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Abstract. This paper examines the influence of the Raf Kinase In-
hibitor Protein (RKIP) on the Extracellular signal Regulated Kinase
(ERK) signalling pathway [5] through modelling in a Markovian process
algebra, PEPA [11]. Two models of the system are presented, a reagent-
centric view and a pathway-centric view. The models capture function-
ality at the level of subpathway, rather than at a molecular level. Each
model affords a different perspective of the pathway and analysis. We
demonstrate the two models to be formally equivalent using the timing-
aware bisimulation defined over PEPA models and discuss the biological
significance.

1 Introduction

In recent years several authors have investigated the use of Petri nets and process
algebras – techniques originating in theoretical computer science – for represent-
ing the biochemical pathways within and between cells [15, 18, 10]. Largely, the
previous work has focussed on capturing the appropriate functionality at the
molecular level and analysis is through simulation. In this paper we present a
preliminary exploration of an alternative approach in which a more abstract
approach is taken and the target mathematical representation is a continuous
time Markov chain. This involves the analytical application of a process alge-
bra to a biochemical pathway with feedback. Our goal is to develop more than
one representation, suitable for different forms of analysis. We prove the two
representations to be equivalent (i.e. bisimilar).

The process algebra which we use is Hillston’s PEPA [11], a Markovian pro-
cess algebra which incorporates stochastic durations and probabilistic choices.
The system which we consider is the Ras/Raf-1/MEK/ERK signalling pathway,
as presented in [5]. We believe that our modelling is novel because we are able to
combine performance and different modelling viewpoints. Moreover we demon-
strate the feasibility of using process algebra to model signalling pathways in a
more abstract style than previously.

We propose that process algebra models are appropriate in this domain for
several reasons. First, an algebraic formulation of the model makes clear the



interactions between the biochemical entities, or substrates. This is not always
apparent in the classical, ordinary differential equation (ODE) models. Second,
an algebraic approach permits comparison of high level descriptions. For ex-
ample, when one is first building up a picture of a pathway from experimental
evidence, it may be natural to describe the pathway in a fine-grained, distributed
fashion, e.g. each substrate (in this case a protein) is described in terms of its
interactions. That is, each (collection of a) protein is a process and all processes
run in parallel, synchronising accordingly. But later, we may prefer a higher level
view of a pathway which describes how a pathway is composed of (perhaps al-
ready well known) sub-pathways. Indeed we may wish to derive the latter from
the former, or vice-versa. Third, a stochastic process approach allows reasoning
about livelocks, deadlocks, and the performance of the behaviour of the pathway
in the long-run.

This paper is an extended version of the earlier paper [2]. As previously, we
concentrate primarily on alternative approaches to constructing a representa-
tion of a pathway. We show that two contrasting representations can indeed be
identified. Moreover they can be formally shown to be equivalent. The novelty
of this paper lies in the systematic transformation between the alternative rep-
resentations which are presented in algorithmic form. The analysis of the model
has also been somewhat extended.

In the next section we give a brief overview of cell signalling and the Ras/Raf-
1/MEK/ERK pathway. In section 3 we give two different PEPA formulations
of the pathway: the first is reagent-based (i.e. distributed) and the second is
pathway-based. In section 4 we compare the two models and show them to be
bisimilar. Section 5 contains some analysis of the underlying continuous time
Markov model. Transformation between the two styles of representation is pre-
sented in section 6. There follows a discussion of further analysis, related work
and our conclusions.

2 RKIP and the ERK Pathway

The most fundamental cellular processes are controlled by extracellular signalling
[7]. This signalling, or communication between cells, is based upon the release
of signalling molecules, which migrate to other cells and deliver stimuli to them
(e.g. protein phosphorylation). Cell signalling is of special interest to cancer re-
searchers because when cell signalling pathways operate abnormally, cells divide
uncontrollably.

The Ras/Raf-1/MEK/ERK pathway (also called Ras/Raf, or ERK pathway)
is a ubiquitous pathway that conveys mitogenic and differentiation signals from
the cell membrane to the nucleus. Briefly, Ras is activated by an external stim-
ulus, it then binds to and activates Raf-1 (to become Raf-1*, “activated” Raf)
which in turn activates MEK and then ERK. This “cascade” of protein inter-
action controls cell differentiation, the effect being dependent upon the activity
of ERK. A current area of experimental scientific investigation is the role the
kinase inhibitor protein RKIP plays in the behaviour of this pathway: the hy-



pothesis is that it inhibits activation of Raf and thus can “dampen down” the
ERK pathway. Certainly there is much evidence that RKIP inhibits the malig-
nant transformation by Ras and Raf oncogenes in cell cultures and it is reduced
in tumours. Thus good models of these pathways are required to understand
the role of RKIP and develop new therapies. Moreover, an understanding of
the functioning and structure of this pathway may lead to more general results
applicable to other pathways.

Here, we consider how RKIP regulates the activity of the Raf-1/MEK/ERK
module of the ERK pathway, as presented in [5]. This paper [5] presents a number
of mathematical models in the form of nonlinear ODEs and difference equations
representing the (enzyme) kinetic reactions, based on a graphical representation
given in Figure 1. This figure is taken from [5], with some additions. Specifically,
we have added MEK and an associated complex, following discussions with the
authors1.

