Performance Guarantees for Distributed Reachability Queries

Wenfei Fan\(^1\), Xin Wang\(^1\), Yinhui Wu\(^1,3\)
\(^1\)University of Edinburgh \(\quad \)\(^2\)Harbin Institute of Technology \(\quad \)\(^3\)UC Santa Barbara
\{wenfei@inf, x.wang-36@sms, y.wu-18@sms\}.ed.ac.uk

ABSTRACT

In the real world a graph is often fragmented and distributed across different sites. This highlights the need for evaluating queries on distributed graphs. This paper proposes distributed evaluation algorithms for three classes of queries: reachability for determining whether one node can reach another, bounded reachability for deciding whether there exists a path of a bounded length between a pair of nodes, and regular reachability for checking whether there exists a path connecting two nodes such that the node labels on the path form a string in a given regular expression. We develop these algorithms based on partial evaluation, to explore parallel computation. When evaluating a query \(Q\) on a distributed graph \(G\), we show that these algorithms possess the following performance guarantees, no matter how \(G\) is fragmented and distributed: (1) each site is visited only once; (2) the total network traffic is determined by the size of \(G\) and the fragmentation of \(G\), independent of the size of \(G\); and (3) the response time is decided by the largest fragment of \(G\) rather than the entire \(G\). In addition, we show that these algorithms can be readily implemented in the MapReduce framework. Using synthetic and real-life data, we experimentally verify that these algorithms are scalable on large graphs, regardless of how the graphs are distributed.

1. INTRODUCTION

Large real-life graphs are often fragmented and stored distributively in different sites, e.g., social networks [27], Web services networks [23] and rdf graphs [16, 26]. For instance, a graph representing a social network may be distributed across different servers and data centers for performance, management or data privacy reasons [12, 23, 25, 27] (e.g., social graphs of Twitter and Facebook are geo-distributed to different data centers [12, 25]). Moreover, various data of people (e.g., friends, products, companies) are typically found in different social networks [27], and have to be taken together when one needs to find the complete information about a person. With this comes the need for effective techniques to query distributed graphs, for e.g., computing recommendations [17] and social network aggregations [27].

There have been a number of algorithms and distributed graph database systems for evaluating queries on distributed graphs (e.g., [3, 6, 11, 29, 30]). However, few of these algorithms and systems provide performance guarantees, on the number of visits to each site, network traffic (data shipment) or computational cost (response time). The need for developing efficient distributed evaluation algorithms with performance guarantees is particularly evident for reachability queries, which are most commonly used in practice.

This paper advocates to evaluate queries on distributed graphs based on partial evaluation. Partial evaluation \(\text{a.k.a. program specialization}\) has been proved useful in a variety of areas including compiler generation, code optimization and dataflow evaluation (see [18] for a survey). Intuitively, given a function \(f(s, d)\) and part of its input \(s\), partial evaluation is to specialize \(f(s, d)\) with respect to the known input \(s\). That is, it conducts the part of \(f\)'s computation that depends only on \(s\), and generates a partial answer, i.e., a residual function \(f'\) that depends on the as yet unavailable input \(d\). This idea can be naturally applied to distributed query evaluation. Indeed, consider a query posed on a graph \(G\) that is partitioned into fragments \((F_1, \ldots, F_n)\), where \(F_i\) is stored in site \(S_i\). To compute \(Q(G)\), each site \(S_i\) can find the partial answer to \(Q\) in fragment \(F_i\) in parallel, by taking \(F_i\) as the known input \(s\) while treating the fragments in the other sites as yet unavailable input \(d\). These partial answers are collected and combined by a coordinator site, to derive the answer to query \(Q\) in the entire \(G\).

Example 1: Figure 1 depicts a fraction \(G\) of a recommendation network, where each node denotes a person with name and job titles (e.g., database researcher (DB), human resource (HR)), and each directed edge indicates a recommendation. The graph \(G\) is geo-distributed to three data centers DC\(_1\), DC\(_2\) and DC\(_3\), each storing a fragment of \(G\).

Consider a query \(Q\) given in Fig. 1, posed at DC\(_1\). It is to find whether there exists a chain of recommendations from...
a CTO Ann to her finance analyst (FA) Mark, through either a list of DB people or a list of HR people. Observe that such a path exists: (Ann, CTO) → (Walt, HR) → (Mat, HR) → (Fred, HR) → (Emmy, HR) → (Ross, HR) → (Mark, FA). However, it is nontrivial to verify this in the distributed setting. A naive method is to first ship data from DC1, DC2 and DC3 to a single site, and then evaluate the query using an algorithm developed for centralized data (i.e., graphs stored in a single site). This is infeasible because its data shipment may be prohibitively expensive and worse still, may not even be allowed for data privacy. Another way is to use a distributed graph traversal algorithm, by sending messages between different sites. This, however, requires messages to be sent along DC1 → DC2 → DC1 → DC2 → DC3 → DC1, incurring unbounded number of visits to each site, excessive communication cost, and unnecessary delay in response.

We can do better by using partial evaluation. We send the query Q to DC1, DC2 and DC3, as is. We compute the partial answers to (sub-queries of) Q at each site, in parallel, by taking the fragment residing in the site as known input and introducing Boolean variables to indicate unknown input (i.e., fragments in the other sites). The partial answers are vectors of Boolean formulas, one associated with each node that has an edge from a fragment stored at another site. These Boolean formulas indicate (1) each site is visited only once; (2) besides the query Q, only 2 messages are sent, all to the coordinator, and each message is independent of the size of G, and (3) partial evaluation is conducted in parallel at each site, without waiting for the outcome or messages from any other site.

While there has been work on query answering via partial evaluation [2, 3, 6, 11], the previous work has focused on either trees [2, 3, 6] or non-recursive queries expressed in first-order logic (FO) [11]. We are not aware of any previous algorithms based on partial evaluation for answering reachability queries, which are beyond FO, on possibly cyclic graphs that are arbitrarily fragmented and distributed.

Contributions. We provide distributed evaluation algorithms for three classes of reachability queries commonly used in practice, via partial evaluation. We show that these algorithms possess several salient performance guarantees.

1. Our first algorithm is developed for reachability queries (Section 3), to decide whether two given nodes are connected by a path [31]. We show that when evaluating such a query on a distributed graph G, the algorithm (a) visits each site only once, (b) is in $O(|V_f| |F_m|)$ time, and (c) its total amount of data shipped is bounded by $O(|V_f|^2)$, where $|V_f|$ is the number of nodes that have edges across different sites, and $|F_m|$ is the size of the largest fragment in G.

2. Our second algorithm is for evaluating bounded reachability queries (Section 4), for determining whether two given nodes are connected by a path of a bounded length [31]. We show that this algorithm has the same performance guarantees as its counterpart for reachability queries.

3. Our third algorithm is to evaluate regular reachability queries (Section 5), to decide whether there exists a path between a pair (u, v) of nodes such that the node labels on the path satisfy a regular expression R. When evaluating such a query on a distributed graph G, the algorithm (a) visits each site only once, (b) is in $O(|F_m| |R|^2 + |R|^2 |V_f|^2)$ time, and (c) has network traffic bounded by $O(|R|^2 |V_f|^2)$, where $|F_m|$ and $|V_f|$ are as above, and $|R|$ is the size of regular expression R, which is much smaller than $|V_f|$ and $|F_m|$.

4. We also develop a MapReduce [7] algorithm for evaluating regular reachability queries (Section 6). This shows that partial evaluation can be readily implemented in the widely used MapReduce framework. The algorithm can be easily adapted to evaluate (bounded) reachability queries, which are special cases of regular reachability queries.

5. We experimentally evaluate the efficiency and scalability of our algorithms (Section 7). We find that our algorithms scale well with both the size of graphs and the number of fragments. For instance, it takes 16 seconds to answer a regular reachability query on graphs with 1.5M (million) nodes and 2.1M edges, partitioned into 10 fragments. We also find that the communication cost of our algorithms is low. Indeed, the amount of data shipped by our algorithms is no more than 11% of the graphs in average. For reachability queries on real-life graphs, our algorithms take only 6% of running time of the algorithms based on message passing [21], and visit each site only once as opposed to 625 visits in average by its counterpart [21]. In addition, our MapReduce algorithm is efficient.

