

Edinburgh Research Explorer

Towards Formal Proof Script Refactoring
Citation for published version:
Whiteside, I, Aspinall, D, Dixon, L & Grov, G 2011, Towards Formal Proof Script Refactoring. in J
Davenport, W Farmer, J Urban & F Rabe (eds), Intelligent Computer Mathematics: 18th Symposium,
Calculemus 2011, and 10th International Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6824, Springer Berlin Heidelberg, pp. 260-275.
https://doi.org/10.1007/978-3-642-22673-1_18

Digital Object Identifier (DOI):
10.1007/978-3-642-22673-1_18

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Intelligent Computer Mathematics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Apr. 2024

https://doi.org/10.1007/978-3-642-22673-1_18
https://doi.org/10.1007/978-3-642-22673-1_18
https://www.research.ed.ac.uk/en/publications/d6ec0216-ecaa-4318-b206-00a1b6ce04dc

Towards Formal Proof Script Refactoring

Iain Whiteside, David Aspinall, Lucas Dixon?, and Gudmund Grov

School of Informatics, University of Edinburgh
Edinburgh EH8 9AB, Scotland

Abstract. We propose proof script refactorings as a robust tool for
constructing, restructuring, and maintaining formal proof developments.
We argue that a formal approach is vital, and illustrate by defining and
proving correct a number of valuable refactorings in a simplified proof
script and declarative proof language of our own design.

1 Introduction

Theorem proving in-the-small is popular for investigating small domain-specific
logics and for teaching logic. With maturing technology, theorem proving in-the-
large is becoming more common, with big formalisations built in both industry
and academia. Notable examples in verification include a specification of the
IP stack [15] and functional correctness of a microkernel [9]. Formalised mathe-
matics is also feasible: Gonthier formalised the proof of the Four Colour Theorem
(FCT) [7] and Hales has an ongoing project to formally prove the Kepler Con-
jecture [8]. The completed proof scripts (theorem prover inputs) range in length
from around 10,000 lines to 200,000 lines, each proving hundreds or thousands
of lemmas and representing several person-years of work.

It is encouraging that large developments are possible, but they are far from
easy. Writing proofs is often harder than writing programs. Formal proofs are
more complex, dense, and interdependent than similarly sized programs. Yet
they are developed with primitive tools akin to those used for programming in
the 1960s: often little more than basic text editors, with no high-level means of
rapid construction, easy modification or browsing. Lack of modern support for
proof construction and maintenance is a main reason that interactive provers
are not used more widely; it makes them incredibly tedious to learn and use.

By contrast, maintenance of large programs is well supported by modern
Software Engineering (SE) tools. Software systems of hundreds of thousands of
lines of code can be managed with relative ease. One important SE technique
is refactoring. A refactoring is a semantics-preserving transformation of code
which improves design, structure or readability [6, 12]. It may be pervasive, but
routine. Ideally refactorings are tool-assisted: an algorithm checks safety pre-
conditions before making global changes in one go. Many refactorings are simple
operations with complex pre-conditions, e.g., Rename and Move. Our hypothesis
is that by adapting and extending refactoring techniques from SE we can make
? Now at Google, New York.

2 I. Whiteside, D. Aspinall, L. Dixon, and G. Grov

development and maintenance of formal proof scripts easier and more accessible
to new users, as well as more productive for expert users. As anecdotal evidence
to motivate our work, we note that Gonthier mentions, in [7], having to spend
a number of months refactoring his FCT development by hand.

Ensuring correctness of proof refactorings is vital because proof scripts can
take arbitrarily long to re- check, and unexpected changes to lemma statements
can change the meaning of a development. It is also non-trivial; for example, com-
plex tactics make analysis of dependencies difficult, as noted in [13], and notions
of semantics for fully-blown proof scripts have not been well studied compared
with programming language semantics. Even refactoring tools for programming
languages, which have been studied for almost 20 years, are full of bugs [5].

In this work we study refactoring formally in a simple, generic proof script
language of our own design in order to understand and overcome the main chal-
lenges. In particular, we use Hiproofs [4] as a generic notion of proof as it provides
a clean theoretical base on which to build; furthermore, we believe the hierarchy
offers opportunities for refactoring and proof understanding. We do not intend
to cover all aspects of a practical implementation from the outset, but use it as
an exploratory study into the viability, applicability, and challenges associated
with refactoring.

Contributions. Our two main contributions are a generic proof script lan-
guage, with a declarative proof language, and a formal treatment of a number
of proof refactorings. Firstly, we give a formal semantics to the proof scripts and
prove that declarative proofs construct valid proofs. In particular, we formalise
a notion of gaps in a proof. Secondly, we define what we mean by proof script
refactoring, and the appropriate notion of semantics preservation, and define
several valuable refactorings, including rename lemma and backward to forward,
which transforms a backwards-style proof into a forward-style one. Finally we
prove that these refactorings are correct in a meaningful sense.

