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A Simple Semantics for Haskell Overloading

J. Garrett Morris
University of Edinburgh
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Abstract
As originally proposed, type classes provide overloading and ad-
hoc definition, but can still be understood (and implemented) in
terms of strictly parametric calculi. This is not true of subsequent
extensions of type classes. Functional dependencies and equality
constraints allow the satisfiability of predicates to refine typing; this
means that the interpretations of equivalent qualified types may not
be interconvertible. Overlapping instances and instance chains al-
low predicates to be satisfied without determining the implemen-
tations of their associated class methods, introducing truly non-
parametric behavior. We propose a new approach to the semantics
of type classes, interpreting polymorphic expressions by the be-
havior of each of their ground instances, but without requiring that
those behaviors be parametrically determined. We argue that this
approach both matches the intuitive meanings of qualified types
and accurately models the behavior of programs.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; F.3.2 [Log-
ics and Meanings of Programs]: Semantics of Programming Lan-
guages—Denotational semantics

Keywords overloading; type classes; semantics

1. Introduction
Implicit polymorphism (as provided by the Hindley-Milner type
systems in ML and Haskell) provides a balance between the safety
guarantees provided by strong typing, and the convenience of
generic programming. The Hindley-Milner type system is strong
enough to guarantee that the evaluation of well-typed terms will
not get stuck, while polymorphism and principal types allow pro-
grammers to reuse code and omit excessive type annotation. Type
classes [16] play a similar role for overloading: they preserve strong
typing (ruling out run-time failures from the use of overloaded
symbols in undefined ways) without requiring that programmers
explicitly disambiguate overloaded expressions. Since their intro-
duction, type classes have seen numerous extensions, such as multi-
parameter type classes, functional dependencies [5], and overlap-
ping instances [13]; a variety of practical uses, from simple over-
loading to capturing complex invariants and type-directed behav-
ior; and, the adoption of similar approaches in other strongly-typed
programming languages, including Isabelle and Coq.
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1.1 Dictionary-Passing and its Disadvantages
The semantics of type classes has primarily been given by trans-
lations from instance declarations and (implicit) overloading to
dictionaries and (explicit) dictionary arguments. This parallels the
treatment of implicit polymorphism by translation to systems with
explicit polymorphism (such as System F), and shares similar chal-
lenges. For a simple example, in Haskell, the map function has the
polymorphic type scheme (t → u) → [t] → [u]. In translating to
System F, this could be interpreted as either

∀t.∀u.(t→ u)→ [t]→ [u] or ∀u.∀t.(t→ u)→ [t]→ [u].

But these types are not equivalent: they express different orders
of passing type arguments. There are various ways of addressing
this discrepancy: for example, Mitchell [8] shows that, for any two
translations of an implicitly typed scheme, there is a term (which he
calls a retyping function) which transforms terms of one translation
to terms of the other, while only manipulating type abstractions and
applications. Similar issues arise in the semantics of type classes.
For example, a function to compare pairs (t, u) for equality could
be given either the type scheme

(Eq t, Eq u)⇒ (t, u)→ (t, u)→ Bool

or the type scheme

(Eq u, Eq t)⇒ (t, u)→ (t, u)→ Bool.

In a dictionary-passing translation, type classes are interpreted by
tuples, called dictionaries, containing the type-specific implemen-
tations of each of the class methods. Class instances correspond to
dictionary definitions, while predicates in types correspond to dic-
tionary arguments. In the case of the Eq class, which has equality
and inequality methods, we could define Eq dictionaries by

EqDict t = (t→ t→ Bool, t→ t→ Bool).

Even though the two types for pair equality above are equivalent in
the implicitly overloaded setting, their dictionary-passing transla-
tions are not: the first corresponds to a function of type

EqDict t→ EqDict u→ (t, u)→ (t, u)→ Bool,

while the second corresponds to

EqDict u→ EqDict t→ (t, u)→ (t, u)→ Bool,

Again, approaches exist to address this discrepancy: for exam-
ple, Jones shows [3] that there are conversion functions, similar
to Mitchell’s retyping functions, to convert between different trans-
lations of the same overloaded term.

Our own work began by exploring instance chains [10], a pro-
posed extension to Haskell-like type class systems. In the course
of this exploration, we discovered several difficulties with existing
approaches to the semantics of overloading.

Mismatch in expressivity. System F typing is significantly more
expressive than the Hindley-Milner type systems it is used to



model. In particular, even within the translation of an ML or
Haskell type scheme, there are arbitrarily many expressions that
do not correspond to any expressions of the source language.
The problem is compounded when considering dictionary-passing
translations of type classes. For example, there is no notion in
Haskell of class instances depending on terms; on the other hand,
there is no difficulty in defining a term of type Int→ EqDict Int.
Uses of such a term cannot be equivalent to any use of the methods
of Eq. As a consequence, there are properties of source programs
(for example, that any two instances of == at the same type are
equal) that may not be provable of their dictionary-passing transla-
tion without reference to the specific mechanisms of translation.

Predicates refine typing. Second, the notions of equivalence of
System F and Haskell types diverge once the satisfiability of pred-
icates can refine typing. For example, functional dependencies al-
low programmers to declare that some parameters of a class depend
upon others; in the declaration

class Elems c e | c → e where
empty :: c
insert :: e → c → c

the dependency c → e captures the intuition that the type of a
container’s elements are determined by the type of the container.
Concretely, given two predicates Elems τ υ and Elems τ ′ υ′, if we
know that τ = τ ′, then we can conclude υ = υ′. This property
is lost in the dictionary-passing translation. Dictionaries for Elems
contain just their methods:

ElemsDict c e = (c, e→ c→ c)

As a consequence, there are types that are equivalent in Haskell,
but are not interconvertible in the dictionary-passing interpretation.
For example, the type (Elems c e, Elems c e′) ⇒ e → e′ → c is
equivalent to the (simpler) type (Elems c e) ⇒ e → e → c as
we must have that e = e′ for the qualifiers in the first type to be
satisfiable. However, there is no corresponding bijection between
terms of type ElemsDict c e → ElemsDict c e′ → e → e′ → c
and terms of type ElemsDict c e → e → e → c. While we can
construct a term of the second type given a term of the first, there
is no parametric construction of a term of the first type from a term
of the second.

Non-parametric behavior. Finally, other extensions to class sys-
tems make it possible to define terms which have no translation
to parametric calculi. For example, we could define a function
invBool that negated booleans and was the identity on all other
types. We begin by introducing a suitable class:

class Univ t where
invBool :: t → t

There are several approaches to populating the class, using differ-
ent extensions of the Haskell class system. Using overlapping in-
stances [13], we could simply provide the two desired instances of
the class, relying on the type checker to disambiguate them based
on their specificity:

instance Univ Bool where
invBool = not

instance Univ t where
invBool = id

Using instance chains, we would specify the ordering directly:

instance Univ Bool where
invBool = not

else Univ t where
invBool = id

With either of these approaches, we might expect that the type of
the class method invBool is (Univ t) ⇒ t → t. However, the
predicate Univ τ is provable for arbitrary types τ . Thus, the above
type is intuitively equivalent to the unqualified type t→ t; however,
there is no term of that type in a purely parametric calculus that has
the behavior of method invBool. (In practice, this is avoided by
requiring that invBool’s type still include the Univ predicate, even
though it is satisfied in all possible instantiations; while this avoids
the difficulties in representing invBool in a parametric calculus, it
disconnects the meaning of qualified types from the satisfiability of
their predicates.)

1.2 Specialization-based Semantics
We propose an alternative approach to the semantics of type-class
based implicit overloading. Rather than interpret polymorphic ex-
pressions by terms in a calculus with higher-order polymorphism,
we will interpret them as type-indexed collections of (the inter-
pretations of) monomorphic terms, one for each possible ground
instantiation of their type. We call this a specialization-based ap-
proach, as it relates polymorphic terms to each of their (ground-
typed) specializations. We believe this approach has a number of
advantages.

• First, our approach interprets predicates directly as restrictions
of the instantiation of type variables, rather than through an in-
termediate translation. Consequently, properties of the source
language type system—such as the type refinement induced by
the Elems predicates—are immediately reflected in the seman-
tics, without requiring the introduction of coercions.

• Second, our approach naturally supports non-parametric exam-
ples, such as class Univ, and avoids introducing artificial dis-
tinction between the semantics of expressions using parametric
and ad-hoc polymorphism.

