
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The microbiota and helminths

Citation for published version:
Glendinning, L, Nausch, N, Free, A, Taylor, DW & Mutapi, F 2014, 'The microbiota and helminths: sharing
the same niche in the human host', Parasitology, vol. 141, no. 10, pp. 1255-1271.
https://doi.org/10.1017/S0031182014000699

Digital Object Identifier (DOI):
10.1017/S0031182014000699

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Parasitology

Publisher Rights Statement:
Romeo Green Publishers version/PDF may be used on authors personal or departmental web page any time
after publication

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Apr. 2024

https://doi.org/10.1017/S0031182014000699
https://doi.org/10.1017/S0031182014000699
https://www.research.ed.ac.uk/en/publications/8c37bdcf-8f64-4286-903d-f735f8cf8ed6


REVIEW ARTICLE

The microbiota and helminths: sharing the same niche in the
human host

LAURA GLENDINNING1*†, NORMAN NAUSCH1, ANDREW FREE2,
DAVID W. TAYLOR3 and FRANCISCA MUTAPI1

1Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological
Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, UK
2Institute of Cell Biology, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
3Division of Pathway Medicine, School of Biomedical Sciences, Ashworth Laboratories, University of Edinburgh,
Edinburgh EH9 3JT, UK

(Received 30 November 2013; revised 27 February and 1 April 2014; accepted 3 April 2014; first published online 5 June 2014)

SUMMARY

Human gastrointestinal bacteria often share their environment with parasitic worms, allowing physical and physiological
interaction between the two groups. Such associations have the potential to affect host health as well as the bacterial and
helminth populations. Although still in its early stages, research on the interaction between the microbiome and parasitic
helminths in humans offers the potential to improve health by manipulating the microbiome. Previously, supplementation
with various nutritional compounds has been found to increase the abundance of potentially beneficial gut commensal
bacteria. Thus, nutritional microbiome manipulation to produce an environment which may decrease malnutrition
associated with helminth infection and/or aid host recovery from disease is conceivable. This review discusses the influence
of the gut microbiota and helminths on host nutrition and immunity and the subsequent effects on the human host’s overall
health. It also discusses changes occurring in the microbiota upon helminth infections and the underlying mechanisms
leading to these changes. There are still significant knowledge gaps which need to be filled beforemeaningful progress can be
made in translating knowledge from studying the human gut microbiome into therapeutic strategies. Ultimately this review
aims to discuss our current knowledge as well as highlight areas requiring further investigation.

Key words: microbiota, helminths, bacteria, nutrition, immunology, co-infection, homoeostasis, public health.

INTRODUCTION

Numerous microbes colonize the tissues and
systems of humans such as the skin, gut, mouth
and genitals. Most of these microbes are bacterial
(Rajilić-Stojanović et al. 2007) with smaller numbers
of Archaea, fungi, viruses, protozoa and arguably
helminths during asymptomatic infections. Within
the human gut alone there are around 1013–1014

commensal bacterial cells (Gill et al. 2006; Ley
et al. 2006a; Sekirov et al. 2010) with diverse
populations and quantities occupying the jejunum,
ileum, caecum and rectum (Hayashi et al. 2005).
A significant proportion of these species belong to
the Gram-positive Firmicutes and Gram-negative
Bacteroidetes phyla, with a relatively greater amount
of cell turnover and metabolic activity within the
Firmicutes (Maurice et al. 2013). There are also

smaller numbers of the Actinobacteria, Proteo-
bacteria, Fusobacteria and Verrucomicrobia groups
(Yatsunenko et al. 2012).
There is now a concerted global effort to

characterize the gut microbiome of different
human populations e.g. The Human Microbiome
Consortium, The European Commission’s Meta-
genomics of Human Intestinal Tract Project, The
US National Institutes of Health Microbiome
Project and The Canadian Microbiome Initiative.
Already the predominant and/ormedically important
bacteria occupying the human gastrointestinal tract
and their major function have been characterized
(see Table 1). Now the major focus of research is to
understand how these different bacterial groups
function as a community in the human gut and how
changes in the composition of this community impact
on the host’s health.
The gut flora plays a significant role in human

health including the development and maturation
of the immune system (Chung et al. 2012), the
repair of damaged epithelial tissues (Scales and
Huffnagle, 2013), the production of new blood
vessels (Reinhardt et al. 2012) and protection against
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Table 1. The predominant and/or medically significant bacterial genera represented in the human gut

Phylum Genus Description

Bacteroidetes Alistipes A bile resistant Gram-negative genus, common in the guts of elderly Europeans
(Claesson et al. 2012)

Bacteroides A dominant Gram-negative member of the gut microbiota in Western individuals
(Arumugam et al. 2011). Dominance related to eating high levels of sugars and animal
fats

Odoribacter A common genus in the guts of elderly Europeans (Claesson et al. 2012).
O. splanchnicus has the potential to be an opportunistic pathogen of the gut
(Göker et al. 2011)

Prevotella Constitute an appreciable proportion of the intestinal microbiota of Burkinabé children
but not Italian children (De Filippo et al. 2010). Able to digest complex plant
polysaccharides such as xylan and cellulose

Xylanibacter A dominant Gram-negative member of the gut microbiota in Western individuals
(Arumugam et al. 2011). Dominance related to eating high levels of sugars and animal
fats

Firmicutes Butyrivibrio A dominant Gram-positive member of the gut microbiota in Western individuals
(Arumugam et al. 2011). Dominance related to eating high levels of sugars and animal
fats

Clostridium A common low abundance member of the gut flora. Contains the common antibiotic
treatment-associated pathogen C. difficile

Enterococcus E. faecalis and E. faecium are both common members of the gut microbiota
Eubacterium Commonmembers of the gut flora. Are significantly reduced in patients with ulcerative

colitis (Fite et al. 2013)
Oscillibacter A common genus in the guts of elderly Europeans (Claesson et al. 2012). Members of

this genus have also been extracted from the rumen of cattle (Lee et al. 2012)
Peptostreptococcus Several species are able to infect human hosts, with the most predominant being

P.magnus. Significantly elevated in patients with colorectal cancer (Wang et al. 2011a)
Ruminococcus Abundant in the human colon. Degrade complex plant polysaccharides (Flint et al.

