
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bayesian statistics and modelling

Citation for published version:
van de Schoot, R, Depaoli, S, Gelman, A, King, R, Kramer, B, Märtens, K, Tadesse, MG, Vannucci, M,
Willemsen, J & Yau, C 2021, 'Bayesian statistics and modelling', Nature Reviews Methods Primers, vol. 1,
3. https://doi.org/10.1038/s43586-020-00003-0

Digital Object Identifier (DOI):
10.1038/s43586-020-00003-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Nature Reviews Methods Primers

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 01. May. 2024

https://doi.org/10.1038/s43586-020-00003-0
https://doi.org/10.1038/s43586-020-00003-0
https://www.research.ed.ac.uk/en/publications/9fc72a0b-33e4-4a9c-bdb7-d88dab16f621


1 
 

Title:	Bayesian	Statistics	and	Modelling	1 

 2 

Authors: Rens van de Schoot1*, Sarah Depaoli2, Andrew Gelman3, Ruth King4, Bianca Kramer5, Kaspar 3 

Märtens6, Mahlet G. Tadesse7, Marina Vannucci8, Duco Veen1, Joukje Willemsen1, Christopher Yau9, 10  4 

 5 

Affiliations 6 

1 Department of Methods and Statistics, Utrecht University, Utrecht, The Netherlands 7 

2 Department of Quantitative Psychology, University of California Merced, Merced, CA, USA 8 

3 Department of Statistics, Columbia University, New York, USA 9 

4 School of Mathematics, University of Edinburgh, Edinburgh, UK 10 

5 Utrecht University Library, Utrecht University, Utrecht, The Netherlands  11 

6 Department of Statistics, University of Oxford, Oxford, UK  12 

7 Department of Mathematics and Statistics, Georgetown University, Washington DC, USA 13 

8 Department of Statistics, Rice University, Houston, TX, USA 14 

9 Division of Informatics, Imaging & Data Sciences, University of Manchester, Manchester, UK 15 

10 The Alan Turing Institute, British Library, 96 Euston Road, London 16 

 17 

Corresponding author: Rens van de Schoot: Department of Methods and Statistics, Utrecht University, 18 

P.O. Box 80.140, 3508TC, Utrecht, The Netherlands; Tel.: +31 302534468; E-mail address: 19 

a.g.j.vandeschoot@uu.nl. 20 

Acknowledgements [AU: do any of the other authors want to add funding information?] 21 

The first author (RvdS) was supported by a grant from the Netherlands organization for scientific 22 

research: NWO-VIDI-452-14-006. RK was supported by a Leverhulme research fellowship grant 23 

reference RF-2019-299. 24 

Author contributions  25 

Introduction (R.v.d.S., A.G.); Experimentation (R.v.d.S., S.D., J.W.); Results (R.v.d.S., R.K., M.G.T., M.V., 26 

D.V., K.M., C.Y.); Applications (S.D., R.K., K.M., M.G.T., M.V., C.Y.); Reproducibility and data deposition 27 

(B.K., D.V., S.D., R.v.d.S.); Limitations and optimizations (A.G.); Outlook (K.M., C.Y.); Overview of the 28 

Primer (R.v.d.S.). 29 

Competing interests 30 

The authors declare no competing interests.  31 

 32 



2 
 

 33 

ORCID : 34 

 35 

RvdS: https://orcid.org/0000-0001-7736-2091  36 

SD: https://orcid.org/0000-0002-1277-0462 37 

AG: https://orcid.org/0000-0002-6975-2601 38 

RK: https://orcid.org/0000-0002-5174-8727 39 

BK: https://orcid.org/0000-0002-5965-6560 40 

KM: https://orcid.org/0000-0002-7631-727X 41 

MGT: https://orcid.org/0000-0003-2671-1663 42 

MV: https://orcid.org/0000-0002-7360-5321 43 

DV: https://orcid.org/0000-0002-8352-7574 44 

JW: https://orcid.org/0000-0002-7260-0828 45 

CY: https://orcid.org/0000-0001-7615-8523  46 



3 
 

Abstract		47 

 48 

Bayesian statistics is an approach to data analysis and parameter estimation based on Bayes’ Theorem. 49 

This Primer describes the stages involved in Bayesian analysis, from specifying the prior and data models, 50 

to deriving inference, model checking and refinement. Bayesian analysis has been successfully employed 51 

across a variety of research fields, including social sciences, ecology, genetics, medicine, and more. We 52 

discuss these applications and propose strategies for reproducibility and reporting standards. Finally, we 53 

outline the impact of Bayesian analysis in artificial intelligence, a major goal in the next decade.  54 

 55 

  56 
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[H1]	Introduction		57 

 58 

It all started with an essay written by Reverend Thomas Bayes, published by Richard Price1, on inverse 59 

probability: how to determine the probability of a future event solely based on past events? It was Pierre 60 

Simon Laplace2 who actually published the theorem we now know as Bayes’ theorem (Box 1). The typical 61 

Bayesian workflow consists of three main steps (Figure 1). (1) The first ingredient has to do with 62 

knowledge available about the parameter in a statistical model without the data itself and is captured in 63 

the so-called prior distribution [G]. (2) The second ingredient is the information about the same 64 

parameters in the data; it is the observed evidence expressed in terms of the likelihood function [G] of 65 

the data given the parameters. Both prior distribution and likelihood function are combined via Bayes’ 66 

Theorem and are summarized by (3) the so-called posterior distribution [G], which is a compromise of the 67 

prior knowledge and the observed evidence. This joint distribution is also called a generative model. The 68 

posterior distribution reflects one’s updated knowledge, balancing prior knowledge with observed data.  69 

Although the idea of inverse probability and Bayes’ theorem have been longstanding within mathematics, 70 

these tools have only become prominent in applied statistics in the past fifty years 3-10. There are many 71 

reasons for using Bayesian methods: Sometimes researchers may be “forced into” the use of Bayes’ 72 

theorem some models, for example mixture or multilevel models, require Bayesian methods to improve 73 

convergence issues11, exact quantification of uncertainty, aid in model identification12,  produce more 74 

accurate parameter estimates13, data augmentation or data fusion. We will describe much more 75 

advantages and disadvantages throughout the manuscript.  76 

The goal of this primer is to provide an overview of the current and future use of Bayesian statistics across 77 

different fields of science and to provide an overview of literature that can be used for further study. 78 

Moreover, we use many examples how to actually implement a Bayesian model on real data, with all 79 

data and code is available for teaching purposes. We aim at a broader group of quantitative researchers 80 

working in science-related areas with at least some knowledge of regression modelling. In order to keep 81 

the current paper as general as possible with respect to implementing Bayesian methods, there are 82 

several concepts listed in Figure 1 that we will be focusing on, like priors and posteriors, and several that 83 

we will not specifically address, see the left part in the Figure. We also only briefly touch upon topics like 84 

model averaging, network analyses, utility functions/ loss functions without giving a full introduction and 85 

do not discuss topics like nonparametric methods. For the non-Bayesian parts we do not discuss we refer 86 

the interested reader to classical textbooks.14,15 This Primer discusses the general framework, algorithms, 87 

and a Bayesian research cycle with a special focus on prior specifications (Experimentation). We discuss 88 

model fitting, a thorough example of variable selection and we provide an example calculation with 89 

posterior predictive checking (Results). Then, we describe how Bayesian statistics is being used in different 90 

fields of science (Applications), followed by guidelines for data sharing, reproducibility, and reporting 91 

standards (Reproducibility and Data Deposition). We conclude with a discussion of avoiding bias with 92 

incorrect models (Limitations and optimizations), and provide a look into the future with Bayesian 93 

Artificial Intelligence (Outlook).  94 

 95 

[H1]Experimentation		96 
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There are several main issues included in this section. First, prior distributions are detailed, highlighting 97 

different levels of informativeness (informative, weakly informative, and diffuse priors). The selection of 98 

priors is often viewed as one of the more important choices that a researcher makes when implementing 99 

Bayesian methods since the priors can have a substantial impact on final model results. This is followed 100 

by a description of the prior predictive checking process, which can be used to assess whether the prior 101 

settings being implemented are viable. This section concludes with a description of how to determine the 102 

likelihood, which is combined with the prior to form the posterior. Given the important roles that the prior 103 

and the likelihood have in determining the posterior, it is imperative that prior and model selection be 104 

conducted with care. 105 

H3:	An	Empirical	Example	-	Predicting	PhD	delays		106 

To illustrate many aspects of Bayesian statistics we provide an example based on real-life data. Note that 107 

we simplified the statistical model and the results are only meant for instructional purposes. Instructions 108 

for running the code is available for different software including additional data exploration steps16. 109 

Consider an empirical example of a study predicting PhD delays17 in which the researchers asked 333 PhD 110 

recipients in The Netherlands how long it had taken them to finish their PhD thesis. Based on this 111 

information they computed the amount of delay as defined as the difference between planned and actual 112 

project time in months (𝑀	 = 9.97, 𝑚𝑖𝑛/𝑚𝑎𝑥 = −31/91	, 𝑆𝐷 = 14.43). Suppose we are interested in 113 

predicting PhD delay (𝒚) using a simple regression model, 𝒚 = 𝛽567 	+ 𝛽5679. +	𝜺,  with age (in years) as 114 

a predictor, denoted by 𝛽567	,	and we expect this relation to be quadratic, denoted by 𝛽5679. Also, the 115 

model contains an intercept, 𝛽<=>7?@7A>  and we assume the residuals,	𝜺 , are normally distributed with an 116 

unknown variance, 𝜎CD.We will refer to this example throughout the following sections to illustrate key 117 

concepts.  118 

 119 

[H2]Formalizing	Prior	Distributions		120 

Prior distributions– play a defining role in Bayesian statistics. Prior distributions, or priors, can come in 121 

many different distributional forms such as a normal, uniform, Poisson distribution, among others, see 122 

also the section Variable Selection for some examples of, so-called, Shrinkage priors. They can also 123 

represent different levels of informativeness; the information reflected in a prior distribution can be 124 

anywhere along the continuum of complete uncertainty to relative certainty. Although it is important to 125 

remember that priors can fall along this continuum, there are three main classifications of priors that are 126 

often used in the literature to capture the degree of (un)certainty surrounding the population parameter 127 

value: (1) informative, (2) weakly informative, and (3) diffuse. These classifications can be made based on 128 

the researcher’s personal judgment. For example, a normal prior with a variance of 1000 may be 129 

considered diffuse in one setting and informative in another—it depends on the values of the parameter, 130 

as well as parameterization or scaling for the parameter. 131 

 132 

Figure 2 illustrates the relationship between the likelihood, prior, and posterior for different prior settings 133 

for 𝛽567. In this figure, the first column represents the prior distribution, which is normally distributed for 134 

the sake of this example. Notice that there are five different rows of priors, representing different prior 135 

settings (some varying in the level of informativeness. The second column represents the likelihood. The 136 

prior and the likelihood form together to create the posterior according to Bayes’ rule. The third column 137 
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illustrates the prior, likelihood, and the resulting posterior, which is derived for illustrative purposes in the 138 

current section. In the next section Results we demonstrate how to obtain the posterior. 139 

The individual parameters that control the amount of (un)certainty in the priors are called 140 

hyperparameters [G]. Take the normal distribution as an example. This distribution is defined by a mean 141 

and a variance which are the hyperparameters for the normal prior, and we can write this distribution as: 142 

𝑁(𝜇H, 𝜎HD), where the hyperparameters represent the mean (𝜇H) and variance (𝜎HD)	for the prior, 143 

respectively. If the variance is relatively large, then it represents more uncertainty surrounding the mean, 144 

vice versa. For example, Figure 2 illustrates five prior settings in the first column with different values for 145 

𝜇H and 	𝜎HD. The diffuse and weakly informative priors (first three rows) show more spread, that is, a 146 

larger variance, compared to the informative priors (last two rows). The mean hyperparameter can be 147 

seen as the peak in the distribution.  148 

 149 

An informative prior [G] is one that reflects a high degree of certainty surrounding the population 150 

parameter. Specifically, the hyperparameters for these priors are specified to express particular 151 

information reflecting a greater degree of certainty about the model parameters being estimated. In the 152 

case of a normal probability distribution, this would indicate that the prior would have a very small, or 153 

narrowed, variance. A researcher may want to use an informative prior when existing information 154 

suggests restrictions on the viable range of a particular parameter, or a relationship between parameters, 155 

like a positive but imperfect (population) correlation between susceptibility to various medical 156 

problem18,19. The information embedded in the informative prior can come from a variety of places, which 157 

is referred to as prior elicitation. Strategies for prior elicitation can be to ask an expert or a panel of experts 158 

to provide an estimate for the hyperparameters based on knowledge of the field20-23, use the results of a 159 

previous publication or meta-analysis24,25, or a combination thereof26. Consider the prior 160 

𝛽567	~	𝑁(2.5, 5), which was derived from a ShinyApp containing a visualization of how the different 161 

priors interact27. 162 

 163 

Finally, another method that can be used for prior elicitation involves implementing data-based priors, 164 

which are derived based on a variety of methods including maximum likelihood28-31 or sample statistics32-165 
34. Although data-based priors are relatively common, we do not recommend use of so-called “double-166 

dipping” procedures, where estimation occurs based on the sample data and then results are used to to 167 

derive priors implemented (with the same sample data) for final model estimation. We refer the reader 168 

elsewhere32 for more details on this topic. Instead, a hierarchical modelling strategy can be implemented, 169 

where priors can depend on hyperparameter values that are data-driven, for example sample statistics 170 

pulled from the data, thus avoiding the direct problems linked to “double-dipping.” In some cases, an 171 

informative prior can produce a posterior that is not reflective of the population model parameter. There 172 

are circumstances when informative priors are needed, but it is also important to assess the impact these 173 

priors have on the posterior through a sensitivity analysis as discussed below. 174 

 175 

A weakly informative prior [G] is typically not too diffuse, and it is not too restrictive either. In the case of 176 

a normal prior, a weakly informative prior would have a variance hyperparameter that exhibits wider 177 
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variance compared to an informative prior. Such priors will have a small impact on the posterior, 178 

depending on the scale of the variables, and the posterior results are still data driven.  179 

Some researchers find this to be a nice middle ground regarding the informativeness of the prior. A 180 

researcher may want to use a weakly informative prior when some information is assumed about a 181 

parameter, but there is still a desired degree of uncertainty. For example, a weakly informative normal 182 

prior for the regression coefficient could allow 95% of the prior density mass to fall within values between 183 

