

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Chemical pressure effects on magnetism in the quantum spin liquid candidates $Yb_2 X_2 O_7 (X = Sn, Ti, Ge)$

Citation for published version:

Dun, ZL, Lee, M, Choi, ES, Hallas, AM, Wiebe, CR, Gardner, JS, Arrighi, E, Freitas, RS, Arevalo-Lopez, AM, Attfield, JP, Zhou, HD & Cheng, JG 2014, 'Chemical pressure effects on magnetism in the quantum spin liquid candidates Yb X, O, (X = Sn, Ti, Ge)', *Physical review B*, vol. 89, no. 6, 064401. https://doi.org/10.1103/PhysRevB.89.064401

Digital Object Identifier (DOI):

10.1103/PhysRevB.89.064401

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Publisher's PDF, also known as Version of record

Published In: Physical review B

Publisher Rights Statement:

Copyright © 2014 American Physical Society. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Physical Society.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Chemical pressure effects on magnetism in the quantum spin liquid candidates $Yb_2X_2O_7$ (X = Sn, Ti, Ge)

Z. L. Dun,¹ M. Lee,^{2,3} E. S. Choi,² A. M. Hallas,⁴ C. R. Wiebe,^{2,4,5} J. S. Gardner,⁶ E. Arrighi,⁷ R. S. Freitas,⁷

A. M. Arevalo-Lopez,⁸ J. P. Attfield,⁸ H. D. Zhou,^{1,2,*} and J. G. Cheng^{9,†}

¹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA

²National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306-4005, USA

³Department of Physics, Florida State University, Tallahassee, Florida 32306-3016, USA

⁴Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada

⁵Department of Chemistry, University of Winnipeg, Winnipeg, MB, R3B 2E9 Canada

⁶Neutron Group, National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan, Republic of China

⁷Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05314-970 Sao Paulo, SP, Brazil

⁸Centre for Science at Extreme Conditions and the School of Chemistry, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

⁹Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 10 September 2013; revised manuscript received 15 January 2014; published 4 February 2014)

The linear and nonlinear ac susceptibility measurements of Yb-pyrochlores, $Yb_2X_2O_7$ (X = Sn, Ti, and Ge), show transitions with a ferromagnetic nature at 0.13 and 0.25 K for $Yb_2Sn_2O_7$ and $Yb_2Ti_2O_7$, respectively, and an antiferromagnetic ordering at 0.62 K for $Yb_2Ge_2O_7$. These systematical results (i) provided information about the nature of the unconventional magnetic ground state in $Yb_2Ti_2O_7$; (ii) realized a distinct antiferromagnetic ordering state in $Yb_2Ge_2O_7$; and (iii) demonstrated that the application of chemical pressure through the series of Yb-pyrochlores can efficiently perturb the fragile quantum spin fluctuations of the Yb^{3+} ions and lead to very different magnetic ground states.

DOI: 10.1103/PhysRevB.89.064401

PACS number(s): 75.47.Lx, 75.40.Gb, 75.50.Cc, 75.50.Lk

The study of natural science has been increasingly focused on quantum phenomena. And the understanding of quantum phenomena is now at the forefront of modern condensed matter research. One celebrated example is quantum spin liquids (QSLs), in which a disordered, liquidlike spin state is led by quantum spin fluctuations. While the notion of QSL is now established in one-dimensional (1D) spin systems, realizing QSLs in dimensions greater than one has been a long-sought goal. Just recently, several materials with two-dimensional (2D) geometrically frustrated lattices, such as the triangular lattice and the kagome lattice, have been identified as QSLs (see references in [1]). It is urgent and of critical importance to understand the characteristic behavior of QSLs.