Outline of paper. In the next section, we introduce Hiproofs, as a represen-
tation for proof, and Hitac as an idealised tactic language on which we base our
work. In Section 3 we introduce the proof script language, its semantics, and give
a formal definition of proof script refactoring. We then, in Section 4, describe the
declarative proof language and give an example of our proof scripts in Section 5.
Section 6 describes a number of refactorings and we conclude in Section 7.

2 Background

Hiproofs are a hierarchical representation of the proof trees constructed by
tactics. The hierarchy makes explicit the relationship between tactic calls and
the proof tree constructed by these tactics. Hiproofs were first investigated by
Denney et al in [4] and can be given a denotational semantics as a pair of forests,
viewed as posets. One partial order provides a notion of hierarchy, the other of
sequential composition. An abstract example of a Hiproof is given in Figure 1,
where a, b, and c are called atomic tactics i.e. black boxes.

Towards Formal Proof Script Refactoring 3

l

a

b

m

c

Fig. 1. A Hiproof

a

b c

Fig. 2. The skeleton

impI

impI

andI

INTROS

Fig. 3. INTROS

Figure 1 reads as follows: at the top, the abstract tactic l first applies an
atomic tactic a. The tactic a produces two subgoals, the first of which is solved
by the atomic tactic b within the application of l. Thus, the high-level view is
that tactic l produces a single subgoal, which is then solved by the tactic m.
The underlying proof tree, called the skeleton, is shown in Figure 2. Conditions
placed upon construction of Hiproofs ensure that they can always be unfolded
into the skeleton. More concretely, Figure 3 shows the application of an INTROS
tactic as a Hiproof; the trailing edges are goals that must be solved by composing
other Hiproofs. In [1], Aspinall et al gave an operational account of Hiproofs,
based on derivation systems. They also introduced a tactic language, Hitac,
which constructs Hiproofs. We describe this work now, as it provides the basis
for what follows.

Derivation Systems. In this work we will not commit to a specific logical system;
instead, we work within a derivation system, which can be thought of as a simple
logical framework. It defines sets of atomic goals γ ∈ G and atomic tactics a ∈ A.
What we call an atomic goal is a judgement form in the underlying derivation
system, and what we call an atomic tactic is an inference rule schema:

γ1 . . . γn

γ a ∈ A

stating that the atomic tactic a, given subgoals γ1, . . . , γn, produces a proof of
γ. We do not formalise how the rule schemata and instances are related.

Hiproofs. The concrete syntax of Hiproofs is defined by the grammar:

s ::= a | id | [l]s | s ; s | s ⊗ s | 〈〉

Sequencing (s ; s) corresponds to composing boxes by arrows, tensor (s ⊗ s)
places boxes side-by-side, and labelling ([l]s) introduces a new labelled box.
Identity (id) and empty (〈〉) are units for ; and ⊗ respectively. Labelling binds
weakest, then sequencing with tensor binding most tightly. We can now give a
syntactic description of the Hiproof in Figure 1: ([l]a ; b ⊗ id) ; [m] c.

4 I. Whiteside, D. Aspinall, L. Dixon, and G. Grov

We say that a Hiproof is valid if it is well-formed and if atomic tactics are ap-
plied correctly. This notion is formalised with a validation relation s ` g1 −→ g2,
where gi are lists of goals. This relation, defined below, states that the Hiproof s
is a proof of g1 with remaining subgoals g2. Thus, Hiproofs can represent partial
proofs. The γi are single goals and @ is list append.

γ1 . . . γn
γ a ∈ A

a ` [γ] −→ [γ1, . . . , γn]
(V-Atomic)

s ` [γ] −→ g

[l]s ` [γ] −→ g
(V-Label)

〈〉 ` [] −→ []
(V-Empty)

s1 ` g1 −→ g s2 ` g −→ g2

s1 ; s2 ` g1 −→ g2

(V-Seq)

s1 ` g1 −→ g ′1 s2 ` g2 −→ g ′2

s1 ⊗ s2 ` g1@g2 −→ g ′1@g ′2
(V-Tens)

id ` [γ] −→ [γ]
(V-Id)

Hitac. We extend the Hitac grammar from [1] with lemma application:

t ::= a | id | [l]t | t ; t | t ⊗ t | 〈〉
| assert γ
| t | t
| name (t, . . . , t)
| X

| lem l

In addition to the standard Hiproof constructs, goal assertions (assert γ) can con-
trol the flow; alternation (t | t) allows choice; and, defined tactics (name (t, . . . , t))
and variables (X) allow us to build recursive tactic programs. Tactic evalua-
tion is defined relative to a proof environment : (T ,L). The lemma environment,
L : name → (goal × s), is a map from lemma names to a goal and Hiproof
pair; the tactic environment, T : name → (X, t), maps tactic names to their
parameter list and Hitac tactic.

Evaluation of a tactic is defined as a relation 〈g, t〉 ⇓t(T ,L) 〈s, g
′〉, which should

be read as: ‘the tactic t applied to the list of goals g returns a Hiproof s and
remaining subgoals g ′, under (T ,L)’. We give the evaluation rules for tensor,
lemma application, and defined tactics below, where we write X as shorthand
for the list [X1, . . . , Xn]. For a full presentation of the semantics and a proof of
Theorem 1, please refer to [1].

