may be covered by a (single) input operation
(a token in a place may be read several times before
it is finally consumed through an input operations.) To

implement this, we use the variables RDebt (p, k). Each
time a number r of tokens (p, k) are “borrowed” for
a read operation, we increase the value of RDebt (p, k)
to r (unless it already has a higher value.) Furthermore,
each debt taken on a token (p, k) in an input operation
subsumes a debt performed on the same token (p, k) in
a read operation. Therefore, the value of an old read debt
is decreased by the amount of the input debt taken during
the current transition. In a similar manner to input debts,
the read debt is later paid back. When T terminates, we
require all RDebt (p, k) variables to be equal to 0 (all the
read debts have been paid back.)

● The transition also changes the control-state of N .

To formally define the set of transitions in T induced by
discrete transitions, we use a number of definitions. We define
x

.− y ∶= max(y − x,0). For k ∈ N and an interval I, we
write k ⊫ I to denote that (k + ε) ∈ I for some (equivalently
all) ε ∶ 0 < ε < 1. During the simulation phase, there are
two mechanisms for simulating the effect of a token traveling
through (input, read, or output) arc in N , namely, (i) by
letting a token travel from (or to) a corresponding place;
and (ii) by “taking debt”. Therefore, we define a number of
“transformers” that translate tokens in N to corresponding
ones in T as follows:

● ZeroPlaceTransf (p,I) ∶=
{ZeroPlace (p, k) ∣ (0 ≤ k ≤ cmax + 1) ∧ (k ∈ I)}.
The N -token is simulated by a T -token in a place that
represent tokens with zero fractional parts.

● LowPlaceTransf (p,I) ∶=
{LowPlace (p, k) ∣ (0 ≤ k ≤ cmax + 1) ∧ (k ⊫ I)}.
The N -token is simulated by a T -token in a place that
represent tokens with low fractional parts. Notice that
we use the relation ⊫ since the fractional part of the
token is not zero.

● HighPlaceTransf (p,I) ∶=
{HighPlace (p, k) ∣ (0 ≤ k ≤ cmax + 1) ∧ (k ⊫ I)}.
The N -token is simulated by a T -token in a place that
represent tokens with high fractional parts.

● InputDebtTransf (p,I) ∶=
{InputDebt (p, k) ∣ (0 ≤ k ≤ cmax + 1) ∧ (k ⊫ I)}.
The N -token is simulated by taking debt on an input
token.

● ReadDebtTransf (p,I) ∶=
{ReadDebt (p, k) ∣ (0 ≤ k ≤ cmax + 1) ∧ (k ⊫ I)}.
The N -token is simulated by taking debt on a read
token.

We extend the transformers to multisets, so for a multiset b =
[(p1,I1) , . . . , (p`,I`)], we define ZeroPlaceTransf (b) ∶=
{[(p1, k1) , . . . , (p`, k`)]∣ ∀i ∶ 1 ≤ i ≤ ` ∶ (pi, ki) ∈
ZeroPlaceTransf (pi,Ii)}. We extend the other definition to
multisets analogously.

An RDebt-mapping α is a function that maps each
RDebt (p, k) to a value in {0, . . . ,Rmax}. In other words,
the function describes the state of the debt on read tokens.

Now, we are ready to define the transitions in T that are

induced by discrete transitions in N . Each such a transition is
induced by a number of objects, namely:

● A transition t = (q1, q2, In,Read ,Out) ∈ T . This is the
transition in N that is to be simulated in T .

● The current remaining cost y ∶ Cost (t) ≤ y ≤ yinit . The
remaining cost has to be at least as large as the cost of
the transition to be fired.

● An RDebt-mapping α describing the current debt on read
tokens.

● Multisets InZero , InLow , InHigh , InDebt where In =
InZero + InLow + InHigh + InDebt . Intuitively, the tokens
traveling through arcs of t are covered by fours types of
tokens:

– InZero : N -tokens that will be transformed into T -
tokens in places encoding ages with zero fractions
parts.

– InLow : N -tokens that will be transformed into T -
tokens in places encoding ages with low fractions
parts.

– InHigh : N -tokens that will be transformed into T -
tokens in places encoding ages with high fractions
parts.

– InDebt : N -tokens that will be covered by taking
debt.

● Multisets ReadZero ,ReadLow ,ReadHigh ,ReadDebt

where Read = ReadZero + ReadLow + ReadHigh +
ReadDebt . The roles of these multisets are similar to
above.