We contend that partial evaluation yields a promising approach to evaluating queries on distributed graphs. It guarantees that (1) the number of visits to each site is minimum; (2) the total network traffic is independent of the size of the entire graph; (3) the evaluation is conducted in parallel, and its cost depends on the largest fragment of a partitioned graph and the number of nodes with edges to different sites, rather than the entire graph; and (4) it imposes no constraints on how the graph is fragmented and distributed. Moreover, it can be readily implemented in the MapReduce model, as verified in our experimental study.

Related Work. We categorize related work as follows.

Distributed databases. A variety of distributed database systems have been developed. (1) Distributed relational databases (see [24]) can store graphs in distributed relational tables, but do not support efficient graph query evaluation [8, 9]. (2) Non-relational distributed data storage manages distributed data via various data structures, e.g., sorted map [4], key/value pairs [8]. These systems are built for primary-key only operations [8,9], or simple graph queries (e.g., degree, neighborhood)¹, but do not efficiently support distributed reachability queries. (3) Distributed graph databases. Neo4j² is a graph database optimized for graph traversal. Trinity² and HyperGraphDB³ are distributed systems based on hypergraphs. Unfortunately, they do not support efficient distributed (regular) reachability queries.

¹ http://neo4j.org/
³ http://www.kobrix.com/hgdb.jsp
Several algorithms have been studied in [30] and extended in [29], based on message passing approaches. These algorithms differ from ours as follows. (a) In contrast to our algorithms, the message passing model in Pregel may serialize operations that can be conducted in parallel, and have no bound on the number of visits to each site, as shown by our experimental study (Section 7). (b) How to support regular reachability query is not studied in [21]. On the other hand, the techniques of Pregel can be combined with partial evaluation to support local processing of reachability queries at each site (see Section 3).

Distributed graph query evaluation. Several algorithms have been developed for evaluating queries on distributed graphs (see [19] for a survey). (1) Querying distributed trees [2,3,6]. Partial evaluation is used to evaluate XPath queries on distributed XML data modeled as trees [3,6], as well as for evaluating regular path queries [2]. It is nontrivial, however, to extend these algorithms to deal with (possibly cyclic) graphs. Indeed, the network traffic of [3,6] is bounded by the number of fragments and the size of the query, in contrast to the number of nodes with edges to different fragments in our setting. Moreover, we study (regular) reachability queries, which are quite different from XPath. Finally, our algorithms only visit each site once, while in [2] each site may be visited multiple times. (2) Querying distributed semi-structured data [13,28–30]. Techniques for evaluating regular path queries on distributed, edge-labeled, rooted graphs are studied in [30] and extended in [29], based on message passing. It is guaranteed that the total network traffic is bounded by \(n^2 \), where \(n \) is the number of edges across different sites. A distributed BFS algorithm is given in [28], which takes nearly cubic time in graph size, and a table of exponential size to achieve a linear time complexity, and is impractical for large graphs. These differ from our algorithms as follows. (a) Our algorithms guarantee that each site is visited only once, as opposed to twice [30]. (b) As remarked earlier, message passing may unnecessarily serialize operations, while our algorithms explore parallelism via partial evaluation. While an analysis of computational cost is not given in [29,30], we show experimentally that our algorithms outperform theirs (Section 7).

There has also been recent work on evaluating SPARQL queries on distributed RDF graphs [11], which is not applicable to our setting due to (a) no performance guarantees or complexity bounds are provided in [11], and (b) the queries considered in [11] are expressible in FO, while we study (regular) reachability queries beyond FO.

2. DISTRIBUTED GRAPHS AND QUERIES

We start with distributed graphs (Section 2.1), reachability queries and a partial evaluation framework (Section 2.2).

2.1 Distributed Graphs

We start with basic notations of graphs. We consider node-labeled, directed graphs, simply referred to as graphs.

Graphs. A graph \(G = (V, E, L) \) consists of (1) a finite set \(V \) of nodes; (2) a set of edges \(E \subseteq V \times V \), where \((v, w) \in E \) denotes a directed edge from node \(v \) to \(w \); and (3) a function \(L \) defined on \(V \) such that for each node \(v \) in \(V \), \(L(v) \) is a label from a set \(\Sigma \) of labels. We start with basic notations of graphs. We consider node-labeled, directed graphs, simply referred to as graphs.
particular, edges (Mat, Fred) and (Bill, Pat) are cross edges from fragments F_2 to F_1 and F_1 to F_3, respectively.

The fragment graph G_f of F is shown in Fig. 2, which collects all in-nodes, virtual nodes and cross edges, but does not contain any nodes and edges internal to a fragment.

We remark that no constraints are imposed on fragmentation, i.e., the graphs can be arbitrarily fragmented. Observe that multiple fragments may reside in a single site, and our algorithms can be easily adapted to accommodate this.

2.2 Queries and Partial Evaluation

Given a fragmentation F of graph G and a query Q, distributed query evaluation is to compute the answer to Q in G, using data in F. It aims to minimize (a) the number of visits to each site, (b) the network traffic (communication cost), i.e., the total amount of data shipped from one site to another, and (3) the response time (computational cost).

We focus on three classes of graph queries in this work.

1. A reachability query $q_{s,t}$ is to determine whether node s can reach another node t in G.

2. A bounded reachability query $q_{s,t,l}$ is to decide whether $\text{dist}(s,t) \leq l$ for a given integer (bound) l.

3. A regular reachability (path) query $q_{s,t,R}$ is to determine whether there exists a path ρ from s to t such that ρ satisfies R. Here R is a regular expression:

$$R ::= \varepsilon | a | RR | R \cup R | R^*,$$

where ε is the empty string, a is a label in Σ, RR and $R \cup R$ and R^* denote alternation, concatenation and the Kleene closure, respectively. We say that a path ρ satisfies R if the label of ρ is a string in the regular language defined by R.

Remark. Observe the following. (1) One can define a "wildcard" * which matches any label, as $a_1 \cup \ldots \cup a_m$ for all a_i’s in Σ. Leveraging * reachability and bounded reachability queries can be expressed as regular reachability (path) queries. We study these queries separately because (a) they admit lower complexity than regular reachability queries, and (b) in practice, it often suffices to use these simple queries [31], without paying the price of higher complexity of regular path queries. (2) It is known that it is NP-complete to determine whether there exists a simple path ρ from s to t such that ρ satisfies a regular expression R [22]. Here we do not require ρ to be a simple path, i.e., we allow multiple occurrences of the same node on ρ, and develop a low polynomial time algorithm for regular path queries.

Notations in this section are summarized in Table 1.

2.3 Partial Evaluation

Given a query Q and a fragmentation F of a graph G, we compute $Q(G)$, a Boolean value indicating the reachability of Q in G. Assume that Q is posed on a site S_c, referred to as a coordinator site, in which a mapping h from the fragments in F to different sites is stored. As shown in Fig. 2, we use partial evaluation to compute $Q(G)$.

Table 1: Notations: graphs and queries

<table>
<thead>
<tr>
<th>Graphs and Queries</th>
<th>Notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F = (F, G_f)$</td>
<td>graph fragmentation in which G_f is the fragment graph</td>
</tr>
<tr>
<td>F_i</td>
<td>the set of in-nodes in a fragment F_i</td>
</tr>
<tr>
<td>$F_{i, O}$</td>
<td>reachability query</td>
</tr>
<tr>
<td>$q_{s,t}$</td>
<td>bounded reachability query</td>
</tr>
<tr>
<td>$q_{s,t,R}$</td>
<td>regular reachability query</td>
</tr>
</tbody>
</table>

(1) Distributing at site S_c. Upon receiving Q, the coordinating site S_c posts Q to each fragment, as is, by using h.

(2) Local evaluation at each site S_i. Each site S_i evaluates (sub-queries) of Q in parallel, by treating the fragment F_i stored in S_i as the known input to Q; the other fragments F_j are taken as the yet unavailable input, denoted by Boolean variables associated with virtual nodes in $F_{i, O}$. The partial answers are represented as vectors of Boolean formulas associated with nodes in $F_{i, I}$, and are sent back to S_c.

(3) Assembling at S_c. Site S_c assembles these partial answers to get the final answer $Q(G)$, by using G_f.

Following this, the next three sections develop evaluation algorithms for (bounded, regular) reachability queries.

3. DISTRIBUTED REACHABILITY

We first develop distributed evaluation strategies for reachability queries. Given a reachability query $q_{s,t}$ and a fragmentation $F = (F, G_f)$ of a graph G, we decide whether s reaches t in G. The main result of this section is as follows.