〈g1, t1〉 ⇓t
(T ,L) 〈s1, g

′
1〉 〈g2, t2〉 ⇓t

(T ,L) 〈s2, g
′
2〉

〈g1@g2, t1 ⊗ t2〉 ⇓t
(T ,L) 〈s1 ⊗ s2, g

′
1@g ′2〉

T (name) = (X, t) 〈g, t[t1/X1, . . . , tn/Xn]〉 ⇓t
(T ,L) 〈s, g

′〉
〈g,name (t1, . . . , tn)〉 ⇓t

(T ,L) 〈s, g
′〉

L(l) = (γ, s) s ` γ −→ []

〈γ, lem l〉 ⇓t
(T ,L) 〈[lem l]s, []〉

Towards Formal Proof Script Refactoring 5

Theorem 1 (Correctness of big-step semantics) If 〈g1, t〉 ⇓t(T ,L) 〈s, g2〉 then
s ` g1 −→ g2.

3 Proof Scripts

Proof scripts allow us to build and extend proof environments. For simplicity,
proof scripts consist of only tactic definitions and lemmas although real systems
need other elements (e.g., definitions, syntax, comments). The grammar for proof
scripts is:

proofscript ::= script name
scriptobj ∗

end

scriptobj ::= begin
| tacdef name (X1, . . . , Xn) := t
| lemma name : goal

prf

Proof scripts essentially consist of a sequence of lemmas and tactics, within
begin and end tags. Lemmas are named and consist of a goal and a formal proof
prf ; parameterised tactics can be defined, where the Xi are the tactic variables
occurring within t and must be instantiated when the tactic is used.

Top level evaluation of proof scripts is defined by:

` scriptobjs ⇓ 〈T ,L〉
` script name scriptobjs end ⇓ 〈T ,L〉

(PS-Script)

where the judgement ` scriptobjs ⇓ 〈T ,L〉, which operates on a sequence of
script objects, is defined in Figure 4. The evaluation relation states that the
script proofscript can be evaluated resulting in an environment 〈T ,L〉. When
we do not need to explicitly refer to the environment, we will write ` proofscript
to mean ∃ T L. ` proofscript ⇓ 〈T ,L〉. We say a proof script is well-formed
iff ` proofscript . Well-formedness does not imply that the proofs are complete:
there may be gaps; proof checking is a low-level process that would ensure the
Hiproofs constructed have no trailing edges. For brevity, we often use P to refer
to proof scripts.

The rule PS-Begin ensures scripts start with a begin and initialises an
empty environment. Tactics (or lemmas) extend T (or L) as long as they satisfy
the preconditions. The functions names and variables are defined recursively on
scripts and tactics and the relation scriptobjs ` t checks for well-formedness of
tactics: ensuring that only tactics and lemmas defined above it in the script can
be used. The notation T [n 7→ (X, [n]t)] means extending the map, T , by adding
an element. For a lemma, the important precondition is that 〈γ, prf 〉 ⇓p

(T ,L) 〈s〉.
This is the proof relation, which states that when you apply prf to the goal
γ it results in a Hiproof, s. We will instantiate prf in the next section, but it
could be any proof language associated with a valid proof relation i.e. one that
constructs valid Hiproofs. Both lemmas and tactics are labelled with their name
when added to the environment allowing us to see, in the hierarchy, where tactics
and lemmas have been applied.

6 I. Whiteside, D. Aspinall, L. Dixon, and G. Grov

` begin ⇓ 〈{}, {}〉 (PS-Begin)

` scriptobjs ⇓ 〈T ,L〉 n /∈ names(scriptobjs) 〈γ, prf 〉 ⇓p(T ,L) 〈s〉

` scriptobjs lemma n: γ prf ⇓ 〈T ,L[n 7→ (γ, [n]s)]〉
(PS-Lem)

` scriptobjs ⇓ 〈T ,L〉 n /∈ names(scriptobjs) variables(t) ⊆ X scriptobjs ` t

` scriptobjs tacdef n(X) := t ⇓ 〈T [n 7→ (X, [n]t)],L〉
(PS-Tac)

Fig. 4. Proof script evaluation

3.1 Proof Script Refactoring.

We first define a more general notion of proof script transformation as follows:

Definition 1 (Proof Script Transformation) A pair (P,O), where P is a
predicate, called the precondition, and O : proofscript → proofscript , is a proof
script transformation if, for all scripts P, such that ` P and P(P), we have
` O(P).

That is, applying a proof script transformation, as long as the precondition P
holds, guarantees that it preserves well-formedness.

We take the view that the statements proved within lemmas are the key
semantics objects in a script, motivating the following definition:

Definition 2 (Statement Preservation) A proof script transformation, (P,O),
is statement preserving if for all scripts P such that P(P) and ` P ⇓ 〈T ,L〉
then ` O(P) ⇓ 〈T ′,L′〉 and we have:

∀ l if L(l) = (γ, s) then ∃ l ′ s ′ s.t. L′(l ′) = (γ, s ′).