• Third, because our approach does not need to encode overload-
ing via dictionaries, it becomes possible to reason about class
methods directly, rather than through reasoning about the col-
lection of dictionaries defined in a program.

Our approach builds on Ohori’s simple semantics for ML polymor-
phism [12], extended by Harrison to support polymorphic recur-
sion [1].

In this paper, we introduce a simple overloaded language called
H− (§2), and give typing and equality judgments in the presence of
classes and class methods. We apply our specialization-based ap-
proach to give a denotational semantics of H− (§3), and show the
soundness of typing and equality with respect to the denotational
semantics (§4). We also develop two examples, to demonstrate the
advantages of our approach. First, we consider a pair of definitions,
one parametric and the other ad-hoc, defining operational equiva-
lent terms. We show that the defined terms are related by our equal-
ity judgment (§2.3) and have the same denotations (§3.5). This
demonstrates the flexibility of our approach, and the ability to rea-
son about class methods directly (the second and third advantages
listed above). Second, we extend H− with functional dependen-
cies (§5), and establish the soundness of the (extended) typing and
equality judgments, all without having to augment the models of
terms. This demonstrates the extensibility of our approach, and the
close connection between properties of source terms and properties
of their denotations (the first advantage listed above).

2. The H− Language
Figure 1 gives the types and terms of H−; we write x to denote a
(possibly empty) sequence of x’s, and if π is a predicate C τ , we
will sometimes write class(π) for C. As in Jones’s theory of qual-
ified types [2], the typical Hindley-Milner types are extended with



Term variable x ∈ Var Term constants k
Type variables t ∈ TVar Type constants K
Class names C Instance names d ∈ InstName

Types τ, υ ::= t | K | τ → τ
Predicates Pred 3 π ::= C τ
Contexts P,Q ::= π
Qualified types ρ ::= τ | π ⇒ ρ
Type schemes Scheme 3 σ ::= ρ | ∀t.σ
Expressions Expr 3 M,N ::= x | k | λx.M | M N

| µx.M | let x = M in N
Class axioms Axiom 3 α ::= d : ∀t. P⇒ π
Axiom sets A ⊂ Axiom
Methods:

Signatures Si ∈ Var ⇀ Pred × Scheme
Implementations Im ∈ InstName× Var ⇀ Expr

Class contexts Ψ ::= 〈A, Si, Im〉

Figure 1: Types and terms of H−.

qualified types ρ, capturing the use of predicates. We must also ac-
count for the definition of classes and their methods. One approach
would be to expand the grammar of expressions to include class
and instance declarations; such an approach is taken in Wadler and
Blott’s original presentation [16]. However, this approach makes
such definitions local, in contrast to the global nature of subsequent
type class systems (such as that of Haskell), and introduces prob-
lems with principal typing (as Wadler and Blott indicate in their
discussion). We take an alternative approach, introducing new top
level constructs (axioms A, method signatures Si, and method im-
plementations Im) to model class and instance declarations. We re-
fer to tuples of top level information as class contexts Ψ, and will
give versions of both our typing and semantic judgments parame-
terized by such class contexts. Note that this leaves implicit many
syntactic restrictions that would be present in a full language, such
as the requirement that each instance declaration provide a com-
plete set of method implementations.

2.1 H− Typing
We begin with the typing of H− expressions; our expression lan-
guage differs from Jones’s only in the introduction of µ (providing
recursion) . Typing judgments take the form

P | Γ `A M : σ,

where P is a set of predicates restricting the type variables in Γ and
σ, and A is the set of class axioms (the latter is the only significant
difference between our type system and Jones’s). The typing rules
for H− expressions are given in Figure 2. We write ftv(τ) for the
free type variables in τ , and extend ftv to predicates π, contexts P,
and environments Γ in the expected fashion. Rules (⇒ I) and
(⇒ E) describe the interaction between the predicate context P and
qualified types ρ. Otherwise, the rules are minimally changed from
the corresponding typing rules of most Hindley-Milner systems.

We continue with the rules for predicate entailment in H−,
given in Figure 3. The judgment d : P 
A π denotes that the
axiom named d proves predicate π, given assumptions P and class
axioms A. We use a dummy instance name, written -, in the case
that the goal is one of the assumptions. We will omit the instance
name if (as in the typing rules) the particular instance used is
irrelevant. We write P 
A Q if there are d1 . . . dn such that di : P 

Qi, and 
A P to abbreviate ∅ 
A P. Our entailment relation differs
from Jones’s entailment relation for type classes and from our
prior systems [10] in two respects. First, our system is intentionally
simplified (for example, we omit superclasses and instance chains).

(x : σ) ∈ Γ
(VAR)

P | Γ `A x : σ

P | Γ, x : τ `A M : τ ′

(→ I)
P | Γ `A (λx.M) : τ → τ ′

P | Γ `A M : τ → τ ′ P | Γ `A N : τ
(→ E)

P | Γ `A (M N) : τ ′

P | Γ, x : τ `A M : τ
(µ)

P | Γ `A µx.M : τ

P, π | Γ `A M : ρ
(⇒ I)

P | Γ `A M : π ⇒ ρ

P | Γ `A M : π ⇒ ρ P 
A π
(⇒ E)

P | Γ `A M : ρ

P | Γ `A M : σ t 6∈ ftv(Γ,P)
(∀ I)

P | Γ `A M : ∀t.σ

P | Γ `A M : ∀t.σ
(∀E)

P | Γ `A M : [τ/t]σ

P | Γ `A M : σ P | Γ, x : σ `A N : τ
(LET)

P | Γ `A (let x = M in N) : τ

Figure 2: Expression typing rules of H−.

π ∈ P
(ASSUME)

- : P 
A π

(d : ∀t.Q′ ⇒ π′) ∈ A S π′ = π P 
A S Q′
(AXIOM)

d : P 
A π

Figure 3: Predicate entailment rules of H−.

Second, we do not attempt to capture all the information that would
be necessary for an dictionary-passing translation; we will show
that having just the first instance name is sufficient to determine the
meanings of overloaded expressions.

In the source code of a Haskell program, type class methods are
specified in class and instance declarations, such as the following:

class Eq t where (==) :: t → t → Bool
instance Eq t ⇒ Eq [t] where xs == ys = . . .

We partition the information in the class and instance declarations
into class context tuples 〈A, Si, Im〉. The logical content is captured
by the axioms A; in this example, we would expect that there would
be some instance name d such that

(d : ∀t. Eq t⇒ Eq [t]) ∈ A.

Haskell’s concrete syntax does not name instances; for our pur-
poses, we assume that suitable identifiers are generated automati-
cally. The method signatures are captured in the mapping Si; we
distinguish the class in which the method is defined (along with the
corresponding type variables) from the remainder of the method’s
type scheme. For this example, we would have

Si(==) = 〈Eq t, t→ t→ Bool〉.
Note that we have not quantified over the variables appearing in the
class predicate, nor included the class predicate in the type scheme
t→ t→ Bool. Each predicate in the range of Si will be of the form
C t for some class C and type variables t, as they arise from class
definitions. The type scheme of a class member may quantify over
variables or include predicates beyond those used in the class itself.
For example, the Monad class has the following definition:



{π � π′ | (d : P⇒ π), (d′ : P′ ⇒ π′) ∈ A}
{(P | Γ, xi : σxi `A Im(y, d) : σy,d) | 〈y, d〉 ∈ dom(Im)}

P | Γ, xi : σxi `A M : σ
(CTXT)

P | Γ `〈A,Si,Im〉 M : σ

Figure 4: H− typing with class contexts.

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

Note that the variable a in the type of return is not part of the
Monad constraint. Thus, we would have that

Si(return) = 〈Monad m, ∀a.a→ m a〉.

The method implementations themselves are recorded in compo-
nent Im, which maps pairs of method and instance names to imple-
menting expressions.

To describe the typing of methods and method implementations,
we begin by describing the type of each method implementation.
This is a combination of the defining instance, including its context,
and the definition of the method itself. For example, in the instance
above, the body of the == method should compare lists of arbitrary
type t for equality (this arises from the instance predicate Eq [t]
and the signature of ==), given the assumption Eq t (arising from
the defining instance). That is, we would expect it to have the type

∀t.Eq t⇒ [t]→ [t]→ Bool.

