Abstract—We present ExpFinder, a system for finding experts in social networks based on graph pattern matching. We demonstrate (1) how ExpFinder identifies top-K experts in a social network by supporting bounded simulation of graph patterns, and by ranking the matches based on a metric for social impact; (2) how it copes with the sheer size of real-life social graphs by supporting incremental query evaluation and query preserving graph compression, and (3) how the GUI of ExpFinder interacts with users to help them construct queries and inspect matches.

I. INTRODUCTION

Social networks provide a rich source of information for us to identify communities and social positions in a wide range of real-life applications, e.g., social group identification [9], social position analysis [2] and recommendations [7], [11], [12]. These are typically conducted by using graph pattern matching: given a pattern query Q and a (social) data graph G, it is to find all the matches in G for Q, denoted as $M(Q,G)$, which satisfy the search conditions specified in Q.

It is, however, nontrivial to effectively conduct graph pattern matching in social networks modeled as graphs: (1) as shown in [4], the traditional notions of subgraph isomorphism and graph simulation are often too restrictive to match patterns in real-life social graphs; (2) real-life graphs are typically large, e.g., Facebook has 901 million users and 125 billion friend connections [1]; it is often prohibitively expensive to query such graphs based on subgraph isomorphism (NP-complete) and graph simulation (quadratic time); and (3) the matches of a pattern Q in a social graph G are often excessively large: exponential in the size $|G|$ of G by subgraph isomorphism, and $O(|Q||G|)$ by graph simulation, where $|Q|$ (resp. $|G|$) denotes the total number of nodes and edges in Q (resp. G).

To effectively capture matches in real-life social graphs, we adopt **bounded simulation** [4], a revision of the traditional notion of graph simulation, and study its application in experts searches in large and dynamic real-life social networks.

Example 1: Consider a fraction of a collaboration network (excluding edge e_1) depicted as graph G in Fig. 1(b). Each node in G denotes a person, with attributes such as *name*, *field* (e.g., system architect (SA), system developer (SD), business analyst (BA), system tester (ST)), *specialty* for the field (e.g., programmer and database administrator for SD), and *experience* (number of years). Each edge indicates collaboration, e.g., (Bob, Dan) indicates that Dan worked in a project led by Bob and collaborated well with Bob. Two people may also collaborate indirectly via a path of collaboration [8].

Suppose that a company wants to hire a system architecture designer (SA) and form a team to develop a medical record system [8]. The requirements are expressed as a **bounded simulation query** Q [4] (Fig. 1(a)) as follows: (1) the SA expert must have worked in a team consisting of three other types of experts SD, BA, ST, represented by the labeled nodes in Q; (2) the SA should have at least 5 years of working experience, shown as a search condition at node SA; (3) there are SD and BA experts who collaborated well with SA experts, via a collaboration chain no longer than 2 and 3, respectively, as indicated by labeled edges (SA,SD) and (SA,BA) in Q. Similarly, the other nodes and edges in Q depict the requirements of the team and SA experts. Here SA is marked as the “output node” with “*”, i.e., the users only require the matches of SA to be returned as the desired experts.

The matches of Q, denoted as $M(Q,G)$, is a relation between a query node and its valid matches [4] in G. More specifically, $M(Q,G) = \{(SA,Bob), (SA,Walt), (SA, Jean), (SD, Fred), (SD, Pat), (ST, Eva)\}$. Observe the following: (1) the node SD in Q is mapped to both Mat (programmer) and Pat (DBA) in G, which is not allowed by a bijection in subgraph isomorphism; and (2) the edge from SA to BA in Q requires that the SA expert has supervised ≥ 5 years of working experience in a project, which is not possible by $M(Q,G)$ because SA has 4 years of working experience.

ExpFinder addresses these limitations by identifying top-K experts in a social network G based on patterns Q that match $M(Q,G)$, and by ranking the matches based on a new social impact metric.
a BA within 3 hops; the edge is mapped to a path (e.g., the path from Bob to Jean) of a bounded length in G; in contrast, graph simulation only allows edge to edge matching.