● Multisets OutZero ,OutLow ,OutHigh where Out =
OutZero +OutLow +OutHigh +OutDebt . The roles of the
multisets OutZero ,OutLow ,OutHigh are similar to their
counter-parts above.

For each such a collection of objects (i.e., for each
t, 0 ≤ y ≤ yinit , α, InZero , InLow , InHigh , InDebt ,
ReadZero ,ReadLow ,ReadHigh ,ReadDebt ,
OutZero ,OutLow ,OutHigh), we add the transition generator
θ where:

● PreCond (θ) = {Mode = Disc,NState = (q1, y)}∪α, i.e.,
the current mode is Disc, the current state ofN is (q1, y),
and the current debt on read tokens is given by α.

● PostCond (θ) =
{Mode← Sim,NState← (q2, y −Cost (t))}∪
{RDebt (p, k) ←max(α .− InDebt ′ ,ReadDebt ′)(p, k)∣
(p ∈ P) ∧ (0 ≤ k ≤ cmax + 1)}, where

– InDebt ′ = InputDebtTransf (InDebt).
– ReadDebt ′ = ReadDebtTransf (ReadDebt).

In other words, we change the mode back to Sim, and
change the control-state of N to (q2, y −Cost (t)). The
new read debts are defined as follows: We reduce the
current debt α using the new debt on input tokens InDebt ′ ,
then we update the amount again using the new debt
ReadDebt ′ .

● In (θ) = InZero′ + InLow ′ + InHigh ′ + ReadZero′ +
ReadLow ′ +ReadHigh ′ , where

– InZero′ = ZeroPlaceTransf (InZero).
– InLow ′ = LowPlaceTransf (InLow).
– InHigh ′ = HighPlaceTransf (InHigh).
– ReadZero′ = ZeroPlaceTransf (ReadZero).
– ReadLow ′ = LowPlaceTransf (ReadLow).
– ReadHigh ′ = HighPlaceTransf (ReadHigh).

The multisets InZero , InLow , InHigh represent tokens that
will consumed due to input arcs. These tokens are dis-
tributed among places according to whether their frac-
tional parts are zero, low, or high. A similar reasoning
holds for the multisets ReadZero ,ReadLow ,ReadHigh .

● Out (θ) = OutZero′ + OutLow ′ + OutHigh ′ + OutDebt ′ +
ReadZero′ +ReadLow ′ +ReadHigh ′ , where

– OutZero′ = ZeroPlaceTransf (OutZero).
– OutLow ′ = LowPlaceTransf (OutLow).
– OutHigh ′ = HighPlaceTransf (OutHigh).
– OutDebt ′ = HighPlaceTransf (InDebt).
– ReadZero′ = ZeroPlaceTransf (ReadZero).
– ReadLow ′ = LowPlaceTransf (ReadLow).
– ReadHigh ′ = HighPlaceTransf (ReadHigh).

The read multisets are defined in the previous item.
The multisets OutZero ,OutLow ,OutHigh play the same
roles as their input and read counterparts. The multiset
OutDebt ′ represents the increase in the debt on read
tokens.

Transitions of Type 1 The simulation of a type 1 transition
is started when the mode is Type1.1. We recall that a type
1 transition encodes that time passes so that all tokens of
integer age in b0 will now have a positive fractional part, but
no tokens reach an integer age. This phase is performed in two
steps. First, in Type1.1 (that is repeated an arbitrary number of
times), some of these tokens are used for covering the multisets
of Mfin in a similar manner to the previous phases. In the
second step we change mode to Type1.2, at the same time
switching on or off the component CoverFlag in a similar
manner to the initialization phase. In Type1.2, the (only set)
transfer transitions encodes the effect of passing time. More
precisely all tokens in a place ZeroPlace (p, k) will be moved
to the place LowPlace (p, k), for k ∶ 1 ≤ k ≤ cmax + 1. From
Type1.2 the mode will be changed to Type2.1.

To describe Type1.1 formally we add, for each i ∶ 1 ≤ i ≤ n,
j ∶ 1 ≤ j ≤ ni, p ∈ P , k ∶ 0 ≤ k ≤ cmax + 1 with (p, k) =
(pi,j , ki,j), a transition generator θ where:

● PreCond (θ) = {Mode = Type1.1,CoverFlag =
true,CoverIndex = i}.