-10 and 10 or between 0 and 10, see the two different examples in Figure 2, respectively. Essentially, 184 

weakly-informative priors do not supply any strict information, but yet are still strong enough to avoid 185 

inappropriate inferences that can be produced from a diffuse prior35,36. For this purpose a plausible 186 

parameter space should be specified capturing a range of plausible parameter values that is considered 187 

to be a reasonable range, thereby excluding improbable values and attaining only a limited density mass 188 

to implausible values. For example, if a regression coefficient is known to be near zero, then a weakly 189 

informative prior can be specified to reduce the plausible range between, for example, ±5. This prior 190 

would reduce the probability of observing out-of-bound values (e.g., a regression coefficient of 100) 191 

without being too informative.  192 

Finally, diffuse priors [G] reflect a great deal of uncertainty about the model parameter. This form of priors 193 

represents a decision to not include knowledge about the value of the parameter being estimated. Such 194 

a prior would be represented by a distribution with a relatively flat density (Figure 2). A researcher may 195 

want to use a diffuse prior when there is a complete lack of certainty surrounding the parameter. In this 196 

case, the data will largely determine the posterior. Sometimes researchers will use the term “non-197 

informative prior” as a synonym to “diffuse”37. However, we refrain from using this term because we 198 

argue that even a completely flat prior, for example, a so-called Jeffreys prior38, is still providing 199 

information about the degree of uncertainty39. Therefore, no prior is really non-informative. Diffuse priors 200 

can be useful for expressing a complete lack of certainty surrounding parameters, but they can also have 201 

unintended consequences on the posterior40. For example, diffuse priors can have an adverse impact on 202 

parameter estimates via the posterior when sample sizes are small, especially under complex modelling 203 

situations involving meta-analytic models41, logistic regression models39, or mixture models13. In addition, 204 

improper priors are sometimes used with the intention of using them as diffuse priors. Although improper 205 

priors are common, and they can be implemented with relative ease within a variety of Bayesian 206 

programs, it is important to note that improper priors can lead to improper posteriors. We mention this 207 

caveat here because obtaining an improper posterior can impact the degree to which results can be 208 

substantively interpreted. Overall, we note that a  diffuse prior can be used as a placeholder, in the same 209 

way that we might start with a simple statistical model with the intent to improve it as necessary. It may 210 

be that future analyses (e.g., with subsequent data) are conducted with more informative priors. 211 

 212 

Overall, there is no right or wrong prior setting. Many times, diffuse priors can produce results that are 213 

aligned with the likelihood, whereas sometimes inaccurate (e.g., biased) results can be obtained with 214 

relatively flat priors13. Likewise, and as described above in the context of informative priors, an informative 215 

prior that is not centered in the same place as the likelihood can pull the posterior away from the 216 

likelihood. Because there can be an unintended impact of the priors - despite the level of informativeness 217 

- it is always important to conduct a prior sensitivity analysis in order to fully understand the influence 218 

that the prior settings have on posterior estimates. Especially when sample size is small, Bayesian 219 
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estimation with mildly informative priors is often used9,42,43, but the prior specification might have a huge 220 

effect on the posterior results.  221 

In addition, it is important to note that when priors do not conform with the likelihood, it is not necessarily 222 

evidence that there is an issue with the prior. It may be that the likelihood is at fault due to a misspecified 223 

model or biased data. In turn, the difference between the prior and the likelihood may be reflective of 224 

variation that is not captured by the prior or likelihood alone. These issues can be identified through a 225 

sensitivity analysis of the likelihood - for example, by modifying the model - in order to assess how the 226 

priors and the likelihood align. 227 

Although it is important to distinguish between these different types of priors, there is an overarching 228 

issue that needs addressing. We would like to conclude this section with a final thought about the impact 229 

of priors. It is common for critics of Bayesian methods to point toward the subjectivity of priors as a 230 

potential downfall of the approach. We argue two distinct points here. First, many elements of the 231 

estimation process are subjective, including the model itself or the error assumptions. To place the notion 232 

of subjectivity solely on the priors is a misleading distraction from the fact that many other elements in 233 

the process are inherently subjective by nature. Second, priors are not necessarily a point of subjectivity. 234 

They can be used as tools to allow for data-informed shrinkage, enact regularization, or influence 235 

algorithms toward a likely high-density region and improve estimation efficiency.  In turn, priors are 236 

typically defined through previous beliefs, information, or knowledge. Although beliefs can be 237 

characterized as subjective points of view from the researcher, information is typically defined as being 238 

outside of the researcher and something that can be rigorously quantified, and knowledge can be defined 239 

as objective and consensus-based. Therefore, we urge the reader to consider priors in this broader sense, 240 

and not simply as a means of incorporating subjectivity into the estimation process. 241 

 242 

Lastly, the current section on informative, weakly informative, and diffuse priors was written in a general 243 

sense in that these terms can be used to help define univariate and multivariate priors. The majority of 244 

discussion presented in the current paper surrounds univariate priors placed on individual model 245 

parameters. However, these concepts can be extended to the multivariate sense, where priors are placed 246 

on, for example, an entire covariance matrix rather than a single element from a matrix. For more 247 

information on multivariate priors, see44,45. 248 

 249 

[H2]Prior	Predictive	Checking		250 

Because the inference based on a Bayesian analysis is subject to the “correctness” of the prior, it is of 251 

importance to carefully check whether the specified model can be considered to be generating the actual 252 

data46,47. Note that priors are based on background knowledge and cannot be inherently wrong if the prior 253 

elicitation procedure is valid. There is an extensive history of expert elicitation across many different 254 

disciplines. MATCH48 is a generic elicitation tool, but many elicitation problems require custom elicitation 255 

procedures and tools, see for instance49-53 as examples of elicitation procedures designed for specific 256 

models. For an abundance of elicitation examples and methods, see the data base of over 67,000 elicited 257 

judgements54, or the following collections20,55,56. However, even in case of a valid prior elicitation 258 

procedure, it is extremely important to understand the exact specification of the priors. This holds 259 
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especially for smaller sample sizes in relation to the complexity of the model, for numerous examples9 In 260 

the case of smaller sample sizes, priors will exhibit a strong influence on the posteriors. The step of prior 261 

prediction is an exercise to improve the understanding of the priors specified and not a method for 262 

changing the original prior, unless the prior explicitly generates data that are incorrect.  263 

Box57 suggested deriving a prior predictive distribution [G] from the specified prior. The prior predictive 264 

distribution is a distribution of all possible samples that could occur if the model is true. In theory, a 265 

“correct” prior provides a prior predictive distribution similar to the true data generating distribution46. 266 

The prior predictive checking approach compares the observed data to the prior predictive distribution, 267 

and checks their compatibility47. The compatibility can be summarized by a p-value, describing how far 268 

out in the tails of the reference prior predictive distribution the observed data lie58. When the prior 269 

predictive-value [G] is “small”, say 0.05, it would indicate that the observed data is unlikely to be 270 

generated by the model, and thus call it into question47. Evans and Moshonov59 suggested restricting the 271 

approach pof Box to minimal sufficient statistics, i.e. statistics that are as efficient as possible in relaying 272 

information about the value of a certain parameter from a sample60.  273 

Young and Pettit61 argue that measures being based on a tail area, such as the approaches of Box and 274 

Evans and Moshonov, do not produce the required behaviour; favouring the more precise prior if two 275 

priors are both specified at the correct value.  They propose to use a Bayes factor [G] 62  to compare two 276 

priors, see also Box 3. All aforementioned methods leave the determination of the existence of prior-data 277 

conflict up to debate depending on an arbitrary cut-off value. The data agreement criterion63 tries to 278 

resolve this issue by introducing a clear  classification of prior-data conflict, removing the subjective 279 

element of the decision64. This is done at the expense of selecting an arbitrary  divergence based criterion.  280 

An alternative has been developed65 which computes whether the distance is surprising in relation to the 281 

expert’s prior predictive distribution, see for a comparison of both criterion Lek et al66 282 

 283 

H3:	An	Empirical	Example	-	Predicting	PhD	delays	-	continued	284 

Prior   predictive   checks  can   help   prevent   mistakes   from   being   made.   For instance, various 285 

software packages can notate the same distribution differently. The normal distribution can be specified  286 

by the hyperparameters mean and variance, mean and standard deviation or mean and precision. The 287 

precision is the inverse of the variance. For the last prior shown in Figure 2, we have mis-specified the 288 

prior variance, that is instead of using a variance of 5 we mis-specified the variance and used the inverse 289 

of the variance (i.e., a precision) instead (1/5=0.2), 𝛽567	~	𝑁(2.5, 0.2). If a user is not aware of such 290 

differences, a prior which was intended to be weakly informative can easily turn into an informative prior 291 

distribution. The prior predictive checks in Figure 3  help to avoid  misspecifications like this. Panel A 292 

displays a scenario in which precision was mistakenly used instead of variance for 𝛽567	, and displays an 293 

unexpected pattern for the prior predictive distribution. Panel B shows reasonable results for the prior 294 

predictive distribution for the correct implementation of the hyperparameters. Additionally, in panel C, 295 

the kernel density estimate (i.e., the estimate of the probability density function) [G]67 of the observed 296 

data is displayed (𝑦 - in dark blue) which fall neatly in the distribution of the simulated data (𝑦?7A  - in light 297 

blue). The kernel densities for the prior predictive data are based on combinations of possible values of 298 

the different priors. Because of the combinations of uncertainty in the priors, the prior predictive kernel 299 

density estimates can be quite different from the observed data. The main focus for Panel C is to check 300 
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that the prior predictive kernel distributions are not order-of-magnitudes different from the observed 301 

data. 302 

The scripts to reproduce the results are available at the Open Science Framework: https://osf.io/ja859/ 303 

DOI 10.17605/OSF.IO/JA859. Note that in  this example the prior predictive distribution and the data are 304 

compared on the test statistics mean and standard deviation(sd). It is common to desire descent prior 305 

predictive performance on these simple statistics at least. The test statistic can however be chosen to 306 

reflect important characteristics of the data, e.g. skewness. It is common to desire descent prior predictive 307 

performance on these simple statistics at least. The test statistic can however be chosen to reflect 308 

important characteristics of the data, e.g. skewness.  309 

 310 

[H2]	Determining	the	Likelihood	Function		311 

The likelihood, which is used in both Bayesian and frequentist inference 68, is the conditional probability 312 

distribution 𝑝(𝑦|θ) of the data 𝑦 given parameters θ. In Bayesian inference, the likelihood 𝑝(𝒚|𝛉) comes 313 

into the posterior as a function of 𝛉 for observed data 𝒚. The likelihood function summarises the 314 

information of the following elements: a statistical model that stochastically generates all the data, a 315 

range of possible values for 𝛉, and the observed data. In a Bayesian model, the likelihood function is part 316 

of the generative model, the joint distribution of 𝒚 and 𝛉. Because the concept of likelihood is not specific 317 

to Bayesian methods, we do not provide a more elaborate introduction of the statistical concept here. 318 

Instead, the interested reader is directed to the paper by Etz69 for an introduction of how likelihood 319 

underlies common frequentist and Bayesian statistical methods and to the work of Pawitan70 for a 320 

complete mathematical explanation on this topic. 321 

 322 

Much of the discussion surrounding Bayesian inference focuses on the choice of priors, and there is a vast 323 

literature on potential defaults71,72 The inclusion of prior knowledge in the form of a prior is the most 324 

noticeable difference between frequentist and Bayesian methods and a source of controversy. However, 325 

as argued by Gelman, Simpson and Betancourt71, a prior can in general only be interpreted in the context 326 

of the likelihood with which it will be paired. The importance of the likelihood often gets left out of the 327 

discussion, even though the specified model for the data - instantiated by the likelihood function – is the 328 

foundation for the analysis73.  329 

In some cases, specifying a likelihood function can be very straightforward, see Box 2 for an example. 330 

However, in practice the underlying data-generating model is not always known. Researchers often 331 

naively choose a certain distribution out of habit or because they cannot change it (easily) in the software. 332 

The choice of the statistical data-generating model is subjective (based on background knowledge) and 333 

should therefore be well understood and described in detail. Robustness checks should be performed to 334 

verify the influence of the choice of the likelihood function on the posterior results72. Although most 335 

research in the theory of Bayesian robustness has concerned the sensitivity of the posterior to imprecision 336 

solely in the prior, a few contributions have focussed on the problem of robustness with respect to the 337 

likelihood, see for instance74-76 and references therein. 338 
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[H1]	Results		339 

After specifying the prior and the likelihood, in this section we assume the data has been collected and 340 

we describe the posterior parts of Figure 1. That is, we explain how a model can be fitted to data with the 341 

goal of obtaining a posterior distribution, how to select variables, and why posterior predictive checking 342 

would be needed. In practice, model building is an iterative process.  Any Bayesian model (which includes 343 

both the prior distribution and the probability model for data given parameters, which serves also as the 344 

likelihood function) can be viewed as a placeholder which can later be improved, in response to the 345 

availability of new data, lack of fit to existing data, or simply a process of refinement of the model.  Box57, 346 

Rubin77, and chapter 6 of Gelman et al.73 discuss the fluidity of Bayesian model building, inference, 347 

diagnostics, and model improvement. 348 

[H2]	Model	Fitting		349 

Once the general model structure has been formulated to describe the data, and the associated likelihood 350 

function derived, the next step is to fit the model to the observed data to estimate the model parameters. 351 

Although the statistical models necessarily simplify reality, they aim to capture the main processes driving 352 

the data. Models may differ substantially in their complexity, taking into account the different 353 

mechanisms acting on the system and sources of stochasticity and variability. Some examples of the types 354 

of data and associated models are provided in Applications. Fitting the models to the observed data 355 

permits the estimation of the model parameters, or functions of these, leading to an improved 356 

understanding of the system, and associated underlying factors via relevant interpretable quantities given 357 

the data.  358 

There are two main paradigms for model fitting and parameter estimation: Bayesian and frequentist. 359 

These approaches differ fundamentally. Within the Bayesian framework probabilities are assigned to the 360 

model parameters, describing the associated uncertainties; whereas the frequentist framework focuses 361 

on the expected long-term outcomes of an experiment. The corresponding implications is that frequentist 362 

methods focus on producing a single point estimate for each model parameter, such as the maximum 363 

likelihood estimate, (with an associated uncertainty interval: the confidence interval); whereas in 364 

Bayesian statistics, the focus is on estimating the entire posterior distribution of the model parameters. 365 

This posterior distribution of often summarised, for simplicity, via associated point estimates (such as the 366 

posterior mean or median) and an interval estimate in the form of a credible interval (i.e. an interval that 367 

contains a given % of the posterior distribution). Direct inference on the posterior distribution is typically 368 

not possible as the mathematical equation describing the posterior distribution is typically both high-369 

dimensional (the number of dimensions is equal to the number of parameters) and of a very complex 370 

form. In particular, the expression for the posterior distribution is typically only known up to a constant 371 

of proportionality, with the denominator expressible as a function of only the data, where this function is 372 

not available in closed form but expressible as an analytically intractable integral. We note that this 373 

intractability of the posterior distribution was the primary practical reason that Bayesian statistics was 374 

discarded by many scientists for the alternative frequentist statistics. However, the seminal paper by 375 

Gelfand and Smith78 transformed the data analytic world, describing how Markov chain Monte Carlo 376 

(MCMC) [G], a technique for sampling from a probability distribution, can be used to fit models to data 377 

within the Bayesian paradigm. 79 378 
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MCMC is able to indirectly obtain inference on the posterior distribution via simulation79. In particular, 379 

