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The linear and nonlinear ac susceptibility measurements of Yb-pyrochlores, Yb2X2O7 (X = Sn, Ti, and Ge),
show transitions with a ferromagnetic nature at 0.13 and 0.25 K for Yb2Sn2O7 and Yb2Ti2O7, respectively, and
an antiferromagnetic ordering at 0.62 K for Yb2Ge2O7. These systematical results (i) provided information about
the nature of the unconventional magnetic ground state in Yb2Ti2O7; (ii) realized a distinct antiferromagnetic
ordering state in Yb2Ge2O7; and (iii) demonstrated that the application of chemical pressure through the series
of Yb-pyrochlores can efficiently perturb the fragile quantum spin fluctuations of the Yb3+ ions and lead to very
different magnetic ground states.

DOI: 10.1103/PhysRevB.89.064401 PACS number(s): 75.47.Lx, 75.40.Gb, 75.50.Cc, 75.50.Lk

The study of natural science has been increasingly focused
on quantum phenomena. And the understanding of quantum
phenomena is now at the forefront of modern condensed matter
research. One celebrated example is quantum spin liquids
(QSLs), in which a disordered, liquidlike spin state is led by
quantum spin fluctuations. While the notion of QSL is now
established in one-dimensional (1D) spin systems, realizing
QSLs in dimensions greater than one has been a long-sought
goal. Just recently, several materials with two-dimensional
(2D) geometrically frustrated lattices, such as the triangular
lattice and the kagome lattice, have been identified as QSLs
(see references in [1]). It is urgent and of critical importance
to understand the characteristic behavior of QSLs.

Therefore, as a potential three-dimensional (3D) QSL due
to the effective S = 1/2 nature of the Yb3+ cations, the
pyrochlore Yb2Ti2O7 has recently received a lot of attention
[2–7]. Several neutron scattering measurements [5,8,9] show
no evidence of long-range magnetic ordering for Yb2Ti2O7

but a magnetic ordered phase with an emergent spin wave
excitation with applied magnetic fields above 0.5 T [10,11].
Related theoretical studies proposed it to be a Coulombic
quantum spin liquid [11,12] or a model exchange quantum
spin ice [13]. On the other hand, the specific-heat data [14] and
the report of weak Bragg peaks [15,16] suggest that Yb2Ti2O7

is ferromagnetically ordered around 0.24 K, which has been
related to the Higgs mechanism [16]. Ross et al. pointed out
that one possibility for these discrepancies could be the 1–2 %
chemical disorder in single-crystal samples [17], in which the
high-temperature melting process tends to enhance the Yb3+

*hzhou10@utk.edu
†jgcheng@iphy.ac.cn

and Ti4+ site disorder. Their studies revealed that generally
the polycrystalline samples have better chemical stoichiometry
than single crystals. For example, most studied polycrystalline
samples shows a sharp anomaly in the specific heat around
0.2–0.26 K, and the single crystals usually show broad features
in the specific heat with sample dependence. Recently, several
μSR experiments even within polycrystalline samples yielded
different results [18,19]. Therefore, despite all these intensive
studies, the true nature of this unconventional magnetic ground
state, or this transition around 0.26 K, in Yb2Ti2O7 is still under
debate. To clarify this controversy is of great interest and will
help to better understand the QSL behavior in pyrochlores.

Moreover, how various perturbations affect this fragile QSL
state has not been systematically studied. However, the studies
on perturbation effects, such as the chemical pressure, are
important since a thorough study of the neighborhood of
Yb2Ti2O7 in composition space should help to clarify the
factors that influence the ground state. Recent studies [20–22]
on Yb2Sn2O7, with a larger lattice parameter than that of
Yb2Ti2O7, showed a ferromagnetic ordering below 0.11 K but
with persistent spin dynamics down to 0.05 K, indicating it is
approaching a quantum phase transition near the ferromagnetic
ordered critical point. The comparison between the Sn and Ti
samples already shows that the lattice parameter change or
the application of chemical pressure on Yb-pyrochlores can
perturb the the fragile magnetic ground state. To further probe
this state, we have synthesized another pyrochlore, Yb2Ge2O7,
by using a high-temperature–high-pressure (HTHP) tech-
nique [23,24]. This sample has a smaller lattice parameter
than that of Yb2Ti2O7 due to the small ionic size of Ge4+.
The series of Yb2X2O7 (X = Sn, Ti, and Ge) then provide
a unique opportunity to examine how the chemical pressure
consistently affects their magnetic ground states.
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Here, we use the linear and nonlinear ac susceptibility
measurements on the Yb2X2O7 series to study their magnetic
ground states. Until now, the nonlinear ac susceptibility
component has been largely neglected for exotic magnetism
studies in pyrochlores, but we show that it can efficiently
provide critical information for identifying the true character
of various magnetic ground states.

