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ABSTRACT (246 words) 

Combining datasets across independent studies can boost statistical power by increasing the numbers of 

observations and can achieve more accurate estimates of effect sizes. This is especially important for 

genetic studies where a large number of observations are required to obtain sufficient power to detect and 

replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of 

rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and 

evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic 

analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in 

fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data 

harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol 

in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected 

with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine 

twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. 

We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical 

(the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate 

heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of 

heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and 

mega-genetic analyses of heritability produced robust estimates of heritability.  

 

Keywords: Diffusion Tensor Imaging (DTI), Imaging Genetics, Heritability, Meta-analysis, Multi-site, 

Reliability  
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I. INTRODUCTION 
Human brain mapping studies have shown substantial advantages of pooling data across multiple studies 

(Van Horn et al., 2004). Genetic analyses, particularly genome-wide association studies (GWAS), tend to 

be limited in statistical power as there is typically a small (< 0.5%, Flint and Munafo, 2013) contribution to 

complex phenotypic variability from individual, common genetic variants. This limitation is especially 

problematic for imaging genetic studies of human brain. The structure and function of the human brain is 

greatly influenced by genetics, but the proportion of the variance due to individual differences in the human 

genome depends on the brain structure and measure assessed (Kochunov et al., 2009; Kochunov et al., 

2010). 

A large number of neuroimaging traits with ever-increasing spatial resolution are becoming increasingly 

available to describe the regional complexity of brain variability.  This presents a daunting challenge where 

the number of degrees of freedom, in both the imaging and genetics, can be overwhelming for any single 

imaging-genetic study. Therefore, data pooling strategies are crucial whereby data from multiple large 

imaging genetics studies can be analyzed together.  

Imaging and genetics have both greatly advanced neuroscience in recent years. The two fields have 

developed in parallel but in the last decade, there was a push to merge them to fully capitalize on their 

power leading to development of the new field of imaging genetics. This field emerged as a variation of 

classical genetic analyses that related diagnostic, clinical and/or behavioral measures to locations and 

specific variants in the genome. This new field is thought to be able to provide new approaches to 

characterize, treat and potentially prevent some brain-related disorders. Insight into biological mechanisms 

that predispose individuals to these types of illnesses holds the promise of yielding potential new therapies 

and a significant reduction of this considerable burden. Advantages of imaging genetics include the 

presumed greater biological proximity to genetic variation and the quantitative nature of imaging 

phenotypes, which ideally suited for partitioning phenotypic variance into variance explained by genetic 

and environmental factors. Therefore, the statistical power of genetic analysis depends on both the 

closeness of a phenotype to the action of the gene and the precision of the measurements. Modern MRI 

offers phenotypic measurements that may provide a more detailed description of the disorder than clinical 

symptoms or neuropsychological assessments, and many of these measures have high precision and 

reproducibility. Our experience and that of others indicate that the inter-session, scan-rescan variability of 

many common imaging measurements can be low, in the range of 1-5% (Agartz et al., 2001; Julin et al., 

1997; Kim et al., 2005; Kochunov and Duff Davis, 2009; Kochunov et al., 2012b; Lemieux et al., 1999; 

Lerch and Evans, 2005). Therefore, the imaging genetics approach may help ascertain effects of specific 

genetic variants on the human brain and may also discover genetic variants associated with neurological or 

psychiatric illnesses (Braskie et al., 2011; Chen et al., 2012; Glahn et al., 2007; Glahn et al., 2010; Hasler 

and Northoff, 2011; Thompson et al., 2001; van den Heuvel et al., 2012). 