That is, we prove at least the same statements after a transformation as
before. Thus, we have:

Definition 3 (Proof Script Refactoring) A proof script refactoring is a
proof script transformation that is statement preserving.

4 A Declarative Proof Language

To explore the refactoring possibilities within proofs, we describe a declarative
proof language and give it a semantics which constructs valid Hiproofs. We de-
scribe prf with the following grammar:

prf ::= proof(rule)
stmt∗

qed
| gap

rule ::= t

stmt ::= 〈〉
| [name]:{ prf }
| apply rule
| show name : goal prf
| have name : goal prf
| from name∗ show goal by rule

Towards Formal Proof Script Refactoring 7

The core component of the language is a proof block : proof(rule) stmts qed.
Proof blocks operate on a single goal, applying the initial rule before solving the
resulting subgoals by the statements inside it. The key statement is show, which
solves the goal it is applied to. The empty statement 〈〉 operates on an empty list,
finishing off a proof; tactics can be applied directly with apply; forward proof
is possible by using have to extend the environment then the from...show...by
construct to perform the forward step. Hierarchy can be added, using the la-
belling construct: [name]:{ prf }; finally, goals can be skipped with the gap
command. Syntactic conveniences, for example, by rule ≡ proof(rule) 〈〉 qed
can be introduced. In Figure 5, we give a big-step semantics to declarative proofs
with the relation 〈g, prf 〉 ⇓p

(T ,L) 〈s〉. A proof prf applied to a list of goals g will
result in a Hiproof s. Top level prf evaluations always operate on a single goal,
and the evaluation rules in Figure 5 reflect this. Statement lists are evaluated
one at a time; the statement being operated on directly is highlighted. We use
:: to refer to the cons list constructor.

〈[γ], t〉 ⇓t
(T ,L) 〈s1, g〉 〈g, stmts 〉 ⇓p(T ,L) 〈s2〉

〈[γ], proof(t) stmts qed 〉 ⇓p(T ,L) 〈s1 ; s2〉
(B-Prf-Block)

〈[γ], gap 〉 ⇓p(T ,L) 〈id〉 (B-Prf-Gap)

〈[], 〈〉 〉 ⇓p(T ,L) 〈〈〉〉 (B-Prf-Empty)

〈[γ], prf 〉 ⇓p(T ,L) 〈s1〉 〈g, stmts 〉 ⇓p(T ,L) 〈s2〉

〈γ :: g, [l]:{ prf } stmts 〉 ⇓p(T ,L) 〈([l]s1) ⊗ s2〉
(B-Prf-Lab)

〈g1, t〉 ⇓t
(T ,L) 〈s1, g2〉 〈g2, stmts 〉 ⇓p(T ,L) 〈s2〉

〈g1, apply t stmts 〉 ⇓p(T ,L) 〈s1 ; s2〉
(B-Prf-App)

〈[γ], prf 〉 ⇓p(T ,L) 〈s1〉 〈g, stmts 〉 ⇓p(T ,L) 〈s2〉

〈γ :: g, show name : γ prf stmts 〉 ⇓p(T ,L) 〈s1 ⊗ s2〉
(B-Prf-Show)

〈[γ], prf 〉 ⇓p(T ,L) 〈s1〉 name /∈ names(T) ∪ names(L)

〈g, stmts 〉 ⇓p(T ,L[name 7−→(γ,s1)]) 〈s〉

〈g, have name : γ prf stmts 〉 ⇓p(T ,L) 〈s〉
(B-Prf-Have)

L(n1) = (γ1, s1) . . . L(nn) = (γn, sn)
〈[γ], t〉 ⇓t

(T ,L) 〈s, [γ1, . . . , γn]〉 〈g, stmts 〉 ⇓p(T ,L) 〈s
′〉

〈γ :: g, from n1 . . . nn show name : γ by t stmts 〉 ⇓(T ,L)

〈(s ; (s1 ⊗ . . .⊗ sn))⊗ s ′, []〉

(B-Prf-From)

Fig. 5. Declarative proof language big-step semantics

8 I. Whiteside, D. Aspinall, L. Dixon, and G. Grov

Proof blocks operate on singleton goal lists and are evaluated by executing the
initial tactic, then feeding the resulting subgoals into the enclosed statements.
The gap proof construct also operates on singleton goals, placing an identity
Hiproof to feed the goal out. In B-Prf-Have, we see that the intermediate step
is added to the proof environment. We enforce the new name to be unique, but
this is not necessary: if we drop this restriction we can have local overloading in
the current proof block. This does, however force us to provide more complex
preconditions and transformation rules for the refactorings.