We introduce abbreviations for the type scheme of each method,
in general and at each instance, assuming some class context
〈A, Si, Im〉. For each method name x such that Si(x) = 〈π,∀u.ρ〉,
we define the type scheme for x by:

σx = ∀t.∀u. π ⇒ ρ,

or, equivalently, writing ρ as Q⇒ τ :

σx = ∀t, u. (π,Q)⇒ τ

where, in each case, t = ftv(π). Similarly, for each method x as
above, and each instance d such that

• 〈x, d〉 ∈ dom(Im);
• (d : ∀t. P⇒ π′) ∈ A; and,
• there is some substitution S such that S π = π′

we define the type scheme for x in d by:

σx,d = ∀t, u. (P, S Q)⇒ S τ.

Finally, we give a typing rule parameterized by class contexts
in Figure 4; in xi : σxi , the xi range over all methods defined in the
program (i.e., over the domain of Si). Intuitively, an expression M
has type τ under 〈A, Si, Im〉 if:

• None of the class instances overlap. More expressive class sys-
tems will require more elaborate restrictions; we give an ex-
ample when extending H− to support functional dependen-
cies (§5).

• Each method implementation Im(x, d) has the type σx,d (meth-
ods are allowed to be mutually recursive).

• The main expression has the declared type σ, given that each
class method xi has type σxi .

P | Γ, x : τ `Ψ M : τ ′ P | Γ `Ψ N : τ
{β}

P | Γ `Ψ (λx.M)N ≡ [N/x]M : τ ′

P | Γ `Ψ M : τ → τ ′ x 6∈ fv(M)
{η}

P | Γ `Ψ λx.(Mx) ≡ M : τ → τ ′

P | Γ, x : τ `Ψ M : τ
{µ}

P | Γ `Ψ µx.M ≡ [µx.M/x]M : τ

P | Γ `Ψ M : σ P | Γ, x : σ `Ψ N : τ
{LET}

P | Γ `Ψ (let x = M in N) ≡ [M/x]N : τ

Si(x) = 〈π, σ〉 d : P 
 S π
{METHOD}

P | Γ `〈A,Si,Im〉 x ≡ Im(x, d) : S σ

t 6∈ ftv(P,Γ) {(P | Γ `Ψ M ≡ N : [τ/t]σ) | τ ∈ GType}
{∀ I}

P | Γ `Ψ M ≡ N : ∀t.σ

P | Γ `Ψ M ≡ N : ∀t.σ
{∀E}

P | Γ `Ψ M ≡ N : [τ/t]σ

P, π | Γ `Ψ M ≡ N : ρ
{⇒ I}

P | Γ `Ψ M ≡ N : π ⇒ ρ

P | Γ `Ψ M ≡ N : π ⇒ ρ P 
 π
{⇒ E}

P | Γ `Ψ M ≡ N : ρ

Figure 5: Equality for H− terms.

2.2 Equality of H− Terms
In this section, we give an axiomatic presentation of equality for
H− terms. Our primary concerns are the treatment of polymor-
phism and class methods; otherwise, H− differs little from standard
functional calculi. As described in the introduction, our intention is
to permit reasoning about class methods directly, without relying
on either a dictionary-passing translation or a preliminary inlining
step that resolves all method overloading. This results in two un-
usual aspects of our rules:

• While our presentation gives equality for expressions, it relies
critically on components of the class context 〈A, Si, Im〉—the
axioms A to determine which instance solves given constraints,
and the method implementations Im to determine the behavior
of methods.

• The treatment of polymorphism cannot be completely paramet-
ric, and different equalities may be provable for the same term
at different types; for example, we cannot hope to have uniform
proofs of properties of the == method when it is defined differ-
ently at different types.

Equality judgments take the form P | Γ `Ψ M ≡ N : σ, denot-
ing that, assuming predicates P, variables typed as in Γ, and class
context Ψ, expressions M and N are equal at type σ. To simplify
the presentation, we have omitted equational assumptions; how-
ever, extending our system with assumptions and a correspond-
ing axiom rule would be trivial. The rules are those listed in Fig-
ure 5, together with rules for reflexivity, symmetry, and transitivity
of equality, and the expected α-equivalence and congruence rules
for each syntactic form. Rules {β}, {η}, {µ} and {LET} should



be unsurprising. Rules {⇒I} and {⇒E} mirror the corresponding
typing rules, assuring that we can only conclude equalities about
well-typed expressions. Rule {∀E} should also be unsurprising: if
we have proved that two expressions are equal at a quantified type,
we have that they are equal at any of its instances. Rule {∀ I} is
less typical, as it requires one subproof for each possible ground
type (GType ranges over ground type expressions). Note that this
is only non-trivial for terms involving overloading. Finally, rule
{METHOD} provides (one step of) method resolution. Intuitively,
it says that for some class method x at type σ, if instance d proves
that x is defined at σ, then x is equal to the implementation of x
provided by instance d.

2.3 Polymorphic Identity Functions
In the introduction, we gave an example of a polymorphic function
(invBool) that could be instantiated at all types, yet did not have
parametric behavior. In this section, we will consider a function
which does have parametric behavior, but is defined in an ad-hoc
fashion. We will demonstrate that our treatment of equality allows
us to conclude that it is equal to its parametric equivalent.

Our particular example is the identity function. First, we give its
typical definition:

id1 :: t → t
id1 x = x

For our second approach, we intend an overloaded definition that is
provably equal to the parametric definition. We could produce such
a definition using instance chains:

class Id2' t where
id2' :: t → t

instance (Id2' t, Id2' u) ⇒ Id2' (t → u) where
id2' f = id2' ◦ f ◦ id2'

else Id2' t where
id2' x = x

This gives an ad-hoc definition of the identity function, defined
at all types but defined differently for function and non-function
types. Reasoning about this definition would require extending
the entailment relation to instance chains, introducing significant
additional complexity. We present simpler instances, but restrict the
domain of types to achieve a similar result.

class Id2 t where
id2 :: t → t

instance Id2 Int where
id2 x = x

instance (Id2 t, Id2 u) ⇒ Id2 (t → u) where
id2 f = id2 ◦ f ◦ id2

We will use Int to stand in for all base (non-function) types.
It should be intuitive that, while they are defined differently,

id1 x and id2 x should each evaluate to x for any integer or
function on integers x. Correspondingly, given a class context Ψ
that describes (at least) Id2, we can prove that `Ψ id1 ≡ id2 :
τ (we omit the empty context and empty assumptions) for any
such type τ . The case for integers is direct: one application of
{METHOD} is sufficient to prove `Ψ id2 ≡ λx.x : Int → Int.
For functions of (functions of. . . ) integers, the proof has more
steps, but is no more complicated. For the simplest example, to
show that

`Ψ id2 ≡ λx.x : (Int→ Int)→ (Int→ Int),

we use {METHOD} to show

`Ψ id2 ≡ λf .(id2 ◦ f ◦ id2) : (Int→ Int)→ (Int→ Int).

Relying on the usual definition of composition and {β}, we show

`Ψ λf .(id2 ◦ f ◦ id2) ≡ λf .λx.id2(f (id2 x)) :

(Int→ Int)→ (Int→ Int)

Finally, by two uses of {METHOD} for id2 on integers, and {η},
we have

`Ψ λf .λx.id2(f (id2 x)) ≡ λf .f : (Int→ Int)→ (Int→ Int)

and thus the desired result.
We cannot expect to prove that id1 ≡ id2 at all types (i.e.,

`Ψ id1 ≡ id2 : ∀t.t → t) without limiting the domain of types.
For example, there is no instance of Id2 at type Bool; therefore, we
cannot prove any non-trivial equalities `Ψ id2 ≡ M : Bool →
Bool. However, if we were to restrict the grammar of types to
those types for which Id2 is defined (that is, if we define that
τ ::= Int | τ → τ ), then we could construct such an argument. To
show that `Ψ id2 ≡ λx.x : ∀t.t → t, we begin by applying {∀E},
requiring a derivation `Ψ id2 ≡ λx.x : τ → τ for each ground
type τ . We could construct such a set of derivations by induction
on the structure of types, using the argument for Int above as the
base case, and a construction following the one for Int→ Int for
the inductive case.

A similar approach applies to the formulation using instance
chains (class Id2'): we could show that the first clause applied to
functions, the second clause applied to any non-function type, and
use induction over the structure of types with those cases.