2008)
Streptococcus A predominant member of the ileal microbiome (Hayashi et al. 2005)

Actinobacteria Atopobium A commonmember of the vaginal microbiomewhich is commonly found in the guts of
babies delivered vaginally (Fallani et al. 2010). Elevated in children with coeliac
disease (Collado et al. 2007)

Bifidobacterium A predominant bacterium colonizing the infant (van Nimwegen et al. 2011). It has
been suggested as a probiotic due to its anti-inflammatory properties (Imaoka et al.
2008)

Lactobacillus Has been suggested as a probiotic due to its anti-inflammatory effect (Macho
Fernandez et al. 2011). High in abundance in the infant gut (Fallani et al. 2010)

Propionibacterium Common members of the skin microbiota which also compromise a portion of the
infant gut flora (Sharon et al. 2013)

Proteobacteria Campylobacter C. jejuni is a major food-borne pathogen
Enterobacter Opportunistic pathogens sometimes seen in Crohn’s patients (Martinez-Medina et al.

2006). More likely to inhabit the gut microbiome of infants delivered by caesarean
section (Conroy et al. 2009)

Escherichia The majority of Escherichia are harmless commensals but some strains of E. coli can
cause severe gastrointestinal illness

Haemophilus Contains opportunistic pathogens sometimes seen in Crohn’s patients (Martinez-
Medina et al. 2006)

Helicobacter Contains the human gastrointestinal pathogen H. pylori
Klebsiella Opportunistic pathogens sometimes seen in Crohn’s patients (Martinez-Medina et al.

2006). More likely to inhabit the gut microbiome of infants delivered by caesarean
section (Conroy et al. 2009)

Proteus Contains opportunistic pathogens sometimes seen in Crohn’s patients (Martinez-
Medina et al. 2006)

Salmonella Can cause the infection salmonellosis. Infection can lead to changes in the composition
of the gut microbiome including an increase in other Proteobacteria genera (Stecher
et al. 2007)

Vibrio Contains the pathogenV. choleraewhich has been shown to decrease the proportion of
Firmicutes and Bacteroidetes during infection while increasing Proteobacteria genera
(Monira et al. 2013)

Verrucomicrobia Akkermansia A. muciniphila is currently the only known species of this genus and is common in the
gastrointestinal tract (Derrien et al. 2008)

Fusobacteria Fusobacterium Species from this genus are enriched in colorectal carcinomas (Kostic et al. 2012) and
appendicitis (Swidsinski et al. 2012)

Spirochaetes Treponema A dominant corkscrew-shaped member of the gut microbiota in Western individuals
(Arumugam et al. 2011). Dominance related to eating high levels of sugars and animal
fats
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pathogens including viruses, bacteria and eukaryotes,
termed colonization resistance (Lawley and Walker,
2013). It also plays a role in nutrition by increasing
the potential of the host to harvest energy from its
diet (Tremaroli and Bäckhed, 2012). For these rea-
sons, it is advantageous for the host to cultivate a large
population of commensal gut bacteria. However,
correlation studies suggest that not all commensal
populations may be advantageous. Different micro-
bial colonizations are associated with disease states in
humans including metabolic disorders, autoimmune
diseases and allergies, as summarized by Bäckhed
et al. (2012), although the causal mechanisms/path-
ways of these relationships have yet to be elucidated.
Thus, the ‘healthy’ host maintains a homoeostatic
relationship with the gut microbiota, where infection
by pathogens can be prevented while allowing for a
diverse community of microorganisms to be present
within the gut lumen.
However, other pathogens can co-exist in the gut

with the gut microbiota. Of particular importance in
tropical countries are helminths. Helminths are
eukaryotic, multi-cellular organisms which parasitize
a wide range of hosts. Several species are able to cause
disease in humans including soil-transmitted hel-
minths such as roundworms, whipworms and hook-
worms; the schistosomes and food-borne pathogens
such as the pork and beef tapeworms. Several
mechanisms exist by which these helminths could
interact with the microbiota (see Fig. 1), with multi-
way interactions between host factors (such as age-
related physiological changes and diet), helminth
effects (e.g. effects on nutrition and host immune

system) and finally microbe effects (also on host
immune status and nutrition) and vice versa which
may shape both the microbiome landscape and host
health.
Helminths are able to modulate the host immune

response to allow their survival and also reduce
immunopathology (McSorley and Maizels, 2012).
However, unlike the gut flora, helminth infection
often has a negative impact upon host nutrition
(Stephenson et al. 2000; Lwanga et al. 2012). This is a
particular problem in children where malnutrition
associated with helminths can lead to fatigue, growth
stunting, decreased cognitive development and there-
by a general failure to thrive (King and Dangerfield-
Cha, 2008).
If possible, the manipulation of the host’s

microbiota to a composition favourable to nutrition
(greater nutrient availability to the host) or helminth
clearance could help reduce helminth-related
pathology and morbidity. This would have the
advantage of being non-invasive and relatively
inexpensive as the microbiota is able to be manipu-
lated by nutritional or probiotic supplementation
which could accompany standard treatment. Several
countries where helminth infections are common
already follow the WHO recommendations on
supplementation of micronutrients such as vitamin
A (see http://www.who.int/nutrition/publications/
micronutrients/guidelines//vas_6to59_months/en/),
meaning that nutritional supplementation for a
healthy microbiome is a feasible consideration for
improving paediatric health. Thus, associations
between helminths and gut bacteria and their
collective impact on human health present an urgent
area of research. Harnessing the knowledge from
studies on the human gut bacteria and helminths has
the potential of providing/cultivating immune thera-
peutics as well as growth promoters in children
exposed to helminthic infection. However, there is
still a significant knowledge gap that has to be closed
before dietary or immunological therapeutics that
target the gut microbiome can be developed and
translated to human disease. To this end, the work
presented here reviews the current knowledge of the
interactions between the gut bacteria and helminths
and their potential for manipulation to improve host
health in helminth endemic areas, while also high-
lighting important knowledge gaps and emphasizing
the difficulties inherent in microbiome research.