Polycrystalline samples of Yb2Ti2O7 and Yb2Sn2O7 were
made by standard solid state reactions. The ac susceptibility
measurement is obtained using an ac-dc current calibrator
(Valhalla Scientific, model 2700) and three lock-in amplifiers
(Stanford Research, SR 830). The phases of the lock-in
amplifiers are set to measure each harmonics signal, which is
shifted from the oscillating magnetic field according to Eq. (2).
The lock-in amplifiers are also set to read the linear component
(first harmonic response) and the nonlinear components
(second and third harmonic responses) with respect to the
oscillating ac field frequency. The rms amplitude of the ac
excitation field (h0) varies from 0.43 to 4.3 Oe with frequency
(f ) ranging from 40 to 1000 Hz. The applied external dc
magnetic field (Hdc) varies from 0 to 1000 Oe. The data were
taken while warming up the sample from the base temperature
with a rate of 7.6 mK/min with the zero-field-cooling process.
The linear and nonlinear ac susceptibility values have been
scaled by the ac field and ac frequency. The susceptibility
values, therefore, can be compared for each individual sample
of Yb2B2O7.

The notations of the linear and nonlinear ac susceptibility
terms are described as follows. Principally, the magnetization

m is expressed as

m = m0 + χ0h + χ1h
2 + χ2h

3 + · · · . (1)

Then in the ac susceptibility measurements, the induced
voltage E of the pick-up coil is given, applying the magnetic
field h = h0sinωt , as

E = A
{
χt

0h0 cos ωt + χt
1h

2
0 sin 2ωt

− 3/4χt
2h

3
0 cos 3ωt − 1/2χt

3h
4
0 sin 4ωt + · · · } (2)

with

χt
0 = χ0 + 3/4χ2h

2
0 + 5/8χ4h

4
0 + · · · , (3)

χt
1h0 = χ1h0 + χ3h

3
0 + 15/16χ5h

5
0 + · · · , (4)

3/4χt
2h

2
0 = 3/4χ2h

2
0 + 15/16χ4h

4
0 + 63/64χ6h

6
0 + · · · . (5)

Here, χt
0, χt

1h0, and 3/4χt
2h

2
0 are the first harmonic, second

harmonic, and third harmonic component [25] that we have
measured during the experiments. Since the used ac field h0 is
small, the first harmonic component is similar to the linear ac
susceptibility (χt

0 ≈ χ0). In the main text, we use χt
0 to denote

the linear ac susceptibility, and χt
1h0 and 3/4χt

2h
2
0 are the

second harmonic and third harmonic component, respectively.
The ac susceptibility measured for Yb2Ti2O7 is shown in

Figs. 1 and 2. The characteristic behaviors are as follows:
(i) both the real and imaginary parts of the linear ac suscepti-
bility (χt

0
′ and χt

0
′′, respectively) show a peak at TC = 0.25 K

with frequency f = 40 Hz, ac field h0 = 1.65 Oe, and dc field
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FIG. 1. (Color online) All data were taken at zero dc magnetic field (Hdc = 0 Oe) for Yb2Ti2O7. Temperature dependencies of (a) real part
χt

0
′ and (b) imaginary parts χt

0
′′ of the linear ac susceptibility measured with ac field, h0 = 1.65 Oe under different frequencies. Temperature

dependencies of (c) χt
0
′ and (d) χt

0
′′ with frequency f = 200 Hz under different h0.
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FIG. 2. (Color online) All data are for Yb2Ti2O7. (a) Temperature dependency of χt
0
′ measured with f = 200 Hz, h0 = 1.65 Oe under

different Hdc. Temperature dependency of (b) the second harmonic component χt
1h0 and (c) the third harmonic component 3/4χt

2h
2
0 measured

with f = 200 Hz, Hdc = 0 Oe under different h0. (d) Temperature dependencies of χt
0
′, χt

1h0, and 3/4χt
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0 measured with f = 200 Hz,

h0 = 2.48 Oe, and Hdc = 0 Oe.