3. A Simple Semantics for Overloading
Next, we develop a simple denotational semantics of H− programs,
extending an approach originally proposed by Ohori [12] to de-
scribe the implicit polymorphism of ML. As with the presentation
of equality in the previous section, the primary new challenges arise
from the definition of class methods and the treatment of overload-
ing. We will demonstrate that the specialization-based approach is
well-suited to addressing both challenges. In particular, it allows
expressions to have different interpretations at each ground type
without introducing additional arguments or otherwise distinguish-
ing qualified from unqualified type schemes.

3.1 The Meaning of Qualified Types
To describe the meaning of overloaded expressions, we must begin
with the meaning of qualified types. Intuitively, qualifiers in types
can be viewed as predicates in set comprehensions—that is, a class
Eq denotes a set of types, and the qualified type ∀t.Eq t ⇒ t →
t → Bool describes the set of types {t → t → Bool | t ∈ Eq}.
However, most existing approaches to the semantics of overloading
do not interpret qualifiers in this fashion: Wadler and Blott [16],
for instance, translate qualifiers into dictionary arguments, while
Jones [2] translates qualified types into a calculus with explicit
evidence abstraction and application.

Our approach, by contrast, preserves the intuitive notion of
qualifiers. Given some class context Ψ = 〈A, Si, Im〉, we define
the ground instances bσcΨ of an H− type scheme σ by:

bτcΨ = {τ}

bπ ⇒ ρcΨ =

{
bρcΨ if 
A π

∅ otherwise

b∀t.σcΨ =
⋃

τ∈GType

b[τ/t]σcΨ.

Equivalently, if we define GSubst(t) to be substitutions that map t
to ground types and are otherwise the identity, we have

b∀t.P⇒ τcΨ = {S τ | S ∈ GSubst(t,
A S P}.



We will omit annotation Ψ when it is unambiguous.
In the typing judgments for H−, predicates can appear in both

types and contexts. To account for both sources of predicates, we
adopt Jones’s constrained type schemes (P | σ), where P is a list
of predicates and σ is an H− type scheme; an unconstrained type
scheme σ can be treated as the constrained scheme (∅ | σ) (as an
empty set of predicates places no restrictions on the instantiation
of the variables in σ). We can define the ground instances of
constrained type schemes by a straightforward extension of the
definition for unconstrained schemes: if Ψ = 〈A, Si, Im〉, then

b(P | ∀t.Q⇒ τ)cΨ = {S τ | S ∈ GSubst(t),
A (P, S Q)}.

3.2 Type Frames for Polymorphism
We intend to give a semantics for H− expressions by giving a map-
ping from their typing derivations to type-indexed collections of
monomorphic behavior. We begin by fixing a suitable domain for
the monomorphic behaviors. Ohori assumed an underlying type-
frame semantics; his translations, then, were from implicitly poly-
morphic terms to the interpretations of terms in the simply-typed
λ-calculus. Unfortunately, we cannot apply his approach without
some extension, as type classes are sufficient to encode polymor-
phic recursion. However, we can adopt Harrison’s extension [1] of
Ohori’s approach, originally proposed to capture polymorphic re-
cursion, and thus also sufficient for type class methods.

We begin by defining PCPO frames, an extension of the stan-
dard notion of type frames. A PCPO frame is a tuple

T = 〈T typeJ·K, T termJ·K, Tτ,υ,vτ ,tτ ,⊥τ 〉,

(where we will omit the type and term annotations when they are
apparent from context) subject to the following six conditions.

1. For each ground type τ , T typeJτK is a non-empty set providing
the interpretation of τ .

2. For each typing derivation ∆ of Γ ` M : τ and Γ-compatible
environment η, T termJ∆Kη is the interpretation of M in T typeJτK.

3. Tτ,υ : T typeJτ → υK × T typeJτK → T typeJυK provides the
interpretation of the application of an element of τ → υ to an
element of τ .

4. For any f , g ∈ T typeJτ → υK, if, for all x ∈ T typeJτK,
Tτ,υ(f , x) = Tτ,υ(g, x), then f = g.

5. T termJ·K and Tτ,υ respect the semantics of the simply-typed λ-
calculus. In particular:

• If ∆ derives Γ ` x : τ , then T J∆Kη = η(x);
• If ∆ derives Γ ` M N : υ, ∆M derives Γ ` M :
τ → υ and ∆N derives Γ ` N : τ , then T J∆Kη =
Tτ,υ(T J∆MKη, T J∆NKη); and,

• If ∆λ derives Γ ` λx : τ.M : τ → υ and ∆M derives Γ, x :
τ ` M : υ, then Tτ,υ(T J∆λKη, d) = T J∆MK(η[x 7→ d]).

6. Each set T JτK is a PCPO with respect to vτ , tτ and ⊥τ .

The first five conditions are the standard requirements for type
frames; the final condition relates the type frame and PCPO struc-
tures of a PCPO frame. Given a PCPO frame T , we can define
the interpretation of a polymorphic type scheme σ as the mappings
from the ground instances τ of σ to elements of T JτK. That is:

T schemeJσKΨ = Π(τ ∈ bσcΨ).T typeJτK.

where we will omit the scheme and Ψ annotations when it is not
ambiguous. For example, the identity function λx.x has the type
scheme ∀t.t → t. Therefore, the semantics of the identity function
is a map from the ground instances of its type (i.e., the types
τ → τ ) to the semantics of the simply-typed identity function at

each type. We would expect its semantics to include the pair

〈Int→ Int, T termJ` λx : Int.x : Int→ IntK〉
to account for the Int→ Int ground instance of its type scheme,
the pair

〈Bool→ Bool, T termJ` λx : Bool.x : Bool→ BoolK〉
to account for the Bool→ Bool ground instance of its type scheme,
and so forth. Note that if σ has no quantifiers, and so bσcΨ = {τ}
for some type τ , then we have

T schemeJσKΨ = {{〈τ, b〉} | b ∈ T typeJτK},
and so an element of T schemeJτK is a singleton map, not an element
of T typeJτK. Harrison proves that T JσK is itself a pointed CPO,
justifying solving recursive equations in T JσK.

Theorem 1 (Harrison). Let T be a PCPO frame. Then, for any
type scheme σ, T JσK is a pointed CPO where:

• For any f , g ∈ T JσK, f vσ g ⇐⇒ (∀τ ∈ bσc. f (τ) vτ
g(τ));

• The bottom element ⊥σ is defined to be {〈τ,⊥τ 〉 | τ ∈ bσc};
and,

• The least upper bound of an ascending chain {fi} ⊆ T JσK is
{〈τ, uτ 〉 | τ ∈ bσc, uτ = tτ (fi(τ))}.

We can define continuous functions and least fixed points for sets
T JσK in the usual fashion:

• A function f : T JσK → T Jσ′K is continuous if f (tσXi) =
tσ′(f (Xi)) for all directed chains Xi in T JσK.

• The fixed point of a continuous function f : T JσK → T JσK
is defined by fix(f ) = tσ(f n(⊥σ)), and is the least value such
that fix(f ) = f (fix(f )).

3.3 Semantics for Overloaded Expressions
We can now give denotations for (typing derivations of) H− ex-
pressions. For some type environment Γ and substitution S ∈
GSubst(ftv(Γ)), we define an S − Γ-environment η as a mapping
from variables to values such that η(x) ∈ T J(S σ)K for each as-
signment (x : σ) in Γ. Given a PCPO frame T , a derivation ∆ of
P | Γ `A M : σ, a ground substitution S, and an environment η, we
define the interpretation T J∆KSη by cases. We have included only
a few, representative cases here.

• Case (→E): we have a derivation of the form

...
∆1 =

P | Γ `A M : τ → τ ′

...
∆2 =

P | Γ `A N : τ
∆ =

P | Γ `A (M N) : τ ′

Let υ = S τ and υ′ = S τ ′, and define

T J∆KSη = {〈υ′, Tυ,υ′((T J∆1KSη)(υ → υ′),

(T J∆2KSη)(υ))〉}.

• Case (⇒I): we have a derivation of the form

...
∆1 =

P, π | Γ `A M : ρ
∆ =

P | Γ `A M : π ⇒ ρ

This rule excludes those cases in which the predicate does not
hold; thus, we define:

T J∆KSη =

{
T J∆1KSη if S P 
 S π;
∅ otherwise.



• Case (⇒E): we have a derivation of the form

...
∆1 =

P | Γ `A M : π ⇒ ρ P 
 π
∆ =

P | Γ `A M : ρ

This rule does not affect the semantics of expression M, and so
we define:

T J∆KSη = T J∆1KSη.