The rule B-Prf-From is the most complicated. The first set of preconditions
check that the names used exist in the lemma environment; the next ensures
that the tactic justification returns exactly the stated goals that the names refer
to; the third simply evaluates the remaining statements. Finally the Hiproof is
constructed by tensoring together all of the Hiproofs for each individual subgoal
and placing them after the Hiproof resulting from the tactic application. In order
to ensure that valid Hiproofs are constructed, we prove:

Theorem 2 (Soundness of big-step semantics) If 〈γ, prf 〉 ⇓p
(T ,L) 〈s〉 then

s ` γ −→ g for some g. Moreover, if prf is gap-free then s ` γ −→ [].

Proof: We proceed by induction on the height of the derivations. For empty,
the rule B-Prf- Empty matches V-Empty directly with g = []. Gaps are vali-
dated with V-Id and g = [γ]. For B-PRf-Block, Theorem 1 and the induction
hypothesis allow us to apply V-Seq. Similarly, with B-Prf-Show we use the
induction hypothesis twice and V-Tens, with g being the concatenation of both.
The other cases are similar. When the proof is gap-free, we note that B-Prf-
Gap is the only base case to introduce a discrepancy between Hiproof validation
and tactic evaluation, thus g must be []. In fact, g is exactly the ‘gapped’ goals.

Theorem 3 (Completeness of big-step semantics) If s ` γ −→ [] for a
given environment (T ,L) then there exists a gap- free prf such that 〈γ, prf 〉 ⇓p

(T ,L)

〈s〉.

Proof: If s is a Hiproof such that s ` γ −→ [] then, trivially, ‘by s’ works when
we consider the Hiproof as a Hitac tactic.

5 Example

In order to make these languages more concrete, we provide a small example
proof script. Space restrictions require any such example is necessarily trivial
but we hope it conveys some of the main features. We instantiate a derivation
system with first order logic, with atomic tactics given by the well-known natural
deduction rules, a few of which are given below:

Γ,P ` Q
Γ ` P → Q

impI
Γ ` P Γ,Q ` R
Γ,P → Q ` R

impE
Γ,P ` P

ax
Γ,P ,Q ` R
Γ,P ∧Q ` R

conjE

Towards Formal Proof Script Refactoring 9

Γ ` P Γ ` Q
Γ ` P ∧Q

conjI
Γ ` P[x := x0]
Γ ` ∀ x.P allI

Γ,P[x := t] ` Q
Γ,∀ x.P ` Q allE

An example script, defining two tactics and proving two lemmas is given in
Figure 6. Note that we elide the empty statement in both lemmas.

script example begin
tacdef REPEAT (X) := X ; (REPEAT (X) | id)
tacdef intros := REPEAT (impI | allI | conjI)

lemma lemma1 : ` P ∧Q→ Q ∧ P
proof(intros)
show q : {P ∧Q} ` Q by (conjE ; ax)
show p : {P ∧Q} ` P by (conjE ; ax)
qed

lemma lemma2 : ` (∀ x. P x→ Q x)→ (∀ x. P x)→ (∀ x. Q x)
proof(intros)
show {∀ x. P x→ Q x, ∀ x. P x} ` Q x
proof(REPEAT (allE))
show {P x→ Q x, P x} ` Q x by impE ; (ax ⊗ ax)
qed
qed

end

Fig. 6. Example proof script

6 Refactorings

We are now ready to refactor proof scripts. We describe rename lemma, swap
objects, transform proof, backward proof to forward proof, and extract subproof in
some detail. We summarise, in Figure 7, the main refactorings we have considered
thus far. Finally in Section 6.6 we show how Figure 6 could be refactored.

6.1 Rename Lemma

Renaming a lemma may seem like a trivial action but, if that lemma has been
applied multiple times in a proof development, the new name must be propagated
and must not clash with any other names in the development. This makes it a
tedious and error-prone task for humans. The refactoring takes three parameters:
a script to operate on, an old lemma name, o, and a new lemma name, n.

Preconditions. In common with all other refactorings that we are currently
considering, rename lemma has the precondition that the proof script P that
it acts on must be well-formed i.e. ` P. We must also ensure that there are no
name clashes with the new name: n /∈ names(P).

10 I. Whiteside, D. Aspinall, L. Dixon, and G. Grov

Generalise Tactic Replace a subtactic with a var, creating a more general tactic.

Fold/Unfold Proof Declarative proofs can be collapsed into raw tactic applica-
tions and vice-versa.

Fold/Unfold Tactic Fold or unfold a defined tactic.

Fill Gap Replace a gap with a proof that solves the goal.

Add/Rem Hierarchy Introduce or remove labelled boxes to a proof.

Safe Delete Delete a lemma or tactic as long as it is not used.

Copy Copy a lemma or tactic.

Rename Rename a lemma or tactic.

Backward to Forward Convert a backward proof into a forward proof.

Have to Lemma Lift a have statement up to the status of lemma.

Extract Subproof Extract a subproof of a goal into a lemma.