DIVERSITY OF THE HUMAN GUT BACTERIA

A healthy or ‘normal’microbiota has yet to be defined
and may most likely not be a useful reference point
due to the high geographical and temporal variability
of bacterial communities between individuals and
populations. The search for a ‘core microbiome’
which most people share has led to the discovery of
only 18 bacterial species which were found in all

Fig. 1. Potential interactions between the gut microbiota
and helminth infection.
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124 European participants in an initial MetaHIT
(Metagenomics of the Human Intestinal Tract
project) study (Qin et al. 2010). Even within human
communities which are closely genetically related
and share similar diets, such as the Old Order
Amish, there is still variability between individuals
(Zupancic et al. 2012). In particular, Prevotella,
which are able to metabolize complex plant carbo-
hydrates, are more abundant in the gut microbiota of
Amish farmers than Amish of different occupations,
which could be explained by their closeness to
livestock whose gutmicrobiotas tend to be dominated
by this bacterial group (Stevenson and Weimer,
2007; Kim and Yu, 2012). The microbiota does not
easily lend itself to categorization and variation
within even closely related populations is often high
at the sub-phylum level (Jeffery et al. 2012).

What studies attempting to define a ‘healthy’
microbiome have suggested is that it is the ‘function’
rather than the diversity/composition of the micro-
biota that ultimately influences the host’s health.
This function has been elucidated by clustering
microbiotas in one of three distinct ‘enterotypes’
based upon their ratios of Bacteroides, which
primarily derive their energy from fermentation of
carbohydrates and proteins, and Prevotella and
Ruminococcus which are able to degrade host mucins
(Arumugam et al. 2011). This ‘classification’ into
enterotypes has proved useful in simplifying the
otherwise diverse characteristics of the individual gut
microbiome, but the clustering methodologies to
identify the different enterotypes are still being
developed (Koren et al. 2013).

Thus, for therapeutic interventions, these early
studies suggest that focusing on manipulating the
function of the gut microbiome could overcome some
of the confounding effects of host heterogeneities,
as reviewed in Bäckhed et al. (2012). Nonetheless,
it is important to understand the factors influencing
the composition of the gut microbiome. There is now
cumulative evidence that the gut microbiome is
influenced by several environmental factors includ-
ing mode of delivery, antibiotic exposure, neonatal
nutrition, parent nutrition, stress, age, degree of
hygiene, nutrition/diet and co-infections (see
review by Brown et al. 2012) as detailed below.
Understanding the relative impact of these factors on
the gut microbiome structure, composition and
function is essential to allow predictions of the
effects of any intervention aimed at altering the
ecology of the gut.

FACTORS GIVING RISE TO THE DIVERSITY OF THE

HUMAN GUT BACTERIA

Nutrition/diet

Experimental studies in mice suggest that diet
accounts for a larger proportion of the structural

variation in gut bacteria compared with genetic
factors (57 vs 12%; Zhang et al. 2010) and several
experimental studies (some using gut communities
from humans in humanized or germ-free mice) have
demonstrated diet-induced dysbiosis in gut bacterial
structure (see review by Brown et al. 2012).
The recent studies demonstrating that the human
gut microbiota clusters into functional groups (en-
terotypes), regardless of host age, nationality, gender
and body mass index, suggest that these enterotypes
may respond differently to diet.

Gut microbiomes from people consuming a
Western diet and from people in rural communities
consuming a predominantly plant-based diet were
recently compared from a broad range of age groups
amongst three populations from rural Venezuela,
rural Malawi and the urban USA (Yatsunenko et al.
2012). The differences found in the gut microbiota
compositions between the two rural communities
were found to be far less than the differences between
the urban and rural populations. This indicates that
nutritional factors are more important in influencing
the composition of the gut microbiota than geo-
graphical or genetic differences. A previous study
by this group also highlighted the importance of
environment over genetics by showing that the gut
microbiomes of monozygotic twins were as similar to
each other as those of dizygotic twins (Turnbaugh
et al. 2009).

In another study, comparing the gut microbiomes
of Italian children and children from rural Burkina
Faso (De Filippo et al. 2010), Burkinabé children
were found to have significantly different microbiotas
from children living an Italian urban lifestyle. This
included a decrease in the proportion of Bacteroidetes
spp. and an increase in Firmicutes spp. in the Italian
group (Fig. 2). Obesity has been correlated with
changes in the ratios of these two phyla where
individuals with low Bacteroidetes to Firmicutes
ratios were found to be more likely to be obese
(Ley et al. 2006b). The children from rural Burkina
Faso had diets containing higher amounts of starch,
fibre and plant polysaccharides and lower amounts
of fat and animal proteins than the Italian children.
This was thought to be the main reason for gut
bacterial differences as the gut microbiomes in
children who were still being breast-fed in both
groups were relatively similar. Changes were also
found between the two populations in the ability
of their gut microbiomes to harvest energy from
food. Unlike the children fed a Western diet, the
Burkinabé children were found to harbour the genera
Xylanibacter, Prevotella, Butyrivibrio andTreponema
which are able to degrade xylan and cellulose and
are therefore able to utilize more energy from a
plant-based diet.

Interestingly, very short-term changes in diet can
still impact the composition of the microbiome.
Subjects who ate a diet consisting either only of
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plants or only of meat/dairy foods over a 5-day period
showed significant changes in the proportions of
several groups of bacteria in their gastrointestinal
tracts (David et al. 2014). The meat/dairy group
showed more changes in microbiome composition
and more closely mirrored the Western urban groups
in the above studies than the plant-based diet group,
which showed fewer changes and more similarities to
the rural groups. This demonstrates that altering the
microbiome through diet to treat disease would not
necessarily need to take place over a lengthy period
of time.
Recently, the relationship between malnutrition

and the gut microbiota has been addressed in a study
of Malawian children suffering from kwashiorkor
(a form of acute malnutrition caused by a lack of
dietary protein but sufficient calorie intake) (Smith
et al. 2013). Significant differences were found
between the gut microbiomes in twins where one
twin was diagnosed with kwashiorkor and the other
twin was healthy. The faecal microbiotas of several
pairs of twins were transplanted into gnotobiotic
mice (microbe-free mice which are then colonized
by a specified microbial community) that were
supplied with a Malawian-style diet followed by
a standard peanut-based ready to use therapeutic
food (RUTF) often used to treat malnutrition in
children (Yang et al. 2013). Upon returning the
kwashiorkor mice to a Malawian-style diet, dietary

metabolites were found to fall to pre-treatment levels
in ‘kwashiorkor’ mice while those in ‘healthy’ mice
were higher. This suggests that those with an
originally kwashiorkor-associated gut microbiome
would benefit less from RUTF treatment than
those with a normal microbiome.
There are also significant differences between the