• Case (∀ I): we have a derivation of the form

...
∆1 =

P | Γ `A M : σ t 6∈ ftv(P,Γ)
∆ =

P | Γ `A M : ∀t.σ

Intuitively, we interpret a polymorphic expression as the map
from ground instances of its type to its interpretations at those
types. As the interpretation of the subderivation ∆1 is already in
the form of a such a map, we can interpret ∆ as the union of the
meanings of ∆1 for each ground instantiation of the quantified
variable t. Formally, we define

T J∆KSη =
⋃

τ∈GType

T J∆1K(S[t 7→ τ ])η.

• Case (∀E): we have a derivation of the form

...
∆1 =

P | Γ `A M : ∀t.σ
∆ =

P | Γ `A M : [τ/t]σ

By definition, b∀t.σc =
⋃
τ∈GTypeb[τ/t]σc, and so b[τ/t]σc ⊆

b∀t.σc. Thus, the interpretation of ∆ is a subset of the interpre-
tation of ∆1; writing f |Y for the restriction of a function f to
some subset Y of its domain, we define:

T J∆KSη = (T J∆1KSη)|b[τ/t]σc.

3.4 Expressions with Class Contexts
To complete our semantics of H− programs, we must account for
the meaning of class methods. Our approach is intuitively simple:
we collect the meanings of the class methods from the method
implementations in each instance, and use the meanings of the
methods to define the meaning of the main expression. Formally,
we extend the interpretation function from derivations of P | Γ `A

M : σ to derivations of P | Γ `Ψ M : σ as follows:

• Let ∆ be a derivation of P | Γ `Ψ M : τ . Then we know that ∆
must begin with an application of (CTXT) (Figure 4) with one
subderivation

...
∆y,d =

P | Γ, xi : σxi `A Im(y, d) : σy,d

for each pair 〈y, d〉 ∈ dom(Im) and a subderivation

...
∆M =

P | Γ, xi : σxi `A M : τ

for the main expression M. We enumerate the methods in the
program as x1, x2, . . . , xm, and let

Σ = T Jσx1K× T Jσx2K× · · · × T JσxmK.

For each method xi, we define a function fi : Σ → T JσxiK,
approximating its meaning, as follows:

fi(〈b1, b2, . . . , bm〉)Sη =
⋃

〈xi,d〉∈dom(Im)

T J∆xi,dKS(η[xj 7→ bj]),

and define function f : Σ → Σ, approximating the meaning of
all the methods in the program, as

f (b) = 〈f1(b), f2(b), . . . , fm(b)〉.
We can now define a tuple b, such that the component bi is the
meaning of method xi, as follows:

b =
⊔

Σ
f n(⊥Σ).

Finally, we extend the interpretation function to programs by

T J∆KSη = T J∆MKS(η[xi 7→ bi]).

3.5 Polymorphic Identity Functions Revisited
We return to our earlier example of polymorphic identity func-
tions (§2.3). As before, we consider two definitions of identity
functions, one given parametrically (id1) and one given by over-
loading (id2). In this section, we will show that the denotations of
id1 and id2 agree at all types for which id2 is defined. By doing
so, we provide an intuitive demonstration that our denotational se-
mantics captures the meaning of ad-hoc polymorphic and agrees
with our definition of equality for H− terms.

We show that T Jid1K and T Jid2K have the same value at each
point in the domain of T Jid2K; that is, that for any type τ ∈ GType
such that 
 Id2 τ ,

T Jid1K(τ → τ) = T Jid2K(τ → τ).

We proceed by induction on the structure of τ . In the base case,
we know that τ = K for some non-functional type K. As we have
assumed 
 Id2 τ , we must have that K = Int, and, from the
instances for Id2, we have

T Jid2K(K → K) = T Jid2K(Int→ Int)

= T J` λx : Int.x : Int→ IntK.

As T Jid1K(Int → Int) = T J` λx : Int.x : Int→ IntK, we
have T Jid1K(K → K) = T Jid2K(K → K). In the inductive case,
we know that τ = τ0 → τ1 for some types τ0 and τ1. From the
assumption that 
 Id2 (τ0 → τ1) and the instances for Id2, we
can assume that Id2 τ0, Id2 τ1, and that

T Jid2K(τ → τ) = T J` λf : (τ0 → τ1).M ◦ f ◦ N : τ → τK

for some simply typed expressions M and N such that T JMK =
T Jid2K(τ0 → τ0) and T JNK = T Jid2K(τ1 → τ1). The induction
hypothesis gives that T Jid2K(τ0 → τ0) = T Jid1K(τ0 → τ0)
and that T Jid2K(τ1 → τ1) = T Jid1K(τ1 → τ1), and thus that
T JMK = T J` λx : τ1.x : τ1 → τ1K and T JNK = T J` λx : τ0.x :
τ0 → τ0K. By congruence, we have

T Jid2K(τ → τ) = T Jλf : (τ0 → τ1).(λx : τ1.x)◦f ◦(λx : τ0.x)K.

Finally, assuming a standard definition of composition, and reduc-
ing, we have

T Jid2K(τ → τ) = T Jλf : (τ0 → τ1).f K
= T Jλf : τ.f K
= T Jid1K(τ → τ).

In our previous discussion of this example, we argued that if
the set of types were restricted to those types for which Id2 held,
then id1 and id2 were equal. We can show a similar result here,
by showing that if we define that τ ::= Int | τ → τ , then
T Jid1K = T Jid2K. We begin by showing that they are defined over



the same domain; that is, that b∀t. t→ tc = b∀u.Id2 u⇒ u→ uc.
By definition, we have

b∀t. t→ tc = {τ → τ | τ ∈ GType}
and

b∀u. Id2 u⇒ u→ uc = {τ → τ | τ ∈ GType,
 Id2 τ}.
We show that 
 Id2 τ for all types τ by induction on the structure
of τ . In the base case, we know that τ = Int, and by the first
instance of Id2 we have 
 Id2 τ . In the inductive case, we know
that τ = τ0 → τ1 for some types τ0, τ1. In this case, we have
that [τ0/t, τ1/u]τ = t → u and by the induction hypothesis, that

 Id2 τ0 and 
 Id2 τ1. Thus, from the second instance of Id2, we
can conclude that 
 Id2 (τo → τ1), that is, that 
 Id2 τ . Because

 Id2 τ for all ground types τ , we have

{τ → τ | τ ∈ GType,
 Id2 τ} = {τ → τ | τ ∈ GType},
and so T Jid1K and T Jid2K are defined over the same domain. We
have already shown that T Jid1K and T Jid2K agree at all points at
which they are defined, and so we conclude T Jid1K = T Jid2K.

4. Formal Properties
The previous sections have outlined typing and equality judgments
for H− terms, and proposed a denotational semantics for H− typ-
ings. In this section, we will relate these two views of the language.
We begin by showing that the denotation of a typing judgment falls
into the expected type. This is mostly unsurprising; the only un-
usual aspect of H− in this respect is the role of the class context. We
go on to show that the equational judgments are sound; again, the
unusual aspect is to do with polymorphism ({∀ I} and {∀E}) and
class methods ({METHOD}). The H− type system follows Jones’s
original formulation of OML; we rely on several of his metatheo-
retical results, such as the closure of typing under substitution.

Theorem 2 (Soundness of typing). Given a class context Ψ, if ∆
is a derivation of P | Γ `Ψ M : σ, S is a substitution, and η is an
(S Γ)-environment, then T J∆KSη ∈ T J(S P | S σ)KΨ.

We will divide the proof into three pieces. First, we show the
soundness of the judgment P | Γ `A M : σ. Then, we will argue
that the union of the implementations of a method has the type of
the method itself. Finally, we can combine these results to argue the
soundness of P | Γ `Ψ M : σ.

Lemma 3. Given a class context Ψ = 〈A, Si, Im〉 where A is
non-overlapping, if ∆ is a derivation of P | Γ `A M : σ, S
is a substitution, and η is a (S Γ)-environment, then T J∆KSη ∈
T J(S P | S σ)KΨ.

Proof. The proof is by induction over the structure of derivation
∆. The cases are straightforward; we include several representa-
tive examples. (Meta-variables ∆n are as in the definition of T J·K
above.)

• Case (⇒ I). Observe that b(S(P, π) | S ρ)c = b(S P | S (π ⇒
ρ))c. As such, if

T J∆1KSη ∈ T J(S (P, π) | S ρ)KΨ,

then we must also have that

T J∆KSη ∈ T J(S P | S (π ⇒ ρ))KΨ.