Therefore, as a potential three-dimensional (3D) QSL due to the effective S = 1/2 nature of the Yb³⁺ cations, the pyrochlore Yb₂Ti₂O₇ has recently received a lot of attention [2–7]. Several neutron scattering measurements [5.8.9] show no evidence of long-range magnetic ordering for Yb₂Ti₂O₇ but a magnetic ordered phase with an emergent spin wave excitation with applied magnetic fields above 0.5 T [10,11]. Related theoretical studies proposed it to be a Coulombic quantum spin liquid [11,12] or a model exchange quantum spin ice [13]. On the other hand, the specific-heat data [14] and the report of weak Bragg peaks [15,16] suggest that Yb₂Ti₂O₇ is ferromagnetically ordered around 0.24 K, which has been related to the Higgs mechanism [16]. Ross et al. pointed out that one possibility for these discrepancies could be the 1–2 %chemical disorder in single-crystal samples [17], in which the high-temperature melting process tends to enhance the Yb³⁺

1098-0121/2014/89(6)/064401(7)

and Ti⁴⁺ site disorder. Their studies revealed that generally the polycrystalline samples have better chemical stoichiometry than single crystals. For example, most studied polycrystalline samples shows a sharp anomaly in the specific heat around 0.2–0.26 K, and the single crystals usually show broad features in the specific heat with sample dependence. Recently, several μ SR experiments even within polycrystalline samples yielded different results [18,19]. Therefore, despite all these intensive studies, the true nature of this unconventional magnetic ground state, or this transition around 0.26 K, in Yb₂Ti₂O₇ is still under debate. To clarify this controversy is of great interest and will help to better understand the QSL behavior in pyrochlores.

Moreover, how various perturbations affect this fragile QSL state has not been systematically studied. However, the studies on perturbation effects, such as the chemical pressure, are important since a thorough study of the neighborhood of Yb₂Ti₂O₇ in composition space should help to clarify the factors that influence the ground state. Recent studies [20–22] on Yb₂Sn₂O₇, with a larger lattice parameter than that of Yb₂Ti₂O₇, showed a ferromagnetic ordering below 0.11 K but with persistent spin dynamics down to 0.05 K, indicating it is approaching a quantum phase transition near the ferromagnetic ordered critical point. The comparison between the Sn and Ti samples already shows that the lattice parameter change or the application of chemical pressure on Yb-pyrochlores can perturb the the fragile magnetic ground state. To further probe this state, we have synthesized another pyrochlore, $Yb_2Ge_2O_7$, by using a high-temperature-high-pressure (HTHP) technique [23,24]. This sample has a smaller lattice parameter than that of $Yb_2Ti_2O_7$ due to the small ionic size of Ge^{4+} . The series of $Yb_2X_2O_7$ (X = Sn, Ti, and Ge) then provide a unique opportunity to examine how the chemical pressure consistently affects their magnetic ground states.

^{*}hzhou10@utk.edu

[†]jgcheng@iphy.ac.cn

Here, we use the linear and nonlinear ac susceptibility measurements on the $Yb_2X_2O_7$ series to study their magnetic ground states. Until now, the nonlinear ac susceptibility component has been largely neglected for exotic magnetism studies in pyrochlores, but we show that it can efficiently provide critical information for identifying the true character of various magnetic ground states.

Polycrystalline samples of Yb₂Ti₂O₇ and Yb₂Sn₂O₇ were made by standard solid state reactions. The ac susceptibility measurement is obtained using an ac-dc current calibrator (Valhalla Scientific, model 2700) and three lock-in amplifiers (Stanford Research, SR 830). The phases of the lock-in amplifiers are set to measure each harmonics signal, which is shifted from the oscillating magnetic field according to Eq. (2). The lock-in amplifiers are also set to read the linear component (first harmonic response) and the nonlinear components (second and third harmonic responses) with respect to the oscillating ac field frequency. The rms amplitude of the ac excitation field (h_0) varies from 0.43 to 4.3 Oe with frequency (f) ranging from 40 to 1000 Hz. The applied external dc magnetic field (H_{dc}) varies from 0 to 1000 Oe. The data were taken while warming up the sample from the base temperature with a rate of 7.6 mK/min with the zero-field-cooling process. The linear and nonlinear ac susceptibility values have been scaled by the ac field and ac frequency. The susceptibility values, therefore, can be compared for each individual sample of $Yb_2B_2O_7$.