● PostCond (θ) = {FState (i, j) ← true}.
● In (θ) = {ZeroPlace (p, k)}.
● Out (θ) = ∅.

On switching to Type1.2, we change the variables
CoverFlag and CoverIndex in a similar manner to the
previous phases. Therefore, we add the following transition
generators:

(i) For each i ∶ 1 ≤ i ≤ n, and i′ ∶ −m ≤ i′ < i, we add θ
where:

● PreCond (θ) = {Mode = Type1.1, CoverFlag =
true,CoverIndex = i}.

● PostCond (θ) = {Mode ← Type1.2 CoverFlag =
off,CoverIndex = i′}.

● In (θ) = ∅.
● Out (θ) = ∅.
(ii) For each i ∶ 1 ≤ i ≤ n, and i′ ∶ −m ≤ i′ < i, we add θ

where
● PreCond (θ) = {Mode = Type1.1, CoverFlag =
true,CoverIndex = i}.

● PostCond (θ) = {Mode← Type1.2, CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.
(iii) We add θ where:
● PreCond (θ) = {Mode = Type1.1, CoverFlag = off}.
● PostCond (θ) = {Mode← Type1.2}.
● In (θ) = ∅.
● Out (θ) = ∅.
(iv) We add θ where:
● PreCond (θ) = {Mode = Type1.1, CoverFlag = off}.
● PostCond (θ) = {Mode← Type1.2, CoverFlag← on}.
● In (θ) = ∅.
● Out (θ) = ∅.
The set of transfer transitions is defined by the transfer

transition generator θ
● PreCond (θ) = {Mode = Type1.2}.
● PostCond (θ) = {Mode← Type2.1}.
● In (θ) = ∅.
● Out (θ) = ∅.
● ST (θ) = {(ZeroPlace (p, k) ,LowPlace (p, k)) ∣

(p ∈ P) ∧ (0 ≤ k ≤ cmax + 1)}.

Transitions of Type 2 Recall that transitions of type 2
encode what happens to tokens with the largest fractional
parts when an amount of time passes sufficient for making
these ages equal to the next integer (but not larger.) There
are two sources of such tokens. The generation of tokens
according to these two sources divides the phase into two
steps. The first source are tokens that are currently in places
of the form HighPlace (p, k). In Type2.1, (some of) these
tokens reach the next integer, and are therefore moved to
the corresponding places encoding tokens with zero fractional
parts. As mentioned above, only some (but not all) of these
tokens reach the next integer. The reason is that they are
generated during the computation (not by A), and hence they
have arbitrary fractional parts.

The second source are tokens that are provided by the
automaton A (recall that these tokens are not generated during
the initialization phase.) In Type2.2, we run the automaton
A one step at a time. At each step we generate the next

token by taking a transition q1
(p,k)Ð→ q2. In fact, such a token

(p, k) is used in two ways: either it moves to the place
ZeroPlace (p, k), or it is used to pay the debt we have taken

on tokens. The debt is paid back either (i) by removing a token
from InputDebt (p, k); or (ii) by decrementing the value of

the variable RDebt (p, k). A transition q1
#Ð→ q2 means that

we have read the last element of the current multiset. This
finishes simulating the transitions of type 1 and 2 and the
mode is moved back to Sim starting another iteration of the
simulation phase.

Formally, we describe the movement of tokens in Type2.1
by adding, for each p ∈ P and k ∶ 0 ≤ k ≤ cmax+1, a transition
generator θ where:

● PreCond (θ) = {Mode = Type2.1}.
● PostCond (θ) = ∅.
● In (θ) = {HighPlace (p, k)}.
● Out (θ) = {ZeroPlace (p,max(k + 1, cmax + 1))}.

At any time, we can change mode from Type2.1 to Type2.2:
● PreCond (θ) = {Mode = Type2.1}.
● PostCond (θ) = {Mode = Type2.2}.
● In (θ) = ∅.
● Out (θ) = ∅.

We can also move back from Type2.1 to Sim without letting
the automaton generate any tokens:

● PreCond (θ) = {Mode = Type2.1}.
● PostCond (θ) = {Mode = Sim}.
● In (θ) = ∅.
● Out (θ) = ∅.

We simulate Type2.2 as follows. To describe the movement of
tokens places representing tokens with zero fractional parts we

add, for each transition q1
(p,k)Ð→ q2 in A, a transition generator

θ where:
● PreCond (θ) = {Mode = Type2.2,AState = q1}.
● PostCond (θ) = {AState← q2}.
● In (θ) = ∅.
● Out (θ) = {ZeroPlace (p, k)}.