Fig. 7. Summary of refactorings

Transformation rules. We define this transformation on the structure of proof
scripts. There are three classes of rules operating on: a proofscript , a prf , and
a t. We give some cases of the action on proofscript and t in Figures 8 and 9.
The rename tactic refactoring is analagous, except we must take into account
possibly recursive tactics.

scriptobjs
rl(o,n)−−−−→ scriptobjs ′

script name scriptobjs end
rl(o,n)−−−−→ script name scriptobjs ′ end

begin
rl(o,n)−−−−→ begin

scriptobjs lemma o: γ prf
rl(o,n)−−−−→ scriptobjs lemma n: γ prf

scriptobjs
rl(o,n)−−−−→ scriptobjs ′ prf

rl(o,n)−−−−→ prf ′ o 6= ln

scriptobjs lemma ln: γ prf
rl(o,n)−−−−→ scriptobjs ′ lemma ln: γ prf ′

scriptobjs
rl(o,n)−−−−→ scriptobjs ′ t

rl(o,n)−−−−→ t ′

scriptobjs tacdef tn(X) := t
rl(o,n)−−−−→ scriptobjs tacdef tn(X) := t ′

Fig. 8. Script level transformations

Correctness. We want to prove that this operation is indeed a refactoring:

Theorem 4 (Rename Lemma Correctness) If, for a proof script P and old
name o and new name n that satisfy the preconditions above and

P
rl(o,n)−−−−→ P ′ and ` P ⇓ 〈T ,L〉 then ` P ′ ⇓ 〈T ′,L′〉

and we have: ∀ l if L(l) = (γ, s) then ∃ l ′ s ′ s.t. L′(l ′) = (γ, s ′).

Towards Formal Proof Script Refactoring 11

t1
rl(o,n)−−−−→ t ′1 t2

rl(o,n)−−−−→ t ′2

t1 ; t2
rl(o,n)−−−−→ t ′1 ; t ′2

l 6= o

lem l
rl(o,n)−−−−→ lem l

lem o
rl(o,n)−−−−→ lem n

Fig. 9. Tactic level transformations

Proof. We prove that ` P ′ ⇓ 〈T ′,L′〉 by induction on the transformation rules.
For each rule, we show that if the script evaluates before the rule is applied,
then it evaluates to a similar environment afterwards; this motivates our need
for the precondition as it is required as a premiss for one of the evaluation rules.
We can then see that L′ satisfies the statement preservation property.

6.2 Swap Objects

We can swap two adjacent objects if they have no dependency on one another.
In Figure 6 we can swap the two lemmas, but not the definitions of intros and
REPEAT. We can repeat this refactoring to get the more general move object
refactoring. To simplify presentation, we assume that we are swapping two adja-
cent lemmas (although the general refactoring covers all four cases). Swap object
takes two parameters: the name of a lemma, x and the script P. We take the
convention that the named lemma is to be moved up one place.

Preconditions. Let posn(x , P) = n, objAt(n − 1 , P) = y, and envAt(n, P) =
(T ,L). If proof (x) = prf , L(x) = (γ, s), and 〈γ, prf 〉 ⇓p

(T ,L) 〈s〉 then we must
have 〈γ, prf 〉 ⇓p

(T ,del(y, L)) 〈s〉.
That is, the lemma x can still be proved in an environment without y. This

formulation of the preconditions simplifies the correctness proof, but it could also
be described purely syntactically for our language; however, for languages with
sophisticated tactics like auto, we would need to use the semantic information.
All the functions used here are easily defined on scripts.

Transformation. We only show two of the transformation rules:

obj2 objs
swap(x)−−−−−→ objs ′ nameOf (obj2) 6= x

obj1 obj2 objs
swap(x)−−−−−→ obj1 objs ′

obj1 lemma x: γ prf objs
swap(x)−−−−−→ lemma x: γ prf obj1 objs

Correctness. We elide the proof that this is indeed a refactoring.

12 I. Whiteside, D. Aspinall, L. Dixon, and G. Grov

6.3 Transform Proof

This refactoring is an enabling refactoring for the ones to follow. Essentially, it
takes a proof transformation, R : prf → prf , and a lemma name, n, as parame-
ters and appliesR to the proof of that lemma, leaving everything else untouched.
The precondition for this refactoring is that the proof transformation preserves
provability. We do not give the transformation rules here as they are straightfor-
ward. This is clearly a refactoring: the provability precondition matches directly
with the premiss for PS-Lem.

6.4 Backward Proof to Forward Proof

This refactoring transforms a proof prf that is in the form of Figure 10 to the
form of Figure 11.

proof(t)
show goal1 : γ1 prf 1

...
show goaln : γn prf n

qed

Fig. 10. Before

proof
have goal1 : γ1 prf 1

...
have goaln : γn prf n
from goal1 . . . goaln show γ by t

qed

Fig. 11. After

Preconditions. We have one precondition: there are no ‘apply t’ steps within
the proof block. Rather than a technical limitation, it simplifies the presentation
of the rules below. In order to remove it, we would have to convert any apply
steps into a declarative proof format, which is another refactoring.