The notations of the linear and nonlinear ac susceptibility terms are described as follows. Principally, the magnetization m is expressed as

2

$$m = m_0 + \chi_0 h + \chi_1 h^2 + \chi_2 h^3 + \cdots .$$
 (1)

Then in the ac susceptibility measurements, the induced voltage *E* of the pick-up coil is given, applying the magnetic field $h = h_0 \sin \omega t$, as

$$E = A \{ \chi_0^t h_0 \cos \omega t + \chi_1^t h_0^2 \sin 2\omega t - 3/4 \chi_2^t h_0^3 \cos 3\omega t - 1/2 \chi_3^t h_0^4 \sin 4\omega t + \cdots \}$$
(2)

with

$$\chi_0^t = \chi_0 + 3/4\chi_2 h_0^2 + 5/8\chi_4 h_0^4 + \cdots, \qquad (3)$$

$$\chi_1^t h_0 = \chi_1 h_0 + \chi_3 h_0^3 + 15/16\chi_5 h_0^5 + \cdots, \qquad (4)$$

$$3/4\chi_2^t h_0^2 = 3/4\chi_2 h_0^2 + 15/16\chi_4 h_0^4 + 63/64\chi_6 h_0^6 + \cdots .$$
 (5)

Here, χ_0^t , $\chi_1^t h_0$, and $3/4\chi_2^t h_0^2$ are the first harmonic, second harmonic, and third harmonic component [25] that we have measured during the experiments. Since the used ac field h_0 is small, the first harmonic component is similar to the linear ac susceptibility ($\chi_0^t \approx \chi_0$). In the main text, we use χ_0^t to denote the linear ac susceptibility, and $\chi_1^t h_0$ and $3/4\chi_2^t h_0^2$ are the second harmonic and third harmonic component, respectively.

The ac susceptibility measured for Yb₂Ti₂O₇ is shown in Figs. 1 and 2. The characteristic behaviors are as follows: (i) both the real and imaginary parts of the linear ac susceptibility ($\chi_0^{t'}$ and $\chi_0^{t''}$, respectively) show a peak at $T_C = 0.25$ K with frequency f = 40 Hz, ac field $h_0 = 1.65$ Oe, and dc field

FIG. 1. (Color online) All data were taken at zero dc magnetic field ($H_{dc} = 0$ Oe) for Yb₂Ti₂O₇. Temperature dependencies of (a) real part $\chi_0^{t'}$ and (b) imaginary parts $\chi_0^{t''}$ of the linear ac susceptibility measured with ac field, $h_0 = 1.65$ Oe under different frequencies. Temperature dependencies of (c) $\chi_0^{t'}$ and (d) $\chi_0^{t''}$ with frequency f = 200 Hz under different h_0 .

FIG. 2. (Color online) All data are for Yb₂Ti₂O₇. (a) Temperature dependency of $\chi_0^{t'}$ measured with f = 200 Hz, $h_0 = 1.65$ Oe under different H_{dc} . Temperature dependency of (b) the second harmonic component $\chi_1^t h_0$ and (c) the third harmonic component $3/4\chi_2^t h_0^2$ measured with f = 200 Hz, $H_{dc} = 0$ Oe under different h_0 . (d) Temperature dependencies of $\chi_0^{t'}$, $\chi_1^t h_0$, and $3/4\chi_2^t h_0^2$ measured with f = 200 Hz, $h_0 = 2.48$ Oe, and $H_{dc} = 0$ Oe.

 $H_{\rm dc} = 0$ Oe. This result is consistent with the reported data and indicates a possible magnetic ordering at $T_{\rm C}$ [15]. With increasing f, this peak becomes broader and shifts to lower temperatures [Figs. 1(a) and 1(b)]. (ii) $\chi_0^{t''}$ is comparable to $\chi_0^{t'}$ in order of magnitude. (iii) This transition is very sensitive to the amplitude of h_0 . As shown in Figs. 1(c) and 1(d), for both $\chi_0^{t'}$ and $\chi_0^{t''}$, with increasing h_0 , the magnitude of the peak increases strongly and the peak shifts to lower temperatures. It is noteworthy that $\chi_0^{t'}$ is independent of h_0 above $T_{\rm C}$ but depends on h_0 at and below $T_{\rm C}$. (iv) With increasing $H_{\rm dc}$, the peak becomes broader and shifts to higher temperatures. With $H_{\rm dc} = 1000$ Oe, the peak is almost smeared out, as plotted in Fig. 2(a). (v) The second harmonic component $\chi_1^t h_0$ plotted in Fig. 2(b) appears just below $T_{\rm C}$ (or vanishes above $T_{\rm C}$) and shows an asymmetrical peak below $T_{\rm C}$. (vi) The third harmonic component $3/4\chi_2^t h_0^2$ plotted in Fig. 2(c) changes its sign from negative in the region above $T_{\rm C}$ to positive in the region below $T_{\rm C}$, when the temperature was lowered through $T_{\rm C}$. Accordingly, the peak position of $\chi_0^{t'}$, the vanish point of $\chi_1^t h_0$, and the inflection point of $3/4\chi_2^t h_0^2$ are consistently located at $T_{\rm C}$, as shown in Fig. 2(d).