To describe the payment of debts on input tokens we add, for

each transition q1
(p,k)Ð→ q2 in A, a transition generator θ where:

● PreCond (θ) = {Mode = Type2.2,AState = q1}.
● PostCond (θ) = {AState← q2}.
● In (θ) = {InputDebt (p, k)}.
● Out (θ) = ∅.

To describe the payment of debts on read tokens we add, for

each transition q1
(p,k)Ð→ q2 in A, and r ∶ 1 ≤ r ≤ Rmax , a

transition generator θ where:
● PreCond (θ) = {Mode = Type2.2,AState = q1,

RDebt (p, k) = r}.
● PostCond (θ) = {AState← q2,RDebt (p, k) ← r − 1}.
● In (θ) = ∅.
● Out (θ) = ∅.

As usual, transition q1
#Ð→ q2 in A indicates means that

we have read the last element of the current multiset. We
can now move back to the mode Sim, changing the variables
CoverFlag an CoverIndex in a similar manner to the previ-
ous phases.

(i) For each transition of the form q1
#Ð→ q2 in A , i ∶ 1 ≤

i ≤ n, and i′ ∶ −m ≤ i′ < i, we add θ where:
● PreCond (θ) = {Mode = Type2.2,AState = q1,
CoverFlag = true,CoverIndex = i}.

● PostCond (θ) = {Mode ← Sim,AState ← q2,
CoverFlag← off,CoverIndex← i′}.

● In (θ) = ∅.
● Out (θ) = ∅.

(ii) For each transition q1
#Ð→ q2 in A, i ∶ 1 ≤ i ≤ n, and

i′ ∶ −m ≤ i′ < i, we add θ where:
● PreCond (θ) = {Mode = Type2.2,AState = q1,
CoverFlag = true,CoverIndex = i}.

● PostCond (θ) = {Mode ← Sim,AState ← q2,
CoverFlag = on,CoverIndex = i′}.

● In (θ) = ∅.
● Out (θ) = ∅.

(iii) For each transition q1
#Ð→ q2 in A, we add θ where:

● PreCond (θ) = {Mode = Type2.2,AState = q1,
CoverFlag = off}.

● PostCond (θ) = {Mode← Sim,AState← q2}.
● In (θ) = ∅.
● Out (θ) = ∅.

(iv) For each transition q1
#Ð→ q2 in A, we add θ where:

● PreCond (θ) = {Mode = Type2.2,AState = q1,
CoverFlag = off}.

● PostCond (θ) = {Mode ← Sim,AState ← q2,
CoverFlag = on}.

● In (θ) = ∅.
● Out (θ) = ∅.

The Final Phase From the simulation mode we can at any
time enter the final mode.

● PreCond (θ) = {Mode = Sim}.
● PostCond (θ) = {Mode← Final1}.
● In (θ) = ∅.
● Out (θ) = ∅.

The main tasks of the final phase are (i) to cover the multisets
in Mfin ; and (ii) to continue paying back the debt tokens
(recall that the debt was partially paid back in the simulation
of type 2 transitions.) At the end of the final phase, we expect
all tokens in Mfin to have been covered and all debt to have
been paid back. The final phase consists of two modes. In
Final1 we cover the multisets in Mfin using the tokens that
have already been generated. In Final2, we resume running
A one step at a time. The tokens generated from A are used
both (i) for paying back debt; and (ii) for covering the multisets
b−1, . . . , b−m (in that order.)

Formally, we add the following transition generators. First,
we continue covering the multisets b1, . . . , bn. For each p ∈ P ,
1 ≤ i ≤ n, and 1 ≤ j ≤ ni with (pi,j , ki,j) = (p, k), we add θ
where:

● PreCond (θ) = {Mode = Final1}.
● PostCond (θ) = {FState (i, j) ← true}.
● In (θ) = LowPlace (p, t).

● Out (θ) = ∅.
We cover the multiset b0 by moving tokens from places of the
form ZeroPlace (p, k). For each p ∈ P and 1 ≤ j ≤ n0 with
(p0,j , k0,j) = (p, k), we add θ where:

● PreCond (θ) = {Mode = Final1}.
● PostCond (θ) = {FState (0, j) ← true}.
● In (θ) = ZeroPlace (p, t).
● Out (θ) = ∅.