We take Figure 1 as our starting point, and explain informally, its meaning.
Each node is labelled by the protein (or substrate, we use the two interchange-
ably) it denotes. For example, Raf-1, RKIP and Raf-1*/RKIP are proteins, the
last being a complex built up from the first two. It is important to note that Raf-
1*/RKIP is simply a name, following biochemical convention; the / symbol is
not an operator (in this context). A suffix -P or -PP denotes a phosyphorylated
protein, for example MEK-PP and ERK-PP. Each protein has an associated
concentration, denoted by m1, m2 etc. Reactions define how proteins are built
up and broken down. We refer to the former as an association, or forward re-
action, and the latter as a disassociation, or backward reaction. Associations
are typically many to one, and disassociations one to many, relations. In the
figure, bi-directional arrows denote both forward and backward reactions; uni-
directional arrows denote disassociations. For example, Raf-1* and RKIP react
(forwards) to form Raf-1*/RKIP, and Raf-1/RKIP disassociates (a backward
reaction) into Raf-1* and RKIP. Reactions do not necessarily come in pairs; for
example, Raf-1*/RKIP/ERK-PP disassociates into Raf-1*, ERK and RKIP-P.
Each reaction has a rate denoted by the rate constants k1, k2, etc. These are
given in the rectangles, with kn/kn+1 denoting that kn is the forward rate and
kn + 1 the backward rate. So for example, Raf-1* and RKIP react (forwards)
with rate k1, and Raf-1/RKIP disassociates with rate k2.

Initially, all concentrations are unobservable, except for m1, m2, m7, m9, and
m10 [5].

Figure 1 gives only a static, abstract view of the pathway; the dynamic
behaviour is quite complex, particularly because some substrates are involved
in more than one reaction. In the next section we develop two process algebraic
models which capture that dynamic behaviour.

1 Analysis of our original model(s) indicated a problem with MEK and prompted us
to contact an author of [5] who confirmed that there was an omission.
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Fig. 1. RKIP inhibited ERK pathway

3 Modelling the ERK signalling pathway in PEPA

In this section we present two stochastic process algebra models of the ERK
signalling pathway.

The two models presented here encode different views of the underlying bio-
chemistry. The first is a reagent-centric view, focussing on the variations in con-
centrations of the reagents, fluctuating with phosphorylation and product for-
mation, i.e. with association and disassociation reactions. This model provides
a fine-grained, distributed view of the system. The second is a pathway-centric
view, tracking the legitimate serialisations of activities. This model provides a
coarser grained, more abstract view of the same system.

For some purposes in biological study the former view provides the right
conceptual tools and powers the programme of analysis. For other purposes the
pathway-centric view brings to the fore the dynamics of greatest interest. A
major contribution of this paper is the unification of both views.

We express both models in the PEPA stochastic process algebra [11]. We
assume some familiarity with this process algebra; a brief introduction to PEPA
is contained in Appendix A. All activities in PEPA are timed. Specifically, their
durations are quantified using exponentially-distributed random variables. The
PEPA algebra supports multi-way cooperations between components: the result
of synchronising on an activity α is thus another α, available for further syn-



chronisation. The multi-way synchronisation of PEPA makes this process algebra
ideally suited to this domain.

Each reaction in the pathway is represented by a multi-way synchronisa-
tion – on the reagents of the reaction2. We refer to reagents as producers and
consumers, depending upon their role within the reaction. Table 1 gives the pro-
ducers and consumers for reactions in the pathway. The first column names the
reaction using the following convention. Reactions which are forward and back-
ward are called react, with a prefix which is the associated rate constant. For
example, k1react is the name of the reaction between Raf-1* and RKIP, to pro-
duce Raf-1*/RKIP. Thus k1react is a 3-way synchronisation. Reactions which
are only disassociations are called product (because they produce products);
again, the prefix denotes the associated rate constant. Table 1 gives only the
forward reactions for the reactions which are both forward and backwards; to
obtain the associated backward descriptions, replace Producer by Consumer and
vice-versa.

Reaction Producer(s) Consumer(s)

k1react {Raf-1∗, RKIP } {Raf-1∗/RKIP }
k3react {ERK-PP, Raf-1∗/RKIP } {Raf-1∗/RKIP/ERK-PP }
k6react {MEK-PP, ERK-P } {MEK-PP/ERK }
k9react {RKIP-P, RP } {RKIP-P/RP }
k12react {MEK, Raf-1∗ } {MEK/Raf-1∗ }
k5product {Raf-1∗/RKIP/ERK-PP } {ERK-P, RKIP-P, Raf-1∗ }
k8product {MEK-PP/ERK } {MEK-PP, ERK-PP }
k11product {RKIP-P/RP } {RKIP, RP }
k14product {MEK/Raf-1∗ } {Raf-1∗, MEK-PP }
k15product {MEK-PP } {MEK }

Table 1. Reactions in the pathway

3.1 Modelling centred on reagents

The reagent-centred model is presented in Figures 2 and 3. In this view, we rep-
resent concentrations by a discrete number of abstract values. Here, we consider
the coarsest possible discretisation: there are two values representing (contin-
uous) concentrations; we refer to the two values as high and low. The former
implies that a reagent can participate (as a producer) in a forward reaction; the
latter implies that a reagent can participate (as a consumer) in a product, or
(as a producer) in a backward reaction. Otherwise, the substrate is inert, with
respect to a reaction. We discuss the effect of a finer granularity of abstract
concentration on the model in Section 7.
2 We agree with the authors of [15] – reactions are fundamentally synchronous.



We define the behaviour of each substrate in turn, for each concentration.
Thus there are 2n equations, where n is the number of proteins. We adopt
the naming convention that high concentrations have a H subscript and low
concentrations have a L subscript.

Most equations involve a choice between alternative behaviours (notated by
+). For example, even in one of the simplest cases, RKIP, where there is a simple
cycle between high and low concentrations, there is still a choice of how to return
to a high concentration (by a backwards reaction, or through a product). Most
behaviours are more complex.