The ac susceptibility measured for Yb₂Sn₂O₇ is shown in Fig. 3. Its linear ac susceptibility shows a similar peak to that of Yb₂Ti₂O₇, but at a lower temperature $T_{\rm C} = 0.13$ K with f = 47 Hz, $h_0 = 1.4$ Oe, and $H_{\rm dc} = 0$ Oe. The overall behavior of this transition for Yb₂Sn₂O₇, shown from the linear component under different frequency [Figs. 2(a) and 2(b)], different h_0 [Figs. 2(c) and 2(d)], different $H_{\rm dc}$ (Fig. 1 from Ref. [19]),

and the second and third harmonic components [Figs. 2(e) and 2(f), respectively], is similar to that of Yb₂Ti₂O₇. One noteworthy feature is that $\chi_0^{t'}$ for Yb₂Sn₂O₇ [Fig. 2(c)] starts to show the dependence of h_0 below 0.4 K with increasing h_0 , which is much higher than its $T_{\rm C}$. This is different from that of Yb₂Ti₂O₇, in which $\chi_0^{t'}$ is independent of h_0 above $T_{\rm C}$.

The linear ac susceptibility measurements with a fixed ac field have been intensively used to study the shortrange-ordered ground states for spin ices Dy₂Ti₂O₇ [26,27], Ho₂Ti₂O₇ [28,29], spin liquid Tb₂Ti₂O₇ [30,31], and related R₂Sn₂O₇ [29,32] pyrochlores. The limited ac susceptibility data reported on $Yb_2Ti_2O_7$ show a transition around 0.24 K [15]. It is difficult to tell the exact nature of this transition from this linear ac susceptibility data. On the other hand, the linear susceptibility (χ_0^t) measured with different h_0 and the nonlinear susceptibility (second harmonic $\chi_1^t h_0$ and third harmonic $3/4\chi_2^t h_0^2$ components) resulting from hysteresis and nonlinearity of magnetization can provide critical information on the nature of magnetic phase transitions. The reported linear and nonlinear ac susceptibility studies on various magnetic materials have provided consistent evidence to identify the characteristics of different magnetic ground states [25,33–39]. For spin glasses [33,34], the $\chi_0^{t'}$ shows a symmetrical cusp at the spin-glass transition temperature (T_{SG}) , which shifts to higher temperatures with increasing frequency. For ferromagnetic (FM) ordering, (i) χ_0^t , $\chi_1^t h_0$, and $3/4\chi_2^t h_0^2$ all show an asymmetrical peak at the FM transition temperature $(T_{\rm C})$ [33]. It is important to note that $\chi_1^t h_0$ can be observed only if a

FIG. 3. (Color online) All data were taken with $H_{dc} = 0$ Oe for Yb₂Sn₂O₇. Temperature dependencies of (a) $\chi_0^{t'}$ and (b) $\chi_0^{t''}$ measured with $h_0 = 1.4$ Oe under different frequencies. Temperature dependencies of (c) $\chi_0^{t'}$, (d) $\chi_0^{t''}$, and (e) $\chi_1^t h_0$ measured with f = 200 Hz, $H_{dc} = 0$ Oe under different h_0 and (f) $3/4\chi_2^t h_0^2$ measured with f = 200 Hz, $h_0 = 2.6$ Oe, and $H_{dc} = 0$ Oe.