MCMC permits a set of sampled parameter values of arbitrary size to be obtained from the posterior 380 

distribution of interest, despite the posterior distribution being high dimensional and only known up to a 381 

constant of proportionality. These sample values are used to obtain empirical estimates of the posterior 382 

distribution of interest, which can be estimated up to the desired accuracy by increasing the number of 383 

sampled parameter values, if necessary.  We note that due to the high dimensionality of the posterior 384 

distribution it is often useful to focus on the marginal posterior distribution of each parameter, defined 385 

by marginalising (or integrating) out over the other parameters (i.e. dimensions). Marginal distributions 386 

are useful for focusing on individual parameters but by definition do not provide any information on the 387 

relationship between the parameters.  388 

Whilst MCMC is the most common algorithm used in Bayesian analyses, there are other model-fitting 389 

algorithms, see Table 1 for a non-exhaustive overview of MCMC techniques of sampling and 390 

approximation techniques. We refer the interested reader for running the PhD-example with different 391 

estimators to80,81. In this article for posterior inference, we focus on MCMC which combines two concepts: 392 

(i) obtain a set of parameter values from the posterior distribution (using the Markov chain [G] , or the 393 

first “MC”); and (ii) given sampled parameter values obtain a distributional estimate of the posterior and 394 

associated posterior statistics of interest (using Monte Carlo [G] , or the second “MC”). We discuss each 395 

of these “MC” components in turn, in reverse order.  396 

Consider concept (ii) “Monte Carlo”. Suppose we have a set of parameter values from some distribution. 397 

Monte Carlo integration permits estimation of this distribution using associated empirical estimates82. For 398 

example, to estimate distributional summary statistics, such as the mean, variance or symmetric 95% 399 

credible interval of a parameter we use the corresponding sample mean, variance and 2.5% and 97.5% 400 

quantile parameter values. Similarly, probability statements can be estimated (such as the probability that 401 

a parameter is positive/negative; or lies in the range [a,b]) as the proportion of the sampled values that 402 

satisfy the given statement; while the posterior marginal density of any given parameter can be obtained 403 

via kernel density estimation, which uses a non-parametric approach for estimating the associated density 404 

from which sampled values have been drawn83.  405 

However, in general, it is not possible to directly and independently sample parameter values from the 406 

posterior distribution. This leads to concept (i) the “Markov chain”. The idea is to obtain a sample from 407 

the posterior distribution by constructing a Markov chain with some specified first-order transition kernel 408 

which defines the distribution of the parameters at iteration t+1, given their state at time t, such that the 409 

resulting stationary/equilibrium distribution of the Markov chain is equal to this posterior distribution of 410 

interest. Thus, if we run the Markov chain long enough so that it has reached its stationary distribution, 411 

subsequent realisations of the chain can be regarded as a (dependent) sample from the posterior 412 

distribution and used to obtain the corresponding Monte Carlo estimates, see for an example Figure 4A. 413 

We emphasise that the sampled parameter values obtained from the Markov chain are auto-correlated, 414 

in that the parameter values are dependent on their previous values in the chain, and generated via the 415 

first order Markov chain. The Markov chain is defined by the specification of the initial parameter values 416 

and transition kernel [G]. There are standard approaches for defining the transition kernel so that the 417 

corresponding stationary distribution is the correct posterior distribution: such as the Gibbs sampler84; 418 

Metropolis-Hastings algorithm85,86; and Hamiltonian Monte Carlo87.  419 
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Obtaining posterior inference, by fitting models to observed data can be complicated due to model 420 

complexities or data collection processes. For example, for random effect models or in the presence of 421 

latent variables, the likelihood may not be available in closed form, but only expressible as an analytically 422 

intractable integral (over the random effect terms or latent variables). Alternatively, the likelihood may 423 

be available in closed form, for example, for a finite mixture model (or discrete latent variable model), but 424 

where the likelihood is multimodal leading to slow mixing within a standard MCMC approach.  In such 425 

circumstances data augmentation is often used88, where we define additional variables, or auxiliary 426 

variables [G], such that the joint distribution of the data and auxiliary variables (often referred to as the 427 

“complete data” likelihood) is now available in closed form and quick to evaluate. For example, for a 428 

random effects model, the auxiliary variables correspond to the individual random effect terms (that 429 

would previously have been integrated out); for a finite mixture model the auxiliary variables correspond 430 

to the mixture component that each observation belongs to. A new joint posterior distribution is then 431 

constructed over both the model parameters and auxiliary variables, which is defined to be proportional 432 

to the complete data likelihood and associated parameter priors. A standard MCMC algorithm can then 433 

be applied that obtains a set of sampled parameter values over both the model parameters and auxiliary 434 

variables. Considering the values of only the model parameters of interest within the Markov chain, 435 

essentially discarding the auxiliary variables, provides a sample from the original (marginal) posterior 436 

distribution of the model parameters given the observed data. Finally we note that the auxiliary variables 437 

may themselves be of interest themselves in some cases, and inference on these can be easily obtained 438 

via the sampled values.  439 

The transition kernel determines the MCMC algorithm, describing how the parameter values (and any 440 

other additional auxiliary variables) are updated at each iteration of the Markov chain. In order for the 441 

stationary distribution of the Markov chain to be the posterior distribution of interest, the transition 442 

kernel is specified such that it satisfies some relatively straightforward rules. The transition kernel is 443 

typically defined via some proposal distribution – this name arises as the process of updating the 444 

parameter values involves proposing a set of new parameter values from some distribution which, in the 445 

general case, are subsequently either accepted or rejected with some probability, where this acceptance 446 

probability is a function of the proposal distribution. If the proposed values are accepted the Markov chain 447 

moves to this new state; if the values are rejected the Markov chains remains in the same state at the 448 

next iteration. Thus, the transition kernel is non-unique with many general choices for the proposal 449 

distribution. For example these include the posterior conditional distribution (i.e. the Gibbs sampler; 450 

where the acceptance probability in the updating step is equal to unity), Metropolis-Hastings random walk 451 

sampler (randomly perturbing the parameter values from their current values), slice sampler and no-U-452 

turn sampler, amongst many others. We do not focus further on the internal mechanics of the MCMC 453 

algorithm here as there is a wealth of literature on this topic and also associated computational tools and 454 

programs for performing a Bayesian analysis via an MCMC approach (see later in this section).  455 

Beyond the necessity of specifying a transition kernel, such that the corresponding stationary distribution 456 

is the posterior distribution of interest, the choice of transition kernel defines  the performance of the 457 

MCMC algorithm in terms of how long the Markov chain needs to be run to obtain reliable inference on 458 

the posterior distribution of interest. Trace plots [G] of the parameters display the value of the parameters 459 

over iteration number. One-dimensional trace plots are most commonly plotted that describe the 460 

parameter value at each iteration of the Markov chain (on the y-axis) against iteration number (on the x-461 

axis) and are often a useful exploratory tool (Figure 4A). They provide a visualisation of the chain in terms 462 
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of how each parameter is exploring the parameter space, often referred to as mixing, which, if poor, 463 

require changes to the specified transition kernel; and also for identifying when the Markov chain has 464 

reached its stationary distribution. Recall that the Markov chain only converges to the posterior 465 

distribution, so that realisations of the chain prior to convergence to its stationary distribution are 466 

discarded – this was originally called the burn-in but we prefer the term warm-up.89 The most common 467 

technique applied to assess convergence is the RT  statistic [G] 90,91 where multiple independent runs of the 468 

MCMC algorithms are run and the within-chain variability and between-chain variability compared (Figure 469 

4B). Ideally, each of the multiple chains should be started from different (over-dispersed) starting values 470 

(and using different random seeds) to provide greater initial variability across the Markov chains, to make 471 

it more likely that non-convergence of the chain to the stationary distribution will be identified, for 472 

example, if different sub-modes of the posterior distribution are being explored. RT  is defined to be the 473 

ratio of the within- and between-chain variability. Values close to 1 for all parameters and quantities of 474 

interest suggest the chain has sufficiently converged to the stationary distribution, so that future 475 

realisations can be regarded as a sample from the posterior distribution of interest (Figure 4B). Once the 476 

stationary distribution is reached, a further question relates to how many iterations are needed to obtain 477 

reliable Monte Carlo estimates (i.e. for sufficiently small Monte Carlo error). To assess this, batching the 478 

sampled values is often used which involves sub-dividing the sampled values into non-overlapping 479 

“batches” of consecutive iterations and considering the variability of the estimated statistic using the 480 

sampled values in each batch 92. 481 

Additionally, to determine if the entire posterior parameter space has been explored the effective sample 482 

size (ESS) of the sampled parameter values may be obtained. The ESS roughly expresses how many 483 

independent sampled parameter values contain the same information as the autocorrelated MCMC 484 

samples- recall that the sampled MCMC values are not independent as they are generated via a first-order 485 

Markov chain. Note that ‘sample size’ in the ESS does not refer to sample size of the data but can be seen 486 

as the effective length of the MCMC chain instead of the actual length of the chain. Low sampling 487 

efficiency is related to high autocorrelation (so that the variability of the parameter values is small over 488 

successive iterations) and non-smooth histograms of posteriors, which in turn could point towards 489 

potential problems in the model estimation or weak identifiability of the parameters51. Therefore, when 490 

problems occur in obtaining reliable Monte Carlo estimates, a good starting point is to sort all variables 491 

based on ESS and investigating the ones with the lowest ESS first. ESS is also useful for diagnosing the 492 

sampling efficiency for a large number of variables93. 493 

For further discussion of MCMC-related issues, see for example73,94,95. There are now many standard 494 

computer packages for implementing Bayesian analyses, and a summary of the main packages are given 495 

in Table 2 (see also Reproducibility and data deposition), which have subsequently led to the explosion of 496 

Bayesian inference across many scientific fields (for examples, see Applications). Many of the available 497 

packages perform the MCMC algorithm as a black-box (though often with options to change default 498 

settings), permitting the analyst to focus on the prior and model specification, and avoid any technical 499 

coding. Note there are many additional packages that make it easier to work with the sometimes heavily 500 

code-based software, for example the packages BRMS96 and Blavaan97 in R for making it easy to use Stan.98  501 

 502 

H3:	Empirical	Example	-	Continued	503 
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The priors for the PhD delay example were updated with the data and posteriors were computed in Stan98. 504 

All scripts to reproduce the results are available at the Open Science Framework: DOI 505 

10.17605/OSF.IO/JA859. The trace plot of four independent runs of the MCMC algorithms for 𝛽<=>7?@7A>  506 

is shown in Figure 4A and displays stability post-burn in. Also, the associated R8 statistic stabilizes after 507 

approximately 2,000 iterations, see Figure 4B. The prior and posterior distributions are displayed in Panels 508 

4C-E. The posterior parameter estimates can be summarized using, for example, the median of the 509 

posterior distributions. Based on these point summaries, it appears the delay peaks at around the age of 510 

50, with an explained variance of only of 6%. If we compare our prior and posterior predictive 511 

distributions, we are less uncertain and more consistent in what we expect after observing the data. So, 512 

accurate predictions of delay for individual cases may not be possible, but we can predict general trends 513 

at group level. 514 

 515 

[H2]	Variational	inference	516 

As we have outlined, Bayesian analysis consists of a number of stages including detailed model 517 

development, including specifying the prior and data models, the derivation of exact inference 518 

approaches based on MCMC, and model checking and refinement (Figure 1). Each is ideally treated 519 

independently, separating model construction from its computational implementation. The focus on exact 520 

inference techniques has spurned considerable activity in developing Monte Carlo methods which are 521 

considered as a gold standard for Bayesian inference. Monte Carlo methods for Bayesian inference adopt 522 

a simulation-based strategy for approximating the high-dimensional integrals required to compute 523 

posterior quantities. An entirely alternative approach is to produce functional approximations of the 524 

posterior using approaches including Variational Inference [G] (VI)99 or Expectation Propagation100. In the 525 

following, we describe the variational approach, also known as variational methods or variational Bayes, 526 

due to its popularity and prevalence of use in machine learning.  527 

Variational inference begins by constructing an approximating distribution to approximate the desired, 528 

but intractable, posterior distribution. Typically, the approximating distribution is chosen from a family of 529 

standard probability distributions, e.g. multivariate Normal, and further assumes that some of the 530 

dependencies between the variables in our model are broken. In the case, where the approximating 531 

distribution assumes all variables are independent, this gives us the well-known “mean-field 532 

approximation”. The approximating distribution will be specified up to a set of “variational parameters” 533 

that we optimise to find the best posterior approximation by minimising the Kullback-Leibler divergence 534 

to the true posterior. As a consequence, variational inference reposes Bayesian inference problems as 535 

optimisation rather than as sampling problems and can be solved using numerical optimisation, i.e. 536 

gradient descent. When combined with subsampling-based optimisation techniques such as stochastic 537 

gradient descent, variational inference makes approximate Bayesian inference possible for complex large-538 

scale problems.  539 

Variational methods therefore transform the inference problem into an optimisation task to identify the 540 

parameters of the approximation that minimise its discrepancy with respect to the true posterior. In 541 

Bayesian machine learning (see also the Outlook section), coordinate descent approaches for 542 

optimisation, have generally given way to stochastic optimisation approaches which provide further 543 

scalability benefits in the presence of large data sets101-103. Stochastic gradient descent uses only subsets 544 
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of the data (mini-batches) to compute noisy estimates of the gradients whilst still retaining convergence 545 

guarantees. However, there is no free lunch, unless the true posterior belongs to the pre-specified family 546 

of approximating distributions, it is often difficult to determine how good the variational approximation 547 

represents the true posterior. 548 

 549 

 550 

[H2]	Variable	Selection	551 

Variable selection is the process of identifying the subset of predictors to include in a model. It is a major 552 

component of model building along with determining the functional form of the model. Variable selection 553 

is especially important in situations where a large number of potential predictors is available. The inclusion 554 

of unnecessary variables in a model has several disadvantages, such as increasing the risk of 555 

multicollinearity, lacking enough samples to estimate all model parameters, overfitting the current data 556 

thus leading to poor predictive performance on new data, and making the model interpretation more 557 

difficult. For example, in genomic studies where high-throughput technologies are used to profile 558 

thousands of genetic markers, only a few of those predictors are expected to be associated with the 559 

phenotype or outcome under investigation. Methods for variable selection can be categorized into those 560 

based on hypothesis testing and those that perform penalized parameter estimation. In the Bayesian 561 

framework, hypothesis testing approaches use Bayes factors and posterior model probabilities, while 562 

penalized parameter estimation approaches specify shrinkage priors [G] that induce sparsity [G], as 563 

discussed below. Bayes factors are often used when dealing with a small number of potential predictors 564 

as they involve fitting all candidate models and choosing between them, whereas penalization methods 565 

fit a single model and thus can scale up to larger dimensions.  566 

We provide a brief review of these approaches in the context of a classical linear regression model, where 567 

the response variable from 𝑛 independent observations, 𝒚, are related to 𝑝 potential predictors defined 568 

in an 𝑛 × 𝑝 covariate matrix 𝑿 via the model 𝒚 = 𝑿𝜷 + 	𝜺. The regression coefficients 𝜷 capture the effect 569 

of each covariate on the response and 𝜺 are the residuals assumed to follow a Normal distribution with 570 

mean 0 and variance 𝜎D. Bayes factors62 (Box 3) can be used to compare and choose between candidate 571 

models, where each candidate model would correspond to a hypothesis. Unlike frequentist hypothesis 572 

testing methods, Bayes factors do not require the models to be nested. In the context of variable selection, 573 

each candidate model corresponds to a distinct subset of the 𝑝 potential explanatory variables104,105. 574 