The equations define the possible reactions within the pathway. All of the
permissible interleavings of these reactions are obtained from the (synchronised)
parallel composition of these components. Figure 3 shows how these are com-
posed in the PEPA algebra. The composition operator (��) is indexed by an
activity set (i.e. the events whose participants must be synchronised). The left
and right operands must cooperate on these activities, introducing a synchroni-
sation point. The degenerate case of this composition operator (where the set
is empty) provides the expected unrestricted parallel composition of the com-
ponents, allowing all possible interleavings without synchronisation. This case is
denoted by ‖ (there is one occurrence).

The initial state of the model has high concentrations of some reagents and
low concentrations of the others, as described in the previous section. Therefore,
in Figure 3, proteins with an initial concentration are initially high; all others
are low.

3.2 Modelling centred on pathways

A different view is afforded by the pathway-centric perspective. This de-emphasises
reagents and emphasises sub-pathways within the signalling pathway. In this
model, given in Figure 4, there are five (sub)pathways, one for each substrate
with an initial concentration. Thus Pathway10 corresponds to the pathway from
RP (m10), Pathway20 to RKIP (m2), Pathway30 to ERK-PP (m9), Pathway40

to Raf-1* (m1), and Pathway50 to MEK-PP (m7). Each (sub)pathway describes,
in effect, how a substrate is consumed and then, eventually, replenished.

It is important to note that none of these (sub)pathways is closed, i.e. there
are reactions with edges which are directed to/from outside of the (sub)pathway.
Figure 6 gives a diagrammatic representation of the simplest pathway, Pathway10.
In this case, the pathway is not closed because there are two missing edges as-
sociated with k9react and k11product .

This presentation facilitates the direct verification of simple properties of the
model such as “the first observable activity is event X”. For example, an initial
syntactic inspection of this model would lead to the conclusion that the first
activity is one of k1react , k3react , k9react or k15product . Processing the model
with the PEPA Workbench [9] confirms that the initial model configuration
allows only k15product and k1react , the others are not permitted because some
necessary participants are not initially ready to engage in these reactions.



Raf-1∗
H

def
= (k1react , k1).Raf-1∗

L + (k12react , k12).Raf-1∗
L

Raf-1∗
L

def
= (k5product , k5).Raf-1∗

H + (k2react , k2).Raf-1∗
H

+ (k13react , k13).Raf-1∗
H + (k14product , k14).Raf-1∗

H

RKIPH
def
= (k1react , k1).RKIPL

RKIPL
def
= (k11product , k11).RKIPH + (k2react , k2).RKIPH

MEKH
def
= (k12react , k12).MEKL

MEKL
def
= (k13react , k13).MEKH + (k15product , k15).MEKH

MEK/Raf-1∗
H

def
= (k14product , k14).MEK/Raf-1∗

L + (k13react , k13).MEK/Raf-1∗
L

MEK/Raf-1∗
L

def
= (k12react , k12).MEK/Raf-1∗

H

MEK-PPH
def
= (k6react , k6).MEK-PPL + (k15product , k15).MEK-PPL

MEK-PPL
def
= (k8product , k8).MEK-PPH + (k7react , k7).MEK-PPH

+ (k14product , k14).MEK-PPH

ERK-PPH
def
= (k3react , k3).ERK-PPL

ERK-PPL
def
= (k8product , k8).ERK-PPH + (k4react , k4).ERK-PPH

ERK-PH
def
= (k6react , k6).ERK-PL

ERK-PL
def
= (k5product , k5).ERK-PH + (k7react , k7).ERK-PH

MEK-PP/ERKH
def
= (k8product , k8).MEK-PP/ERKL + (k7react , k7).MEK-PP/ERKL

MEK-PP/ERKL
def
= (k6react , k6).MEK-PP/ERKH

Raf-1∗/RKIPH
def
= (k3react , k3).Raf-1∗/RKIPL + (k2react , k2).Raf-1∗/RKIPL

Raf-1∗/RKIPL
def
= (k1react , k1).Raf-1∗/RKIPH + (k4react , k4).Raf-1∗/RKIPH

Raf-1∗/RKIP/ERK-PPH
def
= (k5product , k5).Raf-1∗/RKIP/ERK-PPL

+ (k4react , k4).Raf-1∗/RKIP/ERK-PPL

Raf-1∗/RKIP/ERK-PPL
def
= (k3react , k3).Raf-1∗/RKIP/ERK-PPH

RKIP-PH
def
= (k9react , k9).RKIP-PL

RKIP-PL
def
= (k5product , k5).RKIP-PH + (k10react , k10).RKIP-PH

RPH
def
= (k9react , k9).RPL

RPL
def
= (k11product , k11).RPH + (k10react , k10).RPH

RKIP-P/RPH
def
= (k11product , k11).RKIP-P/RPL + (k10react , k10).RKIP-P/RPL

RKIP-P/RPL
def
= (k9react , k9).RKIP-P/RPH

Fig. 2. PEPA model definitions for the reagent-centric model



(Raf-1∗
H

��
{k1react,k2react,k12react,k13react,k5product,k14product}

(RKIPH ��
{k1react,k2react,k11product}

(Raf-1∗/RKIPL ��
{k3react,k4react}

(Raf-1∗/RKIP/ERK-PPL) ��
{k3react,k4react,k5product}

(ERK-PL ��
{k5product,k6react,k7react}

(RKIP-PL ��
{k9react,k10react}

(RKIP-P/RPL ��
{k9react,k10react,k11product}

(RPH ‖
(MEKL ��

{k12react,k13react,k15product}
(MEK/Raf-1∗

L
��

{k14product}
(MEK-PPH ��

{k8product,k6react,k7react}
(MEK-PP/ERKL ��

{k8product}
(ERK-PPH))))))))))))

Fig. 3. PEPA model configuration for the reagent-centric model

4 Comparison of reagent and pathway-centric models

The pathway-centric model captures longer chains of behaviour flow within the
system, leading to a smaller number of component definitions. Differentiating
fewer components in the pathways model leads to a simpler composition of model
components, presented in Figure 5. This is not only a matter of presentation.
A larger state vector representation occupies more memory so the pathway-
centric representation could potentially scale better to more detailed models of
the Ras/Raf-1/MEK/ERK signalling pathway than the reagent-centric repre-
sentation. But, the disadvantage of the pathway-centric representation is that it
is no longer possible to read off directly concentrations of components (i.e. there
is no explicit high or low concentrations). These now have to be inferred from
local observations of pathways. This is relatively easy for proteins which have
initial concentrations, otherwise, the inference is non-trivial.