Theorem 1: Over a fragmentation $F = (F, G_f)$ of a graph G, reachability queries can be evaluated (a) in $O(|V_f||F_m|)$ time, (b) by visiting each site only once, and (c) with the total network traffic bounded by $O(|V_f|^2)$, where $G_f = (V_f, E_f)$ and F_m is the largest fragment in F.

As a proof of the theorem, we provide an algorithm to evaluate reachability queries $q_{s,t}$ over a fragmentation F of a graph G. The algorithm, denoted as disReach, is given in Fig. 3. As shown in Fig. 2, the algorithm evaluates $q_{s,t}$ based on partial evaluation, in three steps as follows.

1. The coordinator site S_c posts the same query $q_{s,t}$ to each fragment in F (line 1).

2. Upon receiving $q_{s,t}$, each site invokes procedure localEval to partially evaluate $q_{s,t}$, in parallel (lines 3-4). This yields a partial answer $F_i, rvset$ from each fragment, which is a set of Boolean equations (as will be discussed shortly) and is sent back to the coordinator site S_c.

3. The coordinator site S_c collects $F_i, rvset$ from each site and assembles them into a system RVset of Boolean equations (line 3). It then invokes procedure evalDG to solve these equations and finds the final answer to $q_{s,t}$ in G (line 5). In contrast to partial query evaluation on trees [2, 3, 6], the Boolean equations of RVset are possibly recursively defined since graph G may have a cyclic structure.

We next present procedures localEval and evalDG, for producing and assembling partial answers, respectively.

Partial evaluation. Procedure localEval evaluates $q_{v,t}$ on each fragment F_i in parallel. For each in-node v in F_i, it decides whether v reaches t. Later on procedure evalDG will assemble such answers and find the final answer to $q_{s,t}$.

Let us consider how to compute $q_{v,t}$. If $t \in F_i$ and v can reach t, then $q_{v,t}$ can be locally evaluated to be true. Otherwise, $q_{v,t}$ is true iff there exists a virtual node v' of F_i such that both $q_{v,v'}$ and $q_{v',t}$ are true. Indeed, in
Algorithm \textit{disReach} /* executed at the coordinator site */
\begin{verbatim}
Input: Fragmentation \((F,G)\), reachability query \(q_i(s,t)\).
Output: The Boolean answer ans to \(q_i\) in \(G\).
1. post query \(q_i(s,t)\) to all the fragments in \(F\);
2. \(RVset := \emptyset\);
3. for each fragment \(F_i\) in \(F\) do
4. \(RVset := RVset \cup localEval(F_i,q_i(s,t))\);
5. ans := evalDG(RVset);
6. return ans;
\end{verbatim}

Procedure \textit{localEval} /* locally at each site in parallel */
\begin{verbatim}
Input: A fragment \(F_i\), a reachability query \(q_i(s,t)\).
Output: \(F_i.rvset\) a set of Boolean equations.
1. \(F_i.rvset := \emptyset\); iset := \(\emptyset\);
2. if \(s \in F_i\) then iset := iset \cup \{s\};
3. if \(t \in F_i\) then iset := iset \cup \{t\};
4. for each node \(v \in iset\) do
5. if \(v = t\) then \(v.rf := true\);
6. else \(v.rf := X_v\);
7. for each node \(v \in iset\) do
8. for each node \(v' \in iset\) do
9. if \(v' \in des(v,F_i)\) then \(v.rf := v.rf \lor v'.rf\); \(F_i.rvset := F_i.rvset \cup \{X_v = X_{v'}\}\);
10. \(F_i.rvset := F_i.rvset \cup \{X_v = v.rf\}\); and
11. send \(F_i.rvset\) to the coordinator site \(S_i\);
\end{verbatim}

Figure 3: Algorithm \textit{disReach}
the latter case \(v\) can reach \(t\) if there exists a virtual node \(v'\) such that \(v'\) can reach \(t\). Observe that \(q_i(v,v')\) can be locally evaluated in \(F_i\), but not \(q_i(v',t)\) since \(v'\) and \(t\) are in other fragments. Instead of waiting for the answer of \(q_i(v',t)\), we introduce \textit{Boolean variables}, one for each virtual node \(v'\) in \(F_i\), \(O\), to denote the yet unknown answer to \(q_i(v',t)\) in \(G\). The answer to \(q_i(v,t)\) is then a Boolean formula \(v.rf\) associated with \(v\), which is the \textit{disjunction of all the variables} of those virtual nodes \(v'\) to which \(v\) can reach in \(F_i\).

More specifically, procedure \textit{localEval} works as follows. It first initializes a set \(F_i.rvset\) of Boolean equations, and puts the in-nodes \(F_i.i\) and virtual nodes \(F_i.O\) of \(F_i\) in sets \(iset\) and \(iset\) respectively (line 1). If \(s\) (resp. \(t\)) is in \(F_i\), \textit{localEval} includes \(s\) (resp. \(t\)) in \(iset\) (resp. \(iset\)) as well (lines 2-3). A Boolean variable \(X_v\) is associated with each node \(v \in iset\). For each virtual node \(v \in iset\), if \(v \in iset\) then \(v.rf := true\) (lines 4-7). For each in-node \(v \in iset\), \textit{localEval} checks whether \(v\) can reach a virtual node \(v' \in iset\) (lines 8-9). If so, \textit{localEval} updates \(v.rf\), the Boolean formula of \(v\), to \(v.rf \lor v'.rf\) (line 10). Observe that if \(t\) is in \(des(v,F_i)\), then \(v.rf\) is evaluated to be true. Here \(v' \in des(v,F_i)\) denotes that \(v'\) is a descendant of \(v\) in \(F_i\); this can be checked using any available \textit{centralized algorithm} for reachability queries [31]; locally in \(F_i\). After the formula of in-node \(v\) is constructed, \(F_i.rvset\) is extended by including a Boolean equation \(X_v = v.rf\). The set \(F_i.rvset\) is then sent to the coordinator site \(S_i\) (line 11).

Example 3: Consider a query \(q_1\) (Ann, Mark) over \(G\) in Fig 1. Algorithm \textit{disReach} at the coordinator site DC1 first sends the query to each site, where a set of Boolean equations are computed, as shown below.

<table>
<thead>
<tr>
<th>(F_i)</th>
<th>(s), (t)</th>
<th>(v.r)</th>
<th>(rvset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>Ann</td>
<td>(x.Pat \lor x.Mat)</td>
<td>{(x.An = x.Pat \lor x.Mat), (x.Fred = x.Emmy)}</td>
</tr>
<tr>
<td>Fred</td>
<td>(x.Pat)</td>
<td>(x.Fred)</td>
<td>{(x.Fred = x.Fred)}</td>
</tr>
<tr>
<td>(F_2)</td>
<td>Mat</td>
<td>(x.Fred)</td>
<td>{(x.Mat = x.Fred), (x.Jack = x.Fred), (x.Emmy = x.Fred \lor x.Rom)}</td>
</tr>
<tr>
<td>Jack</td>
<td>(x.Fred)</td>
<td>(x.Rom)</td>
<td>{(x.Rom = true), (x.Pat = x.Jack)}</td>
</tr>
<tr>
<td>(F_3)</td>
<td>Ross</td>
<td>(x.Fred)</td>
<td>{(x.Fred = x.Fred)}</td>
</tr>
<tr>
<td>Ross</td>
<td>(x.Jack)</td>
<td>(x.Fred \lor x.Rom)</td>
<td>{(x.Fred \lor x.Rom)}</td>
</tr>
</tbody>
</table>

Observe that for each \(i \in [1,3]\), each equation in \(F_i.rvset\) is of the form \(X_v = \bigvee X_{v'}\), where \(v\) is an in-node, and \(v'\) is a virtual node that \(v\) can reach in \(F_i\). In particular, Ross.fred = true since the node Ross can reach Mark in \(F_3\).

Assembling: After the local evaluation, the equations collected in \(RVset\) at the coordinator site \(S_i\) form a Boolean equation system (BES) [14]. It consists of equations of the form \(X_v = v.rf\), where \(v\) is an in-node in some fragment \(F_i\), and Boolean variables in \(v.rf\) are associated with virtual nodes (out-nodes), which in turn are connected to in-nodes of some other fragments. In particular, \(RVset\) contains a Boolean equation \(X_v = s.rf\), where the truth value of \(X_v\) is the final answer to \(q_i(s,t)\). Given \(RVset\), procedure \textit{evalDG} is to compute the truth value of \(X_v\). Observe that equations in \(RVset\) may be defined recursively. For example, \(x.red\) in Example 3 is defined indirectly in terms of itself.