• Case (⇒ E). As entailment is (trivially) closed under substitu-
tion, P 
 π implies that S P 
 S π for any substitution S; thus,
we can conclude that b(S P | S (π ⇒ ρ))c = b(S P | S ρ)c.
Finally, assuming that T J∆1KSη ∈ T J(S P | S (π ⇒ ρ))K, we
can conclude that T J∆KSη ∈ T J(S P | S ρ)K.

• Case (∀ I). Because σ = ∀t.σ′, we have that

bσc =
⋃

τ∈GType

b[τ/t]σ′c,

and thus that

T JσK =
⋃

τ∈GType

(T J[τ/t]σ′K).

Thus, assuming that for ground types τ , T J∆1K(S[t 7→ τ ])η ∈
T J(S P | S σ′)K, we have

T J∆KSη ∈

( ⋃
τ∈GType

T J(S P | S σ′)K

)
= T J(S P | S σ)K.

• Case (∀E). Assuming that T J∆1KSη ∈ T J(S P | S (∀t.σ′))K,
the same argument about ground types as in the previous case
gives that T J∆KSη ∈ T J(S P | S σ)K.

The interpretation of typings P | Γ `Ψ M : σ depends on
the interpretations of the class methods. We will begin by showing
that the interpretation of each method is in the denotation of its
type. To do so, we will demonstrate that the interpretation of the
type scheme of a method is the union of the interpretation of the
type schemes of its instances. This will show that the union of
the implementations is in the type of the method, from which the
desired result follows immediately.

Lemma 4. The ground instances of the type scheme of a method x
are the union of its ground instances at each of its instances. That
is,

bσxc =
⋃

〈x,d〉∈dom(Im)

bσx,dc.

Proof. Let σx = ∀t.(π,Q) ⇒ τ , where x is a method of class(π).
We prove that

bσxc =
⋃

〈d,x〉∈dom(Im)

bσx,dc

by the inclusions

bσxc ⊆
⋃

〈x,d〉∈dom(Im)

bσx,dc,

and

bσxc ⊇
⋃

〈x,d〉∈dom(Im)

bσx,dc.

We will show only the first inclusion; the second is by an identical
argument. Fix some υ ∈ bσxc. By definition, there is some S ∈
GSubst(t) such that υ = S τ and 
 S π, S Q. Because 
 S π,
there must be some (d : ∀u. P ⇒ π′) ∈ A and substitution
S′ ∈ GSubst(u) such that S π = S′ π′ and 
 S′ P. Now, we have
that σx,d = ∀t′.(P, T Q)⇒ T τ for some substitution T; thus, there
is some T ′ ∈ GSubst(t′) such that υ = T ′ (T τ), S P = T ′ (T Q),
and so υ ∈ bσx,dc.

Lemma 5. The interpretation of the type scheme of a method x is
the union of the interpretations of its type scheme at each instance.
That is,

T JσxK =
⋃

〈x,d〉∈dom(Im)

T Jσx,dK.

Proof. Recall that

T schemeJσxK = Π(τ ∈ bσxc).T typeJτK.



From Lemma 4, we have that

T schemeJσxK = Π

τ ∈ ⋃
〈x,d〉∈dom(Im)

bσx,dc

 .T typeJτK.

As T typeJ·K is a function, this is equivalent to

T schemeJσxK =
⋃

〈x,d〉∈dom(Im)

Π(τ ∈ bσx,dc).T typeJτK,

and finally, again from the definition of T schemeJ·K,

T schemeJσxK =
⋃

〈x,d〉∈dom(Im)

T schemeJσx,dK.

Proof of Theorem 2. Finally, we can extend the soundness of our
semantics to include class contexts. From Lemmas 4 and 5, we
know that the interpretations of the methods fall in the interpreta-
tions of their type schemes, and so if η is a S−Γ-environment, then
η[xi 7→ bi] is a S− (Γ, xi : σxi )-environment. From Theorem 3, we
have that T J∆MKS(η[xi 7→ bi) ∈ T J(S P | S σ)KΨ, and thus that
T J∆KSη ∈ T J(S P | S σ)KΨ.

We would like to know that the meaning of an expression is
independent of the particular choice of typing derivation. Unfortu-
nately, this is not true in general for systems with type classes. A
typical example involves the read and show methods, which have
the following type signatures

read :: Read t ⇒ String → t
show :: Show t ⇒ t → String

We can construct an expression show◦read of type

(Read t, Show t)⇒ String→ String,

where variable t can be instantiated arbitrarily in the typing, chang-
ing the meaning of the expression. To avoid this problem, we adopt
the notion of an unambiguous type scheme from Jones’s work on
coherence for qualified types [3].

Definition 6. A type scheme σ = ∀~t.P ⇒ τ is unambiguous if
ftv(P) ⊆ ftv(τ).

As long as we restrict our attention to unambiguous type schemes,
we have the expected coherence result. For example, suppose that
∆ is a derivation of P | Γ `A λx.M : σ. We observe that ∆ must
conclude with an application of (→I), say at P0 | Γ `A λx.M :
τ → τ ′, followed by a series of applications of (⇒I), (⇒E), (∀ I)
and (∀E). While these latter applications determine σ, we can see
intuitively that each υ ∈ bσc must be a substitution instance of
τ → τ ′, and that the interpretation of ∆ at each ground type must
be the interpretation of an instance of the subderivation ending with
(→I). We can formalize these two observations by the following
lemma.

Lemma 7. If σ = ∀t.Q ⇒ τ , and ∆1 . . .∆n is a sequence of
derivations such that:

• ∆1 is a derivation of P1 | Γ `A M : τ1;
• ∆n is a derivation of P | Γ `A M : σ;
• Each of ∆2 . . .∆n is by (⇒I), (⇒E), (∀ I) or (∀E); and,
• Each ∆i is the principal subderivation of ∆i+1

then

(a) There is a substitution S such that τ = S τ1 and P∪Q a` S P1;
and,

(b) For all ground substitutions S, for all υ ∈ bS σc, there is a
unique S′ such that T J∆nKSηυ = T J∆1KS′ηυ.

The proof is by induction on n; the cases are all trivial. We can now
characterize the relationship between different typings of M.

Theorem 8 (Coherence of T J·K). If ∆ derives P | Γ `A M :
σ and ∆′ derives P′ | Γ′ `A M : σ′, where σ and σ′ are
unambiguous, then for all substitutions S and S′ such that S P a`
S′ P′, S Γ = S′ Γ′, and S σ = S′σ′, and for all ground substitutions
U, T J∆K(U ◦ S) = T J∆′K(U ◦ S′).

The proof is by induction over the structure of M. In each case,
use of the inductive hypothesis is justified by Lemma 7(a), and the
conclusion derived from the definition of T J·K and Lemma 7(b).
As an immediate corollary, we have that if ∆ and ∆′ are two
derivations of the same typing judgment, then T J∆K = T J∆′K.
We can also show that, if P | Γ `A M : σ is a principal typing of
M, with derivation ∆, and ∆′ derives P | Γ `A M : σ′ for any other
σ′, then for each substitution S′ there is a unique S such that, for all
environments η, T J∆KSη ⊇ T J∆′KS′η.

Theorem 9 (Soundness of ≡). Given a class context Ψ, if σ is
unambiguous, P | Γ `Ψ M ≡ N : σ, and ∆M,∆N are derivations
of P | Γ `Ψ M : σ,P | Γ `Ψ N : σ, then T J∆MK = T J∆NK.

Proof. The proof is by induction over the derivation of P | Γ `Ψ

M ≡ N : σ. The interesting cases are to do with polymorphism and
overloading.

• Case {⇒ I}. We have a derivation concluding

P, π | Γ `Ψ M ≡ N : ρ

P | Γ `Ψ M ≡ N : π ⇒ ρ

Let ∆M,∆N be typing derivations of P | Γ `A M : π ⇒ ρ
and P | Γ `A N : π ⇒ ρ; without loss of generality
(because of Theorem 8), assume that each is by (⇒I), with
subderivations ∆′M,∆

′
N of P, π | Γ `Ψ M : ρ and P, π |

Γ `Ψ N : ρ. From the definition of T J·K, we have T J∆MK =
T J∆′MK and T J∆NK = T J∆′NK. The induction hypothesis gives
that T J∆′MK = T J∆′NK, and so we can conclude T J∆MK =
T J∆NK.