These 2A  possible models can be indexed by a binary vector 𝜸 = (𝛾Z,⋯ , 𝛾A)′, where 𝛾] = 1 if covariate 575 

𝑋] is included in the model, that is 𝛽] ≠ 0 , and 𝛾] = 	0 otherwise. Let 𝑀𝜸 be the model that includes the 576 

𝑋]’s with 𝛾] = 1. Prior distributions for each model 𝑝(𝑀𝜸) and for the parameters under each model 577 

𝑝(𝜷𝜸, 𝜎D|𝑀𝜸) are specified, and Bayes factors 𝐵𝐹𝜸𝒃 are evaluated to compare each model 𝑀𝜸 to one of 578 

the models taken as a baseline, 𝑀𝒃. The posterior probability, 𝑝(𝑀𝜸|𝒚), for each model can be expressed 579 

in terms of the Bayes factors as 580 

𝑝(𝑀𝜸|𝒚) =
𝐵𝐹𝜸𝒃	𝑝(𝑀𝜸)

∑ 𝐵𝐹𝜸d𝒃	𝑝(𝑀𝜸d)𝜸d
 581 

where the denominator sums over all considered models 𝑀𝜸d. The models with largest posterior 582 

probabilities would correspond to those with the highest amount of evidence in their favor among the 583 
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ones under consideration. When 𝑝 is relatively small (say 𝑝 < 20), all 2A  variable subsets and their posterior 584 

probabilities can be evaluated. The model with highest posterior probability (the maximum a posteriori 585 

model) may be selected as the one most supported by the data. Alternatively, the covariates with high 586 

marginal posterior inclusion probabilities, 𝑝e𝛾] = 1f𝒚g = ∑ 𝑝(𝑀𝜸|𝒚)hi∈kl , may be selected. For 587 

moderate to large 𝑝, this strategy is not practically feasible as an exhaustive evaluation of all 2A	possible 588 

models becomes computationally expensive. Instead, shrinkage priors that induce sparsity, either by 589 

setting the regression coefficients of non-relevant covariates to zero or by shrinking them towards zero, 590 

are specified and MCMC techniques are used to sample from the posterior distribution..  591 

Various shrinkage priors have been proposed over the years. A widely used shrinkage prior [G] is the spike-592 

and-slab prior [G], which uses the latent binary indicator vector 𝜸 = e𝛾Z,⋯ , 𝛾Ag ∈ {0,1}A to induce a 593 

mixture of two distributions on 𝛽]	, one peaked around zero (spike) to identify the zero elements and the 594 

other a flat distribution (slab) to capture the non-zero coefficients106,107. The discrete spike-and-slab 595 

formulation106 uses a mixture of a point mass at zero and a flat prior (see Figure 5A), while the continuous 596 

spike-and-slab prior107 uses a mixture of two normal distributions (see Figure 5B). Another widely used 597 

formulation puts the spike-and-slab prior on the variance of the regression coefficients108. After specifying 598 

prior distributions for the other model parameters,  MCMC algorithms are used to explore the large model 599 

space and yield a chain of visited models. Variable selection is then achieved through the marginal 600 

posterior inclusion probabilities, 𝑃e𝛾] = 1f𝒚g. Integrating out the parameters 𝜷 and 𝜎D can accelerate 601 

the MCMC implementation, while speeding up its convergence and mixing. Various computational 602 

methods have also been proposed to rapidly identify promising high posterior probability models, by 603 

combining variable selection methods with modern Monte Carlo sampling techniques109,110(see also Table 604 

1).  605 

Another class of regularization priors that have received a lot of attention in recent years are continuous 606 

shrinkage priors111-113. These are unimodal distributions on 𝛽] that promote shrinkage of small regression 607 

coefficients towards zero, similarly to frequentist penalized regression methods that accomplish 608 

regularization by maximizing the log-likelihood function subject to a penalty114. The least absolute 609 

shrinkage and selection operator (lasso)114, for instance, uses the penalty function 𝜆∑ |𝛽]|
A
]qZ  with 𝜆 610 

controlling the level of sparsity. The lasso estimate of 𝛽]	can be interpreted as a Bayesian posterior mode 611 

estimate using independent Laplace priors for the regression coefficients. Motivated by this connection, 612 

the Bayesian lasso111 specifies conditional Laplace priors on 𝛽]|𝜎D. It should be noted that Bayesian 613 

penalization methods do not shrink regression coefficients to be exactly zero, as the lasso penalization 614 

does. Instead, the variable selection is carried out using credible intervals for 𝛽] or by defining a selection 615 

criterion on the posterior samples. Many continuous shrinkage priors can be parametrized as a scale 616 

mixture of normal distributions, which facilitates the MCMC implementation. For example, the Laplace 617 

prior in the Bayesian lasso can be obtained as a scale mixture of normals with an exponential mixing 618 

density. The exponential mixing distribution has a single hyperparameter, which limits its flexibility in 619 

differentially shrinking small and large effects (see Figure 5C). This limitation can be overcome by using a 620 

class of shrinkage priors that introduce two shrinkage parameters, which respectively control the global 621 

sparsity and the amount of shrinkage for each regression coefficient. The resulting marginalized priors for 622 

𝛽] are characterized by a tight peak around zero that shrinks small coefficients to zero, and heavy tails 623 

that prevent excessive shrinkage of large coefficients. These priors are known as global-local shrinkage 624 

priors113. The horseshoe prior [G], for example, achieves this by specifying a normal distribution for the 625 
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regression coefficient, 𝛽], conditional on its scale parameters, which in turn, follow half-Cauchy 626 

distributions112(see Figure 5D). A comprehensive review and thorough comparison of the characteristics 627 

and performance of different shrinkage priors can be found in 115. Bayesian variable selection methods 628 

have been extended to a wide variety of models. Extensions to multivariate regression models include 629 

spike-and-slab priors that select variables as relevant to either all or none of the responses116, as well as 630 

multivariate constructions that allow each covariate to be relevant for subsets and/or individual response 631 

variables117. Other extensions include generalized linear models, random effects and time-varying 632 

coefficient models118,119, mixture models for unsupervised clustering120, and estimation of single and 633 

multiple Gaussian graphical models121,122. The forthcoming Handbook of Bayesian Variable Selection123 634 

presents a comprehensive review and highlights recent developments. 635 

 636 

[H3]	Examples	of	Recent	Applications	of	Bayesian	Variable	Selection	in	637 

Biomedical	studies	638 

The variable selection priors for linear models described in the Results section have found important 639 

applications in biomedical studies. We briefly discuss some examples of recent applications of Bayesian 640 

variable selection methods. 641 

The advent of high-throughput technologies has made it possible to measure thousands of genetic 642 

markers on individual samples. Linear models are routinely used to relate large sets of biomarkers to 643 

disease-related outcomes, and variable selection methods are employed to identify the significant 644 

predictors. In Bayesian approaches, additional knowledge about correlation structure among the variables 645 

can be easily incorporated into the analysis. For example, in models with gene expression data, spike-and-646 

slab variable selection priors incorporating knowledge on gene-to-gene interaction networks have been 647 

employed to aid the identification of predictive genes124, as well as the identification of both relevant 648 

pathways and subsets of genes125. Other successful applications of Bayesian variable selection priors have 649 

been in genome-wide association studies (GWAS), where hundreds of thousands of single nucleotide 650 

polymorphisms (SNPs) are measured in thousands or tens of thousands of individuals, with the goal of 651 

identifying genetic variants that are associated with a single phenotype or a group of correlated 652 

traits.126,127 653 

Air pollution is a major environmental risk factor for morbidity and mortality. Small particles produced by 654 

traffic and industrial pollution can enter the respiratory tract and have adverse health effects. Particulate 655 

matter exposure and their health effects exhibit both spatial and temporal variability. For a treatment of 656 

Bayesian hierarchical models for spatial data we refer readers to128. Spatially varying coefficients models 657 

with spike-and-slab priors inducing spatial correlation have been proposed to identify pollutants 658 

associated to adverse health outcomes over a whole region, as well as in different subregions129. Over the 659 

past couple of decades, a number of -omic studies have been conducted to investigate the effects of 660 

environmental exposures on genomic markers and gain a better understanding of the mechanisms 661 

underlying lung injury from exposure to air pollutants. Multivariate response models with structured 662 

spike-and-slab priors that leverage the dependence across markers have been proposed to identify and 663 

estimate the joint effect of pollutants on DNA methylation outcomes117. 664 

In neuroscience, neuroimaging studies often employ functional magnetic resonance imaging (fMRI), a 665 

non-invasive technique that provides an indirect measure of neuronal activity by detecting blood flow 666 
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changes. These studies produce massive collections of time series data, arising from spatially distinct 667 

locations of the brain, on one or multiple subjects. In a typical task-based experiment, the whole brain is 668 

scanned at multiple times while the subject performs a series of tasks. The objective of the analysis is to 669 

detect those brain regions that get activated by the external stimulus. Bayesian approaches to general 670 

linear models that employ spatial priors have played an important role in the analysis of such data, as they 671 

allow a flexible modelling of the correlation structure of the data130. Spike-and-slab variable selection 672 

priors that incorporate structural information on the brain have been investigated within a wide class of 673 

spatio-temporal hierarchical models for the detection of the activation patterns131,132. Other applications 674 

of Bayesian variable selection priors in fMRI analysis have been in brain connectivity studies. Here, fMRI 675 

data are measured, on subjects typically at rest, with the aim of inferring how brain regions interact with 676 

each other and how information is transmitted between them. Among other approaches, multivariate 677 

vector autoregressive linear models have been investigated as a way to infer effective (i.e., directed) 678 

connectivity. Continuous shrinkage priors as well as structured spike-and-slab prior constructions have 679 

been employed for the selection of the active connections133,134. Bayesian variable selection methods have 680 

been successfully applied to a number of other biomedical areas, involving longitudinal data, functional 681 

data, survival outcomes and case-control studies, to mention a few. 682 

 683 

 684 

[H2]	Posterior	Predictive	Checking		685 

Once a posterior distribution for a particular model is obtained, it can be used to simulate new data 686 

conditional on this distribution. Those simulations can be used for, at least, three purposes: First, to check 687 

if the simulated data from the model resemble the observed data. To this end, one could compare kernel 688 

density estimate of the observed data to density estimates for the simulated data67. Second, a more 689 

formal posterior predictive checking approach can be taken to evaluate if the model can be considered a 690 

good fit with the data generating mechanism67,77,135-137. Any parameter-dependent statistic or discrepancy 691 

can be used for the posterior predictive check136. This is similar to how prior predictive checks can be used 692 

but much more stringent in the comparison67. Because posterior distributions are usually more 693 

concentrated on the parameter space compared to prior distributions, the tails of the predictive 694 

distributions are more concentrated and tail-area probabilities for any observed statistic or discrepancy 695 

are hence more sensitive. The sensitivity of the posterior predictive checks is useful because if realistic 696 

models are used, the expectation is that these are well calibrated in the long-term average77, for more 697 

details see Limitations and opimizations. Third, posterior predictive distributions can be used to 698 

extrapolate beyond the observed data to predict what data we would expect for new situations based 699 

upon our model, e.g. in time series. The first two uses of posterior predictive checking should be used 700 

with care. There is a risk of over adjusting and refining models to much to the details of a specific data set. 701 

An example of this third kind of use of posterior predictive distributions can be found in the time series of 702 

Figure 6. The analysis highlights how daily webpage views can be decomposed into non-periodic changes, 703 

holiday effects, weekly seasonality, and yearly seasonality effects. Based on the posterior distributions for 704 

the particular model, posterior predictive distributions were simulated for the observed and future data, 705 

naturally becoming more uncertain when they are further ahead due to accumulated uncertainty. It is 706 

also important to be aware that in temporal models some challenges in terms of posterior inference that 707 

are inherent to the spatial and/or temporal dependencies44,138-140. 708 



20 
 

 709 

H3:	Empirical	Example	–	Time	Series	Wikipedia	page	views	710 

To illustrate the use of posterior predictive distributions suppose that it is of interest to know how many 711 

pageviews a webpage has, and what time related factors might be relevant. Consider the Wikipedia page 712 

views for the premier league, the highest English professional soccer league, obtained using the 713 

‘wikipediatrend’141 R package. The scripts are available at the Open Science Framework: 714 

https://osf.io/7yrud/ - DOI 10.17605/OSF.IO/7YRUD. The decomposable time series model142 715 

implemented in the ‘prophet’143 R package, allows the estimation of trends with non-periodic changes 716 

(Figure 6A), holiday effects (B), weekly seasonality (C), and yearly seasonality effects (D). Notable effects 717 

in this time series are the peaks of interest surrounding the start of the seasons in August, the end of the 718 

seasons in May, and the dip on 29-04-2011 – the wedding day of Prince William and Catherine Middleton. 719 

Additionally, a decrease in webpage views occur on each Christmas day, and notable increases occur on 720 

Boxing day and at the start of the year when traditionally matches are played during the Christmas break. 721 

The model is estimated using observed data in the period between January 1st 2010 and January 1st 2018. 722 

Based on the posterior distributions for the particular model, posterior predictive distributions can be 723 

simulated for the observed and future data. In panels E and F posterior predictive distributions at each 724 

time point can be seen. In general, the simulated data from the model resembles the observed data for 725 

the observed time frame. The posterior predictive distributions for future time points are more uncertain 726 

when they are further ahead due to accumulated uncertainty. Notice that increases and decreases in page 727 

views are accurately predicted for future page views, with the exception of increased interest in July 2018 728 

which might relate to the final stage of the World cup Soccer at that time. 729 

 730 

[H1]	Applications		731 

Bayesian inference has been used across all fields of science. We describe a few examples here but there 732 

are many other areas of application such as philosophy, pharmacology, economics, physics, political 733 

science and beyond. 734 

[H2]	Social	and	Behavioural	sciences		735 

A recent systematic review examining the use of Bayesian statistics found that the social and behavioural 736 

sciences (e.g., psychology, sociology, and political sciences) have experienced an increase in empirical 737 

Bayesian work4. The number of Bayesian publications has been steadily rising since about 2004, with more 738 

notable increases in the last decade. In part, this focus on Bayesian methods has been due to the 739 

development of more accessible software, as well as a focus on publishing tutorials aimed at applied social 740 

and behavioural scientist researchers. The increase in prevalence of Bayesian methods is also due to the 741 

continued use of Bayes’ rule as a theory for developmental processes. 742 

 743 

Specifically, there have been two parallel uses of Bayesian methods within the social and behavioural 744 

sciences: theory development and estimation. The field has experienced an increase in use with respect 745 

to each of these two perspectives. 746 
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Bayes’ rule has been used as an underlying theory for understanding reasoning, decision-making, 747 

cognition, and theories of mind. This implementation has been especially prevalent within developmental 748 

psychology and related fields. For example, Bayes’ rule was used as a conceptual framework for cognitive 749 

development in young children, capturing how children develop an understanding of the world around 750 

them144. Bayesian methodology has also been discussed in terms of enhancing cognitive algorithms used 751 

for learning.  Specifically, Gigerenzer and Hoffrage145   discussed the use of frequencies, opposed to 752 

probabilities, as a method to improve upon Bayesian reasoning. In another seminal paper, Slovic and 753 