In imaging genetic studies, up to a million voxel-based imaging traits may be analyzed. The required 

correction for multiple comparisons may limit the statistical power for gene discovery, even in the largest 

individual imaging studies of hundreds or even thousands of subjects. One solution is collaborative data 

sharing and pooling through consortia such as Enhancing Neuroimaging Genetics through Meta-Analysis 

(ENIGMA) Consortium (http://enigma.ini.usc.edu). Recent examples highlight the potential of large, meta-

analyses of genome-wide association studies (GWAS) to uncover genetic loci that are reliably and 

consistently associated with MRI-based phenotypes in worldwide datasets, including hippocampal volumes 

(Bis et al., 2012; Stein et al., 2012), intracranial volumes (Ikram et al., 2012; Stein et al., 2012), and head 

circumference (Taal et al., 2012). Recently, the ENIGMA-DTI Consortium working group was organized 

to develop methods to facilitate multi-site approaches to study genetic influences on white matter micro-

architecture and integrity, assessed using diffusion tensor imaging (DTI). Here we specifically focus on the 

fractional anisotropy (FA) as it is the most commonly analyzed scalar parameter extracted from DTI 

(Basser et al., 1994; Basser and Pierpaoli, 1996). The absolute FA values are sensitive to fiber coherence, 

myelination levels, and axonal integrity, and have been widely used as an index of white matter integrity 

(Thomason and Thompson, 2011). FA has emerged as a sensitive index of diffuse abnormalities in many 

brain disorders including Alzheimer‟s disease (AD) (Clerx et al., 2012; Teipel et al., 2012); in many 

studies, it is related to cognitive performance (Penke et al., 2010a; Penke et al., 2010b) and is altered in 

numerous psychiatric disorders including major depressive disorder (Carballedo et al., 2012) and bipolar 
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disorder (Barysheva et al., 2012; Sprooten et al., 2011). Patient-control differences in FA values are also 

among the most replicable and consistent neuroimaging findings in schizophrenia (Alba-Ferrara and de 

Erausquin, 2013; Friedman et al., 2008; Kochunov et al., 2012a; Mandl et al., 2012; Nazeri et al., 2012; 

Perez-Iglesias et al., 2011). 

 

The goal of the ENIGMA-DTI Working Group is to develop generalizable analyses, methods, and 

techniques for extraction and combined genetic analysis of phenotypes from DTI data collected from 

imaging groups around the world, regardless of the imaging acquisition or specific population under study. 

Its overall aim is to discover genetic factors influencing or related to white matter architecture. The first 

step towards this goal was the development of homogenization protocols to reliably extract phenotypic 

measurements from data collected with different imaging equipment and parameters (Jahanshad et al., 

2013b). The next step is to evaluate different statistical approaches for data pooling and specifically 

compare meta and mega analytical techniques to choose one approach that yields the greatest 

improvements in the power of genetic discovery while accommodating for potential for genetic diversity 

among samples. Two specific advantages of data pooling are the increased power for genetic discovery and 

the genetic diversity of the population sample.  Data pooling makes it easier to identify genetic variants that 

exert only small individual effects (Zuk et al., 2012). However, pooling data may be confounded by 

variations in data acquisition across datasets, heterogeneities in study population, and other factors. 

Another limitation to data pooling arises from restrictions that can arise with sharing raw data (both ethical 

and regulatory), including either phenotypic or genetic information.  

 

Here, we tested and compared the outcomes of three approaches to pool imaging genetic data from five 

separate cohorts worldwide, that had used various imaging acquisition parameters and population structures 

for analysis of heritability of the DTI-FA. Of course the ultimate goal is to detect specific variants on the 

genome that relate to DTI measures; but in the past we have found it boosts power in GWAS to first rank 

phenotypes by heritability, discarding the least promising ones for data and dimensionality reduction 

(Jahanshad et al., 2013b).  

 

Two different approaches were used to perform aggregation of heritability estimates derived from each 

cohort individually, known as meta-analytical pooling, where no raw data were shared between sites. One 

meta-analytic approach tested here weighted heritability estimates by the standard errors derived from the 

heritability estimates (MA-SE) (Borenstein et al., 2009); the other approach, although not optimal in this 

scenario as explained in the discussion, is commonly used for meta-analysis of heritability estimates of 

twin-only studies (Bergen et al., 2007; Rhee and Waldman, 2002) and therefore was used here for 

comparison; it involves weighting individual results by the total number of subjects per sample (MA-N).  