Fortunately, the two models are observationally equivalent, that is, the two
models give rise to (timing aware) bisimilar—in fact isomorphic—labelled multi-
transition systems. We demonstrate this relationship by plotting the statespace
of the two systems, see Figure 7. There are 28 states, s1 to s28, thus it is not
possible in Figure 7 to give meaningful labels. In Table 2 we enumerate a few of
the states. We give the name from the reagent-centric model first, followed by
the name of the equivalent state from the pathway-centric model. In all cases,
the synchronisation operator �� is removed.

We believe that for any pathway, bisimilarity holds for any pair of reagent-
centric and pathway-centric models; a formal proof is beyond the scope of this
paper. We restrict our attention to this pathway and the consequence of the



Pathway10

def
= (k9react , k9).Pathway11

Pathway11
def
= (k11product , k11).Pathway10 + (k10react , k10).Pathway10

Pathway20

def
= (k1react , k1).Pathway21

Pathway21

def
= (k3react , k3).Pathway22 + (k2react , k2).Pathway20

Pathway22

def
= (k5product , k5).Pathway23 + (k4react , k4).Pathway21

Pathway23
def
= (k9react , k9).Pathway24

Pathway24

def
= (k11product , k11).Pathway20 + (k10react , k10).Pathway23

Pathway30

def
= (k3react , k3).Pathway31

Pathway31

def
= (k5product , k5).Pathway32 + (k4react , k4).Pathway30

Pathway32

def
= (k6react , k6).Pathway33

Pathway33

def
= (k8product , k8).Pathway30 + (k7react , k7).Pathway32

Pathway40

def
= (k1react , k1).Pathway41 + (k12react , k12).Pathway43

Pathway41
def
= (k2react , k2).Pathway40 + (k3react , k3).Pathway42

Pathway42

def
= (k5product , k5).Pathway40 + (k4react , k4).Pathway41

Pathway43

def
= (k13react , k13).Pathway40 + (k14product , k14).Pathway40

Pathway50

def
= (k15product , k15).Pathway51 + (k6react , k6).Pathway53

Pathway51

def
= (k12react , k12).Pathway52

Pathway52

def
= (k13react , k13).Pathway51 + (k14product , k14).Pathway50

Pathway53

def
= (k8product , k8).Pathway50 + (k7react , k7).Pathway50

Fig. 4. PEPA model definitions for the pathway-centric model

((((Pathway50
��

{k12react,k13react,k14product} Pathway40)

��
{k3react,k4react,k5product,k6react,k7react,k8product} Pathway30)

��
{k1react,k2react,k3react,k4react,k5product} Pathway20)

��
{k9react,k10react,k11product} Pathway10)

Fig. 5. PEPA model configuration for the pathway-centric model



m 10

m 11

RP

RKIP−P/RP

k11

k9/k10

Fig. 6. Pathway10

s21 s22 s15 s17

s16s14s20s19

s7 s8 s10 s12

s9 s11 s13

s6

s18s25 s23 s1 s3

s4s2s24s26

s28 s27 s5

k5product

k5product

k6react k6react k6react k6reactk7react k7react k7react k7react

k11product

k11product

k11product

k11productk11product

k11product

k11product

k15productk15productk15productk15productk15productk15product

k8product k8product k8product k8product

k9react

k9react

k9react

k9react

k10react

k10react

k10react

k10react

k10react

k10react

k10react

k9react

k9react

k9react k1react

k2react

k3react

k4react

k3react

k4react

k1react

k2react

k1react

k2react

k1react

k2react

k1react

k2react

k15productk15productk15product

k12react k12react k12react k12react k12react k12react

k13react k13reactk13reactk13reactk13react
k14product k14productk14product k14productk14product k14product

Fig. 7. The state space of the reagent and the pathway model
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s1 (H, H, L, L, L, L, L, H, L, L, H, L, H) (Pwy50,Pwy40,Pwy30,Pwy20,Pwy10)

s2 (H, H, L, L, L, L, L, H, H, L, L, L, H) (Pwy51,Pwy40,Pwy30,Pwy20,Pwy10)

s3 (L, L, H, L, L, L, L, H, L, L, H, L, H) (Pwy50,Pwy41,Pwy30,Pwy21,Pwy10)

s4 (L, L, H, L, L, L, L, H, H, L, L, L, H) (Pwy51,Pwy41,Pwy30,Pwy21,Pwy10)

s5 (L, H, L, L, L, L, L, H, L, H, L, L, H) (Pwy52,Pwy43,Pwy30,Pwy20,Pwy10)

s6 (L, L, L, H, L, L, L, H, H, L, L, L, L) (Pwy51,Pwy42,Pwy31,Pwy22,Pwy10)

s7 (H, L, L, L, H, H, L, H, H, L, L, L, L) (Pwy51,Pwy40,Pwy32,Pwy23,Pwy10)

s8 (H, L, L, L, H, L, H, L, H, L, L, L, L) (Pwy51,Pwy40,Pwy32,Pwy24,Pwy11)

s9 (L, L, L, L, H, H, L, H, L, H, L, L, L) (Pwy52,Pwy43,Pwy32,Pwy23,Pwy10)

s10 (H, H, L, L, H, L, L, H, H, L, L, L, L) (Pwy51,Pwy40,Pwy32,Pwy20,Pwy10)
...