system exhibits a spontaneous magnetization, due to the lack of inversion symmetry with respect to the applied ac field. Therefore, for a direct paramagnetic to spin-glass transition, only odd harmonics are expected, while for ferromagnets both even and odd harmonics should be present [25,37–39]. (ii) $\chi_0^{t''}$ is comparable in magnitude to $\chi_0^{t'}$. (iii) The peak of $\chi_0^{t'}$ is sensitive to h_0 . Normally, the peak becomes stronger and shifts to lower temperatures with increasing h_0 . This is due to the contribution of domain magnetization in the FM region. This is also why $\chi_0^{t'}$ is just dependent on h_0 in the FM phase below T_C but shows independence of h_0 in the paramagnetic phase above T_C [25]. (iv) T_C shifts to higher temperatures with increasing H_{dc} , which is caused by superposition of an internal field and an externally applied field. (v) $\chi_1^t h_0$ vanishes above T_C and $3/4\chi_2^t h_0^2$ diverges with negative sign in the paramagnetic region above T_C . Both phenomena have been explained in the framework of molecular field theory considering the domain magnetization [25,35]. For antiferromagnetic (AFM) ordering, (i) the peak of $\chi_0^{t'}$ at T_N is independent of the frequency and amplitude of h_0 ; (ii) $\chi_0^{t''}$ is much weaker in magnitude than $\chi_0^{t'}$; (iii) there is no signal for nonlinear ac susceptibility [37]; and (iv) T_N shifts to lower temperatures with increasing H_{dc} .

The characteristic behaviors of the ac susceptibility shown in Figs. 1–3 then clearly suggest that the transitions at 0.13 K for $Yb_2Sn_2O_7$ and 0.25 K for $Yb_2Ti_2O_7$ are both of a ferromagnetic nature. Several other noteworthy features are

FIG. 4. (Color online) All data in (a)–(d) were taken for Yb₂Ge₂O₇. (a) The powder x-ray diffraction pattern of as-prepared polycrystalline samples. (b) Temperature dependency of the reciprocal susceptibility. The symbols are experimental data and the solid line is the Curie-Weiss fit. Inset: the lattice parameter dependence of the Curie constant (θ_{CW}) for Yb₂B₂O₇. Temperature dependency of $\chi_0^{\prime\prime}$ measured with (c) H_{dc} = 0 Oe under different *f* and h_0 and (d) *f* = 200 Hz, h_0 = 2.6 Oe under different H_{dc} . (e) dc magnetic field dependence of the transition temperatures for Yb₂B₂O₇.

as follows: (i) there is a frequency dependence for $\chi_0^{t''}$ for Yb₂Ti₂O₇ between 0.4 and 0.27 K [Fig. 1(b)]. Meanwhile, the neutron scattering experiments of Yb₂Ti₂O₇ [9] show that three-dimensional spin correlations develop below 0.4 K and then cross over to quasi-two-dimensional magnetic correlations below 0.26 K. Therefore, the frequency dependence of $\chi_0^{t''}$ observed here in the same temperature regime could be related to these three-dimensional spin correlations. (ii) There is a small shoulder above the peak at T_C for the low-frequency $\chi_0^{t'}$ and $\chi_0^{t''}$ for Yb₂Sn₂O₇ [Figs. 3(a) and 3(b)], which may indicate a two-step process or an inhomogeneous T_C . (iii) With increasing h_0 , the $\chi_0^{t'}$ for Yb₂Sn₂O₇ starts to change

below 0.4 K, which is higher than 0.13 K. This feature suggests that the ferromagnetic cluster, or the short-range FM ordering, already develops above $T_{\rm C}$ for Yb₂Sn₂O₇. This result is consistent with the recent studies on Yb₂Sn₂O₇ [21,22], which showed a FM ordering, but with the short-range ordering entering below 2 K and persistent spin fluctuations down to 50 mK. (iv) With increasing *f*, both for Yb₂Sn₂O₇ and Yb₂Ti₂O₇, the linear ac susceptibility peak shifts to lower temperatures [Figs. 1(a) and 3(a)]. Normally, for a FM transition, its ac susceptibility peak either shows no frequency dependence or shifts slightly to higher temperatures with increasing *f*. Future studies will be required to determine

whether this feature is intrinsic to quantum spin fluctuations or related to the recently proposed Coulombic ferromagnet [12], which is an exotic partially FM polarized phase.