Hdc = 0 Oe. This result is consistent with the reported data
and indicates a possible magnetic ordering at TC [15]. With
increasing f , this peak becomes broader and shifts to lower
temperatures [Figs. 1(a) and 1(b)]. (ii) χt

0
′′ is comparable to

χt
0
′ in order of magnitude. (iii) This transition is very sensitive

to the amplitude of h0. As shown in Figs. 1(c) and 1(d), for
both χt

0
′ and χt

0
′′, with increasing h0, the magnitude of the peak

increases strongly and the peak shifts to lower temperatures.
It is noteworthy that χt

0
′ is independent of h0 above TC but

depends on h0 at and below TC. (iv) With increasing Hdc, the
peak becomes broader and shifts to higher temperatures. With
Hdc = 1000 Oe, the peak is almost smeared out, as plotted in
Fig. 2(a). (v) The second harmonic component χt

1h0 plotted
in Fig. 2(b) appears just below TC (or vanishes above TC)
and shows an asymmetrical peak below TC. (vi) The third
harmonic component 3/4χt

2h
2
0 plotted in Fig. 2(c) changes its

sign from negative in the region above TC to positive in the
region below TC, when the temperature was lowered through
TC. Accordingly, the peak position of χt

0
′, the vanish point

of χt
1h0, and the inflection point of 3/4χt

2h
2
0 are consistently

located at TC, as shown in Fig. 2(d).
The ac susceptibility measured for Yb2Sn2O7 is shown in

Fig. 3. Its linear ac susceptibility shows a similar peak to that
of Yb2Ti2O7, but at a lower temperature TC = 0.13 K with f =
47 Hz, h0 = 1.4 Oe, and Hdc = 0 Oe. The overall behavior of
this transition for Yb2Sn2O7, shown from the linear component
under different frequency [Figs. 2(a) and 2(b)], different h0

[Figs. 2(c) and 2(d)], different Hdc (Fig. 1 from Ref. [19]),

and the second and third harmonic components [Figs. 2(e)
and 2(f), respectively], is similar to that of Yb2Ti2O7. One
noteworthy feature is that χt

0
′ for Yb2Sn2O7 [Fig. 2(c)] starts

to show the dependence of h0 below 0.4 K with increasing h0,
which is much higher than its TC. This is different from that
of Yb2Ti2O7, in which χt

0
′ is independent of h0 above TC.

The linear ac susceptibility measurements with a fixed
ac field have been intensively used to study the short-
range-ordered ground states for spin ices Dy2Ti2O7 [26,27],
Ho2Ti2O7 [28,29], spin liquid Tb2Ti2O7 [30,31], and related
R2Sn2O7 [29,32] pyrochlores. The limited ac susceptibil-
ity data reported on Yb2Ti2O7 show a transition around
0.24 K [15]. It is difficult to tell the exact nature of this transi-
tion from this linear ac susceptibility data. On the other hand,
the linear susceptibility (χt

0) measured with different h0 and
the nonlinear susceptibility (second harmonic χt

1h0 and third
harmonic 3/4χt

2h
2
0 components) resulting from hysteresis and

nonlinearity of magnetization can provide critical information
on the nature of magnetic phase transitions. The reported linear
and nonlinear ac susceptibility studies on various magnetic
materials have provided consistent evidence to identify the
characteristics of different magnetic ground states [25,33–39].
For spin glasses [33,34], the χt

0
′ shows a symmetrical cusp

at the spin-glass transition temperature (TSG), which shifts to
higher temperatures with increasing frequency. For ferromag-
netic (FM) ordering, (i) χt

0, χt
1h0, and 3/4χt

2h
2
0 all show an

asymmetrical peak at the FM transition temperature (TC) [33].
It is important to note that χt

1h0 can be observed only if a
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FIG. 3. (Color online) All data were taken with Hdc = 0 Oe for Yb2Sn2O7. Temperature dependencies of (a) χt
0
′ and (b) χt

0
′′ measured with

h0 = 1.4 Oe under different frequencies. Temperature dependencies of (c) χt
0
′, (d) χt

0
′′, and (e) χt

1h0 measured with f = 200 Hz, Hdc = 0 Oe
under different h0 and (f) 3/4χt

2h
2
0 measured with f =200 Hz, h0 = 2.6 Oe, and Hdc = 0 Oe.