gut microbiotas of children who are breast-fed and
those who are not (Harmsen et al. 2006; Fallani et al.
2010). Breast-fed infants develop a less diverse
gut microbiota dominated by Bifidobacteria while
formula-fed infants develop amore complex bacterial
community which more closely resembles that of
adults.
Several nutritional supplements have previously

been shown to increase the abundance of bacterial
species such asBifidobacterium spp. and Lactobacillus
spp. in humans, which are regularly used as probiotic
supplements in their own right. These supplements
include the plant polysaccharide inulin (Ramirez-
Farias et al. 2009), oligosaccharides from human
breast milk (Yu et al. 2013) and pomegranate extracts
(Bialonska et al. 2010). Bacterial species which have
been associated with colon cancer initiation have also
been found to be reduced in humans by the
consumption of polydextrose (Costabile et al. 2012).
Caution must be taken when introducing new

nutritional strategies as dietary supplementation
does not always produce a beneficial change in the
microbiota. For example, the impact of iron sup-
plementation upon the gut microbiota of rural
children from Côte d’Ivoire (Zimmermann et al.
2010) was shown to increase the Gram-negative
Enterobacteriaceae family of bacteria which contains
potentially pathogenic species such as Salmonella
spp., Shigella spp. and Escherichia coli while a
decrease in the Lactobacilli family was found.
This could be explained by the presence of side-
rophores which are often present amongst the
Enterobacteriaceae (Reissbrodt and Rabsch, 1988)
but are absent amongst the Lactobacilli, which do not
require iron to achieve growth (Archibald, 1983;
Pandey et al. 1994). Siderophores are secreted by
microorganisms in order to sequester iron from the
environment and transform it into soluble complexes
which can more easily be absorbed into the bacterial
cells by active transport (Ferguson et al. 1998).
Indeed recent studies also show that diet can cause
dysbiosis which can lead to inflammatory conditions
detrimental to human health, and the possibility
of promoting microbes that can prevent or control
these inflammatory-mediated diseases, through the
manipulation of host diet, is already being discussed
(Brown et al. 2012).

Age

Microbial colonization of individuals commences
from birth with maternal, childhood and

Fig. 2. The composition of the gut microbiota in African
(Burkinabé) and European (Italian) children. Data
adapted from De Filippo et al. (2010) showing the major
bacterial phyla composing the gut microbiotas of urban
European and rural African children displayed as a pie-
chart representation of the total bacterial microbiome.
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environmental conditions establishing a lifelong
effect on the individual’s gut microbiome (Collado
et al. 2010; Gareau et al. 2010; Manco et al. 2010). In
general, there is heterogeneity in the infant gut
microbiome within the first months, stabilizing
with a mix of the major bacterial phyla as previously
described; the next changes occur when the infant is
weaned, with themicrobiome composition remaining
relatively stable for life after the age of about 3
(Palmer et al. 2007; Yatsunenko et al. 2012). A study
comparing the gut microbiotas of infants (3 weeks to
10 months), adults (25–45 years) and the elderly (70–
90 years) eating a Western diet (Mariat et al. 2009)
found significant differences between the three age
groups. The average ratios of Firmicutes to
Bacteroidetes in the elderly and infants were found
to be more similar to each other than when either
group was compared with adults. It has also been
found that when comparing the diversity between
children and adults, the variation between children’s
microbiotas within the same population tends to be
larger than that of adults regardless of geography
(Yatsunenko et al. 2012).

Environment

One of the few studies conducted in an African
population recently showed that different species of
hosts sharing the same environment shared the differ-
ent bacterial taxa present in their guts, as sampled
by faecal samples collected from humans, cattle and
semi-captive chimpanzees (Ellis et al. 2013). As
already discussed, environmental factors are thought
to significantly influence the gut microbiome struc-
ture. As more research is conducted it will become
clearer which environmental factors can be more
readily manipulated for improved host health.

Co-infections

In a healthy individual, the gut microbiota is able to
protect the host against several gut pathogens due
to colonization resistance which is maintained by
multiple factors. Any invading gut pathogen must
compete with the gut microbiota for available
nutrients. This has been shown to be a significant
factor in the inability of pathogens such as
Clostridium difficile to cause disease in a non-
antibiotic treated host (Britton and Young, 2012).
The microbiota is also able to metabolize polysac-
charides present in the gut environment into short
chain fatty acids (Breznak and Kane, 1990; Louis
and Flint, 2009; Hosseini et al. 2011) whose
production can lead to reduced host deaths during
E. coli infection (Fukuda et al. 2011) and the
down-regulation of virulence genes located in the
Salmonella pathogenicity island 1 (Gantois et al.
2006). The production of these fatty acids also leads
to a decreased pH which is less well tolerated by

pathogens than by the normal gut flora (Cherrington
et al. 1991). The overall reduction in available oxygen
by microbial metabolism in the gut can also lead to
an unfavourable environment for facultatively anaer-
obic pathogens such as the Enterobacteriaceae
(Altier, 2005), in comparison to the majority of the
gut flora which are obligate anaerobes (Marteau et al.
2001). Apart from other bacteria, there are several
parasites ranging from viruses, fungi, protozoans and
helminths that can share the gastro-intestinal niche
with bacteria (McKenna et al. 2008; Parfrey et al.
2011; Hoffmann et al. 2013). Their life history and
clinical management can affect the composition and
structure of the gut microbiome (Khoruts et al. 2010;
Dethlefsen and Relman, 2011). This review focuses
on helminth parasites.

HELMINTHS OCCUPYING THE

GASTROINTESTINAL TRACT AND SURROUNDING

TISSUES

Helminths from two main phyla, the Nematoda and
Platyhelminthes, occupy different niches within the
gut for all or part of their life cycle, as is detailed
in Table 2. The most important members of the
Trematode ‘fluke’ class of platyhelminths are the
schistosomes (Muller, 2001), which cause the dis-
ease schistosomiasis. In humans this disease can be
caused by several species, predominantly Schistosoma
haematobium whose adults reside in the bladder
venous plexus and Schistosoma mansoni and
Schistosoma japonicum whose adults reside in the
mesentery arteries of the intestines. The disease
takes either a urogenital form as is the case with
S. haematobium or a gastrointestinal form in the case
of the other two species (Mahmoud, 2001).