Observe that \(RVset\) has \(O(\left|V_f\right|)\) Boolean equations. It is known that \(BES\) can be solved in \(O(\left|V_f\right|^2)\) time [14]. We next present such an algorithm, based on a notion of dependency graphs. The \textit{dependency graph} of \(RVset\) is defined as \(G_d = (V_d, E_d, L_d)\), where \(V_d \subseteq V_f\) is a Boolean variable \(X_v\) in \(RVset\); \(L_d(v_d) = \bigvee X_v\) if \(X_v = \bigvee X_v\) is in \(RVset\); and there is an edge \((v_d, v_d') \in E_d\) if and only if \(X_v\) is in \(\bigvee X_v\) of \(L_d(v_d')\). Note that the size \(\left|G_d\right|\) of \(G_d\) is in \(O(\left|V_f\right|^2)\), where \(G_d = (V_f, E_d)\) is the fragment graph of \(F\).

Based on this notion, we present procedure \textit{evalDG} in Fig 4. It first constructs the dependency graph \(G_d\) of \(RVset\) (line 1). It groups into a single node \(v_{true}\) all those nodes (variables) that are known to be \(true\) (line 3). It returns false if no such node exists, since no in-nodes can reach \(t\) in any of the fragment (line 2). Otherwise, it returns \(true\) if \(v_s\) (indicating \(X_v\) in \(X_v = s.rf\) can reach \(v_{true}\) (lines 4-5).

Example 4: Consider the Boolean equations of Example 3. Given these, \textit{evalDG} first builds its dependency graph, shown in Fig 5(a). It then checks whether there is a path from \(X_{Ann}\) to \(X_{true}\) (\(X_{Mark}\)). It returns \(true\) as such a path exists.

Correctness. One can easily verify the following: \(s\) can reach \(t\) in \(G\) if there exist a positive integer \(l\) and a path \((s, x_1, \ldots, x_l, t)\) such that \(x_i.rf's\) are built in some fragment by \textit{localEval}, and moreover, are evaluated to \(true\) by procedure \textit{evalDG}. This can be shown by induction on \(l\).

Complexity. Algorithm \textit{disReach} guarantees the following.

\textit{The number of visits}. Obviously each site is visited only once, when the coordinator site posts the input query.

\textit{Total network traffic}. For each fragment \(F_i\), \(F_i.rvset\) has \(\left|F_i.I\right|\) equations, each of \(\left|F_i.O\right|\) bits indicating the presence or absence of variables in the Boolean formula. Hence the set \(RVset\) consists of at most \(\left|V_f\right|\) equations, each of at most \(\left|V_f\right|\) bits. The total network traffic is thus bounded by \(O(\left|V_f\right|^2)\), independent of \(G\), since \(q_i(s,t)\) is negligible.

\textit{Computational cost}. Observe the following. (1) Procedure \textit{localEval} is performed on each fragment \(F_i\) in parallel, and
it takes $O(|F_s||V_f|)$ time to compute F_srvset for each fragment (see the discussion below). Hence it takes at most $O(|V_f||F_m|)$ time to get F_srvset from all sites, where F_m is the largest fragment of F. (2) It takes procedure evalDG $O(|G_d|)$ time to construct the dependency graph G_d, and to find whether v_s reaches v_t in G_d. Since $|G_d|$ is in $O(|V_f|^2)$, and $|V_f|$ is typically much smaller than $|F_m|$ in practice, the computational cost is bounded by $O(|F_m||V_f|)$. That is, the response time is also independent of the entire graph G.

To check whether a pair of nodes connect in a fragment or in G_d, we use DFS/BFS search, and thus get the $O(|V_f||F_m|)$ (resp. $O(|V_f|^2)$) complexity. In fact any indexing techniques (e.g., reachability matrix [31], 2-hop index [5]), parallel and graph partition strategies (e.g., Pregel [21]) developed for centralized graph query evaluation can be applied here, which will lead to lower computational cost.

The analysis above completes the proof of Theorem 1.

Remarks. In theory, one can compute the transitive closure (TC) of a graph to decide whether a node can reach another. However, it is impractical to compute the TC over large graphs due to its time and space costs. Worse still, when the graphs are distributed, computing TC may incur excessive unnecessary data shipments. Indeed, we are not aware of any distributed algorithms that compute TC with performance guarantees on network traffic, even when indexing structures are employed (see [31] for a survey on such indexes). In contrast, we show that in the distributed setting, partial evaluation promises performance guarantees. Also observe that in practice, the size of V_f is usually small [27].

4. DISTRIBUTED BOUNDED REACHABILITY QUERIES

We next develop a distributed evaluation algorithm for bounded reachability queries $q_{br}(s,t,l)$, to decide whether $dist(s,t) \leq l$. In contrast to reachability queries, to evaluate $q_{br}(s,t,l)$ we need to keep track of the distances for all pairs of nodes involved. Nevertheless, we show that the algorithm has the same performance guarantees as algorithm $disReach$.

Theorem 2: Over a fragmentation $F = (F,G_f)$ of a graph G, bounded reachability queries can be evaluated with the same performance guarantees as for reachability queries.

To prove Theorem 2, we outline an algorithm, denoted by disDist (not shown), for evaluating $q_{br}(s,t,l)$ over a fragmentation F of a graph G. It is similar to algorithm $disReach$ for reachability queries (Fig. 3), but it needs different strategies for partial evaluation at individual sites and for assembling partial answers at the coordinator site. These are carried out by procedures $localEval_f$ and evalDG_d, respectively.

Procedure $localEval_f$. To evaluate $q_{br}(s,t,l)$, for each fragment F_i and each in-node v in F_i, we need to find $dist(v,t)$, the distance from v to t. To do this, we find the minimum value of $dist(v,v') + dist(v',t)$ when v' ranges over all virtual nodes in F_i to which v can reach. We associate a variable X_v with each such v' to denote $dist(v',t)$ (numeric value). We express the partial answer for v as a formula v.ref.

Procedure $localEval_f$ is similar to localEval, but differs in that for each virtual node v, if $v = t$, it assigns 0 to v.ref, and otherwise v.ref is X_v. For each in-node $v \in G$ and each virtual node $v' \in G$, $localEval_f$ locally finds the distance from v to v' and uses a set st to collect formulas v.ref and $dist(v,v')$ if $dist(v,v') < l$. The set F_srvset with equations $X_v = \min(v.st)$ is sent to the coordinator site S_c.

Procedure evalDG_d. Given F_srvset from all the sites, procedure evalDG_d assembles these partial answers to find the answer to $q_{br}(s,t,l)$ in G. As opposed to evalDG (Fig. 4), it builds an edge weighted graph $G_d = (V_d, E_d, L_d, W_d)$, where (V_d, E_d, L_d) is a labeled dependency graph as defined before; and the weight $W_d(e)$ of e is $dist(v_t,v')$. Note that $|V_d| \leq |V_f|$ and $|E_d| \leq |V_f|^2$, where $G_d = (V_d, E_d)$ is the fragment graph of F. The procedure then uses algorithm Dijkstra [32] to compute the distance d from X_s to X_t, in time $O(|V_d| + |V_d|\log|V_d|)$, where $X_s \in V_d$ denotes the node s in $q_{br}(s,t,l)$. It returns true if $d \leq l$. One can verify that $dist(s,t)$ in G is equal to the distance from X_s to X_t in G_d.

Example 5: Given query $q_{br}(Ann, Mark, 6)$ posed on graph G of Fig 1, $disDist$ computes a set of equations of arithmetic formulas (not Boolean equations). The vectors for F_2 are:

<table>
<thead>
<tr>
<th>F_1</th>
<th>F_2</th>
<th>st</th>
<th>$rvset$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat</td>
<td>Jack</td>
<td>$(x_{ref} + 1)$</td>
<td>$(e_{ref} = \min(e_{ref} + 1), x_{ref})$</td>
</tr>
<tr>
<td>Emmy</td>
<td>$(e_{ref} + 3), (x_{ref} + 1)$</td>
<td>$(x_{ref} + 3), (x_{ref} + 1)$</td>
<td></td>
</tr>
</tbody>
</table>

After $rvset$ is received by coordinator DC_1, procedure evalDG_d first builds a weighted dependency graph G_d, shown in Fig 5(b). It then computes the shortest path from X_Ann to X_{Jack} by applying Dijkstra to G_d. It returns true since the length of the path is 6, satisfying the distance bound.