Lichtenstein146 discussed how Bayesian methods can be used for judgement and decision-making 754 

processes. Within this area of the social and behavioural sciences, Bayes’ rule has been used as an 755 

important conceptual tool for developing theories and understanding developmental processes. 756 

The second way that Bayes’ rule is used within the social and behavioural sciences, and the focus of much 757 

of the current paper, is as a tool for estimation. 758 

The social and behavioural sciences are a terrific setting for implementing Bayesian inference. The 759 

literature is rich with information that can be used to derive prior knowledge. In turn, informative priors 760 

are useful in complex modelling situations, which are common in the social sciences, as well as in cases of 761 

small sample sizes. Likewise, certain models (e.g., some multidimensional item response theory models) 762 

used to explore education outcomes and standardized tests are intractable using frequentist methods and 763 

require the use of Bayesian methods.  764 

There have been many tutorials aimed at explaining Bayesian methods to empirical researchers in a 765 

variety of subsections of the social and behavioural sciences. To highlight the scope of tutorials, a 766 

systematic review of Bayesian methods in the field of psychology uncovered 740 eligible regression-based 767 

papers using this approach. Of these, 100 papers (13.5%) were tutorials for implementing Bayesian 768 

methods, and an additional 225 papers (30.4%) were either technical papers or commentaries on Bayesian 769 

statistics. Some examples of tutorials within this field are as follows. Hoijtink et al.147 discussed the use of 770 

Bayes factors for informative hypotheses within cognitive diagnostic assessment. They illustrated how 771 

Bayesian evaluation of informative diagnostics hypotheses can be used as an alternative approach to the 772 

traditional diagnostic methods. There is added flexibility with the Bayesian approach since informative 773 

diagnostic hypotheses can be evaluated using the Bayes factor using only data from the individual person 774 

being diagnosed. Lee148 published an overview of how Bayes’ theorem can be used within the field of 775 

cognitive psychology. They discuss how Bayesian methods can be used to develop more complete theories 776 

of cognitive psychology, account for observed behaviour in terms of different cognitive processes, explain 777 

behaviour on a wide range of cognitive tasks, and provide a conceptual unification of different cognitive 778 

models. Depaoli et al.149 showed how Bayesian methods can benefit health-based research being 779 

conducted within psychology. Specifically, they highlighted how informative priors via expert knowledge 780 

and previous research can be used to better understand the physiological impact of a health-based 781 

stressor. In this research scenario, frequentist methods would not have produced viable results because 782 

the sample size was relatively small for the model being estimated (data were expensive to collect and 783 

analyse and the population was difficult to access for sampling). Finally, Kruschke150 presented the 784 

simplest example using a t-test geared toward experimental psychologists, showing how Bayesian 785 

methods can benefit the interpretation of any model parameter. This paper highlights the Bayesian way 786 

of interpreting results, focusing on the interpretation of the entire posterior rather than a point estimate.  787 
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Methodologists have been attempting to guide applied researchers toward using Bayesian methods 788 

within the social and behavioural sciences. Although the implementation has been slower to catch on 789 

(e.g., the systematic review found only 167 regression-based papers (22.6%) were empirical applications 790 

using human samples), some subfields are regularly publishing work implementing Bayesian methods. 791 

The field has gained many interesting insights to psychological and social behaviour through Bayesian 792 

methods, and the substantive areas where this work has been conducted are quite diverse. For example, 793 

Bayesian statistics helped to: uncover the role that craving suppression has in smoking cessation151, make 794 

population forecasts based on expert opinions152, examine the role that stress related to infant care has 795 

in divorce153, examine the impact of the President of the United States’ ideology on U.S. Supreme Court 796 

rulings154, and predict behaviours that limit the intake of “free sugars” in one’s diet155. 797 

 798 

These examples all represent different ways in which Bayesian methodology is captured in the literature. 799 

It is common to find papers that highlight Bayes’ rule as a mechanism to explain theories of development 800 

and critical thinking144, are expository 149,150), focus on how Bayesian reasoning can inform theory through 801 

use of Bayesian inference148, and papers using Bayesian modelling to extract findings that would have 802 

been difficult using frequentist methods151. Overall, there is broad use of Bayes’ rule within the social and 803 

behavioural sciences. 804 

 805 

We argue that the increased use of Bayesian methods in the social and behavioural sciences is a great 806 

benefit to improving substantive knowledge. However, we also feel that the field needs to continue to 807 

develop strict implementation and reporting standards so that results are replicable and transparent, as 808 

discussed in the next section. We believe that there are important benefits to implementing Bayesian 809 

methods within the social sciences, and we are optimistic that a strong focus on reporting standards can 810 

make the methods optimally useful for gaining substantive knowledge.  811 

 812 

[H2]	Ecology	813 

Applying Bayesian analyses to ecological applications has become increasingly widespread due to both 814 

philosophical arguments and practical model-fitting advantages. This is combined with readily available 815 

software, see Table 2, and numerous publications describing Bayesian ecological applications using a 816 

range of software packages (see for example156-162 amongst many others). The underlying Bayesian 817 

philosophy is attractive in many ways within ecology163 as it permits: the incorporation of external, 818 

independent, prior information within a rigorous framework (such information may be from previous 819 

studies on the same/similar species or from using inherent knowledge of the biological processes)164,165; 820 

the ability to make direct probabilistic statements on parameters of interest (such as survival probabilities, 821 

reproductive rates, population sizes and future predictions)158; the calculation of relative probabilities of 822 

competing models (for example, the presence/absence of density dependence or environmental factors 823 

in driving the dynamics of the ecosystem) which in turn permit model-averaged estimates incorporating 824 

both parameter and model uncertainty. The ability to provide probabilistic statements is particularly 825 

useful in relation to wildlife management and conservation. For example, King et al166 provide probability 826 
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statements in relation to the level of population decline over a given time period, which in turn provides 827 

probabilities associated with species’ conservation status. 828 

 829 

A Bayesian approach is also often applied in practice for pragmatic reasons.Many ecological models are 830 

complex (for example, they may be spatio-temporal in nature, high-dimensional and/or involving multiple 831 

interacting biological processes) leading to computationally expensive likelihoods that are slow to 832 

evaluate; while imperfect or limited data collection processes often lead to missing data and associated 833 

intractable likelihoods. In such circumstances standard Bayesian model-fitting tools, such as data 834 

augmentation, may permit the models to be fitted; whereas in the alternative frequentist framework, 835 

additional model simplifications or approximations may be required. The application of Bayesian statistics 836 

in ecology is vast and encompasses a range of spatio-temporal scales from an individual organism level to 837 

ecosystem level, from understanding the population dynamics of the given system167, modelling spatial 838 

point pattern data168, to population genetics, to estimating abundance169 or assessing conservation 839 

management170.  840 

Ecological data collection processes are generally from observational studies, where a sample is observed 841 

from the population of interest using some given data survey protocol. In general, the survey should be 842 

carefully designed, taking into account the ecological question(s) of interest and so that it minimises the 843 

complexity of the model required to fit to the data to be able to answer the given question with a high 844 

degree of accuracy. Nevertheless, due to data collection problems (which may, for example, be as a result 845 

of equipment failure or due to poor weather conditions), or inherent data collection problems (for 846 

example it is not possible to record any individual level information, such as breeding status, if an 847 

individual is unobserved), associated model-fitting challenges may arise. Such challenges may include (but 848 

are far from limited to) irregularly spaced observations in time (possibly due to equipment failure or 849 

motion sensor detections), measurement error (for example, in relation to population counts or 850 

disease/breeding status of individuals made from visual observations), missing information (such as 851 

individual covariate information or global environmental factors) and multi-temporal and/or spatial scales 852 

where different aspects of data are recorded at different temporal scales (for example, hourly GPS 853 

location data of individuals; daily environmental data collected at fixed locations; monthly aerial/satellite 854 

photographs and annual censuses). The data complexities that arise, combined with associated modelling 855 

choices, may lead to a range of model-fitting challenges which can often be more easily addressed within 856 

the Bayesian paradigm.  857 

For a given ecological study,  separating out the individual processes acting on the ecosystem is an 858 

attractive mechanism for simplifying the model specification process.167 For example, state-space models 859 

provide a general and flexible modelling framework that describe two distinct types of processes: (i) the 860 

system process and (ii) the observation process. The system process describes the true underlying state 861 

of the system and how this changes over time. These states may be univariate (such as population size) 862 

or multivariate (such as location data); and the system process may describe multiple processes acting on 863 

the system (such as birth/reproduction/dispersal/death). However, we are typically not able to observe 864 

the true states without some associated error: the observation process describes how the observed data 865 

relate to the true (unknown) states. These general state-space models span many applications, including 866 

for example, animal movement171; population count data172; capture-recapture-type data166; fisheries 867 

stock assessment173; and biodiversity174 (for a review and further applications, see for example167,175,176). 868 
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Bayesian model-fitting tools, such as MCMC with data augmentation177, sequential Monte Carlo or particle 869 

(P)MCMC,178-180 permit general state-space models to be fitted to the observed data without the need to 870 

specify further restrictions on the model specification (such as distributional assumptions) or make 871 

additional likelihood approximations.  872 

The process of collecting data continues to evolve with advances in technology, for example, use of GPS 873 

geo-location tags and associated additional accelerometers; remote sensing; use of drones for localised 874 

aerial photographs; unmanned underwater vehicles; motion-sensor camera traps; citizen science etc. The 875 

use of these technological devices has led to new forms of data, and in greater quantity, and associated 876 

model-fitting challenges, providing a fertile ground for Bayesian analyses.  877 

[H2]	Genetics		878 

Genetics and genomics have been a popular application of Bayesian methods. In genome-wide association 879 

studies (GWAS), Bayesian approaches have provided a powerful alternative to frequentist approaches for 880 

assessing the evidence of population associations between genetic variants and a phenotype of 881 

interest181. These include approaches for incorporating genetic diversity (e.g. admixture182), fine-mapping 882 

to identify causal genetic variants183, imputation of genetic markers not directly measured using reference 883 

populations184 and meta-analysis for combining information across studies. These applications further 884 

benefit from the use of marginalisation in order to account for modelling uncertainties when drawing 885 

inferences. More recently, large cohort studies such as the UK Biobank (UKBB)185 have collated 886 

heterogeneous datasets (e.g. imaging, lifestyle, routinely collected health data) alongside genetic 887 

information that have expanded the methodological requirements for identifying genetic associations 888 

with complex (sub)phenotypes. For example, a Bayesian analysis framework TreeWAS186 has extended 889 

genetic association methods to allow for the incorporation of tree-structured disease diagnosis 890 

classifications by modelling the correlation structure of genetic effects across observed clinical 891 

phenotypes. This approach incorporates prior knowledge of phenotype relationships that can be derived 892 

from a diagnosis classification tree (e.g. ICD-10).  893 

Beyond genetics, the availability of multiple molecular data types (“multi-omics”) has also attracted 894 

Bayesian solutions to the problem of multimodal data integration. Bayesian latent variable models can be 895 

used as an unsupervised learning approach to identify latent structures that correspond to known or 896 

previously uncharacterised biological processes across different molecular scales. Multi-Omics Factor 897 

Analysis (MOFA)187 uses a Bayesian linear factor model to disentangle sources of heterogeneity that are 898 

common across multiple modalities from those specific to individual data modalities. 899 

In recent years, high-throughput molecular profiling technologies have advanced to allow the routine -900 

omics analysis of individual cells188. This has led to a methodological revolution with an explosion of novel 901 

approaches to account for the challenges of modelling single cell measurement noise, cell-to-cell 902 

heterogeneity, high-dimensionality, large sample sizes (millions of cells) and perturbation effects from, 903 

for instance, genome editing189. Cellular heterogeneity lends itself naturally to Bayesian hierarchical 904 

modelling and formal uncertainty propagation and quantification due to the layers of variability induced 905 

by tissue-specific activity, heterogenous cellular phenotypes within a given tissue and stochastic 906 

molecular expression at the level of the single cell. In BASiCS190 this approach is used to account for cell-907 

specific normalisation constants, technical variability to decompose total gene expression variability into 908 

technical and biological components.  909 
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Deep neural networks have also been utilised to specify flexible, non-linear conditional dependencies 910 

within hierarchical models for single cell -omics. SAVER-X191 couples a Bayesian hierarchical model with 911 

a pretrainable deep autoencoder to extract transferable gene−gene relationships across datasets from 912 

different laboratories, variable experimental conditions and divergent species to denoise novel target 913 

datasets. While in scVI192, hierarchical modelling is used to aggregate information across similar cells and 914 

genes to infer the distributions that underlie observed expression values. Approximate and scalable 915 

inference in both applications is enabled through the use of mini-batch stochastic gradient descent [G] 916 

(the latter within a variational setting) - a standard technique with modern use of deep neural networks 917 

- that allow these models to be fitted to hundreds of thousands to millions of cells (see also the outlook 918 

section).  919 

Bayesian approaches have also been popular for cancer genomics where large-scale cancer genomic 920 

datasets193 have enabled a data-driven approach to identifying novel molecular changes that drive cancer 921 

initiation and progression. Bayesian network models194 have been developed to identify the interactions 922 

between mutated genes and capture mutational patterns (signatures) that highlight key genetic 923 

interactions that potentially allow for genomic-based patient stratification for clinical trials and the 924 

personalised use of therapeutics.  925 

Bayesian methods have been important in answering questions about evolutionary processes in cancer. 926 

Several Bayesian approaches for phylogenetic analysis of heterogeneous cancers enable the identification 927 

of the distinct subpopulations that can exist with tumours and the ancestral relationships between these 928 

through the analysis of single cell and bulk tissue sequencing data195. These models therefore consider 929 

the joint problem of learning a mixture model (number and identity of the subpopulations) and graph 930 

inference (phylogenetic tree). 931 

  932 

[H1]	Reproducibility	and	Data	Deposition		933 

Proper reporting on statistics, including sharing of data and scripts, is a crucial element in the verification 934 

and reproducibility of research196. A typical workflow for good research practices across the research 935 

workflow that can contribute to reproducibility is displayed in Figure 7. We demonstrate where the 936 

Bayesian research cycle (Figure 1) and the When to Worry, and how to Avoid the Misuse of Bayesian 937 

Statistics checklist149 (Box 4) fit in the wider context of transparency in research. In this section we 938 

highlight some important aspects of reproducibility and data /script deposition. 939 

Allowing others to assess the statistical methods used, including access to the underlying data if possible, 940 

can help in interpreting the results, assess the suitability of the parameters used, and detect and fix errors. 941 

Reporting practices are not yet consistent across many fields, nor across journals in individual fields. 942 

Within the systematic review on Bayesian statistics in psychology4, huge discrepancies within reporting 943 

practices and standards were uncovered in the social sciences. For example, of the 167 regression-based 944 