We also cover the multisets b−1, . . . , b−m by moving tokens
from places of the form HighPlace (p, k). For each p ∈ P ,
−m ≤ i ≤ −1, 1 ≤ j ≤ ni with (pi,j , ki,j) = (p, k), we add θ
where:

● PreCond (θ) = {Mode = Final1}.
● PostCond (θ) = {FState (i, j) ← true}.
● In (θ) = HighPlace (p, t).
● Out (θ) = ∅.

We can change mode to Final2

● PreCond (θ) = {Mode = Final1}.
● PostCond (θ) = {Mode← Final2}.
● In (θ) = ∅.
● Out (θ) = ∅.
In Final2, we start running A. The tokens can be used for

paying input debts. For each transition q1
(p,k)Ð→ q2 in A, we

add θ where:
● PreCond (θ) = {Mode = Final2,AState = q1}.
● PostCond (θ) = {AState← q2}.
● In (θ) = {InputDebt (p, k)}.
● Out (θ) = ∅.

The tokens can also be used for paying read debts. For each

transition q1
(p,k)Ð→ q2 in A, and k ∶ 1 ≤ r ≤ Rmax , we add θ

where:
● PreCond (θ) = {Mode = Final2,AState = q1,

RDebt (p, k) = r}.
● PostCond (θ) = {AState← q2,RDebt (p, k) ← r − 1}.
● In (θ) = ∅.
● Out (θ) = ∅.

Finally, the tokens can be used for covering. For each transition

q1
(p,k)Ð→ q2 in A, i ∶ −m ≤ i ≤ −1, j ∶ 1 ≤ j ≤ ni, p ∈ P ,

k ∶ 0 ≤ k ≤ cmax + 1 with (p, k) = (pi,j , ki,j), we have θ
where:

● PreCond (θ) = {Mode = Final2,CoverFlag =
true,CoverIndex = i}.

● PostCond (θ) = {FState (i, j) ← true}.
● In (θ) = ∅.
● Out (θ) = ∅.

A transition q1
#Ð→ q2 in A indicates means that we have read

the last element of the current multiset. We now let A generate
the next multiset. We change the variables CoverFlag an
CoverIndex in a similar manner to the previous phases.

(i) For each transition of the form q1
#Ð→ q2 in A , i ∶ −m ≤

i ≤ −1, and i′ ∶ −m ≤ i′ < i, we add θ where:
● PreCond (θ) = {Mode = Final2,AState = q1,
CoverFlag = true,CoverIndex = i}.

● PostCond (θ) = {AState ← q2, CoverFlag ←
off,CoverIndex← i′}.

● In (θ) = ∅.
● Out (θ) = ∅.

(ii) For each transition q1
#Ð→ q2 in A, i ∶ 1 ≤ i ≤ n, and

i′ ∶ −m ≤ i′ < i, we add θ where:
● PreCond (θ) = {Mode = Final2,AState = q1,
CoverFlag = true,CoverIndex = i}.

● PostCond (θ) = {AState← q2,CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.

(iii) For each transition q1
$Ð→ q2 in A, we add θ where:

● PreCond (θ) = {Mode = Final2,AState = q1,
CoverFlag = off}.

● PostCond (θ) = {AState← q2}.
● In (θ) = ∅.
● Out (θ) = ∅.

(iv) For each transition q1
$Ð→ q2 in A, we add θ where:

● PreCond (θ) = {Mode = Final2,AState = q1,
CoverFlag = off}.

● PostCond (θ) = {AState← q2,CoverFlag← on}.
● In (θ) = ∅.
● Out (θ) = ∅.

The Set CTfinal The set CTfinal contains all configurations
(qTfin ,M

T
fin) satisfying the following conditions:

● qTfin(NState) = qfin . The AC-PTPN is in its final control-
state.

● qTfin(FState (i, j)) = true for all i ∶ −m ≤ i ≤ n and
1 ≤ j ≤ ni. We have covered all tokens in Mfin .

● qTfin(RDebt (p, k)) = 0 for all p ∈ P and k ∶ 0 ≤ k ≤
cmax + 1. We have paid back all debts on read tokens.

● Mfin(InputDebt (p, k)) = 0
for all p ∈ P and 0 ≤ k ≤ cmax + 1. We have paid back
all debts on input tokens.

We give an example of a concrete computation that give
rise to the above abstract computation.