...
...

s28 (L, L, L, L, L, H, L, H, L, H, L, L, H) (Pwy52,Pwy43,Pwy30,Pwy23,Pwy10)

Table 2. Some bisimilar states

bisimilarity result which is that the two models give rise to the same Markov
chain representations. The Markov chain can be analysed for transient behaviour,
or solved to find the steady-state (long-run) probability distribution. Here we
concentrate on the latter, since it is of more interest with respect to this pathway.
In the following section we generate the steady state distribution and perform
some analysis.

5 Model analysis

We used the PEPA Workbench [9] to analyse our models. The Workbench imple-
ments the operational semantics of PEPA to generate Continuous-Time Markov
Chain (CTMC) models of system descriptions, and it provides analysis tools.
First, we used the Workbench to test for deadlocks in our models. Initially,
there were several; this is how we discovered an incompleteness in the system
description of [5], with respect to with MEK. Second, when we had deadlock-free
models, we used the Workbench to generate the CTMC and analyse its long-run
probability distribution. This distribution varies as the rates associated with the
activities of the PEPA model are varied, so the solution of the model is relative
to a particular assignment of the rates.



The steady-state probability distribution can be obtained using a number of
routines from numerical linear algebra. In the case of the present model(s), we
solved this using the implementation of the preconditioned biconjugate gradient
method in the PEPA Workbench. This is an iterative procedure which solves
systems of linear equations of moderate size very quickly.

Numerical methods based on the computation of the steady-state probability
distribution for a Continuous-Time Markov Chain have wide application, but
are not routinely used in computational biology. Instead biological models are
often formulated as systems of first-order coupled ordinary differential equations
(ODEs) and computational analysis proceeds via reaction rate equations using
methods such as Runge-Kutta.

In another paper [3], we present an algorithmic procedure for generating a
system of ODEs from a PEPA model of high and low component concentration.
This provides a useful method of validating a process algebra model against an
existing system of ODEs. In the case of the ERK pathway we have been able to
recreate exactly the system of ODEs as used in [5].

Numerical integration of the ODEs gives rise to time series plots which show
how the concentration of components varies over time. These tend to a steady-
state equilibrium which we have found to be in good agreement with the steady-
state computed by Markovian methods.

Because of this different point of view it is appropriate to say a little here
about how computational analysis via CTMCs compares with analysis via ODEs.

There are two axes of comparison for numerical methods. One is numerical
stability (that is, under what conditions the methods converge to an acceptable
result) and the other is computational efficiency. To make both parts of the com-
parison between CTMCs and ODEs we consider using the Chapman-Kolmogorov
differential equations to perform transient analysis of a Markov chain.

Firstly, in the seminal work on numerical solution of Markov chains Stew-
art [19] discourages the use of ODEs to perform transient analysis of Markov
chains, pointing to poor stability properties. Thus Markovian methods have this
advantage in practical application.

Secondly, although it is more informative, transient analysis has higher com-
putational cost than steady-state analysis. This indicates a saving in computa-
tional cost because here we are considering only steady-state solutions of the
reagent and pathway models.

Since the reagent and pathway models are isomorphic, the underlying steady-
state probability distributions are identical. However, it is possible to make dif-
ferent judgements about the two models using the PEPA state-finder which
allows one to search for symbolic descriptions of states. For example, in the
reagent-centric model, we used the PEPA state-finder to aggregate the proba-
bilities of all states when ERK-PP is high, or low, for a given set of rates. That
is, it aggregated the probabilities of states whose (symbolic) description has the
form ∗ �� ERK-PPH where ∗ is a wildcard standing for any expression. We
then repeated this with a different set of rates and compared results. In the
reagent-centric model, we observed that the probability of being in a state with



ERK-PPH decreases as the rate k1 is increased, and the converse for ERK-PPL

increases. For example, with k1 = 1 and k1 = 100, the probability of ERK-PPH

drops from .257 to .005. We can also plot throughput (rate × probability) against
rate. Figures 8 and 9 shows two sub-plots which detail the effect of increasing the
rate k1 on the k14product and k8product reactions – the production of (doubly)
phosphorylated MEK and (doubly) phosphorylated ERK, respectively. These
are obtained by solving the pathway model, taking each of the product and re-
action rates to be unity and scaling k1 (keeping all other rates to be unity).
The graphs show that increasing the rate of the binding of RKIP to Raf-1*
dampens down the k14product and k8product reactions, and they quantify this
information. The efficiency of the reduction is greater in the former case: the
graph falls away more steeply. In the latter case the reduction is more gradual
and the throughput of k8product peaks at k1 = 1. Note that since k5product
is on the same pathway as k8product, both ERK-PP and ERK-P are similarly
affected. Thus we conclude that the rate at which RKIP binds to Raf-1* (thus
suppressing phosphorylation of MEK) affects the ERK pathway, as predicted
(and observed); RKIP does indeed regulate the ERK pathway.
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Fig. 8. Plotting the effect of k1 on k14product

6 Transformation

In this section we present a set of transformations between the two styles of
representation, based on an intermediate matrix representation. Thus we define
an activity matrix Ma which captures the relationship between reagents and
reactions. The matrix has one row corresponding to each reagent in the system,
whilst each column corresponds to exactly one reaction. Within the matrix we
quantify the impact of each reaction on each reagent in a manner analogous to
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Fig. 9. Plotting the effect of k1 on k8product

the stoichiometry matrix of the chemical reaction3. This can be regarded as a
canonical representation in the sense that there is no redundancy within it. In
the example presented in this paper all reactions are deterministic and therefore
entries in the activity matrix will always be between −1, 0 or +1.