The Cestode ‘tapeworm’ class of platyhelminths
also play an important role in human health and
several are highly important food-borne pathogens
(Dorny et al. 2009). The most important species to
human health belong to the genus Taenia, which
includes several pork and beef tapeworms, and the
genus Echinococcus.

Several nematodes also occupy the human intesti-
nal tract including the soil-transmitted nematodes
(geohelminths) which include roundworms, whip-
worms and hookworms, all of which cumulatively
currently infect over 1·5 billion people (WorldHealth
Organization, 2012). The most prevalent nema-
todes are Trichuris trichiura (whipworm), Ascaris
lumbricoides (round worms), Necator americanus
(hookworms) and Ancylostoma duodenale (hook-
worms) all of which occupy the human intestinal
tract (Hotez et al. 2008). While infection with these
nematodes is often asymptomatic they are also
associated with diarrhoea, abdominal pain and
malaise during heavier infections and anaemia
(hookworm) and intestinal obstruction (Ascaris
spp.) in extreme cases.
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Table 2. Helminths which are able to cause infection in human hosts and share a niche with the gut microbiota

Helminth Human disease Human host status Gut lifecycle stage Gut niche

Trematodes

Clonorchis sinensis Clonorchiasis, Chinese Liver-Fluke Definitive host Metacercariae, eggs Small intestine (especially duodenum)
Fasciolopsis buski Fasciolopsiasis, Busk’s Fluke infection Definitive host Adult worms, eggs Small intestine. Stomach and colon (severe infection)
Fasciola hepatica Fasciolosis, Liver-Fluke Definitive host Metacercariae, eggs Small intestine (especially duodenum)
Gastrodiscoides hominies Gastrodiscoidiasis Definitive host Metacercariae, adult worms,

eggs
Caecum and ascending colon

Heterophyes heterophyes Heterophyiasis, Dwarf-Fluke Infection Definitive host Metacercariae, adult worms,
eggs

Jejunum and upper ileum

Metagonimus yokogawai Metagonimiasis, Yokogawa’s Fluke
infection

Definitive host Metacercariae, adult worms,
eggs

Jejunum. Rarely in the duodenum, ileum and caecum

Opisthorchis felineus Opisthorchiasis, Cat Liver-Fluke Definitive host Metacercariae, eggs Small intestine (especially duodenum)
Opisthorchis viverrini Opisthorchiasis, Southeast Asian Liver-

Fluke
Definitive host Metacercariae, eggs Small intestine (especially duodenum)

Paragonimus westermani Paragonimiasis, Oriental Lung-Fluke Definitive host Metacercariae, eggs Small intestine (especially duodenum)
Schistosoma haematobium Schistosomiasis, Bilharzia Definitive host Eggs Rectum, appendix and lower colon. Upper colon and ileum (severe

infection)
Schistosoma mansoni Schistosomiasis, Bilharzia Definitive host Adult worms/eggs Mesenteric or rectal veins/Gut lumen
Schistosoma japonicum Schistosomiasis, Bilharzia Definitive host Adult worms/eggs Mesenteric or rectal veins/Gut lumen

Cestodes

Diphyllobothrium latum Diphyllobothriasis, Broad Fish Tapeworm Definitive host Adult worms, eggs Head located in small intestine
Echinococcus granulosus Cystic Echinococcosis Dead-end host Eggs, oncosphere Small intestine
Echinococcus multilocularis Alveolar Echinococcosis Dead-end host Eggs, oncosphere Small intestine
Echinococcus oligarthus Polycystic Echinococcosis Dead-end host Eggs, oncosphere Small intestine
Echinococcus vogeli Polycystic Echinococcosis Dead-end host Eggs, oncosphere Small intestine
Hymenolepis diminuta (rare)a Hymenolepiasis, Rat Tapeworm Definitive host Adult worms, eggs Head located in ileum
Taenia asiatica Taeniasis Definitive host Adult worms, eggs Head located in ileum
Taenia solium Taeniasis Definitive host Adult worms, eggs Head located in ileum
Taenia saginata Taeniasis Definitive host Adult worms, eggs Head located in ileum

Nematodes

Ancylostoma duodenale Ancylostomiasis, Hookworm Definitive host Adult worms, eggs Jejunum. Rarely the duodenum and caecum
Anisakis spp. Anisakiasis or Anisakidosis Dead end host Larvae Stomach wall and occasionally the small intestine and colon walls
Ascaris lumbricoides Ascariasis Definitive host Larvae/Adult worms, eggs Duodenum/Small intestinal lumen
Enterobius vermicularis Enterobiasis, Pinworm (US),

Threadworm (UK)
Definitive host Adult worms, eggs Lumen of caecum and appendix. Rarely the colon and ileum

Necator americanus Ancylostomiasis, Hookworm Definitive host Adult worms, eggs Jejunum. Rarely the duodenum and caecum
Parastrongylus cantonensis Parastrongyliasis, Angiostrongyliasis Dead end host Larvae Small intestine. occasionally the appendix or caecum
Parastrongylus costaricensis Parastrongyliasis, Angiostrongyliasis Dead end host Adult Ileocolic arteries
Oesophagostomum bifurcumb Oesophagostomiasis Definitive host Juvenile and adult worms, eggs Caecum and colon
Strongyloides stercoralis Strongyloidiasis Definitive host Adult female worms, eggs Mucosa of the small intestine
Ternidens deminutus False Hookworm infection Definitive host Adult worms, eggs Colon. Occasionally the ileum
Toxocaridae spp. Toxocariasis, Visceral Larva Migrans Definitive host Larvae, eggs Small intestine
Trichostrongylus spp. Wire worms Definitive host Adult worms, eggs Wall of the duodenum and jejunum
Trichuris trichiura Trichuriasis, Whipworm Definitive host Adult worms, eggs Caecum. Occasionally also appendix, rectum and upper colon

a Hamrick et al. (1990).
b Polderman et al. (1991).
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EPIDEMIOLOGY OF HELMINTH INFECTION AND

GUT BACTERIA

As already discussed, the relative effects of the host
and environmental factors on the human gut micro-
biome structure and function are currently under
investigation. In comparison, the effects of host and
environment on the health impact of helminth
infection have been studied for several decades
(Gazzinelli et al. 2012). Several features of the
epidemiology of helminth infections are of relevance
in the establishment and maintenance of the gut
bacterial structure as well as overall health of the host.