We can verify that algorithm $disDist$ (1) visits each site only once, (2) its total network traffic is bounded by $O(|V_f|^2)$, and (3) it takes at most $O(|F_m||V_f|)$ time, where F_m is the largest fragment in F. Moreover, indexing techniques [31] can be incorporated into $localEval_f$ and evalDG_d, to reduce the cost of local evaluation and hence, the response time (e.g., with constant time via a distance matrix).

5. DISTRIBUTED REGULAR REACHABILITY QUERIES

We now develop techniques to distributively evaluate regular reachability queries. Given such a query $q_{rr}(s,t,R)$ and a fragmentation F of graph G, it is to find whether there exists a path ρ from s to t in G such that ρ satisfies R. In contrast to (bounded) reachability queries, to evaluate $q_{rr}(s,t,R)$ we need to collect and transmit information about not only whether there are paths from a node to another, but also whether the paths satisfy the complex constraint imposed by R. The main result of this section is as follows.

Theorem 3: On a fragmentation $F = (F,G_f)$ of graph G, regular reachability queries $q_{rr}(s,t,R)$ can be evaluated (a) in $O(|F_m||R|^2 + |R|^2|V_f|^2)$ time, (b) by visiting each site once, and (c) with the total network traffic in $O(|R|^2|V_f|^2)$, where $G_d = (V_d, E_d)$ and F_m is the largest fragment in F.

To prove Theorem 3, we first introduce a notion of query automata (Section 5.1), and then present an evaluation algorithm based on query automata (Section 5.2).
5.1 Query Automaton

To effectively check whether a path satisfies a regular expression R, we represent R as a variation of nondeterministic finite state automata (NFA), referred to as query automaton.

A query automaton $G_q(R)$ of $q_o(s,t,R)$ accepts paths ρ that satisfy R. It is defined as $<V_q, E_q, L_q, u_s, u_t, >$, where (1) V_q is a set of states, (2) $E_q \subseteq V_q \times V_q$ is a set of transitions between the states, (3) L_q is a function that assigns each state a label in R, and (4) u_s and u_t in V_q are the start state and final state corresponding to s and t, respectively.

In contrast to traditional NFA, at state u_s, for each edge (v,v') on a path, a transition $u_s \rightarrow u'$ can be made via $(u_s, u') \in E_q$ if $L(v) = L_q(u_s)$ and $L(v') = L_q(u')$. The automaton can be constructed in $O(|R| \log(|R|))$ time, using a conversion similar to that of [15]. It is of linear size in $|R|$.

We say that a state u is a child of u' (resp. u' is a parent of u) if $(u', u) \in E_q$, i.e., u' can transit to u.

Example 6: Recall $q_o(Ann, Mark, R)$, the regular reachability query given in Example 1, where $R = (DB^* \cup HR^*)$. Its query automaton $G_q(R)$ is depicted in Fig. 6. The set V_q has four states Ann, DB, HR, Mark, where the start and final states are Ann and Mark, respectively. The set E_q of transitions is $(\{Ann, DB\}, (DB, DB), (DB, Mark), (Ann, HR), (HR, HR), (HR, Mark))$. In contrast to NFA, it is to accept paths in, e.g., G of Fig. 1, and its transitions are made by matching the labels of its states with the job labels on the paths (except the start and final states, which are labeled with name).

As another example, consider query $q_o(Walt, Mark, R')$, where $R' = ((CTO DB^*) \cup HR^*)$. Figure 6 shows its query automaton, which has 5 states and 7 transitions, with Walt and Mark as its start state and final state, respectively.

We say that a node v in G is a match of a state u_s in $G_q(R)$ if (1) $L(v) = L_q(u_s)$, and (2) there exist a path ρ from v to t and a path ρ' from u_s to v, such that ρ and ρ' have the same label. The lemma below shows the connection between $q_o(s,t,R)$ and $G_q(R)$, which is easy to verify.

Lemma 4: Given a graph G, $q_o(s,t,R)$ over G is true if and only if s is a match of u_s in $G_q(R)$.

5.2 Distributed Query Evaluation Algorithm

We next present an algorithm to evaluate regular reachability queries over a fragmentation F of a graph G. The algorithm, denoted as disRPQ (not shown), evaluates $q_o(s,t,R)$ based on partial evaluation in three steps, as follows.

1. (1) It first constructs the query automaton $G_q(R)$ of $q_o(s,t,R)$ at site S_c, and posts G_q to each fragment in F.

2. (2) Upon receiving $G_q(R)$, each site invokes procedure localEval, to compute a partial answer to $q_o(s,t,R)$ by using G_q, in parallel. The partial answer at each fragment F_i, denoted as $F_i.rvec$, is a set of vectors. Each entry in a vector is a Boolean formula (as will be discussed shortly).

3. (3) The partial answer is sent back to the coordinator site S_c. The site S_c collects $F_i.rvec$ from each site and assembles them into a set $RVset$ of vectors of Boolean formulas. It then invokes procedure evalDG, to solve these equations and find the final answer to $q_o(s,t,R)$ in G.

We now present procedures localEval, and evalDG.

Local evaluation. We first formulate the partial answer $v.rvec$ at each node v in a fragment F_i. It indicates whether v is a match of some state u_s in the query automaton G_q, i.e., v reaches t and moreover, satisfies the constraints imposed by G_q (Lemma 4). Hence we define $v.rvec$ to be a vector of $O(|V_q|)$ entries, where V_q is the set of states in G_q. For each state u_s in V_q, the entry $v.rvec[u_s]$ is a Boolean formula indicating whether node v matches state u_s. In contrast to its counterparts for (bounded) reachability queries, here $v.rvec$ is a vector of Boolean formulas, instead of a single formula.

Observe that v matches a state u_s if and only if (1) $L(v) = L(u_s)$, and (2) either v is in t, or there exists a child w of v and a child u_w of u_s such that w matches u_w. To cope with virtual nodes, for each $w \in F_i.O$ and each state $u_s \in V_q$, we introduce a Boolean variable X_{w,u_s}, denoting whether w matches u_w. The vector of each in-node in $F_i.I$ consists of formulas defined in terms of these Boolean variables.

Based on these, we give procedure localEval, in Fig. 7. It first initializes a set $F_i.rset$ of vectors, and puts the in-nodes $F_i.I$ and virtual nodes $F_i.O$ of F_i in sets $iset$ and $oset$, respectively (line 1). If s (resp. t) is in $F_i.I$, $localEval$ includes s (resp. t) in $iset$ (resp. $oset$) as well (lines 2–3). For each node v in F_i, it associates a flag $v.visit$ to indicate whether $v.rvec$ is already computed, and initializes it to be false if v is not in $oset$ (line 4). It then initializes the vector $v.rvec$ for each virtual node v of F_i (lines 5–11), as follows. If $v = t$, then $v.rvec[u_s]$ is assigned true (line 8). Otherwise...
for each state \(u \) in \(G_d \), if \(u \) and \(v \) have the same label, then \(v.rvec[u] \) is a Boolean variable \(X_{v(u)} \), indicating whether \(v \) matches \(u \) (line 9); if not, \(v.rvec[u] \) is false (line 10). Since \(v.rvec \) is initialized (lines 6-10), \(\text{localEval} \) sets \(v.visit \) to be true (line 11). Then for each in-node \(v \), \(\text{localEval} \) invokes procedure \(\text{cmpRvec} \) to partially compute the vector of \(v \), and extends \(F_i.rvecset \) with \(v.rvec \) (lines 12-14). After all in-nodes are processed, \(F_i.rvecset \) is sent to site \(S_i \) (line 15).

Procedure \(\text{cmpRvec} \) computes the vector \(v.rvec \) for a node \(v \), as follows. If \(v.visit \) is true, it returns \(v.rvec \) (line 1). Otherwise, it initializes a vector \(vvec \) (lines 2). The procedure then computes \(v.rvec \) following Lemma 4. For each child \(w \) of \(v \), if \(w \) is not visited, then \(w.rvec \) is computed via a recursive call of \(\text{cmpRvec} \) (lines 3-5; here \(C(v,F_i) \) denotes the set of children of \(v \) in \(F_i \)). After \(w.rvec \) is known, for each state \(v q \) in \(G_d \), \(\text{cmpRvec} \) checks if \(v \) and \(v q \) have the same label (lines 6-7); if so, it uses \(w.rvec[v q] \) to compute \(v.rvec[v q] \) via procedure \(\text{cmposeVec} \) (line 8). After \(v.rvec[v q] \) is computed, \(v.visit \) is set to true (line 9) and \(v.rvec[v q] \) is returned (line 10).