The room-temperature powder x-ray diffraction pattern [Fig. 4(a)] confirms the cubic lattice for the pyrochlore Yb₂Ge₂O₇ prepared by the HTHP method. The obtained lattice parameter is 9.8257(5) Å, which is consistent with the reported value [40,41] and smaller than those of Yb₂Ti₂O₇ (a = 10.032 Å) and Yb₂Sn₂O₇ (a = 10.304 Å). The dc magnetic susceptibility [Fig. 4(b)] shows no magnetic ordering down to 1.8 K. The obtained Curie constant $\theta_{CW} = 0.9$ K is larger than those of Yb₂Ti₂O₇ ($\theta_{CW} = 0.62$ K). Here all three θ_{CW} values are consistently obtained by fitting the dc susceptibility below 10 K, which is measured at 10 Oe with the zero-field-cooling process. A general trend [inset of Fig. 2(b)] is that with the increasing lattice parameter for Yb-pyrochlores, the θ_{CW} value decreases.

The characteristic behaviors of the ac susceptibility for $Yb_2Ge_2O_7$ are as follows: (i) The $\chi_0^{t'}$ shows a peak at $T_N = 0.62$ K. This feature is independent of the amplitude and frequency of ac field [Fig. 4(c)]; (ii) $\chi_0^{t''}$ exhibits a much weaker signal than $\chi_0^{t'}$ (not shown here). (iii) No signal for nonlinear susceptibility. (iv) With increasing H_{dc} , T_N for $Yb_2Ge_2O_7$ shifts to lower temperatures [Fig. 4(d)], which is distinct from that of T_C for $Yb_2Ti_2O_7$ and $Yb_2Sn_2O_7$. Figure 4(e) shows a comparison among the dc field dependence of T_N and T_C for Yb-pyrochlores. All of these features are significantly different from those of $Yb_2Ti_2O_7$ and $Yb_2Sn_2O_7$ with FM nature. Actually, they correspond with those characteristic behaviors of an AFM ordering with $T_N = 0.62$ K.

For Yb₂B₂O₇, with decreasing lattice parameter, the θ_{CW} remains positive and increases. This is expected since the smaller lattice should enhance the exchange interaction and lead to larger θ_{CW} . The change of dipolar interaction here could be neglected due to the $1/r^3$ nature of the forces. Then, Yb₂Ge₂O₇ exhibits an AFM ordering at 0.62 K but with a positive $\theta_{CW} = 0.9$ K. One possible reason for this inconsistency is that for Yb₂B₂O₇, the θ_{CW} is determined by the details of the anisotropic exchange interactions. The theoretical studies on Yb₂Ti₂O₇ [11] have proposed that the value of θ_{CW} is a linear combination of various exchange interactions, which can be either positive or negative. The calculated sum

leads to a positive θ_{CW} for Yb₂Ti₂O₇. Another theoretical calculation from Thompson *et al.* gave different values of the exchange interactions for Yb₂Ti₂O₇, but the Curie constant is consistently positive [7]. For Yb-pyrochlores, the exchange interactions are largely affected by the local environment of the Yb³⁺ ions. The large chemical pressure imposed on Yb₂Ge₂O₇ may significantly tune the local structure of Yb³⁺ ions from that of Yb₂Ti₂O₇ and Yb₂Sn₂O₇, although its average structure still remains cubic, so as to lead to different exchange interactions may result in AFM ordering but a positive sum for the θ_{CW} . Future studies on the local structure of Yb³⁺ ions for Yb₂Ge₂O₇ are needed to better understand the nature of its AFM ordering.

In summary, our ac susceptibility measurements, especially the largely neglected nonlinear ac susceptibility, successfully provided additional information to the magnetic ground states of Yb-pyrochlores, which are a transition at 0.13 K with FM nature and a short-range-ordering feature for Yb₂Sn₂O₇, a transition at 0.25 K with FM nature for our studied polycrystalline Yb₂Ti₂O₇, and an AFM ordering at 0.62 K for Yb₂Ge₂O₇. Through these systematical results, we (i) suggested the unconventional magnetic ground state in Yb₂Ti₂O₇ is of FM nature; (ii) realized an AFM ground state in Yb₂Ge₂O₇, which provides a new playground for exotic magnetism in pyrochlores (since so far all the experimental and theoretical studies on QSLs in pyrochlores are obtained from the FM Yb-pyrochlores, future studies on this distinct AFM state will lead to broader or different insights); (iii) demonstrated that the chemical pressure can efficiently perturb the quantum spin fluctuations in Yb-pyrochlores. These findings will guide and inform a more comprehensive understanding of the QSL physics in pyrochlores.