As SA may have multiple matches, a ranking metric should be provided to select the best experts with social impact. For example, both Bob and Walt are equally experienced matches of SA. Nevertheless, Bob has collaborated with all other team members more “closely” via shorter collaboration paths. Thus, Bob has a stronger social impact [8], [10], and makes a better expert for coordinating with team members.

In this demo, we present ExpFinder, a system to effectively identify experts by graph pattern matching in social networks. It implements the techniques that we presented in [3]–[5]. In contrast to previous expert search systems (see [8] for a survey), (1) ExpFinder supports searches for experts in social networks via bounded simulation [4], (2) it provides a new facility to find top-K matches based on a metric for social impact, which was not studied in [3]–[5]; and (3) it supports efficient searches and provides graph storage for social impact, which was not studied in [3]–[5]; and (3) it is a new facility to find top-K matches based on a metric for social networks via bounded simulation [4], (2) it provides a survey), (1)

II. THE EXPFINDER SYSTEM

The architecture of the ExpFinder system is shown in Fig. 2. It consists of four modules. (1) A Graphical User Interface (GUI) provides a graphical interface to help users formulate queries, manage data graphs and understand visualized query results. (2) A Query Engine evaluates pattern queries and ranks query results. (3) An Incremental Computation Module maintains the query results of a set of frequently issued queries (decided by the users) in response to updates incurred to data graphs. (4) A Graph Compression Module constructs and dynamically maintains compressed graphs, which can be directly queried by the query engine. In addition, all the graphs and query results are stored and managed as files. We next present the components of ExpFinder and their interactions.

Graphical User Interface. The GUI helps the users manage data graphs, construct queries and browse query results. (1) It provides a task-oriented panel, which facilitates the users to issue specific requests such as to view/select data graphs and construct queries. (2) The users can construct a (bounded) simulation query Q by drawing a set of query nodes and edges on a query panel of the GUI, specifying the search conditions (e.g., expertise="system developer"; experience="3 years"), bounds on the edges, and indicating the particular “output” node for which users want to find matches (e.g., SA in Fig. 1). They may also choose a data graph G to query. (3) The GUI visualizes the query results expressed as result graphs [4], in which each node is a match of a query node in Q, and each edge (marked with an integer d) represents a shortest path with length d corresponding to a query edge.

![Fig. 2. Architecture of ExpFinder](image-url)

Query Engine. The query engine performs (a) query evaluation, and (b) top-K result selection for the output node. It finds a unique, maximum match graph for the (bounded) simulation query [4]. The query result is then visualized by the GUI.

Bounded simulation. Given a graph G and a pattern query Q, $M(Q, G)$ is the maximum relation such that for each node $u \in Q$, there is a node $v \in G$ such that (1) $(u, v) \in M(Q, G)$, and (2) for each $(u, v) \in M(Q, G)$, (a) the content of v satisfies the search condition specified by the pattern node u, and (b) for each edge (u, u') in Q, there exists a nonempty path ρ from v to v' in G such that $(u', v') \in M(Q, G)$, and the length of ρ does not exceed the bound on (u, u'). Example 1 illustrates $M(Q, G)$ for the query Q and graph G given in Fig. 1.

As shown by [4], (1) $M(Q, G)$ is unique for each G and Q, (2) graph simulation is a special case when the bound on each pattern edge (u, u') is 1, and (3) bounded simulation is able to catch sensible matches that subgraph isomorphism and simulation fail to identify, as we have seen in Example 1.