Procedure \(\text{cmposeVec} \) (not shown) takes a state \(v q \) and a node \(w \) as input, and constructs a formula \(f \) using formulas in \(w.rvec \). Initially \(f \) is false. For each child state \(v q' \) of \(v q \), it checks whether \(w \) and \(v q' \) have the same label. If so, \(f \) is extended by taking \(w.rvec[v q'] \) as a disjunct. The formula \(f \) is returned after all child states of \(v q \) are processed.

Example 7: Given \(q_d(Ann,Mark,R) \), the query of Example 1 posed on the distributed graph \(G \) of Fig. 1, procedure \(\text{localEval} \) evaluates the query on \(F_2 \) as follows. For each virtual node of \(F_2 \), it initializes its vector, \(\ldots \), e.g., the vector of \(Ross \) is \((\text{false,false},X_{\text{Ross,Hr}}) \), corresponding to the states \((\text{Ann, DB, Mark, HR}) \) in query automaton \(G_d(R) \) (see Fig. 6). It then invokes procedure \(\text{cmpRvec} \) to compute the vector of each in-node \(F_2 \). For instance, consider in-node \(Emmy \). Since (1) \(Emmy \) is an HR that matches state HR in \(G_d \), and (2) \(Emmy \) has a child \(Ross \) that may match state HR, the formula \(\text{Emmy,HR} \) is extended to \(X_{\text{Ross,Hr}} \) by procedure \(\text{cmposeVec} \). The final vectors for \(F_2 \) are:

<table>
<thead>
<tr>
<th>Fragment</th>
<th>In-node</th>
<th>\text{rvec}(Ann, DB, HR, Mark)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_2)</td>
<td>Mat</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>Jack</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>Emmy</td>
<td>false</td>
</tr>
</tbody>
</table>

Assembling. Procedure \(\text{evalDG} \) (not shown) collects the partial answers from all the sites into a set \(RVset \), and assembles them to compute the answer to \(q_d(s,t,R) \) at the coordinator site \(S_i \). It is similar to procedure \(\text{evalDG} \) given in Fig. 4, except that it uses a different notion of dependency graphs. Here the dependency graph \(G_d \) of \(RVset \) is defined as \((V_d,E_d,L_d) \), where (a) for each in-node \(u \) and each entry \(v \) of its vector \(v.rvec \) in \(RVset \), there is a node \(v.d(u,v) \in V_d \), (b) \(L_d(v.d(u,v)) = v.rvec[v] \), a formula of the form \(\bigvee X_{v(u')v'} \); and (c) there is an edge \((v.d(u,v),v.d(u',v')) \in E_d \) if and only if \(X_{v(u')v'} \) appears in \(L_d(v.d(u,v)) \). In other words, the node set \(V_d \) of \(G_d \) is defined in terms of both in-nodes in the fragments of \(F \) and the states in the query automaton \(G_d \).

Procedure \(\text{evalDG} \) constructs the dependency graph \(G_d \) of \(RVset \), and checks whether \(v.d(s,u) \) can reach \(v.d(u,u') \) for some node \(u \), where \(L_d(v.d(u,u')) \) is true. One can verify that \(s \) matches \(u \), if there exists a node \(v.d(u,u') \in V_d \) with \(L_d(v.d(u,u')) \) = true, and \(v.d(s,u) \) reaches \(v.d(u,u') \).

Example 8: Consider again query \(q_d(Ann, Mark, R) \) posed on the graph \(G \) of Fig. 1. The vector sets \(F_i.rvecset \) are computed in parallel in all fragments \(F_i \), as described in Example 7. Upon receiving \(F_i.rvecset \) from all the sites, procedure \(\text{evalDG} \) first builds a dependency graph \(G_d \) on the vector sets, as shown in Fig 8. Each node, \(\ldots \), \(u.d(Ann,Ann) \) is shown together with its label, \(\ldots \), \(X_{\text{Mat,Hr}} \). It then checks whether node \(v.d(Ann,Ann) \) reaches a node with label true, which is node \(v.d(Ross,Hr) \) here. It returns true as the query answer, as there is a path \((Ann, Mat, Fred, Emmy, Ross, Mark) \) satisfying the regular expression \(R \).

Correctness and complexity. One can readily verify the following: (1) The algorithm \(\text{disRPQ} \) always terminates. (2) Given a query \(q_d(s,t,R) \) and a fragmentation \(F \) of graph \(G \), algorithm \(\text{disRPQ} \) returns true if there exists a path \(\rho \) from \(s \) to \(t \) in \(G \) such that \(\rho \) satisfies \(R \). To complete the proof of Theorem 3, observe the following about its complexity.

The number of visits. Each site is visited only once, when the query automaton is posted by the coordinator site.

Total network traffic. The communication cost includes the following: (1) \(O(|G_d||C(v,F_m)|) \) for sending query automaton \(G_d \) (R) to each site, where \(|C(v,F_m)| \) is the number of fragments, and \(|G_d| \) is in \(O(|R|) \); and (2) \(O(|R|^2|F_i||I||F_i,O|) \) for sending partial answers from each fragment \(F_i \) to the coordinator site. Putting these together, the total network traffic is \(O(|R|^2|V_f|^2) \), where \(V_f \) is the total number of virtual nodes, since the number \(|C(v,F_m)| \) of fragments and query size \(|R| \) are much smaller than \(|V_f| \) in practice. Note that the communication cost is independent of the entire graph \(G \).

Total computation. It takes \(O(|R|^2|F_m|) \) time to compute the vector set in each fragment, in parallel, where \(|F_m| \) is the size of the largest fragment \(F_m \) in \(F \). To see this, observe that at each node \(v \), it takes at most \(O(|C(v,F_m)| + |R|^2) \) time to construct its vector, for each child of \(v \) in \(C(v,F_m) \). Moreover, each node is visited once and its vector is computed once. Thus, in total it takes at most \(O(|F_m||R|^2) \) time to compute all the vectors. The assembling phase takes up to \(O(|R|^2|V_f|^2) \) time. Taking these together, the total computation time is \(O(|F_m||R|^2 + |R|^2|V_f|^2) \).

6. DISTRIBUTED REACHABILITY WITH MAPREDUCE

We next present a simple MapReduce algorithm to evaluate regular reachability queries. This algorithm just aims to demonstrate how easy to support our techniques in the MapReduce framework. More advanced MapReduce algorithms can be readily developed based on partial evaluation.

MapReduce. [7] is a software framework to support distributed computing on large datasets with a large number of computers (nodes). (1) The data are partitioned into a collection of key/value pairs. Each pair is assigned to a node (mapper) identified by its key. (2) Each mapper processes its key/value pairs, and generates a set of intermediate key/value pairs, by using a Map function. These pairs are hash-partitioned based on the key. Each partition is sent to a node (reducer) identified by the key. (3) Each reducer...
produces key/value pairs via a Reduce function, and writes them to a distributed file system as the result [7].

Our MapReduce algorithm, MRdRPQ, is illustrated in Fig. 9 and given in Fig. 10. It evaluates \(q_\alpha(s, t, R) \) on graph \(G \) using procedures preMRPQ, mapRPQ and reduceRPQ. We next present the three procedures in details.

Procedure preMRPQ. A coordinator first generates the query automaton \(G_q(R) \) of \(q_\alpha(s, t, R) \) (line 1; see Section 5). The graph \(G \) is then partitioned into \(K \) fragments (line 2) using some strategy \(\text{parG} \), where \(K \) is the number of mappers. Each fragment \(F_i \) is represented as a key/value pair, where the key is \(i \in [1, K] \), and its value is a pair \(<F_i, G_q(R)>\) (lines 3-4). It is sent to mapper \(M_i \) along with \(G_q(R) \) (line 5).