system exhibits a spontaneous magnetization, due to the lack
of inversion symmetry with respect to the applied ac field.
Therefore, for a direct paramagnetic to spin-glass transition,
only odd harmonics are expected, while for ferromagnets
both even and odd harmonics should be present [25,37–39].
(ii) χt

0
′′ is comparable in magnitude to χt

0
′. (iii) The peak of χt

0
′

is sensitive to h0. Normally, the peak becomes stronger and
shifts to lower temperatures with increasing h0. This is due to
the contribution of domain magnetization in the FM region.
This is also why χt

0
′ is just dependent on h0 in the FM phase

below TC but shows independence of h0 in the paramagnetic
phase above TC [25]. (iv) TC shifts to higher temperatures with
increasing Hdc, which is caused by superposition of an internal

field and an externally applied field. (v) χt
1h0 vanishes above TC

and 3/4χt
2h

2
0 diverges with negative sign in the paramagnetic

region above TC. Both phenomena have been explained in the
framework of molecular field theory considering the domain
magnetization [25,35]. For antiferromagnetic (AFM) ordering,
(i) the peak of χt

0
′ at TN is independent of the frequency and

amplitude of h0; (ii) χt
0
′′ is much weaker in magnitude than

χt
0
′; (iii) there is no signal for nonlinear ac susceptibility [37];

and (iv) TN shifts to lower temperatures with increasing Hdc.
The characteristic behaviors of the ac susceptibility shown

in Figs. 1–3 then clearly suggest that the transitions at 0.13 K
for Yb2Sn2O7 and 0.25 K for Yb2Ti2O7 are both of a
ferromagnetic nature. Several other noteworthy features are
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FIG. 4. (Color online) All data in (a)–(d) were taken for Yb2Ge2O7. (a) The powder x-ray diffraction pattern of as-prepared polycrystalline
samples. (b) Temperature dependency of the reciprocal susceptibility. The symbols are experimental data and the solid line is the Curie-Weiss
fit. Inset: the lattice parameter dependence of the Curie constant (θCW) for Yb2B2O7. Temperature dependency of χt

0
′ measured with (c) Hdc

= 0 Oe under different f and h0 and (d) f = 200 Hz, h0 = 2.6 Oe under different Hdc. (e) dc magnetic field dependence of the transition
temperatures for Yb2B2O7.

as follows: (i) there is a frequency dependence for χt
0
′′ for

Yb2Ti2O7 between 0.4 and 0.27 K [Fig. 1(b)]. Meanwhile,
the neutron scattering experiments of Yb2Ti2O7 [9] show that
three-dimensional spin correlations develop below 0.4 K and
then cross over to quasi-two-dimensional magnetic correla-
tions below 0.26 K. Therefore, the frequency dependence of
χt

0
′′ observed here in the same temperature regime could be

related to these three-dimensional spin correlations. (ii) There
is a small shoulder above the peak at TC for the low-frequency
χt

0
′ and χt

0
′′ for Yb2Sn2O7 [Figs. 3(a) and 3(b)], which

may indicate a two-step process or an inhomogeneous TC.
(iii) With increasing h0, the χt

0
′ for Yb2Sn2O7 starts to change

below 0.4 K, which is higher than 0.13 K. This feature
suggests that the ferromagnetic cluster, or the short-range FM
ordering, already develops above TC for Yb2Sn2O7. This result
is consistent with the recent studies on Yb2Sn2O7 [21,22],
which showed a FM ordering, but with the short-range ordering
entering below 2 K and persistent spin fluctuations down
to 50 mK. (iv) With increasing f , both for Yb2Sn2O7 and
Yb2Ti2O7, the linear ac susceptibility peak shifts to lower
temperatures [Figs. 1(a) and 3(a)]. Normally, for a FM
transition, its ac susceptibility peak either shows no frequency
dependence or shifts slightly to higher temperatures with
increasing f . Future studies will be required to determine

064401-5



Z. L. DUN et al. PHYSICAL REVIEW B 89, 064401 (2014)

whether this feature is intrinsic to quantum spin fluctuations or
related to the recently proposed Coulombic ferromagnet [12],
which is an exotic partially FM polarized phase.