• Case {⇒ E}. We have a derivation concluding

P | Γ `Ψ M ≡ N : π ⇒ ρ P 
A π

P | Γ `Ψ M ≡ N : ρ

where Ψ = 〈A, Si, Im〉. As in the previous case, the interpre-
tation of the typing derivations for P | Γ `Ψ M : ρ and
P | Γ `Ψ M : π ⇒ ρ are equal, and similarly for the typing
derivations for N, and thus the induction hypothesis is sufficient
for the desired conclusion.

• Case {∀ I}. We have a derivation concluding

{(P | Γ `Ψ M ≡ N : [τ/t]σ) | τ ∈ GType}
P | Γ `Ψ M ≡ N : ∀t.σ

From the induction hypothesis, we can conclude that, given
derivations ∆τ

M of P | Γ `Ψ M : [τ/t]σ and ∆τ
N of P | Γ `Ψ

N : [τ/t]σ, T J∆τ
MK = T J∆τ

NK. Let ∆M derive P | Γ `Ψ M :
∀t.σ (and, without loss of generality, assume ∆M is by (∀I));
we know that T J∆MK =

⋃
τ∈GType T J∆τ

MK. We argue similarly
for derivations ∆N of P | Γ `Ψ N : ∀t.σ, and conclude that
T J∆MK = T J∆NK.

• Case {∀E}. We have a derivation concluding

P | Γ `Ψ M ≡ N : ∀t.σ

P | Γ `Ψ M ≡ N : [τ/t]σ



Let ∆M,∆N be derivations that M and N have type [τ/t]σ; with-
out loss of generality, assume they are by (∀E), with subderiva-
tions ∆′M,∆

′
N that M and N have type ∀t.σ. From the induction

hypothesis, we know T J∆′MK = T J∆′NK, and from the defini-
tion of T J·K we know that T J∆MK ⊆ T J∆′MK and T J∆NK ⊆
T J∆′NK. Thus, we can conclude that T J∆MK = T J∆NK.

• Case {METHOD}. We have a derivation of the form

Si(x) = π, σ d : P 
A S π

P | Γ `〈A,Si,Im〉 x ≡ Im(x, d) : S σ

Let ∆M be the derivation of P | Γ `Ψ x : S σ. From the defini-
tion of T J·K, we know that T J∆MKSη = T J∆′MKS(η[xi 7→ bi])
where the xi are the class methods, the bi are their imple-
mentations, and ∆′M is the derivation of P | Γ, xi : σi `A

x : S σ. Since x is a class method, we know that η[xi 7→ bi]
maps x to some method implementation bj, and therefore that
T J∆′MK ⊆ bj. We also know that bj is the fixed point of a func-
tion fj(〈b1, . . . , bn〉)Sη =

⋃
d T J∆x,d′KS(η[xi 7→ bi]), where

∆x,d′ derives P | Γ `A Im(x, d′) : σx,d′ and d is one of the di.
Thus, we know that if ∆N derives P | Γ `Ψ Im(x, d) : S σ, then
T J∆NK ⊆ bj. Finally, as T J∆MK and T J∆NK are defined over
the same domain, we have that T J∆MK = T J∆NK.

5. Improvement and Functional Dependencies
In the introduction, we set out several ways in which extensions
of type class systems went beyond the expressiveness of exist-
ing semantic approaches to overloading. In this section, we re-
turn to one of those examples, demonstrating the flexibility of our
specialization-based approach to type-class semantics.

Functional dependencies [5] are a widely-used extension of type
classes which capture relationships among parameters in multi-
parameter type classes. Earlier, we gave a class Elems to abstract
over common operations on collections:

class Elems c e | c → e where
empty :: c
insert :: e → c → c

The functional dependency c → e indicates that the type of a
collection (c) determines the type of its elements (e). Practically
speaking, this has two consequences:

• A program is only valid if the instances in the program respect
the declared functional dependencies. For example, if a pro-
gram already contained an instance which interpreted lists as
collections:

instance Elems [t] t where . . .

the programmer could not later add an instance that interpreted
strings (lists of characters in Haskell) as collections of code-
points (for simplicity represented as integers):

instance Elems [Char] Int

• Given two predicates Elems τ υ and Elems τ ′ υ′, if we know
τ = τ ′, then we must have υ = υ′ for both predicates to be
satisfiable.

We now consider an extension of H− to support functional de-
pendencies. Following Jones [4], we introduce a syntactic char-
acterization of improving substitutions, one way of describing
predicate-induced type equivalence. We then extend the typing and
equality judgments to take account of improving substitutions. Fi-
nally, we show that the extended systems are sound with respect to
our semantics. Importantly, we do not have to extend the models of

terms, nor do we introduce coercions, or other intermediate trans-
lations. We need only show that our characterization of improving
substitutions is sound to show that the resulting type equivalences
hold in the semantics.

5.1 Extending H− with Functional Dependencies
To account for the satisfiability of predicates in qualified types,
Jones introduces the notion of an improving substitution S for a set
of predicates P [4]. Intuitively, a S improves P if every satisfiable
ground instance of P is also a ground instance of S P. Jones uses
improving substitutions to refine the results of type inference while
still inferring principal types. We will adopt a similar approach, but
in typing instead of type inference.

Syntax. We begin by extending the syntax of class axioms to
include functional dependency assertions:

Index sets X, Y ⊆ N
Class axioms α ::= C : X  Y | d : ∀t. P⇒ π

In the representation of functional dependency axioms, we treat the
class parameters by index rather than by name. If A were the axioms
for the example above, we would expect to have a dependency

Elems : {0} {1} ∈ A.

Any particular class name may appear in many functional depen-
dency assertions, or in none at all. We adopt some notational ab-
breviations: if X is an index set, we write π =X π

′ to indicate that
π and π′ agree at least on those parameters with indices in X, and
similarly write π S∼X π′ to indicate that S is a unifier for those
parameters of π and π′ with indices in X.

Improvement. To account for improvement in typing, we need a
syntactic characterization of improving substitutions. In the case of
functional dependencies, this can be given quite directly. We can
give an improvement rule as a direct translation of the intuitive
description above:

P 
 C τ P 
 C υ
(C : X  Y) ∈ A τ =X υ τ

S∼Y υ
(FUNDEP)

A ` S improves P

For example, if we have some Q such that Q 
 Elems τ υ and Q 

Elems τ υ′, then (FUNDEP) says that the any unifying substitution
U such that U υ = U υ′ is an improving substitution for Q. If S
is an improving substitution for P, then the qualified type schemes
(P | σ) and (S P | S σ) are equivalent, and we should be able
to replace one with the other at will in typing derivations. One
direction is already possible: if a term has type σ, then it is always
possible to use it with type S σ (by a suitable series of applications
of (∀ I) and (∀ E)). On the other hand, there is not (in general) a
way with our existing typing rules to use a term of type S σ as a
term of type σ. We add a typing rule to support this case.

S P | S Γ `A M : S σ A ` S improves P
(IMPR)

P | Γ `A M : σ

As in the case of (⇒I) and (⇒E), (IMPR) has no effect on the
semantics of terms. Thus, if we have a derivation

...
∆1 =

S P | S Γ `A M : S σ A ` S improves P
∆ =

P | Γ `A M : σ

we define that T J∆KS′η = T J∆1KS′′η, where S′′ ◦ S = S′ (the
existence of such an S′′ is guaranteed by the soundness of (FUN-
DEP)). Finally, we add a rule to the equality judgment allowing us



to use improving substitutions in equality proofs.

S P | S Γ `〈A,Si,Im〉 M ≡ N : S σ A ` S improves P
{IMPR}

P | Γ `〈A,Si,Im〉 M ≡ N : σ

Validating Functional Dependency Axioms. We must augment
the context rule to check that the axioms respect the declared de-
pendencies. This can be accomplished by, first, refining the overlap
check to assure that no axioms overlap on the determining param-
eters of a functional dependencies, and second, requiring that, for
each dependency C : X  Y and each instance P ⇒ π of class
C, any variables in the positions Y are determined by the functional
dependencies of P. Our formalization of the latter notion follows
Jones’s development [6]. We define the closure of a set of variables
J with respect to the functional dependencies F as the least set J+

F
such that

• J ⊆ J+
F ; and

• If U  V ∈ F and U ⊆ J+
F , then V ⊆ J+

F .