Query evaluation. To efficiently find $M(Q, G)$ in a large graph G, the query engine coordinates with the incremental computation and graph compression modules as follows. Upon receiving a pattern query Q, (1) the query engine directly returns $M(Q, G)$ if it is already cached; (2) otherwise, if a compressed graph G_c for G is already computed by the compression module, Q is evaluated on G_c directly [5] (as will be discussed); and (3) if the users opt not to compress G at this stage, the query engine finds $M(Q, G)$, by employing a quadratic-time algorithm [6] to evaluate simulation queries, and a cubic-time algorithm [4] for bounded simulation queries. After $M(Q, G)$ is computed, the query engine computes a result graph to represent the result [4]. The users may decide whether the query and its result need to be cached at this stage.

Results Ranking. As remarked earlier, the query result is typically large, while the users may only be interested in the best K experts that match the designated output node in Q, e.g., SA in Example 1. To this end, the query engine identifies top-K matches by using a ranking function. The intuition of the ranking function comes from the following observation about social networks: two nodes that are closer to each other often have more social impact to each other [8], [10]. Given an edge (u', u) in pattern query Q, and two matches v_1 and v_2 of u in...
a social network, where \(u \) is the output node, for a match \(v' \) of \(u' \). \(v_1 \) is preferred to \(v_2 \) if \(v' \) is closer to \(v_1 \) than to \(v_2 \). Indeed, in practice \(v_1 \) may represent an expert who collaborates with expert \(v' \) more closely than the other expert \(v_2 \). In light of this, given an output node \(u_o \) and its match \(v \) in the result graph \(G_r = (V_r, E_r) \), the rank \(f(u_o, v) \) is defined as:

\[
f(u_o, v) = \frac{\sum_{u \in V} \text{dist}(u, v) + \sum_{u' \in V} \text{dist}(u', u')}{|V_r|}
\]

where (a) \(\text{dist}(u, v) \) (resp. \(\text{dist}(v, u') \)) represents the distance (as the sum of the edge weight in a shortest path) from an ancestor \(u \) to \(v \) (resp. from \(v \) to its descendant \(u' \)) in \(G_r \), and (b) \(V' \) is the set of nodes in \(G_r \) that can reach \(v \) or can be reached from \(v \). Intuitively, \(f(u_o, v) \) computes the average distance of \(v \) from (to) other nodes in \(G_r \). The top-K matches of \(u_o \) is the set of K matches with the minimum ranks.

The ranking function \(f(\cdot) \) assesses the social impact in terms of node distance, as one of the commonly used metrics in social network analysis [8], [10]. Note that other metrics can be readily supported by ExpFinder. We remark that top-K matches were not studied in the previous work [3]–[5].

Example 2: Recall the match result \(M(Q, G) \) described in Example 1. Its result graph \(G_r \) is a weighted graph with a set of nodes \{Bob, Walt, Jean, Mat, Dan, Pat, Eva\}. One may verify that the rank \(f(SA, Bob) = (1 + 1 + 2 + 3 + 2)/5 = \frac{9}{5} \), and \(f(SA, Walt) = (2 + 2 + 3)/3 = \frac{7}{3} \). Therefore, Bob is the top-1 match for \(SA \), since compared to Walt, he has shorter social distance to other collaborators, and hence has stronger social impact on the group members.

Incremental Computation Module. Real-life social graphs are typically large and are constantly changed. Given a graph \(G \), a query \(Q \) and updates \(\Delta G \) to \(G \), it is costly to recompute \(M(Q, G \oplus \Delta G) \) starting from scratch each time \(G \) is updated, where \(G \oplus \Delta G \) denotes \(G \) updated by \(\Delta G \). The incremental module copes with the dynamic nature of social networks by incrementally identifying changes to \(M(Q, G) \) in response to \(\Delta G \), without accessing \(G \). When \(\Delta G \) is small as commonly found in practice, it is far more efficient to incrementally compute \(M(Q, G \oplus \Delta G) \) than to recompute it starting from scratch. The module supports the incremental evaluation algorithms of [3] for simulation and bounded simulation queries.