Transformation rules. We describe the refactoring using a set of transforma-
tion rules, a subset of which is given below:

stmts
b2f−−→ stmts ′ [n1, . . . , nn] = shows(stmts)

proof(t) stmts qed
b2f−−→ proof stmts ′ from n1 . . . nn show γ by t qed

stmts
b2f−−→ stmts ′

show name : γ prf stmts
b2f−−→ have name : γ prf stmts ′

This time, the transformation rules work only on a prf . In order to apply
the refactoring at the script level, we use transform proof. The function shows
constructs a list of all the goals.

Correctness. Since this refactoring applies only to the proof and the precon-
dition for transform proof is that backward to forward preserves provability, we
only need to show:

Towards Formal Proof Script Refactoring 13

Theorem 5 (Provability Preservation of Backward Proof to Forward Proof)
If prf is a declarative proof of γ satisfying the preconditions of backward to for-
ward then

prf
b2f−−→ prf ′ and 〈γ, prf ′〉 ⇓p

(T ,L) 〈s
′〉

Proof. Since show statements get transformed to have statements by the refac-
toring, and by the precondition that the names are fresh in the environment, we
can guarantee that all the names are in the environment when the from...show...by
is executed. This succeeds because the names map directly to the subgoals pro-
duced by t initially.

6.5 Extract Subproof

In this more complex refactoring, we show how a proof of a subgoal within a
lemma can be extracted as a lemma in its own right. It is, in fact, a composition
of two simpler refactorings:

Show to Have: transforms a show statement into a have statement and re-
places the proof of the show statement with a ‘by lem n’, where n is the
user supplied name for the have statement.

Have to Lemma: moves a have statement up to the top level of the script:
there are no preconditions and no change is required to the rest of the proof.
This refactoring would be useful if an intermediate lemma is more widely
applicable.

Figures 12 to 14 show how this refactoring proceeds. We do not give a more for-
mal description here. It is worth noting that we can compose these refactorings
because Have to Lemma does not have any preconditions; however, in general,
to ensure that two refactorings can be composed to form another correct refac-
toring we must be able to prove that the preconditions for the second refactoring
are always satisfied. In future work, we intend to investigate composition using
postconditions of refactorings.

6.6 Example Refactoring

Finally, using rename lemma, fold tactic, backward proof to forward proof, and
swap lemma we can transform the proof script in Figure 6 into Figure 15. In
particular, we rename lemma1 to conj comm and lemma2 to all mp, which bet-
ter reflect their meaning, and swap their position. We have used backward proof
to forward proof to transform conj comm and also fold tactic to replace the
identical applications of conjE ; ax with a named tactic called conjEax .

7 Related Work and Conclusions

This paper introduces proof script refactoring as a way to make structured
changes to a proof development. We describe a number of valuable refactor-
ings including rename lemma, and extract subproof for a simple proof script

14 I. Whiteside, D. Aspinall, L. Dixon, and G. Grov

lemma lname : γ
proof

...
show gi : γi
prf i

...
qed

Fig. 12. Before

lemma lname : γ
proof

...
have n : γi prf i
show gi : γi by lem n
...

qed

Fig. 13. Step one

lemma n : γi
prf i

lemma lname : γ
proof

...
show gi : γi by lem n
...

qed

Fig. 14. After

and declarative proof language. We believe that the formal approach we take
is necessary: the time required for proof-checking and the risk of changing the
meaning of a lemma makes the correctness of refactorings vital. While we be-
lieve our work on proof script refactoring is unique, there is a large literature
in the domain of programming language refactoring. Fowler takes a test-based
approach to refactoring in [6]; this book, widely considered to be the ‘handbook
of refactoring’, consists of over 70 refactorings with a detailed description of the
motivation for each refactoring and how to carry it out safely. We note that refac-
toring has benefited from formal study in prototypical languages: Cornélio et al
specify refactorings for a subset of Java, called ROOL [3] and prove semantics
preservation using a set of basic algebraic laws, expressing equivalences between
objects. In [10], Li and Thompson discuss a formal specification of Haskell refac-
torings based on an abstract representation of a program and provide a proof
that the semantics of the program are preserved during the refactoring. Mens
and Tourwe give a much more detailed survey of programming language refac-
toring in [11]. There is also an interest in refactoring formal specifications. For
example, in [16], the authors suggest refactorings for Z specifications based on
experience on several large- scale projects. The effects of refactorings in Z are
closely related to those in a formal proof script as, when schemas are refactored,
this has an effect on all proofs relying of properties of these definitions. Schairer
and Hutter describe a transformation framework for formal specifications in [14].
Although they do not consider semantics preservation, their approach is similar
to our own, working independent of any logical system.