As we will show, both reagent-centric and pathway-centric PEPA models can
be readily and systematically translated into their activity matrix representation.
Moreover, we will also show that for a given activity matrix a corresponding
PEPA model of either form can be systematically generated. In the remainder
of this section we give the algorithms for each of these transformations — from
the process algebra models to the matrix, and from the matrix to each form of
process algebra model.

Definition 1 (Activity Matrix). For a system with R reactions and S reagents,
the activity matrix Ma is an S×R matrix, and the entries are defined as follows.

(si, rj) =

⎧⎨
⎩

+1 if si is a consumer of rj

−1 if si is a producer of rj

0 otherwise.

The relationship between the activity matrix the reagent-centric model is
fairly straightforward but the relationship to the pathway model is somewhat
more involved. Therefore we start by explaining the mapping from the reagent-
centric model to the matrix.

Reagent-centric model to activity matrix In the reagent centric model there are a
pair of PEPA definitions corresponding to each reagent. The set of reactions that
this reagent is involved in are those that appear in the definitions of these com-
ponents. The impact of a reaction can be seen according to whether the reaction
3 However, we emphasise that our models do not represent individual molecules



moves the reagent from high to low (decreasing, −1) or vice versa (increasing,
+1). The algorithm for generating the activity matrix from a reagent-centric
model is shown in Figure 10.

// Construct a matrix of the appropriate size

Form a matrix with one row for each pair (H,L) of components

and a column for each activity used in the process algebra definitions

// Populate the matrix

For each H component, on the appropriate row, make a -1 entry in the

column corresponding to each activity it enables

For each L component, on the appropriate row, make a +1 entry in the

column corresponding to each activity it enables

Fig. 10. Pseudo-code for transforming a reagent-centric model to an activity matrix

Activity matrix to reagent-centric model When forming a reagent-centric PEPA
model from an activity matrix, we will generate two PEPA component definitions
for each reagent/row of the matrix – one corresponding to high concentration
and one corresponding to low concentrations. The reagent in high concentration
will enable all those reactions which have a negative entry in the column, whilst
the reagent in low concentration will enable all those reactions which have a
positive entry in the column.

The algorithm for generating a reagent-centric model from an activity matrix
is shown in Figure 11. There are two stages to the algorithm. First, a pair of
model components are formed corresponding to each row as outlined above. Sec-
ond, the components must be configured with appropriate interactions between
them. We exploit the knowledge that in this style of model each component
must cooperate on all its activities. Thus the model configuration is built iter-
atively — as each component is added it is specified to cooperate with the rest
of the model on all its activities. Whether each reagent exhibits its high or low
concentration form in the configuration depends on whether experimental data
suggests it starts with initial concentration or not.

Pathway-centric model to activity matrix The algorithm for generating the activ-
ity matrix from a pathway-centric model is shown in Figure 12. The construction
of the matrix to capture the involvement of pathway model components in the
reactions of the system is straightforward. However, this construction will result
in some duplicate rows within the matrix because some compound reagents can
be seen to be intermediate states of two or more pathways (e.g. RKIP-P/RP
corresponds to both Pwy11 and Pwy12). Thus the duplicates must be removed.

Activity matrix to pathway-centric model The algorithm for generating a pathway-
centric model from an activity matrix is shown in Figure 13. In the activity



// Form the model components

For each row of the matrix assign a reactant name.

For each reactant

make a H subscripted component based on the reactant name

define this component to be a choice of activities as follows:

for each -1 in the corresponding row of the activity matrix

make an activity of the type of the appropriate column

which results in an L subscripted component of the same name

add this activity to the choice for the H component

make an L subscripted component based on the reactant name

define this component to be a choice of activities as follows:

for each +1 in the corresponding row of the activity matrix

make an activity of the type of the appropriate column

which results in an H subscripted component of the same name

add this activity to the choice for the L component

// Form the model configuration

For each reactant

if this reagent has high initial concentration

enter the H subscripted component

if this reagent has low initial concentration

enter the L subscripted component

// build the appropriate cooperation set K

for each non-zero entry of the corresponding row of the activity matrix

enter the corresponding reaction/activity to the set K

add a cooperation over the set K and "("

add one ")" for each row of the matrix

Fig. 11. Pseudo-code for transforming an activity matrix to a reagent-centric model

// Construct a matrix of the appropriate size

Form a matrix with one row for each of the components exhibited by the pathways

and a column for each activity used in the process algebra definitions

// Populate the matrix

For each component, on the appropriate row, make a -1 entry in the

column corresponding to each activity it enables and a +1 entry in

the same column of the resulting component.

//Reduce the matrix

Detect and remove identical rows

Fig. 12. Pseudo-code for transforming a pathway-centric model to an activity matrix



matrix each row corresponds to a distinct reagent. In order to reconstruct the
sub-pathways, we need to take into account that fact that some reagents may
correspond to intermediate states in two or more pathways. Thus we introduce a
notion of colouring, in which one colour is associated with each sub-pathway. A
single row/reagent may have several colourings indicating which sub-pathways
it participates in.

The next goal is to identify the sub-pathways. We note that for all reagents
all the reactions that they participate in will be part of the same sub-pathway
although it is not true that each reagent that participates in a reaction will
belong to the same sub-pathway. Consequently either all the entries in a row
will be coloured with some colour C or none will. However, except for the rows
corresponding to initial concentrations, which are taken as the roots of our sub-
pathways, any row many have any number of colours associated with it.

In order to find the sub-pathways we need to find a consumer corresponding
to each producer, and vice versa, within each colour. Once such an association
is made we consider the coloured matrix entry to be paired. The pathway is
complete when all entries of that colour have been paired. In some cases there
may be several candidate matrix entries for forming a pair: the corresponding
rows are collected into a set of provisionally coloured rows until it becomes clear
which entry completes a minimal cycle. The other rows are then discarded.