Example 3: Recall the query \(Q \) and graph \(G \) of Fig. 1, and the matches \(M(Q, G) \) from Example 1. Suppose that \(G \) is updated by inserting the edge \(e_1 \) (see Fig. 1(b)), denoted by \(\Delta G \). Then \(\Delta G \) incurs incremental \(\Delta M \) to \(M(Q, G) \) as a new pair (SD, Fred). Instead of recomputing \(M(Q, G \oplus \Delta G) \), the incremental module finds the change \{SD,Fred\} to \(M(Q, G) \) by only accessing \(M(Q, G) \) and \(e_1 \).

Graph Compression Module. The incremental module efficiently maintains matches in dynamic networks. Nevertheless, it is costly to compute \(M(Q, G) \) and it is unlikely to lower the computational complexity of query evaluation. The graph compression module aims to reduce the size of the input for query evaluation, by constructing smaller compressed graphs \(G_c \) for a data graph \(G \). The compressed graph \(G_c \) (1) has less nodes and edges than \(G \), and (2) can be directly queried by the query engine and incremental module, such that for any (bounded) simulation query \(Q \), \(M(Q, G) \) can be obtained by a linear time post-processing from \(M(Q, G_c) \) [5]. Moreover, \(G_c \) is incrementally maintained in response to changes to \(G \).

The graph compression module is developed to (1) compute the compressed graphs \(G_c \) of \(G \), and (2) dynamically maintain \(G_c \) when \(G \) is updated, by implementing the techniques of [5]. The module works seamlessly with the other modules: it invokes the compression algorithm to construct \(G_c \) for \(G \) upon receiving requests from GUI, and dynamically maintains \(G_c \) in response to changes to \(G \) issued through GUI. For example, consider \(Q \) and \(G \) from Fig. 1. Both Fred and Pat (DBA) collaborated with ST and BA people. Since they “simulate” the behavior of each other in the collaboration network \(G \), they could be considered equivalent when computing \(M(Q, G) \). The nodes that are pairwise equivalent form an equivalence class, and the compressed graph \(G_c \) is constructed by merging the nodes in the same equivalence class.

III. DEMONSTRATION OVERVIEW

The demonstration is to show the following: (1) how the GUI of ExpFinder handles users’ requests and displays query results; (2) how efficient the query engine evaluates queries and identifies top-K experts; (3) how the incremental module manages batch updates to data graphs; and (4) how the compression module computes and maintains compressed graphs.

Dataset. ExpFinder loads both synthetic and real-life datasets. (1) We design a synthetic graph generator to generate arbitrarily large graphs and show the efficiency of ExpFinder; and (2) we use a fraction of Twitter to show the performance of each module of ExpFinder, and interpret query results in details.

Interacting with the GUI. We invite users to use the GUI, from query design to intuitive illustration of query results.

(1) Users may operate on ExpFinder Manager as the main control panel. As shown in Fig. 3, users can select, view and modify the detailed information of data graphs, and may access the modules of ExpFinder as listed in the tools.

(2) Users can define their own queries through our Pattern Builder (PB) panel as shown in Fig. 4. PB provides the users with a canvas to create a new pattern query. For example, Fig-
The demonstration aims to show the key ideas and performance of our expert search system ExpFinder based on graph pattern matching. ExpFinder is able to (1) effectively identify top-K experts in social networks by using pattern queries specified with search conditions and bounded connectivity constraints, (2) efficiently evaluate the queries on large real-life social graphs, (3) incrementally answer queries on dynamic graphs in response to batch updates, (4) support graph compression for efficient graph storage and query evaluation, and (5) provide intuitive graphical interface to facilitate the users to construct queries and interpret query results. We contend that ExpFinder can serve as a promising tool for expert finding in large and dynamic real-life social networks.

Acknowledgment

Fan and Wang are supported in part by the RSE-NSFC Joint Project Scheme and EPSRC EP/J015377/1, UK, and the 973 Program 2012CB316200 and NSFC 61133002, China.

References