Bayesian papers using human samples in Psychology, 31% did not mention the priors that were 945 

implemented, 43.1% did not report on chain convergence, and only 40% of those implementing 946 

informative priors conducted a sensitivity analysis. We view this as a major impediment to the 947 

implementation of Bayesian statistics within the social and behavioural sciences, as well as other fields of 948 

research.  949 
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Specifically, for Bayesian methods there are many dangers in naïvely using priors. That is, the exact 950 

influence of the priors is often not well understood, and priors might have a huge, sometimes unwanted, 951 

impact on the study results. Therefore, one might want to pre-register the specification of the priors (and 952 

likelihood) when possible, e.g. in a confirmatory study when the actual statistical model is known 953 

beforehand. Moreover, akin to many elements of frequentist statistics, some Bayesian features can be 954 

easily misused. For example, the impact of priors on final model estimates can be easily overlooked. A 955 

researcher may estimate a model with certain priors and be unaware that using different priors with the 956 

same model and data can result in substantively different results. In both cases, the results could look 957 

completely viable, for example, chains appeared to be converged, posteriors appear viable and 958 

informative. Without examining the impact of priors through a sensitivity analysis and prior predictive 959 

checking, the researcher would not be aware of how sensitive results are to changes in the priors. Consider 960 

the prior variance in the PhD delay example for	𝛽567  which was mis-specified as being a precision instead 961 

of a variance.  962 

Also, reporting on Bayesian statistics is not consistent with reporting on frequentist statistics, since there 963 

are elements included in the Bayesian framework that are fundamentally different from frequentist 964 

settings. Therefore, the WAMBS- checklist149 was developed to promote proper use and reporting of 965 

Bayesian methods. We offer an updated version (WAMBS, version 2) here (Box 4). 966 

To enable reproducibility and allow others to rerun Bayesian statistics on the same data with, e.g. other 967 

priors, model or likelihood functions for sensitivity analyses197, it is important that the underlying data and 968 

code used are properly documented and shared, following the FAIR principles198,199: Findable, Accessible, 969 

Interoperable and Reusable. Preferably, data and code are shared in a trusted repository200 rather than as 970 

supplemental information in a journal, with their own persistent identifier (such as a doi) and tagged with 971 

metadata describing the dataset or codebase. This also allows the dataset and code to be recognized as 972 

separate research outputs and allows other to cite them accordingly201. Repositories can be general (such 973 

as Zenodo), language-specific such as CRAN for R packages, and PyPI for Python code, or domain-974 

specific201. As data and code require different license options, metadata, and other attributes, data are 975 

generally best stored in dedicated data repositories, which can be general or discipline-specific202. Some 976 

journals, like Nature Research’ Scientific Data, have their own list of recommended data repositories 977 

(https://www.nature.com/sdata/policies/repositories). To make depositing data and code easier for 978 

researchers, two repositories (Zenodo and Dryad) are exploring collaboration to allow deposition of code 979 

and data through one interface, with data stored in Dryad and code in Zenodo 980 

(https://blog.datadryad.org/2020/03/10/dryad-zenodo-our-path-ahead/). Many scientific journals 981 

adhere to TOP guidelines203 for transparency and openness in research, which specify requirements for 982 

code and data sharing.  983 

Verification and reproducibility do not only require access to the data, but also to the code used in 984 

Bayesian modelling, ideally replicating the original environment the code was run in, with all 985 

dependencies documented either in a dependency file accompanying the code or by creating a static 986 

container image than provides a virtual environment to run the code in202. Open source software should 987 

be used as much as possible, as open sources reduce the monetary and accessibility threshold to 988 

replicating scientific results. Moreover, it can be argued that closed source software keeps part of the 989 

academic process hidden, including from the researchers who use the software. However, open-source 990 

software is only truly accessible with proper documentation (e.g. listing dependencies and configuration 991 
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instructions in Readme files, commenting code to explain functionality, and including a comprehensive 992 

reference manual when releasing packages). 993 

[H1]	Limitations	and	Optimizations		994 

Bayesian inference is optimal conditional on the assumed model. That is, Bayesian posterior probabilities 995 

are calibrated in long-term average, if parameters are drawn from the prior distribution and data are 996 

drawn from the data distribution. That is, events with stated probability occur with that frequency in the 997 

long term, when averaging over the generative model. In practice, our models are never correct; this is 998 

where the limitations come from. There are two ways we would like to overcome these limitations: by 999 

identifying and fixing problems with the model, and by demonstrating that certain inferences are robust 1000 

to reasonable departures from the model. There are many examples of model checks, see the sections on 1001 

prior and posterior predictive checking, and robustness checks, like sensitivity analyses and checklists like 1002 

the WAMBS (see Box 4), in the Bayesian literature.  1003 

 1004 

Even the simplest and most accepted Bayesian inferences can have serious limitations. For example, 1005 

suppose an experiment is conducted yielding an unbiased estimate z of a parameter 𝜃 which represents 1006 

the effect of some treatment. If this estimate z is normally distributed with standard error 𝑠, we can write 1007 

𝑧~𝑁𝑜𝑟𝑚𝑎𝑙(𝜃, 𝑠), a normal distribution parameterized by its location and scale parameter. Suppose that 1008 

𝜃 has a flat uniform prior distribution, then the posterior distribution is 𝜃	~𝑁(𝑧, 𝑠). These are all familiar 1009 

calculations. Now suppose we observe 𝑧 = 𝑠; that is, the estimate of 𝜃 is 1 standard error from zero. In 1010 

practice, this would be considered statistically indistinguishable from noise, in the sense that such an 1011 

estimate could occur by chance, even if the true parameter value were zero. But the Bayesian calculation 1012 

gives a posterior probability Pr	(𝜃 > 0|𝑧) = 0.84. Would you really be willing to offer 5-to-1 odds on a 1013 

bet that 𝜃 > 0, given these data? If not, in what sense can we say this probability is calibrated? 1014 

The answer is that the probability is calibrated if you average over the prior. You can’t average over a 1015 

uniform distribution on an infinite range, so let’s consider a very diffuse prior, for example 𝜃~𝑁(0,1000), 1016 

where we are assuming that 𝑠 is roughly on unit scale. Under this model, when 𝑧 is observed to equal 𝑠, 1017 

the parameter 𝜃 will be positive approximately 84% of the time. The reason why the 84% probability 1018 

doesn’t seem correct is that the uniform, or very diffuse, prior does not generally seem appropriate. In 1019 

practice, studies are designed to estimate treatment effects with a reasonable level of precision. True 1020 

effects may be one or two standard errors from zero, but they are rarely 5 or 10 or 100 standard errors 1021 

away. In this example, Bayesian inference if taken literally would lead to over-certainty: an 84% posterior 1022 

probability corresponds to the willingness to bet at 5-to-1 odds. There is a positive way to look at this 1023 

story, though: the evident problem with the bet allowed us to recognize that prior information was 1024 

available that we had not included in our model. Moreover, a weakly informative prior such as 1025 

𝜃~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑠) does not change the posterior by much, as then the posterior becomes normal  1026 

𝑁𝑜𝑟𝑚𝑎𝑙(0,5	𝑠, 1/sqrt(2)𝑠), so Pr	(𝜃 > 0|𝑧) = 0.76, and the betting odds only change to roughly 4:1. 1027 

Ultimately, only a strong prior will make a big difference. Bayesian probabilities are only calibrated when 1028 

averaging over the true prior or population distribution of the parameters.  1029 

More generally, Bayesian models can be checked by comparing posterior predictive simulations to data136 1030 

and by estimating out-of-sample predictive error 204. There is a benefit to strong prior distributions 1031 
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that regularize (constrain parameters to reasonable values) to allow the inclusion of more data while 1032 

avoiding overfitting. More data can come from various sources, including additional data points, 1033 

additional measurements on existing data, and prior information summarizing other data or theories. All 1034 

methods, Bayesian and otherwise, require subjective interpretation in order to tell a plausible story, and 1035 

all models come from researcher decisions.  The point is that any choice of model has implications.  For 1036 

example, the flat prior is weak in the sense of providing no shrinkage of the estimate, but it is strong in 1037 

the sense of leading to an inappropriate level of certainty about the sign of theta. 1038 

 1039 

[H1]	Outlook	1040 

The widespread adoption of Bayesian Statistics across disciplines is a testament to the power of the 1041 

Bayesian paradigm for the construction of powerful and flexible statistical models within a rigorous and 1042 

coherent probability framework. Modern Bayesian practitioners have access to a wealth of knowledge 1043 

and techniques that allows the creation of bespoke models and computational approaches for particular 1044 

problems. While probabilistic programming languages, such as Stan, can take away much of the 1045 

implementation details for many applications allowing the focus to remain on the fundamentals of 1046 

modelling and design. 1047 

Nevertheless, an ongoing challenge for Bayesian Statistics is the ever-growing demands posed by 1048 

increasingly complex real-world applications. These are often associated with issues such as large datasets 1049 

and uncertainties regarding model specification. All of this occurs within the context of rapid advances in 1050 

computing hardware, the emergence of novel software development approaches and the growth of “data 1051 

sciences” which has attracted a larger and more heterogeneous scientific audience than ever before. 1052 

In particular, in recent years, the revision and popularisation of the term “artificial intelligence” (AI) to 1053 

encompass a broad range of ideas including Statistics and Computation has blurred the traditional 1054 

boundaries between disciplines. This has been hugely successful in popularising probabilistic modelling 1055 

and Bayesian concepts outside of its traditional roots in Statistics but has also seen transformations in the 1056 

way Bayesian inference is being carried out and new questions about how Bayesian approaches can 1057 

continue to be right at the innovative forefront of AI research. 1058 

Driven by the need to support large-scale applications involving datasets of increasing dimensionality and 1059 

sample numbers, Bayesians have exploited the growth of new technologies centred around Deep Learning 1060 

(DL). This includes deep learning programming frameworks (e.g.  TensorFlow,205 PyTorch206) that 1061 

greatly simplify the use of and computations with deep neural networks (DNN) that permit the 1062 

construction of more expressive, data-driven models that are immediately amenable to inference 1063 

techniques using off-the-shelf optimisation algorithms and state-of-the-art hardware (multicores, GPUs, 1064 

TPUs). In addition to providing a powerful tool to specify flexible and modular generative models, DNNs 1065 

have also been employed to develop new approaches for approximate inference and stimulated a new 1066 

paradigm for Bayesian practice that sees the integration (not separation) of statistical modelling and 1067 

computation at its core.  1068 

An archetypal example is the “Variational Autoencoder” (VAE)207. VAEs have been successfully used in a 1069 

variety of applications, including single cell genomics191,192, and they provide a general modelling 1070 
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framework that has led to a number of extensions including latent factor disentanglement208-210. The 1071 

underlying statistical model is actually a simple Bayesian hierarchical latent variable model. This model 1072 

maps high-dimensional observations to low-dimensional latent variables that are assumed to be normally 1073 

distributed through functions defined by DNNs. Variational inference (VI) is used to approximate the 1074 

posterior distribution over the latent variables. However, in standard VI we would introduce a local 1075 

variational parameter for each latent variable, in which case the computational requirements would scale 1076 

linearly with the number of data samples. VAEs use a further approximation process known as 1077 

amortization to replace inference over the many individual variational parameters with a single global set 1078 

of parameters that are used to parameterise a DNN (known as a recognition network) that outputs the 1079 

local variational parameters for each data point.  1080 

Remarkably, when the model and inference are combined and interpreted together, the VAE has an 1081 

elegant interpretation as an encoding-decoding algorithm: It consists of a probabilistic encoder - a DNN 1082 

that maps every observation to a distribution in the latent space - and a probabilistic decoder - a 1083 

complementary DNN that maps each point in the latent space to a distribution in the observation space. 1084 

Thus, model specification and inference have become entangled within the VAE, demonstrating the 1085 

increasingly blurry boundary between principled Bayesian modelling and algorithmic DL techniques. 1086 

Other recent examples include the use of DNNs to construct probabilistic models that define distributions 1087 

over possible functions211-213, build complex probability distributions by applying a sequence of invertible 1088 

transformations (normalizing flows)214,215 and define models for exchangeable sequence data216. 1089 

The expressive power of DNNs and their utility within model construction and inference algorithms come 1090 

with compromises that are fertile ground for further Bayesian research. The trend toward entangling 1091 

models and inference has popularised these techniques for large-scale data problems but fundamental 1092 

Bayesian concepts remain to be fully incorporated within this paradigm. Marginalisation, model 1093 

averaging, decision theoretic approaches rely on accurate posterior characterisation which remains 1094 

elusive due to the challenge posed by high-dimensional neural network parameter spaces217. While 1095 

Bayesian approaches to neural network learning have been around for decades218-221, further investigation 1096 

into prior specifications for modern Bayesian deep learning models which involve complex network 1097 

structures is required to understand how priors translate to specific functional properties222.  1098 

Recent debates within the field of artificial intelligence have questioned the requirement for Bayesian 1099 

approaches and highlighted potential alternatives. For instance, Deep Ensembles223 have been shown to 1100 

be alternatives to Bayesian methods for dealing with model uncertainty. However, more recent work has 1101 

shown that ``Deep Ensembles”  can actually be reinterpreted as approximate Bayesian model 1102 

averaging224. Similarly, “Dropout” is a regularization approach popularised for use in the training of deep 1103 

neural networks to improve robustness by randomly dropping out nodes during the training of the 1104 

network225. Dropout has been empirically shown to improve generalizability and reduce overfitting. 1105 

Bayesian interpretations of dropout have emerged linking it to forms of Bayesian approximation of 1106 

probabilistic deep Gaussian processes226. While the full extent of Bayesian principles have not yet been 1107 

generalised to all recent developments in artificial intelligence, it is nonetheless a success that Bayesian 1108 

thinking is deeply embedded and crucial to a number of innovations that have arisen. The next decade is 1109 

sure to bring a new wave of exciting innovative developments for Bayesians Intelligence. 1110 

 1111 
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Tables	1113 

Table 1. A non-exhaustive overview of sampling and approximation techniques 1114 

Name Short description 

MCMC Markov chain Monte Carlo 

Metropolis-Hastings (MH) Updating algorithm uses general proposal distribution, with an 
associated accept/reject step for the proposed parameter value(s).85,86 

Reversible jump (RJ)MCMC Extension of MH algorithm to permit trans-dimensional moves within 
parameter space – most often applied in presence of model 
uncertainty.33,227 

Hamiltonian Monte Carlo Special case of MH algorithm based on Hamiltonian dynamics.87 

No-U-Turn sampler (NUTS) An extension to Hamiltonian Monte Carlo that optimizes the generation 
of candidate points.228  

Gibbs sampler Special case of MH algorithm where the proposal distribution is the 
corresponding posterior conditional distribution, with an associated 
acceptance probability of 1.84  

Particle (P)MCMC Combined sequential Monte Carlo algorithm and MCMC used when the 
likelihood is analytically intractable178 

Evolutionary Monte Carlo MCMC algorithm that incorporates features of genetic algorithms and 
simulated annealing.229 

Other 
 

Sequential Monte Carlo Algorithm based on multiple importance sampling steps for each 
observed data point - often used for on-line or real-time processing of 
data arrivals.230  

Approximate Bayesian 
Computation 

Approximate approach, typically used when the likelihood function is 
analytically intractable or very computationally expensive.231 

Integrated nested Laplace 
approximations (INLA) 

Approximate approach developed for the large class of latent Gaussian 
models, which includes, for example, generalized additive spline 
models, Gaussian Markov processes and random fields.232 

Variational Bayes Variational Inference describes a technique to approximate posterior 
distributions via simpler approximating distributions. Optimisation is 
used to adapt the variational parameters within these approximating 
distributions to make them as close to the true posterior distribution as 
possible using the KL-divergence as a measure of discrepancy99. 