Graph partitioning is conducted implicitly by MapReduce implementation (e.g., Hadoop), provided the number \(K \) of mappers and the average size \([|F_k|]/K\) of fragments (line 2). To explore the maximum parallelism we want the fragments to be of equal size; hence \([|F_k|]/K\). One may also want to minimize \(\sum_{F_i \in F} |F_i|/|F| \), where \(|F_i| \) (resp. \(F \)) is the set of in-nodes (resp. virtual nodes) of fragment \(F_i \). However, this partition problem is intractable [10]. In our implementation we used Hadoop’s default partitioning strategy.

Procedure mapRPQ at each mapper. Upon receiving a pair \(<i, (F_i, G_q(R)>\), procedure mapRPQ is triggered at mapper \(M_i \), in parallel. It simply uses procedure localEval, of Fig. 7 as its Map function, and computes a key/value pair \(<i, rvset>\) (line 1), where \(rvset \) is the vector set as described in Section 5. It sends the pair to a reducer \(R_m \). Note that pairs from all the mappers are sent to the same reducer.

Procedure reduceRPQ at the reducer \(R_m \). After collecting the key/value pairs from all the mappers, the reducer puts these pairs in a set \(RVset \) (lines 1-3). It then invokes the assembling procedure evalDG (see Section 5) as the Reduce function to compute the answer \(\alpha \) to \(q_\alpha \) in \(G \) (line 4), and writes a pair \(<0, \alpha>\) to the distributed file system (line 5).

Correctness and complexity. The correctness of algorithm MRdRPQ immediately follows from the correctness of algorithm disRPQ (see Section 5). Following [1], we analyze the performance of MRdRPQ using the elapsed communication cost ECC (data volume cost), which measures the total time cost of (parallel) data shipment. We define a process path \(P \) of MRdRPQ to be a path from the coordinator to the reducer, passing a single mapper (see Fig. 9). The cost of a process path \(\alpha \) is the sum of the size of input data shipped to the nodes on \(\alpha \), following an edge of \(\alpha \). The ECC of MRdRPQ is the maximum cost over all process paths.

The ECC analysis unifies the time and network traffic costs of a MapReduce algorithm. It does not count the in-memory computation cost of the Map and Reduce functions. Nevertheless, (1) any indexes and compression techniques developed for centralized graph query evaluation can be adopted by mappers, as remarked earlier, (2) further MapReduce steps can be used to implement both Map and Reduce functions, and (3) network traffic dominates the total computation time for real-life large graphs [1].

For algorithm MRdRPQ, one can verify the following. (1) The input size of each mapper is bounded by \(O(|F_m|) \), where \(F_m \) is the largest fragment returned by \(\text{parG} \). (2) The input size of the reducer is bounded by \(O(|R|^2|V_f|^2) \), where \(V_f \) is the set of nodes in the fragment graph \(G_f \). Putting these together, the ECC of mapRPQ is \(O(|F_m| + |R|^2|V_f|^2) \).

7. EXPERIMENTAL EVALUATION. We next present an experimental study of our distributed algorithms. Using real-life and synthetic data, we conducted four sets of experiments to evaluate the efficiency and communication costs of algorithms disReach (Section 3), disDist (Section 4), disRPQ (Section 5) and the MapReduce algorithm MRdRPQ (Section 6) on Amazon EC2. The sizes of these graphs are shown below.

| Dataset | \(|V|\) | \(|E|\) |
|--------------|-------|-------|
| LiveJournal | 2,541,032 | 20,000,001 |
| WikiTalk | 2,894,385 | 5,021,410 |
| BerkStan | 685,230 | 1,290,265 |
| NotreDame | 325,729 | 1,497,134 |
| Amazon | 262,111 | 1,234,877 |

For regular reachability queries, we used the following data:

(1) **Real-life graphs.** For (bounded) reachability queries, we used the following*: (a) a social network LiveJournal, (b) a communication network WikiTalk, (c) two Web graphs BerkStan and NotreDame, and (d) a product co-purchasing network Amazon. The sizes of these graphs are shown below.

*http://snap.stanford.edu/data/index.html
http://www.arxiv.org/citation/
http://netsg.cs.sfu.ca/youtubedata/
category), and each edge indicates a recommendation, and (d) Internet, where each node is a system labeled with its id and location, and each edge represents internet connection. The datasets are summarized below, where $|V|$ is the size of node label set, and $\text{card}(F)$ is the number of the fragments generated for regular reachability queries (see below).

| Dataset | $|V|$ | $|E|$ | $|L|$ | $\text{card}(F)$ |
|------------|------|------|------|-----------------|
| Citation | 1572,278 | 2,084,019 | 6800 | 19 |
| MEDE | 700,000 | 800,000 | 61065 | 11 |
| Youtube | 234,452 | 454,942 | 12 | 12 |
| Internet | 57,971 | 101,158 | 226 | 10 |

(2) Synthetic data. We designed a generator to produce large graphs, controlled by the number $|V|$ of nodes, the number $|E|$ of edges, and the size $|L|$ of node labels.

(3) Graph fragmentation. We randomly partitioned real-life and synthetic graphs G into a set F of fragments, controlled by $\text{card}(F)$ and the average size of the fragments in F (the sum of the numbers of nodes and edges), denoted by $\text{size}(F)$. Unless stated otherwise, $\text{size}(F) = |G|/\text{card}(F)$.

(4) Query generator. We randomly generated (a) reachability queries, (b) bounded reachability queries with bound l, and (c) regular reachability queries from a set L of labels.

(5) Algorithms. We implemented the following algorithms in Java: (A) disReach, disReach_s, and disReach_m for reachability queries, where (a) disReach_s ships all the fragments to a coordinator in parallel, which calls a centralized BFS algorithm to evaluate the query [31]; and (b) disReach_m, a message-passing based distributed BFS algorithm following [21] (see details below); (B) disDist and disDist_s for bounded reachability queries, where disDist_s is similar to disReach_s; (C) disRPQ, disRPQ_s, and disRPQ_m for regular reachability queries, where disRPQ_s is similar to disReach_s, and disRPQ_m is a variant of the algorithm of [30] (see Section 1); and (D) the MapReduce algorithm MrdRPQ.

Following [21], algorithm disReach_m assigns a worker S_i for each fragment F_i, and a master S_c that maintains the fragment graph (see Section 2). (i) Each node v in the fragments has a status $l(v) \in \{\text{inactive}, \text{active}\}$, initially inactive. (ii) A message "T" can be sent only from active nodes v_1 (i.e., $l(v_1) = \text{active}$) to their inactive children v_2 (i.e., $l(v_2) = \text{inactive}$), which then become active. (iii) No active node can become inactive again. (iv) S_i can send "T", "idle", or a virtual node of F_i, as a message to S_c.

Upon receiving a reachability query $q(s,t), S_c$ posts q_s to all the workers S_i. For the fragment F_i that contains the node s specified in $q_s(s,t)$, its worker S_i changes $l(s)$ to active, and sends a message "T" to its immediate inactive children, which in turn propagate "T" following a BFS traversal to inactive nodes. During the propagation, (i) if "T" reaches an inactive virtual node v, S_i sends a message v to S_c, which redirects the message to workers S_j where the fragments F_j has inactive in-node v; (ii) S_i then makes v active, and propagates "T" along the same lines in F_j; (ii) if "T" reaches the node t in $q_s(s,t)$, S_i sends message "T" to S_c, and algorithm disReach_m returns true, indicating that $q_s(s,t) = \text{true}$; and (iii) when no message is propagating in S_i, it sends message "idle" to S_c. Algorithm disReach_m returns false if all the workers send "idle" to it.

Machines. We deployed these algorithms on Amazon EC2 High-Memory Double Extra Large instances. Each site

Table 2: Efficiency and data shipment: real life data stored a fragment. Each experiment was run 5 times and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Efficiency and scalability of disReach.

Efficiency. We first evaluated the efficiency of disReach, disReach_s and disReach_m. Fixing card$(F) = 4$, we randomly generated 100 reachability queries (where around 30% return "true"), and report the average evaluation time and the network traffic in Table 2. The results show that disReach is far more efficient than disReach_s and disReach_m. For example, on Amazon, disReach takes only 20% of the running time of disReach_m, and 6% of that of disReach_s. On the real datasets it takes 4 seconds in average.

For the network traffic of disReach_m, we counted the total number of messages sent between the workers and the master. Table 2 shows that in average, the network traffic of disReach is only 9% of that of disReach_m (i.e., the size of the original graphs), but is not as good as that of disReach_s. Indeed, the data shipment of disReach_m is linear in the number of the total virtual nodes. However, this reduction comes at the cost of serializing operations that can be conducted in parallel, as indicated by its extra running time (Table 2). Moreover, it has no bound on the number of visits to each site; for instance, when card$(F) = 4$ on Amazon, the four sites were visited about 2500 times in total.