The work in NHMFL is supported by NSF-DMR-0654118 and the State of Florida. C.R.W. is grateful for support through NSERC of Canada, the CFI, the ACS Petroleum Fund, and the CRC program (Tier II). J.P.A. acknowledges support from EPSRC and the Royal Society. J.G.C. is supported by the National Science Foundation of China (NSFC, Grant No. 11304371) and the Chinese Academy of Sciences (Grant No. Y2K5016X51). Z.L.D. and H.D.Z. gratefully acknowledge the support of the JDRD program of the University of Tennessee.

- [1] L. Balents, Nature (London) 464, 199 (2010).
- [2] H. Cao, A. Gukasov, I. Mirebeau, P. Bonville, C. Decorse, and G. Dhalenne, Phys. Rev. Lett. 103, 056402 (2009).
- [3] J. A. Hodges, P. Bonville, A. Forget, M. Rams, K. Krolas, and G. Dhalenne, J. Phys.: Condens. Matter 13, 9301 (2001).
- [4] H. B. Cao, A. Gukasov, I. Mirebeau, and P. Bonville, J. Phys.: Condens. Matter 21, 492202 (2009).
- [5] J. A. Hodges, P. Bonville, A. Forget, A. Yaouanc, P. Dalmas de Reotier, G. Andre, M. Rams, K. Krolas, C. Ritter, P. C. M. Gubbens, C. T. Kaiser, P. J. C. King, and C. Baines, Phys. Rev. Lett. 88, 077204 (2002).
- [6] B. Z. Malkin, A. R. Zakirov, M. N. Popova, S. A. Klimin, E. P. Chukalina, E. Antic-Fidancev, P. Goldner, P. Aschehoug, and G. Dhalenne, Phys. Rev. B 70, 075112 (2004).

- [7] J. D. Thompson, P. A. McClarty, H. M. Ronnow, L. P. Regnault, A. Sorge, and M. J. P. Gingras, Phys. Rev. Lett. **106**, 187202 (2011).
- [8] J. S. Gardner, G. Ehlers, N. Rosov, R. W. Erwin, and C. Petrovic, Phys. Rev. B 70, 180404 (2004).
- [9] K. A. Ross, L. R. Yaraskavitch, M. Laver, J. S. Gardner, J. A. Quilliam, S. Meng, J. B. Kycia, D. K. Singh, Th. Proffen, H. A. Dabkowska, and B. D. Gaulin, Phys. Rev. B 84, 174442 (2011).
- [10] K. A. Ross, J. P. C. Ruff, C. P. Adams, J. S. Gardner, H. A. Dabkowska, Y. Qiu, J. R. D. Copley, and B. D. Gaulin, Phys. Rev. Lett. **103**, 227202 (2009).
- [11] K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Phys. Rev. X 1, 021002 (2011).
- [12] L. Savary and L. Balents, Phys. Rev. Lett. 108, 037202 (2012).