The room-temperature powder x-ray diffraction pattern
[Fig. 4(a)] confirms the cubic lattice for the pyrochlore
Yb2Ge2O7 prepared by the HTHP method. The obtained
lattice parameter is 9.8257(5) Å, which is consistent with the
reported value [40,41] and smaller than those of Yb2Ti2O7

(a = 10.032 Å) and Yb2Sn2O7 (a = 10.304 Å). The dc
magnetic susceptibility [Fig. 4(b)] shows no magnetic ordering
down to 1.8 K. The obtained Curie constant θCW = 0.9 K
is larger than those of Yb2Ti2O7 (θCW = 0.75 K) and
Yb2Sn2O7 (θCW = 0.62 K). Here all three θCW values are
consistently obtained by fitting the dc susceptibility below
10 K, which is measured at 10 Oe with the zero-field-cooling
process. A general trend [inset of Fig. 2(b)] is that with the
increasing lattice parameter for Yb-pyrochlores, the θCW value
decreases.

The characteristic behaviors of the ac susceptibility for
Yb2Ge2O7 are as follows: (i) The χt

0
′ shows a peak at TN =

0.62 K. This feature is independent of the amplitude and fre-
quency of ac field [Fig. 4(c)]; (ii) χt

0
′′ exhibits a much weaker

signal than χt
0
′ (not shown here). (iii) No signal for nonlinear

susceptibility. (iv) With increasing Hdc, TN for Yb2Ge2O7

shifts to lower temperatures [Fig. 4(d)], which is distinct from
that of TC for Yb2Ti2O7 and Yb2Sn2O7. Figure 4(e) shows
a comparison among the dc field dependence of TN and TC

for Yb-pyrochlores. All of these features are significantly
different from those of Yb2Ti2O7 and Yb2Sn2O7 with FM
nature. Actually, they correspond with those characteristic
behaviors of an AFM ordering with TN = 0.62 K.

For Yb2B2O7, with decreasing lattice parameter, the θCW

remains positive and increases. This is expected since the
smaller lattice should enhance the exchange interaction and
lead to larger θCW. The change of dipolar interaction here
could be neglected due to the 1/r3 nature of the forces.
Then, Yb2Ge2O7 exhibits an AFM ordering at 0.62 K but
with a positive θCW = 0.9 K. One possible reason for this
inconsistency is that for Yb2B2O7, the θCW is determined by the
details of the anisotropic exchange interactions. The theoreti-
cal studies on Yb2Ti2O7 [11] have proposed that the value of
θCW is a linear combination of various exchange interactions,
which can be either positive or negative. The calculated sum

leads to a positive θCW for Yb2Ti2O7. Another theoretical
calculation from Thompson et al. gave different values of the
exchange interactions for Yb2Ti2O7, but the Curie constant is
consistently positive [7]. For Yb-pyrochlores, the exchange
interactions are largely affected by the local environment
of the Yb3+ ions. The large chemical pressure imposed
on Yb2Ge2O7 may significantly tune the local structure of
Yb3+ ions from that of Yb2Ti2O7 and Yb2Sn2O7, although
its average structure still remains cubic, so as to lead to
different exchange interactions. The signs and the values of
these exchange interactions may result in AFM ordering but a
positive sum for the θCW. Future studies on the local structure
of Yb3+ ions for Yb2Ge2O7 are needed to better understand
the nature of its AFM ordering.

In summary, our ac susceptibility measurements, especially
the largely neglected nonlinear ac susceptibility, successfully
provided additional information to the magnetic ground states
of Yb-pyrochlores, which are a transition at 0.13 K with FM
nature and a short-range-ordering feature for Yb2Sn2O7, a tran-
sition at 0.25 K with FM nature for our studied polycrystalline
Yb2Ti2O7, and an AFM ordering at 0.62 K for Yb2Ge2O7.
Through these systematical results, we (i) suggested the
unconventional magnetic ground state in Yb2Ti2O7 is of FM
nature; (ii) realized an AFM ground state in Yb2Ge2O7,
which provides a new playground for exotic magnetism in
pyrochlores (since so far all the experimental and theoretical
studies on QSLs in pyrochlores are obtained from the FM
Yb-pyrochlores, future studies on this distinct AFM state will
lead to broader or different insights); (iii) demonstrated that
the chemical pressure can efficiently perturb the quantum
spin fluctuations in Yb-pyrochlores. These findings will guide
and inform a more comprehensive understanding of the QSL
physics in pyrochlores.
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