As is detailed above, nutrition/diet is important
in the ecology of the gut bacteria. While there is no
clear evidence that diet/nutrition makes children
susceptible to helminth infection, malnourishment
has been suggested to increase susceptibility to
disease caused by helminths in children, due to
impaired immune responses and a decreased ability
to repair damage caused by the parasites (Hall et al.
2012). Helminthic diseases have also been linked to
generalized malnutrition (Stephenson et al. 2000)
and reduced host micronutrients such as iron (Gilles
et al. 1964; Friedman et al. 2005) and vitaminA (Friis
et al. 1996; Haque et al. 2010). Several mechanisms
by which helminths may cause malnutrition have
been suggested including damage to the gut epi-
thelium and anorexia (Symons, 1985). Thus as pre-
viously suggested, it may be possible to manipulate
the gut microbiome to avoid these pathologies as the
gut flora composition is highly linked to nutrition.
With more research it may be possible to manipulate
the host microbiome through cheap, non-complex
nutritional strategies maintained in at-risk human
populations. For example, if malnourishment, asso-
ciated with helminth infection, induces dysbiosis
leading to a reduced ability to extract nutrients from
food for host absorption, supplementation would be
a useful therapeutic tool to accompany standard
helminth treatment, particularly in children.

Host age is an important factor in the epidemiology
of helminth infection, where infections are typically
acquired in childhood and rise to peak in late
childhood/early adulthood (Anderson and May,
1992). Levels of environmental contamination influ-
ence the rate and level of infection. In some cases,
children’s first exposure to helminth infection occurs
before their microbiotas stabilize and reflect adult gut
microbial communities, at around 3 years of age
(Yu et al. 1995; Odogwu et al. 2006; Stothard et al.
2013). This provides the potential of the already
established helminth infections to affect significantly
the structure of the microbial community, as detailed
below.

In the case of the schistosomes and some of the
nematodes, there is a decline in infection levels
which has been attributed to the gradual develop-
ment of protective acquired immunity (Woolhouse,

1998). The effector responses induced during hel-
minth infection are a complex combination of
inflammatory and anti-inflammatory responses.
Protective anti-helminth immunity is characterized
by a balance between regulatory and effector
responses. However, bacterial infections may alter
this balance and may indeed skew the responses
towards a different effector phenotype (see below).
Thus, the time of gut colonization by bacteria relative
to helminth colonization may be of importance in
determining the health outcome for the host. Already
human studies have begun to suggest that gut
colonization by nematode infection (A. lumbricoides)
may be associated with dysbiosis of the gut micro-
biome (Cooper et al. 2013). Of particular interest are
those experimental studies suggesting that both
history of helminth infection (even in animals that
have cleared infection) and helminth infection
intensity can affect the gut microbiome ecology
(Broadhurst et al. 2012; Wu et al. 2012).

THE EFFECT OF HELMINTH INFECTION ON GUT

BACTERIAL POPULATIONS

The effect of helminth infections on the composition
of the gut microbiota has mainly been studied in
animal models, specifically Heligmosomoides
polygyrus bakeri infection in mice and Trichuris suis
infection in pigs. Significant differences have been
observed between the ratios of bacterial families pres-
ent in the proximal colon of pigs infected with T. suis
in comparison with controls (Li et al. 2012). Several
genera demonstrated significant decreases in preva-
lence upon infection including Oscillibacter which
is the second most abundant genus in the porcine
colon. In contrast, the three genera Mucispirillum,
Paraprevotella and Desulfovibrio all significantly
increased in prevalence, although the overall diversity
of the porcine colon remained unchanged. These
changes were related to differences in the metabolic
potential of the gut microbiota between the two
groups. Amongst the changes in genes associatedwith
bacterial metabolism were significant decreases in
genes relating to carbohydrate metabolism and the
biosynthesis of the amino acids lysine, cysteine and
methionine upon helminth infection. This finding
indicates that during infection the proximal colonic
bacteria are less able to utilize carbohydrates effec-
tively. It has also previously been suggested that there
is a need for increased sulphur-containing amino
acids during infection with intestinal parasites in
order to combat parasitic infection (MacRae, 1993),
potentially due to decreased cysteine and methionine
production by the microbiome.

The changes in the gut microbiome following
helminth infection and subsequent clearance
were still apparent 53 days post-infection (Wu et al.
2012), with significantly higher proportions of
Campylobacter occurring in pigs that were infected
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but did not clear infection compared with those that
had been infected but had low worm burdens or were
worm free. This agrees with previous findings that
T. suis infection can exacerbate campylobacteriosis
(Rutter and Beer, 1975; Mansfield and Urban, 1996;
Shin et al. 2004).
In contrast to the above studies where helminths

are shown to increase the quantity of a pathogenic
bacterial species, investigations inH. polygyrus bakeri
infection have shown an increase in commensal
bacterial species. Heligmosomoides polygyrus bakeri
infection was examined in two duplicate experiments
to attempt to explain the ability of the helminth to
ameliorate the symptoms of IBDs in model IL-10
deficient mice inducing chronic colitis (Walk et al.
2010). While no significant difference was found in
the caecum of infected mice the group did note a
significant 1·8-fold increase in bacterial numbers
within the ileum where the parasites were located.
Infection was also associated with a change in the
families of bacteria occupying the ileum, with
members of the Lactobacillaceae family increasing
in both experiments. The Lactobacillaceae group has
been found to produce reactive oxygen species which
inhibit activation of the transcription factor NF-κB
in neonatal mouse intestines (Lin et al. 2009), reverse
intestinal injury (Mañé et al. 2009) and offer
protection against graft-versus-host disease (Jenq
et al. 2012). This may lead to a symbiotic relationship
between infecting helminths and the microbes to
reduce intestinal inflammation. However at this level
of bacterial taxonomic hierarchy the mouse gut
microbiota is significantly different from the human
microbiota (Ley et al. 2005) and the study was
conducted in a mouse disease model which cannot
easily be compared with healthy humans.
It is not necessarily the case that helminths would

only influence the microbiota occupying the same
niche as them. While Opisthorchis viverrini primarily
occupies the bile ducts it has been shown to alter the
microbiome of hamster colorectal faeces (Plieskatt
et al. 2013). There have been indications that the gut
microbiota is also affected by schistosomiasis infec-
tion in both mice and humans as the urinary host
metabolites associated with the gut microbiota are
changed upon infection (Wang et al. 2004; Balog
et al. 2011). It has also been shown that the absence of
a gut microbiome duringS. mansoni infection inmice
significantly reduces the amount of intestinal granu-
lomas and gut inflammation, potentially influencing
the ability of the helminth to excrete eggs into the gut
lumen (Holzscheiter et al. 2014).
The effect of the gut microbiota on the establish-

ment, maintenance and pathology of helminth
infections in the gut has mainly been addressed in
studies investigating gnotobiotic/germ-free animals
(Wescott, 1968; Chang and Wescott, 1972; Johnson
and Reid, 1973) and in relation to egg-hatching of
Trichuris muris (Hayes et al. 2010).