When, for each colour, all matrix entries are paired, the sub-pathway model
components can be defined in a straightforward way. It remains to form the
model component. Those entries which have more than one colour must be car-
ried out in cooperation by the corresponding pathways. Thus, for a pathway
component with colour C, the cooperation set is formed as those reactions cor-
responding to a column in the matrix in which there is an entry which is coloured
C and some other colour.

As an illustration we present the activity matrix corresponding to the exam-
ple presented earlier in the paper in Figure 14. This can be derived from either
the reagent- or the pathway-centric model. In the far right hand column we give
an indication of the colouring of the matrix to derive the pathway model shown
in Figure 4 — the numbers indicate which pathway(s) each row corresponds to.

7 Further Analysis

The process algebraic approach has several tangible benefits. For example, in
addition to deadlock and quantitative analysis, the compositional nature of the
process algebra approach confines changes to the behaviour of a reagent to a
single system component, i.e. to one or two equations. In an ODE model, such
a change would be pervasive, i.e. numerous equations would have to be altered.
Nevertheless, ODE models offer analysis by a wide variety of solvers. In [3] we
show how an ODE model defining standard mass action kinetics can be de-
rived automatically from the process algebra reagent-centric or pathway-centric
models, via the activity matrix. A key observation is that the coarsest level of ab-
straction (i.e. high and low) provides sufficient information for deriving the ODE



// Colour assignment

Assign a unique colour to each reagent which has initial concentration

Identify the rows of the matrix corresponding to these reagents

Colour each row accordingly

// Find minimal pathways

For each colour C

while there are unpaired C entries in the matrix

for each -1(resp. +1) entry in row s and column r coloured C

find all entries in column r

if there are more than one +1(resp. -1) entry

if none are already coloured C

provisionally colour each corresponding entry

record them as a row set

if there is only one +1(resp. -1) entry, in row s’ say

if it is not already coloured C

colour row s’ with colour C

if s’ was previously provisionally coloured with C

remove the provisional colouring from all other

elements of the row set

// Form the model components

For each colour C

make an initial Pathway component

make a Pathway component for each other row with C coloured entries

for each C coloured Pathway component/row

define the pathway component with one activity corresponding

to each -1 column in the row whose resulting component will

be the C coloured +1 entry in the same column

// Form the model configuration

For each colour C

enter the corresponding initial Pathway component

for each reaction r which is coloured C and another colour C’

enter r into the cooperation set K

add a cooperation over the set K and "("

add one ")" for each colour

Fig. 13. Pseudo-code for transforming an activity matrix to a pathway-centric model



k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 p
a
th

w
ay

s

Raf-1∗ −1 +1 0 0 +1 0 0 0 0 0 0 −1 +1 +1 0 4

RKIP −1 +1 0 0 0 0 0 0 0 0 +1 0 0 0 0 2

Raf-1∗/RKIP +1 −1 −1 +1 0 0 0 0 0 0 0 0 0 0 0 2, 4

Raf-1∗/RKIP/ERK-PP 0 0 +1 −1 −1 0 0 0 0 0 0 0 0 0 0 2, 3, 4

ERK-P 0 0 0 0 +1 −1 +1 0 0 0 0 0 0 0 0 3

RKIP-P 0 0 0 0 +1 0 0 0 −1 +1 0 0 0 0 0 2

MEK-PP 0 0 0 0 0 −1 +1 +1 0 0 0 0 0 +1 −1 5

MEK-PP/ERK 0 0 0 0 0 +1 −1 −1 0 0 0 0 0 0 0 3, 5

ERK-PP 0 0 −1 +1 0 0 0 +1 0 0 0 0 0 0 0 3

RP 0 0 0 0 0 0 0 0 −1 +1 +1 0 0 0 0 1

RKIP-P/RP 0 0 0 0 0 0 0 0 +1 −1 −1 0 0 0 0 1, 2

MEK 0 0 0 0 0 0 0 0 0 0 0 −1 +1 0 +1 5

MEK/Raf-1∗ 0 0 0 0 0 0 0 0 0 0 0 +1 −1 −1 0 4, 5

Fig. 14. Activity matrix of the ERK pathway

representation. In other words, it is sufficient to know which reactions increase
concentration (i.e. low to high), and which ones decrease concentration (i.e. high
to low). The addition of further discrete values does not add further information.
Thus all the standard analysis tools available for ODEs are also available to the
modeller taking the process algebraic approach with the coarsest (and simplest)
discretisation of concentrations.

Further quantitative analysis is possible using probabilistic logics and prob-
abilistic model checking. For example, we have investigated the use of the logic
CSL [1] and the model checker PRISM [12]. Further analysis of a PRISM model
derived from the reagent-centric model given here is reported in [4]. Examples
of CSL properties (stated informally) are “What is the probability that a con-
centration of a species reaches a particular value and then remains at that value
thereafter?”, and “How does varying a reaction rate affect that probability?”. We
note that in this paradigm, the resulting probabilities depend on the granularity
of discrete concentration values.

8 Related Work

The work of Regev and her co-authors has been deeply influential [16, 18, 15,
17]. Although the exact form of the process algebra which is used in these works
varies, there is some commonality in the languages and the analysis is always
based on stochastic simulation. At the basis is always the fundamental mapping
developed by Regev in her thesis. In this mapping a correspondence is made



between molecules in the biological system and processes or agents in the process
algebra.

In this paper we propose a different mapping in which a correspondence is
made between a subpathway and a process in the process algebra. The most
basic form of subpathway is taken to be a single species and its fluctuations
in concentrations. In the paper we have demonstrated this and a larger notion
of subpathway based on the notion of the possible biochemical flow of a single
species. The key point is that this mapping is onto an abstract concept in the
biology (the species or pathway) rather than a concrete one (the molecule). We
believe that this shift to the more abstract form offers an alternative view of
systems and better access to the analysis mechanisms associated with process
algebras.