  1115 
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Table 2. A non-exhaustive summary of commonly used and open Bayesian software programs.  1116 

 1117 

Software Package Summary Type of 
sampling 

System 
specifications 

General-purpose Bayesian inference software 

BUGS233-235 
(Bayesian Inference 
Using Gibbs 
Sampler) / JAGS236 
(Just Another Gibbs 
Sampler) 

The original general-purpose 
Bayesian inference engine, in 
different incarnations. Uses Gibbs 
and Metropolis sampling. Windows 
based software (WinBUGS233), with 
user-specified model and black-box 
MCMC algorithm. Developments 
include an open source version 
(OpenBUGS235) also available on 
Linux and Mac (using WINE); and 
parallel algorithm version 
(MultiBUGS237). R packages are 
available for calling BUGS from R 
(such as R2WinBUGS238, 
R2OpenBUGS238 and BRugs239). 
JAGS236 (Just Another Gibbs 
Sampler) is an open source variation 
of BUGS which can run cross-
platform and can run from R via 
rjags236. 

MCMC OpenBUGS = 
Windows, Linux, 
Mac (using 
WINE) 

MultiBUGS = 
Windows 

JAGS = all 
platforms.  

PyMC3240 Framework for Bayesian modeling 
and inference entirely within Python; 
includes Gibbs sampling and 
Hamiltonian Monte Carlo 

  

Stan98 General-purpose Bayesian inference 
engine using Hamiltonian Monte 
Carlo; can be run from R, Python, 
Julia, Matlab, and Stata. Open 
source software that implements 
efficient Hamiltonian Monte Carlo 
(HMC). Versions available for R, 
Python, MATLAB, Julia and Stata.  

MCMC 
(Hamiltonian 
Monte Carlo) 

All platforms 

NIMBLE241 Generalization of the Bugs language 
in R; includes sequential Monte Carlo 
as well as MCMC. Open source R 
package using BUGS/JAGS-model 

MCMC and 
sequential 
Monte carlo 

All platfoms 
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language to develop a model; and 
different algorithms for model fitting 
including MCMC and sequential 
Monte Carlo approaches including 
the ability to write novel algorithms.  

Programming languages that can be used for Bayesian inference  

TensorFlow 
Probability242,243 

A Python library for probabilistic 
modelling built on Tensorflow205 from 
Google. 

MCMC Python 3.5 – 3.8 
 
Ubuntu 16.04 or 
later 
 
Windows 7 or 
later (with C++ 
redistributable) 
 
macOS 10.12.6 
(Sierra) or later 
(no GPU 
support) 
 
Raspbian 9.0 or 
later 

Pyro244 Probabilistic programming language 
built on Python and PyTorch206. 

MCMC  

Julia245 In addition to Stan, numerous other 
probabilistic programming libraries 
are available for the Julia 
programming language including 
Turing.jl246 and Mamba.jl247. 

MCMC Windows 
 
macOS 
 
Linux 
 
FreeBSD 

Specialized software doing Bayesian inference for particular classes of models 

JASP248 (Jeffreys’s 
Amazing Statistics 
Program) 

JASP is a user friendly higher-level 
interface, offering standard analysis 
procedures in both their classical and 
Bayesian form. It is open source and 
relies upon a collection of open-
source R packages.  

 Windows 
 
MAC 
 
Linux 

R-INLA232 Open source R package for 
implementing INLA.249 Fast inference 
in R for a certain set of hierarchical 
models using nested Laplace 
approximations.  

INLA All platforms 
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GPstuff250 Fast approximate Bayesian inference 
for Gaussian processes using 
expectation propagation; runs in 
Matlab, Octave, and R. 

 Unix and 
Windows Matlab 

 1118 

  1119 
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Figures Headings 1120 

 1121 

Figure 1. The Bayesian Research Cycle.  1122 

Typical steps needed for a research cycle using Bayesian statistics. The first part of the Bayesian Research 1123 

Cycle, indicated with (A) is identical to any research cycle: starting with reading literature, defining a 1124 

problem, specifying the research question and hypothesis14,15. The analytic strategy should be pre-1125 

registered to enhance transparency. The second part of the Bayesian Research Cycle, indicated with (B) is 1126 

specifically for a Bayesian workflow. It includes formalizing prior distributions based on background 1127 

knowledge and prior elicitation, determining the likelihood function by specifying a data generating model 1128 

and including observed data, and obtaining the posterior distribution as a function of both the specified 1129 

prior and likelihood function135,251. To probe the consequences of the specified model, it is important to 1130 

perform robustness checks along the way and after. All concepts are briefly discussed in the primer with 1131 

references for the interested user.  1132 

 1133 

Figure 2. Illustration of the Key Ingredients of Bayes’ Theorem.  1134 

This figure displays how the likelihood and prior work together to form the posterior distribution. Notice 1135 

that the likelihood remains constant across all rows. Each row only differs in the prior distribution 1136 

specified. Priors are typically deemed to be informative, weakly informative, or diffuse, each defined 1137 

through different degrees of (un)certainty—in this case, through the variance (or spread) of the prior. The 1138 

posterior distribution is a compromise between the prior and the likelihood.  1139 

 1140 

Figure 3: Prior Predictive Checks.  1141 

Prior predictive checks for the PhD-delay example, computed via Stan98 – the scripts are available at the 1142 

Open Science Framework: https://osf.io/ja859/ - DOI 10.17605/OSF.IO/JA859 (A) displays a scenario in 1143 

which precision was mistakenly used instead of variance for 𝛽567	and displays an unexpected pattern for 1144 

the prior predictive distribution. Note, in dark blue the observed mean and SD are presented, in light blue 1145 

samples of the prior predictive distribution. (B) shows the prior predictive distribution for the correct 1146 

implementation of the hyperparameters. The prior predictive checks for the correct implementation of 1147 

the priors seem reasonable given the data. Additionally, in panel C, a kernel density estimate of the 1148 
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observed data is displayed (𝑦 - in dark blue), and kernel density estimates for the simulated data (𝑦?7A  - 1149 

in light blue)67. 83As can be seen the priors cover the entire plausible parameter space with the observed 1150 

data in the center.  1151 

Figure 4. Posterior mean and SD estimation using MCMC 1152 

In panel (A) trace plots (iteration number against parameter value) for the PhD delay data, computed in 1153 

Stan98 of four independent MCMC algorithms are shown for exploring the same posterior distribution of 1154 

𝛽<=>7?@7A>, with the first part omitted for constructing the posterior distribution (i.e, warm-up phase); In 1155 

panel (B) the associated R8 statistic is shown which appears to settle down around the value of 1 after 1156 

approximately 2,000 iterations; and (C, D and E) prior and posterior distributions for the in the model, the 1157 

intercept (Panel C, 𝛽<=>7?@7A>), the linear effect of age on PhD delay (Panel D, 𝛽567), and the quadratic 1158 

effect of age on PhD delay (Panel E, 𝛽5679). For each chain, the first 2,000 iterations are discarded as 1159 

warm-up. The scripts are available at the Open Science Framework: https://osf.io/ja859/ - DOI 1160 

10.17605/OSF.IO/JA859. 1161 

 1162 

Figure 5. Examples of shrinkage priors for Bayesian variable selection.  1163 

In Panel A, the discrete spike-and-slab prior for 𝛽] (solid blue line) is specified as a mixture of a point mass 1164 

at 0 (spike; dashed black line) and a flat prior (slab; dotted red line). In panel B, the continuous spike-and-1165 

slab prior for 𝛽] (solid blue line) is specified as a mixture of two normal distributions, one peaked around 1166 

0 (dashed black line) and the other with a large variance (dotted red line). In panel C, the Bayesian lasso 1167 

specifies a conditional Laplace prior, which can be obtained as a scale mixture of normal distributions with 1168 

an exponential mixing density. This prior does not offer enough flexibility to allow simultaneously a lot of 1169 

mass around zero and heavy tails. In panel D, the horseshoe prior falls in the class of global-local shrinkage 1170 

priors, which are characterized by a high concentration around zero to shrink small coefficients and heavy 1171 

tails to avoid excessive shrinkage of large coefficients. 1172 

 1173 

Figure 6. Posterior Predictive Checking  1174 

Wikipedia page views for the premier league as obtained using the ‘wikipediatrend’141 R package and 1175 

analyzed with the ‘prophet’143 R package. The scripts are available at the Open Science Framework: 1176 

https://osf.io/7yrud/ - DOI 10.17605/OSF.IO/7YRUD. Panels show posterior means for the following 1177 
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parameters  along with 95% Cis for non-periodic changes (A), holiday effects (B), weekly seasonality (C), 1178 

and yearly seasonality effects (D). In panels E and F posterior predictive distributions at each time point 1179 

can be seen. The posterior predictive distributions for the time points that fall in the observed data 1180 

interval on which the posterior distribution is conditioned, are displayed in light red (50% CI) and dark-red 1181 

(95% CI). The corresponding observations are marked as black dots. Additionally, the posterior predictive 1182 

distributions for future data are presented in light blue (50% CI) and dark-blue (95% CI). The actual 1183 

realisations of these dates are marked as black triangles (F). 1184 

Figure 7. Elements of reproducibility in the research workflow  1185 

The figure shows good research practices across the research workflow that can contribute to 1186 

reproducibility and demonstrates where the Bayesian research cycle (see Figure 1) and the WAMBS 1187 

checklist (see Box 4) fit in the wider context of transparency in research. Not all elements are applicable 1188 

to all types of research, e.g. preregistration is typically used for hypothesis-driven research but the 1189 

specification of the prior and likelihood may be pre-registered. There can be legitimate reasons why not 1190 

all data can be shared openly, but all scripts for running the Bayesian models could be shared on a data 1191 

repository. Note that part of the figure is based on a figure originally used in the Utrecht University 1192 

Summerschool on Open Science and Scholarship 2019252 (licensed CC-BY).   1193 
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Boxes	1194 

Box 1 | Bayes’ Theorem  1195 

In Bayesian statistics, all observed and unobserved quantities in a system are given a joint probability 1196 

distribution, and inference for unobserved quantities is based on their conditional distribution given the 1197 

observed data. By construction, Bayesian inferences are optimal when averaged over this joint 1198 

distribution; in Bayesian terminology, the prior and data distributions. Rényi’s axiom of probability253 lends 1199 

itself to examining conditional probabilities, where the probabilities of Event A and Event B occurring are 1200 

dependent, or conditional. The basic conditional probability can be written as: 1201 

 
𝑝(𝐵|𝐴) =

𝑝(𝐵 ∩ 𝐴)
𝑝(𝐴)

, 
(1) 

where the probability of Event B occurring is conditional on Event A. Equation 1 sets the foundation for 1202 

Bayes’ rule, which is a mathematical expression of Bayes’ theorem that recognizes 𝑝(𝐵|𝐴) ≠ 𝑝(𝐴|𝐵) but 1203 

𝑝(𝐵 ∩ 𝐴) 	= 	𝑝(𝐴 ∩ 𝐵). Bayes’ rule can be written as:  1204 

 
𝑝(𝐴|𝐵) =

𝑝(𝐴 ∩ 𝐵)
𝑝(𝐵)

, 
(2) 

which, based on Equation 1, can be reworked as: 1205 

 
𝑝(𝐴|𝐵) =

𝑝(𝐵|𝐴)𝑝(𝐴)
𝑝(𝐵)

. 
(3 – Bayes’ rule) 

These principles can be extended to the situation of data and model parameters. With dataset 𝒚 and 1206 

model parameters	𝜽, Equation 3 (Bayes’rule) can be written as follows: 1207 

 
𝑝(𝛉|𝒚) =

𝑝(𝒚|𝛉)𝑝(𝛉)
𝑝(𝒚)

, 
(4) 

which is often simplified to:  1208 

 𝑝(𝛉|𝒚) 	∝ 𝑝(𝒚|𝛉)𝑝(𝛉). (5) 

The term 𝑝(𝛉|𝒚)	represents a conditional probability, where the probability of the model parameters (𝜽) 1209 

is computed conditional upon the data (𝒚), and this term is also known as the posterior. The term 𝑝(𝒚|𝛉) 1210 

represents the conditional probability of the data given the model parameters, and this term represents 1211 

the data likelihood. Finally, the term 𝑝(𝛉) represents the probability of particular model parameter values 1212 

existing in the population. This term is called a prior. The term 𝑝(𝒚) is often viewed as a normalizing factor 1213 

across all outcomes 𝒚, which can be removed from the equation because 𝛉 does not depend on 𝒚	or  1214 

𝑝(𝒚). Given that 𝑝(𝒚) is not needed for the posterior, it can be removed, and we say that the posterior is 1215 



39 
 

proportional to (∝) the likelihood times the prior.. Figure 2 illustrates the relationship between the 1216 

likelihood, prior, and posterior. 1217 

  1218 
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Box 2 | The likelihood function for a coin experiment  1219 

 1220 

Consider the following textbook example: we are given a coin and want to know what the probability of 1221 

obtaining “heads” (θ) is. To examine this, we toss the coin a number of times and count the number of 1222 

heads. Let the outcome of the 𝑖th flip be denoted by ℎ< = 1 for heads and ℎ< = 0 for tails. The total 1223 

experiment yields a sample of 𝑛 independent binary observations {ℎZ,… , ℎ=} = 𝒉 with 𝑦 as the total 1224 

number of heads; 𝑦 = ∑ ℎ<=
<qZ . We can assume that the probability to obtain heads remains constant over 1225 

the experiment, i.e. 𝑝(ℎ<) = 	θ, (i = 1,… , n). Therefore the probability of the observed number of heads 1226 

is expressed by the binomial distribution, given by 1227 

 𝑃(y|θ) = e=�gθ
�(1− θ)=��  , 0 ≤ θ ≤ 	1 (1) 

254.  1228 

When 𝑦 is kept fixed and θ is varying, 𝑃(y|θ) becomes a continuous function of 𝛉, called the binomial 1229 

likelihood function254.  1230 

Suppose we flipped the coin 10 times and observed 4 heads, the likelihood function of 𝛉 is defined by 1231 

 𝑓(y|θ) = eZH� gθ
�(1 − θ)� , 0 ≤ θ ≤ 	1. (2) 

. 1232 

 1233 

  1234 
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Box 3 | Bayes Factors  1235 

Hypothesis testing consists of using data to evaluate the evidence for competing claims or hypotheses. 1236 

In the Bayesian framework, this can be accomplished using the Bayes factor, which corresponds to the 1237 

ratio of the posterior odds to the prior odds of distinct hypotheses38,62. For two hypotheses, 𝐻H	and 𝐻Z	, 1238 

and observed data 𝒚, the Bayes factor in favor of 𝐻Z	 is given by  1239 

 
𝐵𝐹ZH =

𝑝(𝐻Z|𝒚) 𝑝(𝐻H|𝒚)⁄
𝑝(𝐻Z) 𝑝(𝐻H)⁄ , 

(6) 

where 𝑝(𝐻H)	and 𝑝(𝐻Z) = 1 − 𝑝(𝐻H)	are the prior probabilities. A larger value of 𝐵𝐹ZH provides 1240 

stronger evidence against 𝐻H	 62. The posterior probability 𝑝(𝐻]|𝒚) is obtained using Bayes theorem  1241 

 𝑝e𝐻]f𝒚g =
�(𝒚|�i)A(�i)

�(𝒚)
	 , 𝑗 =

0,1. 