Hayes et al. compared T. muris hatching in eggs
incubated with explant from a mouse caecum
(upper large intestine) with eggs incubated with
separate cultures of E. coli, Staphylococcus aureus,
Salmonella typhimurium, Pseudomonas aeruginosa and
Saccharomyces cerevisiae (Hayes et al. 2010). All of
the tested microbial cultures produced hatching at
37 °C after 2 h, at similar levels to hatching in the
mouse caecum, while filtered cultures failed to cause
hatching. The importance of bacterial contact with
eggs was established with the use of transwells with
E. coli and S. cerevisiae cultures, which when used
failed to elicit hatching when pores were too small for
passage of cells through to the eggs (0·4 μm). This
indicated that the factor affecting egg hatching was
unlikely to be a microbially derived part of the
supernatant. The study also established the necessity
of having an intact bacterial structure in the case of
E. coli as clustering of green-fluorescent taggedE. coli
around the poles of the helminth eggs where worms
emerge was observed (Preston and Jenkins, 1985),
demonstrating that a component of the bacterial cell
surface played a role.
The group hypothesized that the Type 1 fimbriae

of E. coli which bind the cells to surfaces in a
mannose-dependent manner may play a role in
T. muris hatching. While they found that purified
Type 1 fimbriae did not elicit hatching, the addi-
tion of mannose decreased hatching and several
other experiments pointed to it playing a key role.
However, it is unlikely that this is the only
mechanism at play as S. aureus and P. aeruginosa do
not contain these proteins but are still able to induce
T. muris hatching.
To establish whether the microbiota had an effect

in vivo the team treated a group of mice with
antibiotics and measured the worm-burden 21 days
after infection. The worm-burden was found to be
significantly decreased and the host’s Th2 response
was significantly increased with elevated amounts of
IL-4 and IL-13. However, the decrease in worm
numbers was found not to be caused by this increase
in the Th2 response due to decreased worm numbers
still occurring in severe combined immunodeficient
mice. This study indicates that the absence of the
gut microbiota causes a decrease in the helminth’s
ability to establish infection but does not necessarily
decrease its ability to survive within the host.
While the above study did show that the presence

of bacterial species played a role in initiating egg-
hatching and germ-free/gnotobiotic studies have
indicated a relationship between the presence of a
microbiome and the ability of helminths to establish
chronic infection, the contribution of specific com-
mensal bacterial groups has not currently been
addressed. Limited information can therefore be
drawn from these studies about how the microbiota
interacts with helminth pathogens although they do
indicate that colonization resistance by the gut
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microbiome may not play a role in preventing these
helminth infections.

THE EFFECTS OF GUT BACTERIA AND HELMINTHS

ON THE HOST IMMUNE SYSTEM

A potential mechanism by which helminth infection
could alter the gutmicrobiota composition is its effect
upon the host immune system, which could disrupt
the homeostatic relationship established between the
gut flora and the host.

The majority of bacteria present within the
intestines are commensals which despite their large
numbers do not cause disease, nor do they generate a
predominantly pro-inflammatory environment
(Chinen and Rudensky, 2012). This is true despite
the presence of pattern recognition receptors (PRRs)
within the intestinal epithelium, which recognize
broadly distributed bacterial antigens and are able to
initiate an inflammatory response to bacterial cells
(Philpott and Girardin, 2004). Pathogenic bacteria

also often produce molecular factors which are not
present in commensal microbes, which can induce
specific immune responses (Franchi et al. 2012;
Larsen et al. 2012; Rizzetto et al. 2012).

The host gut is able to create a degree of separation
between its immune cells and the gut flora by
maintaining a dense mucus layer which separates
most of the commensal bacteria from the gut
epithelium (Fig. 3). However, this mechanism is
insufficient to explain the lack of a pathology
associated with commensal bacteria as cells lining
the epithelium are constantly sampling microbes
from within the lumen. The gut microbiota have
been found to inhibit NF-κB activation (Kelly et al.
2004; Kumar et al. 2007; Kaci et al. 2011; Lakhdari
et al. 2011) and in a non-diseased state it has been
noted that intestinal epithelial cells express few
lipopolysaccharide recognizing molecules such as
Toll-like receptor (TLR) co-receptor CD14, TLR2
and TLR4 (Abreu et al. 2001). This suggests that the
immune response to gut commensal bacteria is low
when pathogenic bacteria are not present or that there

Fig. 3. The interaction of the microbiota with the host immune system. The first layer of protection for the gut
epithelium is a double layer of mucus comprising an easily invaded loose outer layer with low quantities of IgA where
the majority of the gut microbiome resides (A) and a denser layer containing larger amounts of IgA which lies next to
the epithelium and is less conducive to microbial growth (B) (McAuley et al. 2007). Intestinal epithelial cells also secrete
a large amount of antimicrobial peptides called defensins (C) which broadly act upon bacteria, fungi and some enveloped
viruses to increase the permeability of their membranes (Ganz, 2003). The gut constantly samples the surrounding
microbial communities via microfold cells (D), contained within specialized Peyer’s patches, and lymphoid follicles
which sample the surrounding antigens and microbes and transport them to the sub-epithelial dome which contains
many antigen-presenting cells. Dendritic cells sample microbes from within the gut lumen (E) (Niess and Reinecker,
2005), and contain pattern recognition receptors that can detect a wide variety of microbe-associated molecular patterns.
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is a reduced ability to initiate responses through
innate receptors.
Individual bacterial species also possess mechan-