We write ftvX(C τ) to abbreviate
⋃

x∈X ftv(τx), define the instantia-
tion of a functional dependency assertion C : X  Y at a predicate
π = C τ , as the dependency ftvX(π) ftvY(π), and write fd(A,P)
for the set of the instantiation of each functional dependency asser-
tion in A at each predicate in P. We can now define the verification
conditions for axioms and the new version of (CTXT), as follows.

{π �X π
′ | (d : P⇒ π), (d′ : P′ ⇒ π′), (class(π) : X  Y) ∈ A}

` non-overlapping(A)

{ftv(πY) ⊆ ftv(πX)+
fd(A,P) | (d : P⇒ π), (class(π) : X  Y) ∈ A}

` covering(A)

` non-overlapping(A) ` covering(A)
{(P | Γ, xi : σxi `A Im(y, d) : σy,d) | 〈y, d〉 ∈ dom(Im)}

P | Γ, xi : σxi `A M : σ
(CTXT)

P | Γ `〈A,Si,Im〉 M : σ

5.2 Soundness
The significant challenge in proving soundness of the extended
rules is showing that when A ` S improves P is derivable, S is
an improving substitution for P. Once we have established that
result, the remaining soundness results will be direct. We introduce
notation for the satisfiable ground instances of predicates P:

bPcA = {S P | S ∈ GSubst(ftv(P)),
A S P}.
We can now formally describe an improving substitution.

Lemma 10. Given a set of axioms A such that ` non-overlapping(A)
and ` covering(A), if A ` S improves P, then bPcA = bS PcA.

Proof. By contradiction. Assume that A ` S improves P; then we
must have π0, π1 such that 
A π0,
A π1 and there is a functional
dependency (class(π) : X  Y) ∈ A such that π0 =X π1

but π0 6=Y π1. We proceed by induction on the heights of the
derivations of 
A π0,
A π1.

• There are distinct axioms d : P ⇒ π′0, d
′ : P′ ⇒ π′1 ∈ A and

substitutions S0, S1 such that S0 π
′
0 = π0 and S1 π

′
1 = π′1.

But then S0 ◦ S1 is a unifier for π′0 ∼X π′1, contradicting
` non-overlapping(A).

• There is a single axiom d : P ⇒ π′0 and substitutions S0, S1

such that S0 π
′
0 = π0 and S1 π

′
0 = π1. We identify two sub-

cases.

There is some type variable in ftvY(π′0)\ ftvX(π′0) that is not
constrained by P. This contradicts ` covering(A).
There is some π′ ∈ P such that S0 π

′ and S1 π
′ violate

a functional dependency of class(π′). The derivations of

 S0 π

′ and 
 S1 π
′ must be shorter than the derivations of


 π0,
 π1, and so we have the desired result by induction.

Theorem 11 (Soundness of typing). Given a class context Ψ, if ∆
is a derivation of P | Γ `Ψ M : σ, S is a substitution, and η is an
(S Γ)-environment, then T J∆KSη ∈ T J(S P | S σ)KΨ.

Proof. We need only consider the (IMPR) case. From Lemma 10,
we have that if T improves P, then T J(P | σ)KΨ = T J(T P |
T σ)KΨ, and so the result follows from the induction hypothesis.

We extend our notion of ambiguity to take account of functional
dependencies: it is enough for the variables in the predicates P to
be determined by the variables of τ .

Definition 12. A type scheme σ = ∀~t.P ⇒ τ is unambiguous
(given class axioms A) if ftv(P) ⊆ ftv(τ)+

fd(A,P).

The previous definition of ambiguity is a special case of this defi-
nition, where fd(A,P) is always empty. As uses of (IMPR) do not
affect the semantics of terms, its introduction does not compromise
coherence.

Theorem 13. If σ is unambiguous and ∆1,∆2 are derivations of
P | Γ `Ψ M : σ, then T J∆1K = T J∆2K.

Theorem 14 (Soundness of ≡). Given a class context Ψ, if σ is
unambiguous, P | Γ `Ψ M ≡ N : σ, and ∆M,∆N are derivations
of P | Γ `Ψ M : σ,P | Γ `Ψ N : σ, then T J∆MKΨ = T J∆NKΨ.

Proof. Again, we need consider only the {IMPR} case. Without
loss of generality, assume ∆M and ∆N are by (IMPR), with sub-
derivations ∆′M and ∆′N . As the interpretations of ∆M and ∆N are
equal to the interpretations of ∆′M and ∆′N , the result follows from
the induction hypothesis.

6. Related Work
The semantics of polymorphism, in its various forms, has been
studied extensively over the past half century; however, the par-
ticular extensions of Haskell that motivated this work are recent,
and have received little formal attention.

Our approach was inspired by Ohori’s semantics of Core
ML [12]. While Ohori’s approach describes the semantics of poly-
morphism, he does not represent polymorphic values directly,
which leads to an unusual treatment of the typing of let expres-
sions. Harrison extends Ohori’s approach to treat polymorphic re-
cursion [1]; in doing so, he provides a representation of polymor-
phic values. Harrison suggests that his approach could be applied
to type classes as well.

Ohori’s approach to the semantics of ML is somewhat unusual;
more typical approaches include those of Milner [7] and Mitchell
and Harper [9]. Ohori identifies reasons to prefer his approach
over either that of Milner or that of Mitchell and Harper: both ap-
proaches use a semantic domain with far more values than corre-
spond to values of ML, either because (in the untyped case) those
values would not be well-typed, or (in the explicit typed case) they
differ only in the type-level operations.

The semantics of type-class-based overloading has also received
significant attention. Wadler and Blott [16] described the mean-
ing of type classes using a dictionary-passing translation, in which



overloaded expressions are parameterized by type-specific imple-
mentations of class methods. Applying their approach to the full
Haskell language, however, requires a target language with more
complex types than their source language. For example, in trans-
lating the Monad class from the Haskell prelude, the dictionary
for Monad τ must contain polymorphic values for the return and
(>>=) methods.

In his system of qualified types [2], Jones generalized the treat-
ment of evidence by translating from a language with overloading
(OML) to a language with explicit evidence abstraction and appli-
cation. Jones does not provide a semantics of the language with
explicit evidence abstraction and application; indeed, such a se-
mantics could not usefully be defined without choosing a particular
form of predicate, and thus a particular form of evidence.

Odersky, Wadler and Wehr [11] propose an alternative formu-
lation of overloading, including a type system and type inference
algorithm, and a ideal-based semantics of qualified types. How-
ever, their approach requires a substantial restriction to the types of
overloaded values which rules out many functions in the Haskell
prelude as well as the examples from our previous work [10].

Jones [5] introduced functional dependencies in type classes,
and discusses their use to improve type inference; his presentation
of improvement is similar to ours, but he does not augment typ-
ing as does our (IMPR) rule. Sulzmann et al. [15] give an alterna-
tive approach to the interaction of functional dependencies and type
inference, via a translation into constraint-handling rules; unfortu-
nately, their presentation conflates properties of their translation,
such as termination, with properties of the relations themselves.
System FC [14] extends System F with type-level equality con-
straints and corresponding coercion terms. While we are not aware
of any formal presentation of functional dependencies in terms of
System FC, we believe that a formulation of our (FUNDEP) rule
in terms of equality constraints is possible. In contrast to our ap-
proach, System FC requires extending the domain of the semantics,
while still requiring translation of source-level features (functional
dependencies or GADTs) into features of the semantics (equality
constraints).

7. Conclusion
We have proposed an alternative approach to the semantics of
overloading, based on interpreting polymorphic values as sets of
their monomorphic interpretations, which avoids several problems
with traditional translation-based approaches. We have applied this
result to a simple overloaded calculus, and shown the soundness
of its typing and equality judgments. Finally, we have argued that
the approach is flexible enough to support extensions to the type
system, such as allowing the use of improving substitutions in
typing. We conclude by identifying directions for future work:

• Practical class systems are richer than the one used in this
paper. We would like to extend these results to fuller systems,
including our prior work on instance chains.

• Dictionary-passing provides both a semantics of overloading
and an implementation technique. We would like to explore
whether implementation techniques based on specialization can
be used to compile practical languages.

• We claim that our approach avoids making distinctions between
some observationally equivalent terms (such as in the poly-
morphic identity function example). We would like to explore
whether adequacy and full abstraction results for the underlying
frame model can be extended to similar results for our seman-
tics.

• Our definition of equality provides η-equivalence; however, η
equivalence is not sound for Haskell. We would like to explore

either whether our approach can be adapted to a language with-
out η-equivalence.
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