The work of Fisher et al. reported in [8] also proposes using two distinct
views of the same system. However, they envisage different roles for the two
views, one capturing the observations of a system which have been made ex-
perimentally (scenario-based model) and the other making an hypothesis about
the mechanistic behaviour which might generate such observations (state-based
model). In their terminology, both our models are state-based, seeking to give
a mechanistic account for how observed behaviour may arise. It is an interest-
ing area for future work to consider how this might be formally reconciled with
experimental observations.

The pathway view of our network bears some resemblance to the extreme
pathways (and the related concept of elementary modes) in the work of Papin et
al. on metabolic pathways [14]. There the authors aim to identify and separate
subpathways using linear algebra techniques applied to the stoichiometry matrix
for a metabolic pathway. The exact relationship with our own work is an area
for further work.

In theoretical computer science it has previously been remarked that process
algebra models may be used to capture the same system in a variety of different
styles e.g. [20]. We view our work as continuing in that tradition, for example
our modelling styles loosely correspond to the constraint oriented style, although
in a different context and considering somewhat different styles of model. As we
continue to explore the relationship between our modelling styles we hope to be
able to benefit from this earlier research.

9 Conclusions

We have presented two alternative PEPA models of the Raf-1/MEK/ERK mod-
ule of the ERK signalling pathway and shown them to be equivalent. The
reagent-based model has explicit concentrations whilst in the pathway model
the concentrations are captured only implicitly via the possible activities of each
sub-pathway. The pathway-based model can thus be regarded as less directly
expressive, although it captures all the same behaviour. The congruence results
of PEPA with respect to strong bisimulation mean that the two representations
may be used interchangeably, for example within a large model. Thus we might



envisage a model in which the key pathway is modelled using the reagent-style
whilst peripheral pathways are modelled using the pathway-style. Or, we may
have one style of model and hypothesise the other. We believe this ability to have
different views is novel in the field of modelling pathways; informal discussions
with biologists confirm their interest in it.

We found the multi-way synchronisation of PEPA, and the performance
aspects, to be ideally suited to modelling pathway behaviour. In this exam-
ple, deadlock analysis very quickly revealed an incompleteness in the published
model. Once deadlock-free, one strength of models of the kind which we have
used here is that they give rise to compact Markov chain representations which
can be efficiently solved for different assignments to the rate variables in a series
of experiments. This delivers the benefit that a thorough series of experiments
can be conducted at modest computational cost.

Furthermore, we have presented transformations between the two alternative
styles of representation, via an intermediate, the activity matrix. This means that
automatic translation between representations is possible. The transformation
from an activity matrix to the pathway model has some similarities with find-
ing the minimal T-semiflows of a Petri net. Comparing our algorithm with the
algorithms for T-semiflows [6], or the more general mathematical programming
problem of finding the extremal directions of a cone [13], are yet to be investi-
gated.

Process algebra opens up a host of analysis possibilities, including, in addition
to Markov chain analysis, the use of ODE solvers and reasoning with probabilistic
logics using probabilistic model checking. With respect to the former, we have
found we require only to distinguish between high and low concentrations, further
granularity adds no analytic benefit. Rather we need only model the direction
of change (i.e. an increase or decrease of concentration). With respect to the
latter, we have conducted initial investigations with the logic CSL and indicated
further possibilities.

Several challenges remain. For example, we wish to derive the reagent-centric
model from experimental data and model spatial aspects of pathways. We have
some preliminary ideas which are the topic of future research.
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A PEPA

This appendix provides a brief introduction to PEPA in order to make the pa-
per self-contained. It can safely be skipped by anyone who already knows the
PEPA language. For a full explanation which complements the brief description
presented here the reader is referred to [11].

Prefix: The basic mechanism for describing the behaviour of a system with
a PEPA model is to give a component a designated first action using the prefix
combinator, denoted by a full stop. For example, (α, r).S carries out activity
(α, r), which has action type α and an exponentially distributed duration with
parameter r, and it subsequently behaves as S.

Choice: The component P +Q represents a system which may behave either
as P or as Q. The activities of both P and Q are enabled. The first activity to
complete distinguishes one of them: the other is discarded. The system will
behave as the derivative resulting from the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of be-
haviour associated with components. Constants are components whose meaning
is given by a defining equation. The notation for this is X

def= E. The name X
is in scope in the expression on the right hand side meaning that, for exam-
ple, X

def= (α, r).X performs α at rate r forever.
Hiding: The possibility to abstract away some aspects of a component’s

behaviour is provided by the hiding operator, denoted P/L. Here, the set L
identifies those activities which are to be considered internal or private to the
component and which will appear as the unknown type τ .

Cooperation: We write P ��
L

Q to denote cooperation between P and Q
over L. The set which is used as the subscript to the cooperation symbol, the
cooperation set L, determines those activities on which the cooperands are forced
to synchronise. For action types not in L, the components proceed independently
and concurrently with their enabled activities. We write P ‖ Q as an abbreviation
for P ��

L
Q when L is empty.



However, if a component enables an activity whose action type is in the
cooperation set it will not be able to proceed with that activity until the other
component also enables an activity of that type. The two components then
proceed together to complete the shared activity. The rate of the shared activity
may be altered to reflect the work carried out by both components to complete
the activity (for details see [11]).

In some cases, when an activity is known to be carried out in cooperation with
another component, a component may be passive with respect to that activity.
This means that the rate of the activity is left unspecified (denoted �) and is
determined upon cooperation, by the rate of the activity in the other component.
All passive actions must be synchronised in the final model.