(7) 

Thus, the Bayes factor can equivalently be written as the ratio of the marginal likelihoods of the 1242 

observed data under the two hypotheses 1243 

 𝐵𝐹ZH =
𝑓(𝒚|𝐻Z)
𝑓(𝒚|𝐻H)

. (8) 

The competing hypotheses can take various forms and could be, for example, two non-nested 1244 

regression models (see Variable Selection subsection). If 𝐻H and 𝐻Z are simple hypotheses in which the 1245 

parameters are fixed (e.g., 𝐻H:	𝜇 = 𝜇H versus 𝐻Z:	𝜇 = 𝜇Z), the Bayes factor is identical to the likelihood 1246 

ratio test. When either or both hypotheses are composite (i.e., not simple) or there are additional 1247 

unknown parameters, the marginal likelihood 𝑓(𝒚|𝐻]) is obtained by integrating over the parameters 𝜽] 1248 

with prior densities 𝑝(𝜽𝒋|𝐻]) 1249 

 𝑓e𝒚f𝐻]g

= �𝑓e𝒚f𝜽], 𝐻]g	𝑝e𝜽𝒋f𝐻]g	𝑑𝜽]. 

(9) 

This integral is often intractable and must be computed by numerical methods. If 𝑝e𝜽𝒋f𝐻]g	is improper 1250 

(i.e., ∫ 𝑝e𝜽𝒋f𝐻]g	𝑑𝜽] = 	∞) then 𝑓e𝒚f𝐻]g will be improper and the Bayes factor will not be uniquely 1251 

defined. Overly diffuse priors should also be avoided, as they result in a Bayes factor that favors 𝐻H 1252 

regardless of the information in the data104. As a simple illustrative example, suppose one collects 𝑛 1253 

random samples from a normally distributed population with an unknown mean 𝜇 and a known variance 1254 
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𝜎D, and wishes to test 𝐻H:	𝜇 = 𝜇H versus 𝐻Z:	𝜇 ≠ 𝜇H. Let 𝑦� be the sample mean.  𝐻H is a simple 1255 

hypothesis with a point mass at 𝜇H , so 𝑦�|𝐻H	~𝑁(𝜇H, 𝜎D 𝑛⁄ ). Under 𝐻Z, 𝑦�|𝜇, 𝐻Z	~𝑁(𝜇, 𝜎D 𝑛⁄ ) and 1256 

assuming 𝜇|𝐻Z	~𝑁(𝜇H, 𝜏D) with 𝜏D	fixed, then 𝑓(𝑦�|𝐻Z) = ∫ 𝑓(𝒚|𝜇, 𝐻Z)	𝑝(𝜇|𝐻Z)	𝑑𝜇 reduces to 1257 

𝑦�|𝐻Z	~𝑁(𝜇H, 𝜏D + 𝜎D 𝑛⁄ ). Thus, the Bayes factor in favor of 𝐻Zis 1258 

 1259 

 

𝐵𝐹ZH =
𝑓(𝒚|𝐻Z)
𝑓(𝒚|𝐻H)

=
(𝜏D + 𝜎D 𝑛⁄ )�Z/D	exp �−

(𝑦� − 𝜇H)D
2(𝜏D + 𝜎D 𝑛⁄ )�

(𝜎D 𝑛⁄ )�Z/D	exp �−
(𝑦� − 𝜇H)D
2(𝜎D 𝑛⁄ ) �

 

(10) 

For example, for 𝑛 = 20, 𝑦� = 5.8	, 𝜇H = 5, 𝜎D = 1  and 𝜏D = 1, the Bayes  factor is 𝐵𝐹ZH = 96.83, 1260 

which provides strong evidence that the mean 𝜇 is not 5. 1261 

  1262 
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 1263 

Box 4 | WAMBS-Checklist  1264 

[bH1] The 10 checklist points of WAMBS-v2 1265 

[b1] Ensure the prior distributions and the model (or likelihood) are well understood and described in 1266 

detail in the text, including the hyperparameter settings and all details surrounding the model. In 1267 

addition, prior-predictive checking can help identify any prior-data conflict. 1268 

[b1] Assess each parameter for convergence. Use multiple convergence diagnostics if possible. This may 1269 

involve examining trace-plots or ensuring diagnostics (e.g., R8 or effective sample size) are being met for 1270 

each parameter. For example, R8 values smaller than 1.05 are typically recommended. Likewise, effective 1271 

sample sizes of 10,000 or more are recommended as a general rule of thumb. 1272 

[b1] Sometimes convergence diagnostics can fail at detecting non-convergence within the chain. 1273 

Subsequent measures, such as the split-R8 can be used to identify such situations. The split-R8 can detect 1274 

trends that are missed if the chains have similar marginal distributions (the R8 may miss these trends). 1275 

[b1] Ensure that there were sufficient chain iterations to construct a meaningful posterior distribution. 1276 

The posterior distribution should consist of enough samples to visually examine the shape, scale, and 1277 

central tendency of the distribution. Without enough samples, there is an incomplete picture of the full 1278 

distribution.  1279 

[b1] Check all parameters for strong degrees of autocorrelation (e.g., through examining the effective 1280 

sample size for parameters), which may be a sign of model or prior misspecification.  1281 

[b1] Visually examine the marginal posteriors distribution for each model parameter  to ensure that they 1282 

make substantive sense. Posterior predictive distributions can be used to aid in examining the 1283 

posteriors.  1284 

[b1] Fully examine multivariate priors through a sensitivity analysis. These priors can be particularly 1285 

influential on the posterior, even with slight modifications to the hyperparameters. 1286 

[b1] To fully understand the impact of subjective priors, compare the posterior results to an analysis 1287 

using diffuse (or objective) priors. This comparison can facilitate a deeper understanding of the impact 1288 

the subjective priors (i.e., the theory being implemented) are having on findings. Next, conduct a full 1289 
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sensitivity analysis of all priors to gain a clearer understanding of the robustness of the results to 1290 

different prior settings. 1291 

[b1] Given the subjectivity of the model, it is also important to conduct a sensitivity analysis of the 1292 

model (or likelihood) to help uncover how robust results are to deviations in the model. 1293 

[b1] Report findings by including Bayesian interpretations. Take advantage of explaining and capturing 1294 

the entire posterior rather than simply a point estimate. For example, it may be helpful to examine the 1295 

density at different quantiles to fully capture and understand the posterior distribution. 1296 

 	1297 
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Glossary	Terms	1298 

 1299 

Prior distribution: Beliefs held by researchers about the parameters in a statistical model BEFORE seeing 1300 

the data.  1301 

Hyperparameters: Hyperparameters are the parameters that define the prior distribution. For 1302 

example, the normal distribution is defined through a mean and variance, and these are 1303 

referred to as the hyperparameters. 1304 

Informative prior: Informative priors reflect a high degree of certainty or knowledge surrounding 1305 

the population parameters and the hyperparameters are specified to express particular 1306 

information reflecting a greater degree of certainty about the model parameters being 1307 

estimated 1308 

Weakly informative prior: The weakly informative prior incorporates some information about 1309 

the population parameter but are not as restrictive as an informative prior.; some researchers 1310 

find this to be a nice middle ground regarding the informativeness of the prior 1311 

Diffuse priors: Diffuse priors reflect complete uncertainty about population parameters. 1312 

Shrinkage priors A specific prior that shrinks the posterior estimate towards a particular value. 1313 

Spike-and-slab prior A specific shrinkage prior distribution used for variable selection that 1314 

corresponds to a mixture of two distributions, one spiked around 0 and the other with a large 1315 

variance corresponding to the slab component. 1316 

Horseshoe prior A prior for variable selection that uses a half-Cauchy scale mixture of normal 1317 

distribution. This prior is characterized by a high concentration around zero to shrink small 1318 

coefficients and heavy tails to avoid excessive shrinkage of large parameters. 1319 

Prior predictive distribution All possible samples that could occur if the model is true based on 1320 

the priors. In theory, a “correct” prior provides a prior predictive distribution similar to the true 1321 

data generating distribution 1322 

Prior predictive p-value An estimate to indicate how unlikely the observed data is to be 1323 

generated by the model based on the prior predictive distribution 1324 

 1325 

likelihood function The conditional probability distribution 𝑝(𝑦|θ) of the data 𝑦 given parameters θ. 1326 

 1327 

posterior distribution The posterior distribution reflects one’s updated knowledge, balancing prior 1328 

knowledge with observed data.  1329 

 1330 

 1331 
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Markov chain Monte Carlo (MCMC) = A method to indirectly obtain inference on the posterior 1332 

distribution via simulation which combines two concepts: (i) obtain a set of parameter values from the 1333 

posterior distribution (using the Markov chain, or the first “MC”); and (ii) given sampled parameter 1334 

values obtain a distributional estimate of the posterior and associated posterior statistics of interest 1335 

(using Monte Carlo, or the second “MC”). 1336 

 1337 

Trace plots A plot describing the posterior parameter value at each iteration of the Markov chain (on the 1338 

y-axis) against iteration number (on the x-axis) 1339 

	1340 

RT  statistic RT  is defined to be the ratio of the within- and between-chain variability. Values close to 1 for 1341 

all parameters and quantities of interest suggest the chain has sufficiently converged to the stationary 1342 

distribution 1343 

 1344 

Bayes factor Bayes factors (Box 3) can be used to compare and choose between candidate models, 1345 

where each candidate model would correspond to a hypothesis 1346 

 1347 

kernel density estimation A kernel density estimation is a non-parametric approach used to estimate a 1348 

probability density function for the observed data. 1349 

transition kernel determines the performance of the MCMC algorithm in terms of how long the Markov 1350 

chain needs to be run to obtain reliable inference on the posterior distribution of interest. 1351 

auxiliary variables additional variables entered in the model to improve the missing data model. 1352 

sparsity: indicates that most parameter values are zero and only a few are non-zero. 1353 

 1354 

Stochastic Gradient Descent (SGD) algorithm. SGD algorithms use a randomly chosen subset of data 1355 

points to estimate the gradient of a loss function with respect to parameters. This can provide radical 1356 

computational savings in optimisation problems involving many data points. 1357 

 1358 

Variational Inference (VI). Variational methods refers to a class of approximate inference techniques in 1359 

which deterministic posterior approximations are constructed from a family of predefined distributions. 1360 

These approximations contain variational parameters which are optimised to match the approximating 1361 

distribution as closely as possible to the true posterior. They are popular methods for achieving scalable 1362 

but approximate Bayesian inference in large data scenarios where MCMC sampling-based inference 1363 

would be prohibitive. 1364 

 1365 

 1366 

1367 
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Highlighted	Refences	1368 

 1369 

1. O'Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D. 1370 

J.,........................... & Rakow, T. (2006). Uncertain judgements: eliciting experts' probabilities. 1371 

John Wiley & Sons. 1372 

This book is a great collection of information with respect to prior elicitation. It includes 1373 

elicitation techniques, summarizes potential pitfalls, and describes examples across a wide 1374 

variety of disciplines. 1375 

 1376 

2. E.J. George and R.E. McCulloch (1993). Variable selection via Gibbs sampling. Journal of the 1377 

American Statistical Association, 88: 881-889. 1378 

This is the paper that popularized the use of spike-and-slab priors for Bayesian variable selection 1379 

and introduced MCMC techniques to explore the model space. 1380 

 1381 

3. N.G. Polson and J.G. Scott (2010). Shrink globally, act locally: Sparse Bayesian regularization 1382 

and prediction. Bayesian Statistics 9, 9: 501-538.   1383 

This paper provides a unified framework for continuous shrinkage priors, which allow global 1384 

sparsity while controlling the amount of regularization for each regression coefficient. 1385 

 1386 

4. M.G. Tadesse and M. Vannucci (2020). Handbook of Mixture Analysis. CRC Press, Chapman \& 1387 

Hall/CRC Handbooks of Modern Statistical Methods, in preparation. 1388 

This is a forthcoming edited book that presents a comprehensive review of Bayesian variable 1389 

selection methods and highlights recent developments. 1390 

 1391 

5. Gelfand, A. E. & Smith, A. F. M. Sampling-Based Approaches to Calculating Marginal Densities. 1392 

J. Am. Stat. Assoc. 85, 398-409, doi:10.1080/01621459.1990.10476213 (1990). 1393 

Seminal paper that identified Markov chain Monte Carlo as a practical approach for Bayesian 1394 

inference. 1395 

 1396 

6. Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000) WinBUGS — a Bayesian modelling 1397 

framework: concepts, structure, and extensibility. Statistics and Computing, 10, 325–337 1398 

Provided an early user-friendly and freely-available black-box MCMC sampler opening up 1399 

Bayesian inference to the wider scientific community. 1400 

 1401 

7. Brooks, S. P., Gelman, A., Jones, G., Meng, X. (Eds) (2011) Handbook of Markov chain Monte 1402 

Carlo. CRC Press.  1403 

Comprehensive review of Markov chain Monte Carlo and its use in many different applications. 1404 
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 1405 

8. Depaoli, S., and van de Schoot, R. (2017). Improving transparency and replication in Bayesian 1406 

statistics: The WAMBS-checklist. Psychological Methods, 22, 240-261. 1407 

This paper goes through, in a step-by-step manner, the various points that need to be checked 1408 

when estimating a model via Bayesian statistics. It can be used as a guide for implementing 1409 

Bayesian methods. 1410 

 1411 

9. Kass, R.E., Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 1412 

90: 773-795. 1413 

This paper provides an extensive discussion of Bayes factors with several examples. 1414 

 1415 

10. Blei, D. M., et al. (2017). "Variational inference: A review for statisticians." Journal of the 1416 

American statistical Association 112(518): 859–877. 1417 

Recent review of variational inference methods, including stochastic variants, which underpin 1418 

popular approximate Bayesian inference methods for large data or complex modelling problems 1419 

where computation using MCMC stochastic simulation would be prohibitively costly. 1420 

 1421 

11. Kingma, D. P. and M. Welling (2019). An Introduction to Variational Autoencoders. 1422 

Recent review of variational autoencoders, encompassing deep generative models, the 1423 

reparameterisation trick and current inference methods. These are an important class of models 1424 

in modern Bayesian machine learning that combines the use of Bayesian modelling with deep 1425 

neural networks for flexible function parameterisation. 1426 

 1427 

12. Neal, R. M. (1996). Priors for Infinite Networks. Bayesian Learning for Neural Networks. R. M. 1428 

Neal. New York, NY, Springer New York: 29-53. 1429 

A classic text highlighting the connection between neural networks and Gaussian processes and 1430 

the application of Bayesian approaches for fitting neural networks. 1431 

 1432 

13. Berger, J. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 1(3), 385-402. 1433 

"A discussion of objective Bayesian analysis, including criticisms of the approach and a personal 1434 

perspective on the debate on the value of objective Bayesian versus subjective Bayesian 1435 

analysis." 1436 

 1437 

14. Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data 1438 

augmentation. 1098 Journal of the American statistical Association, 82(398), 528-540. 1439 

"In this article the authors explain how to use data augmentation when direct computation of 1440 

the posterior density of the parameters of interest is not possible." 1441 
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