Declarative proof languages were pioneered by the Mizar system [17]. Our
declarative language is designed to incorporate many of the core features of
popular derivative languages, such as Isar for Isabelle [18], and C-zar for Coq [2].
However, due to our abstract approach, we do not have declarative statements
that refer to the logical structure of a goal. For example, we only have show
instead of the Isar-style fix...assume...show or the direct mapping between
inference rules and C-zar statements such as assume. Our semantic approach

Towards Formal Proof Script Refactoring 15

script example begin
tacdef REPEAT (X) := X ; (REPEAT (X) | id)
tacdef intros := REPEAT (impI | allI | conjI)
tacdef conjEax := conjE ; ax

lemma all mp : ` (∀ x. P x→ Q x)→ (∀ x. P x)→ (∀ x. Q x)
proof(intros)
show {∀ x. P x→ Q x, ∀ x. P x} ` Q x
proof(REPEAT (allE))
show {P x→ Q x, P x} ` Q x by impE ; (ax ⊗ ax)
qed
qed

lemma conj comm : ` P ∧Q→ Q ∧ P
proof
have q : {P ∧Q} ` Q by conjEax
have p : {P ∧Q} ` P by conjEax
from q p show {P ∧Q} ` Q ∧ P by intros
qed

end

Fig. 15. Refactored example proof script

to gaps is more closely related to Isar, where lemmas can be proved with gaps;
C-zar, by comparison, does not allow a final ‘qed’ with unproven subgoals.

Further work. There are a number of extensions to our language we wish to
consider. We would like to investigate a simple module system and define refac-
torings that operate at the module level. We could, for example, merge modules
or move lemmas from one module to another. A more sophisticated logical frame-
work would enable us to refactor statements directly, allowing us, for example,
to remove assumption, if it is unused. Our proof script language also needs to be
extended: we have yet to deal with definitions and axioms, both of which come
with refactorings. On the practical side, we would like to create an implemen-
tation of a refactoring tool for our prototype language instantiated with a real
derivation system. From the refactorings we have looked at so far, we have no-
ticed that many can be built from smaller, atomic refactorings. The move object
refactoring can be built from repetitions of the simpler swap object refactoring.
We would like to investigate this further, perhaps coming up with a refactoring
calculus. Fowler, in [6], discusses bad smells in code that indicate that a refactor-
ing would be desirable. Typical examples are duplicated code and long method.
These translate nicely into duplicated proof steps and long proofs. We are in-
terested in discovering more, proof-specific smells. One particular methodology
would be to analyse the version history of large development under Subversion
or CVS control.

16 I. Whiteside, D. Aspinall, L. Dixon, and G. Grov

Acknowledgements The authors would like to thank the anonymous review-
ers for their helpful suggestions. The first author was supported by Microsoft
Research through its PhD Scholarship Programme. All authors are grateful for
the support of EPSRC Platform grant EPE/005713/1. The fourth author was
also supported by EPSRC grant EP/H024204/1.

References

1. D. Aspinall, E. Denney, and C. Lüth. Tactics for hierarchical proof. Mathematics
in Computer Science, 3:309–330, 2010.

2. P. Corbineau. A declarative language for the Coq proof assistant. In Types for
Proofs and Programs, LNCS. 2008.

3. M. Cornlio, A. Cavalcanti, and A. Sampaio. Refactoring by transformation. Elec-
tronic Notes in Theoretical Computer Science, 70(3):311 – 330, 2002.

4. E. Denney, J. Power, and K. Tourlas. Hiproofs: A hierarchical notion of proof tree.
Electr. Notes Theor. Comput. Sci., 155:341–359, 2006.

5. R. Ettinger and M. Verbaere. Refactoring bugs in Eclipse, IntelliJ IDEA and Visual
Studio. http://progtools.comlab.ox.ac.uk/projects/refactoring/bugreports, 2005.

6. M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley,
1999.

7. G. Gonthier. The Four Colour Theorem: Engineering of a formal proof. Computer
Mathematics: 8th Asian Symposium, ASCM 2007, pages 333–333, 2008.

8. T. C. Hales. Formal proof. Notices of the AMS, 55:1370–1380, 2008.
9. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In Proceedings of the 22nd ACM Symposium
on OSP, pages 207–220. ACM, Oct 2009.

10. H. Li and S. Thompson. Formalisation of Haskell Refactorings. In Trends in
Functional Programming, September 2005.

11. T. Mens and T. Tourwe. A survey of software refactoring. IEEE Trans. Softw.
Eng., 30(2):126–139, February 2004.

12. W. F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, University of
Illinois, Champaign, IL, USA, 1992.

13. O. Pons, Y. Bertot, and L. Rideau. Notions of dependency in proof assistants. In
User Interfaces for Theorem Provers, UITP, 1998.

14. A. Schairer and D. Hutter. Proof transformations for evolutionary formal software
development. In Algebraic Methodology and Software Technology, LNCS, volume
2422, pages 13–19. 2002.

15. A. Serjantov, P. Sewell, and K. Wansbrough. The UDP calculus: Rigorous seman-
tics for real networking. TACS ’01, pages 535–559, 2001.

16. S. Stepney, F. Polack, and I. Toyn. Refactoring in maintenance and development
of Z specifications. Electr. Notes Theor. Comput. Sci., 70(3), 2002.

17. J. Urban and G. Bancerek. Presenting and explaining Mizar. Electron. Notes
Theor. Comput. Sci., 174(2):63–74, 2007.

18. M. Wenzel. Isar - a generic interpretative approach to readable formal proof doc-
uments. In Proceedings of TPHOLs ’99, pages 167–184, 1999.