- [13] R. Applegate, N. R. Hayre, R. R. P. Singh, T. Lin, A. G. R. Day, and M. J. P. Gingras, Phys. Rev. Lett. **109**, 097205 (2012).
- [14] A. Yaouanc, P. D. Dalmas de Reotier, C. Marin, and V. Glazkov, Phys. Rev. B 84, 172408 (2011).
- [15] Y. Yasui, M. Soda, S. Iikubo, M. Ito, M. Sato, N. Hamaguchi, T. Matsushita, N. Wada, T. Takeuchi, N. Aso, and K. Kakurai, J. Phys. Soc. Jpn. 72, 3014 (2003).
- [16] L. J. Chang, S. Onoda, Y. Su, Y. J. Kao, K. D. Tsuei, Y. Yasui, K. Kakurai, and M. R. Lees, Nat. Commun. 3, 992 (2012).
- [17] K. A. Ross, Th. Proffen, H. A. Dabkowska, J. A. Quilliam, L. R. Yaraskavitch, J. B. Kycia, and B. D. Gaulin, Phys. Rev. B 86, 174424 (2012).
- [18] R. M. Dorgenzio, H. A. Dabkowska, S. R. Dunsiger, B. D. Gaulin, M. J. P. Gingras, T. Goko, J. B. Kycia, L. Liu, T. Medina, T. J. Munsie, D. Pomaranski, K. A. Ross, Y. J. Uemra, T. J. Williams, and G. M. Luke, arXiv:1303.3850.
- [19] L. J. Chang, M. T. Lees, I. Watanabe, A. D. Hillier, Y. Yasui, and S. Onoda, arXiv:1311.5526.
- [20] K. Matsuhira, Y. Hinatsu, K. Tenya, H. Amitsuka, and T. Sakakibara, J. Phys. Soc. Jpn. 71, 1576 (2002).
- [21] A. Yaouanc, P. Dalmas de Reotier, P. Bonville, J. A. Hodges, V. Glazkov, L. Keller, V. Sikolenko, M. Bartkowiak, A. Amato, C. Baines, P. J. C. King, P. C. M. Gubbens, and A. Forget, Phys. Rev. Lett. **110**, 127207 (2013).
- [22] Z. L. Dun, E. S. Choi, H. D. Zhou, A. M. Hallas, H. J. Silverstein, Y. Qiu, J. R. D. Copley, J. S. Gardner, and C. R. Wiebe, Phys. Rev. B 87, 134408 (2013).
- [23] J. G. Cheng, J. S. Zhou, and J. B. Goodenough, Phys. Rev. B 81, 134412 (2010).
- [24] S. A. J. Kimber, J. A. Rodgers, H. Wu, C. A. Murray, D. N. Argyriou, A. N. Fitch, D. I. Khomskii, and J. P. Attfield, Phys. Rev. Lett. **102**, 046409 (2009).

- [25] S. Toshikazu and M. Yoshihito, J. Phys. Soc. Jpn 51, 1394 (1981).
- [26] K. Matsuhira, C. Paulsen, E. Lhotel, C. Sekine, Z. Hiroi, and S. Takagi, J. Phys. Soc. Jpn. 80, 123711 (2011).
- [27] J. Snyder, B. G. Ueland, J. S. Slusky, H. Karunadasa, R. J. Cava, A. Mizel, and P. Schiffer, Phys. Rev. Lett. 91, 107201 (2003).
- [28] J. A. Quilliam, L. R. Yaraskavitch, H. A. Dabkowska, B. D. Gaulin, and J. B. Kycia, Phys. Rev. B 83, 094424 (2011).
- [29] K. Matsuhira, Y. Hinatsu, K. Tenya, and T. Sakakibara, J. Phys. Condens. Matter 12, L649 (2000).
- [30] L. Yin, J. S. Xia, Y. Takano, N. S. Sullivan, Q. J. Li, and X. F. Sun, Phys. Rev. Lett. **110**, 137201 (2013).
- [31] E. Lhotel, C. Paulsen, P. D. de Réotier, A. Yaouanc, C. Marin, and S. Vanishri, Phys. Rev. B 86, 020410(R) (2012).
- [32] M. L. Dahlberg, M. J. Matthews, P. Jiramongkolchai, R. J. Cava, and P. Schiffer, Phys. Rev. B 83, 140410(R) (2011).
- [33] H. Negishi, H. Takahashi, and M. Inoue, J. Magn. Magn. Mater. 68, 271 (1987).
- [34] B. Ozcelik, K. Kiymac, J. C. Verstelle, A. J. van Duyneveldt, and J. A. Mydosh, J. Phys.: Condens. Matter 4, 6639 (1992).
- [35] B. Ozcelik and K. Kiymac, J. Phys.: Condens. Matter 6, 8309 (1994).
- [36] S. Chikazawa, C. J. Sandberg, and Y. Miyako, J. Phys. Soc. Jpn. 50, 2884 (1981).
- [37] K. Latka, R. Kmiec, A. W. Pacyna, R. Mishra, and R. Pottgen, Solid Sate Sci. 3, 545 (2001).
- [38] S. Mukherjee, R. Ranganathan, and S. B. Roy, Phys. Rev. B 50, 1084 (1994).
- [39] M. A. Girtu, C. M. Wynn, W. Fujita, K. Awaga, and A. J. Epstein, Phys. Rev. B 57, R11058 (1998).
- [40] R. D. Shannon and A. W. Sleight, Inorg. Chem. 7, 1649 (1968).
- [41] L. N. Dem'yanets, S. F. Radaev, B. F. Mamin, and B. A. Maksimov, J. Struct. Chem. 29, 485 (1988).