isms to induce an anti-inflammatory response which
may help to reduce immunopathology related to
the gut bacterial flora. These include the human
commensal bacteria Bacteroides fragilis (Round and
Mazmanian, 2010), Faecalibacterium prausnitzii
(Sokol et al. 2008), several Lactobacillus spp. (Jenq
et al. 2012; Shimazu et al. 2012; van Baarlen et al.
2013) and Bifidobacterium spp. (Imaoka et al. 2008;
Khokhlova et al. 2012).
It has also been suggested that diet-dependent

nutrients and metabolites produced by the gut
microbiota can have an immunomodulatory effect.
This has been reviewed recently in some detail
(Brestoff and Artis, 2013). The microbiota has
been implicated in the production of secondary
bile acids (Sayin et al. 2013) which interact with
monocytes and macrophages to produce an anti-
inflammatory response via theGprotein-coupled bile
acid receptor 1 (Wang et al. 2011b) and the nuclear
receptor subfamily 1, group H, member 4 (Attinkara
et al. 2012). Various other compounds produced
by the microbiota influence the development and/or
regulation of the immune system such as essential
amino acids, short chain fatty acids and vitamins
(Jose and Good, 1973; Chandra, 1992; Gill et al.
2006; Maslowski et al. 2009; LeBlanc et al. 2013).
The avoidance of inflammation by the microbiota

helps maintain the homoeostasis of the gut and
helminths reinforce this stability by excreting/secret-
ing anti-inflammatory molecules. As a result, hel-
minths and their products are being investigated as
potential therapies for inflammatory bowel diseases
(IBDs). Several trials of T. suis treatment have been
carried out for IBDs in humans (Summers et al.
2005a,b) which have shown positive results. The
hookworm N. americanus has also been tested as a
therapy for IBDs (Croese et al. 2006; Feary et al.
2010; Daveson et al. 2011) and has been separately
shown to alter the gut microbiota in Syrian hamsters
(Wang et al. 2009).

Mechanisms by which helminths decrease the immune
response to bacterial antigens

Several mechanisms have been suggested for how
helminths are able to reduce the immune response to
bacterial antigens translocating across the gut epi-
thelium during infection. Schistosomiasis infections
have been linked to an increase in B-cell expression
of Toll-like receptors specific for Gram-negative
(TLR4) and Gram-positive (TLR2) bacteria where
TLR4 in this case causes an anti-inflammatory
response in humans (Onguru et al. 2011). This
heightened expression of TLR2 and TLR4 has also
been observed in epithelial cells in rats infected with
the tapewormHymenolepis diminuta (Kosik-Bogacka

et al. 2012). TLR mediated targeting of bacterial
antigens has also been studied during nematode
infection, with an up-regulation of TLR2,TLR4 and
TLR9 observed in H. polygyrus bakeri infection in
mice (Friberg et al. 2013).
It is also possible that helminths could impact the

immune response to gut bacterial antigens through
their induction of specificT-cell responses.Helminth
infection is usually characterized by a strong T helper
2 cell (Th2) type response characterized by an
increase in IL-4, IL-5 and IL-13; the expansion of
CD4+ Th2 cells, eosinophils, mast cells, basophils
and alternatively activated macrophages and an
increased secretion of IgE (Anthony et al. 2007). In
contrast, antibacterial immune responses tend to be
dominated by a T helper 1 (Th1) cell type response
characterized by increased levels of IFN-γ and IL-2
(Lorvik et al. 2013). Helminths also decrease the
amount of bacterial translocation across the gut
epithelium through the induction of a Th2 type
response which leads to faster tissue healing (Chen
et al. 2012) and thereby fewer bacterial antigens
coming into contact with immune cells.
An antibacterial immune response has been ob-

served during several helminth infections includ-
ing a model of hookworm infections in mice
(Nippostrongylus brasiliensis) which has been shown
to stimulate mast cells to increase their innate
responses to bacteria by the induction of IL-4
(Sutherland et al. 2011). In T. muris infection in
mice, expression of mouse angiogenin 4 (a goblet
cell derived antimicrobial peptide) was found to be
increased (Forman et al. 2012), indicating a targeted
immune response to bacteria during infection.
IL-22 has also been implicated in the induction

of an antimicrobial response during helminth infec-
tions (Leung and Loke, 2013). This cytokine is
produced by a variety of immune cells, both innate
and adaptive (Sabat et al. 2013), and regulates the
production of numerous antimicrobial peptides
(Wolk et al. 2004; Liang et al. 2006). The lack of
IL-22 has been implicated in more severe pathologies
of several bacterial infections including infections
with Citrobacter rodentium (Zheng et al. 2008) and
Salmonella enterica (Schulz et al. 2008). It has been
noted that during helminth treatment for inflamma-
tory bowel diseases, both N. americanus excretory
proteins (NaES) (McSorley et al. 2011) and
T. trichiura (Broadhurst et al. 2010) caused an
increase in IL-22 expression, although no difference
was observed between IL-22 deficient and wild-type
mice infected with S. mansoni (Wilson et al. 2010),
indicating that IL-22 does not play a significant role
during schistosomiasis.
This evidence points to a significant increase

in the immune response to bacterial antigens
upon helminth infection, which may potentially
lead to changes in the gut microbiota composition
in infected individuals. While this would not
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necessarily negatively affect host health, depending
upon the bacterial species affected it could cause
a decrease in host nutrition or lead to bacterial
disease.

CONCLUSIONS/FUTURE DIRECTIONS

Experimental studies show that helminths influence
the composition of the microbiota during infection
and that this is mediated through different mechan-
isms including alteration of immunological and
metabolic pathways. Helminth infection may result
in changes in the ability of the host to extract
nutrients from their diet, particularly in malnour-
ished children, and could also affect the numbers of
potentially pathogenic bacteria within the gut,
causing bacterial co-infection.

Currently there is a paucity of data on the
interactions between the microbiota and helminths
in humans, but this should soon change with
increasing technologies and tools to carry out more
large-scale and detailed human studies.

With more understanding of how modern living
and medical interventions (e.g. use of antibiotics)
have affected the human immune system and the role
played by helminths and the gut microbiome (and
the mechanisms/pathways involved) in maintaining
immune and metabolic homoeostasis, it may be
possible to manipulate the microbiota in order to
reduce morbidity (e.g. malnutrition) and pathology
caused by helminth infection and metabolic diseases
arising from dysbiosis of the gut microbiome.
Although the realization of this prospect is far from
immediate, it presents an exciting prospect that
warrants further investigation.
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