Scalability. To evaluate the scalability with card(F), we used LiveJournal as the dataset and varied card(F) from 2 to 20. We used the same set of queries as above. Fig. 11(a) shows that the larger card(F) is, the less time disReach and disReach_m take. For disReach, this is because partial evaluation of localEval takes less time on smaller fragments. For disReach_m, while the evaluation time on the restored graph remains stable (about 10 seconds), it takes less time to ship each fragment to the coordinator when card(F) increases. In contrast, the larger card(F) is, the more costly disReach_m is. Indeed, smaller fragments require more frequent visits and thus, more communication cost.

To evaluate the scalability with the average size(F) of fragments, we generated synthetic graphs following the densification law [20], by fixing card$(F) = 8$ and varying the size of the graphs from 280K to 2.52M. As shown in Fig. 11(b), when size(F) is increased, so is the running time of all these algorithms, as expected. Nonetheless, disReach scales well with size(F), and is less sensitive to size(F) than the others.

We also tested disReach and disReach_m over a larger synthetic graph, which has 36M nodes and 360M edges. We varied card(F) from 10 to 20 in 2 increments. The results, shown in Fig 11(c), tell us the following. (1) disReach scales well with card(F), and takes less time over larger card(F), and (2) disReach_m takes more time when card(F) gets larger. The results are consistent with the observation of Fig 11(a).
We generated synthetic graphs by fixing \(l = 10 \). Fig. 11(d) shows that (1) disDist outperforms disReach by 62.5% in average, and (2) disDist and disDist\textsubscript{n} take less time over larger card\((F)\), for the same reason as given above. The performance of disDist and disDist\textsubscript{n} (not shown) are consistent with their counterparts (disReach and disReach\textsubscript{n}).

Exp-3: Efficiency and scalability of disRPQ.

Efficiency. The third set of experiments focused on the performance of algorithms disRPQ, disRPQ\textsubscript{d}, and disRPQ\textsubscript{n} [30], for regular reachability queries. We specify the complexity of such a query in terms of \(|V_q|, |E_q|, |L_q|\), where \(V_q, E_q \) and \(L_q \) are the sets of states, transitions and node labels in its query automaton, respectively (see Section 5.1).

We first evaluated the response time and network traffic of these algorithms on the four real-life datasets described earlier, with \(|V|, |E|, |L| \) and card\((F)\) given there. We generated 30 regular reachability queries with \(|V_q| = 8, |E_q| = 16, |L_q| = 8\), and report their average time (resp. network traffic) in Fig. 11(e) (resp. Fig. 11(f)). We find the following: (1) disRPQ is more efficient than disRPQ\textsubscript{d} and disRPQ\textsubscript{n}; indeed, the running time of disRPQ is 61.8%, 88%, 64.8% and 56.6% of that of disRPQ\textsubscript{d} on Youtube, MEME, Citation and Internet, respectively; and (2) disRPQ incurs less network traffic than the other algorithms: at most 25% of data shipped by disRPQ\textsubscript{d} and 3% of that of disRPQ\textsubscript{n} in average.

To evaluate the impact of query complexity, we used Youtube and generated 40 regular reachability queries by varying \(|V_q| \) from 4 to 18 and \(|E_q| \) from 8 to 36, while fixing \(|L_q| = 8\). Fig. 11(g) shows that (1) all the algorithms take longer to answer larger queries, and (2) disRPQ and disRPQ\textsubscript{d} are less sensitive to the size of queries than disRPQ\textsubscript{n}.

Scalability. We generated synthetic graphs by fixing card\((F) = 10\) while varying the size of the graphs from 350K to 3.15M. We tested 30 queries with \(|V_q| = 8, |E_q| = 16 \) and \(|L_q| = 8\), and report the average running time in Fig. 11(h). The result shows that disRPQ scales well with size\((F)\), and performs better than disRPQ\textsubscript{d} and disRPQ\textsubscript{n}. Moreover, it is efficient: disRPQ takes 16 seconds on graphs with 1.5M (million) nodes and 2.1M edges. In addition, the larger size\((F)\) is, the longer the three algorithms take, as expected.

To evaluate the scalability card\((F)\), we generated graphs with 1.2M nodes and 4.8M edges, and varied card\((F)\) from 6 to 20. As shown in Fig. 11(i), the larger card\((F)\) is, the less time disRPQ takes, since it conducts partial evaluation on smaller fragments by exploring parallel computation. This confirms our complexity analysis for disRPQ (Section 5). Indeed, the time taken by disRPQ when card\((F) = 6\) is reduced by 75% when card\((F) = 20\). Similarly, disRPQ\textsubscript{d} and disRPQ\textsubscript{n} take less time when card\((F)\) is increased.

In addition, we evaluated the scalability of disRPQ and disRPQ\textsubscript{d} over large synthetic graphs. Fixing \(|V| = 36M, |E| = 360M\) and \(|L| = 50\), we varied card\((F)\) from 10 to 20 in 2 increments. As shown in Fig 11(j), (1) both algorithms scale well with card\((F)\), and take less time when card\((F)\) increases; and (2) disRPQ consistently outperforms disRPQ\textsubscript{d}.

Exp-4: Efficiency of MRdRPQ. Finally, we evaluated the efficiency and scalability of MRdRPQ, implemented using Hadoop (http://hadoop.apache.org), and deployed on Amazon EC2, where each instance serves as a mapper. We use Youtube and four sets of q, Q1, Q2, Q3, Q4 of different complexities (4, 6, 8), (6, 8, 8), (10, 12, 8), (12, 14, 8), respectively.

To evaluate the scalability of MRdRPQ, we fixed the number of mappers as 10, and varied the graph size from 350K to 3.15M. As shown in Fig. 11(k), MRdRPQ scales well with size\((F)\). Moreover, the larger size\((F)\) is or the more complex a query is, the longer time MRdRPQ takes, as expected.
evaluate its scalability with the number $|M|$ of mappers, we varied $|M|$ from 5 to 30. As shown in Fig. 11(1), it takes less time of MRdRPQ to evaluate queries with more mappers. Indeed, the time taken by MRdRPQ using 5 mappers is reduced by 50% when 30 mappers are used for Q_1.

We also find that disRPQ takes 17.4% of the running time of MRdRPQ and 3.7% of its network traffic on Youtube. The extra cost of MRdRPQ is incurred in the Map phase of the MapReduce framework, for distributing data to mappers.

Summary. From the experimental results we find the following. (1) All of our algorithms scale well with the size of graphs, the number of fragments, and the complexity of queries (for disRPQ and MRdRPQ). (2) Our algorithms are efficient even on randomly partitioned graphs. For instance, (a) disReach takes 20% and 6% of the running time of disReach, and disReach$_m$ over Amazon, and takes in average 4 seconds over all real life datasets; and (b) disRPQ takes 67.8% and 46% of the time of disRPQ$_q$, and ships 45.9% of the data sent by disRPQ$_q$, on real-life and synthetic graphs in average, respectively. Overall our algorithms ship no more than 11% of the entire graphs in average. (3) Partial evaluation works well in the MapReduce model, as verified by the performance of MRdRPQ.

8. CONCLUSION

We have provided algorithms for evaluating a group of reachability queries on distributed graphs based on partial evaluation, possess performance guarantees on the number of visits to each site, the total network traffic, and on the response time. Moreover, they are generic: no constraints are imposed on how the graphs are partitioned and distributed.

We have also shown that partial evaluation can be naturally conducted as MapReduce. Our experimental study has verified the scalability and efficiency of our methods. We conclude that partial evaluation provides a promising approach to distributed graph query evaluation.

We are currently developing distributed evaluation (MapReduce) algorithms for other queries, notably graph pattern matching, over larger real-life graphs. Another topic is to combine partial evaluation and incremental computation, to provide efficient distributed graph query evaluation strategies in the dynamic world.

Acknowledgments. Fan, Wang and Wu are supported in part by the 973 Program 2012CB316200 and NSFC 61133002 of China, and in part by EPSRC EP/J015377/1, an IBM scalable data analytics for a smarter planet innovation award, and the RSE-NSFC Joint Project Scheme.

9. REFERENCES