The third approach, the “mega-analytic” approach, individually normalizes each cohort to the same 

imaging template, and then pools together all data. For a mega-analytic GWAS all individual subject 

genotype information, or some imputed version of it, would commonly be shared. But in the case presented 

here, as we were not performing a genome-wide scan, the shared data included only the population and 

family structure of the cohort in addition to the FA images and covariate information.  

 

All data was processed using the harmonization protocol previously developed by our group ((Jahanshad et 

al., 2013b) provided on-line at http://enigma.ini.usc.edu/ongoing/dti-working-group/). This included the use 

of the ENIGMA protocol for following the QA/QC steps for each site, registration to the ENIGMA-DTI 

target, extraction of white matter skeleton, followed by extraction of tract-average FA values. After 

processing all datasets with this protocol, we performed heritability analyses using the Sequential 

Oligogenic Linkage Analysis Routines (SOLAR) software package (http://www.nitrc.org/projects/se_linux) 

(Almasy and Blangero, 1998) for tract-average FA values as well as on a detailed voxel-wise level. The 

data pooling approaches we compared to assess power and stability in estimation. 

 

As an extension of our prior paper, this paper presents much deeper view of DTI heritability in the largest 

sample ever analyzed. With an unprecedented sample size of over 2200 scans, which to the best of our 

knowledge is the largest for a DTI imaging genetics study – or any DTI study, for that matter - we show the 

ability to measure heritability consistently across populations in a multi-site manner and provide estimates 

with narrower confidence intervals, which is sorely needed in heritability analyses. We approximately 

double our previous sample size and extend our analyses to include populations of children. Our goal was 

http://enigma.ini.usc.edu/ongoing/dti-working-group/
http://www.nitrc.org/projects/se_linux
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to determine whether, regardless of population, we are able to prioritize targets for GWAS with respect to 

stability, reliability, and heritability estimates. We provide our combined heritability results online at 

http://enigma.ini.usc.edu/ongoing/dti-working-group/. 

 

 

II. METHODS 

 

2.1 Study Subjects and Imaging Protocols 

Five datasets (GOBS, QTIM, TAOS, NTR, and BrainSCALE; the acronyms are detailed below) 

contributed data from 2203 subjects, aged 9-85 years (Table 1). All datasets were family-based studies that 

allowed for measurements of heritability.   

 
Table 1 – Demographic and imaging information for the 5 cohorts used in this study are listed. 

 GOBS QTIM TAOS Adults NTR BrainSCALE 

NTR 

Relatedness Pedigree Twins and 

siblings  

Twins and 

siblings 

Twins  Twins  

Race/Ethnicity Mexican-

American 

Caucasian Caucasian Caucasian Caucasian 

Number Subjects 

contributed 

859 625 319 246 

 

199 

 

Sex 351M/508F 231M/394F 158M/161F 93M/153F 100M/99F 

Age range (yrs.) 19-85 21-29 12-15 18-45 9-10 

Healthy Yes Yes Yes Yes Yes 

Scanner  Siemens Bruker/ 

Siemens 

Siemens Intera  Achieva 

N-acquisitions 1 1 1 1 2 

Field Strength 3T 4T 3T 3T 1.5T 

Voxel size (mm) 1.7x1.7x3.0

 

1.8x1.8x2 1.7x1.7x3.0

 

2.5x2.5x2.5 2.5x2.5x2.5 

N-gradients 55 94 55 32 32 

N-b0 3 11 3 1 8 

b-value (s/mm
2
) 700 1159 700 1000 1000 

Reference Kochunov et 

al., 2011b 

de Zubicaray 

et al., 2008 

Kochunov et 

al., 2011b 

den Braber 

et al., 2013 

Brouwer et al., 

2010 

 

 GOBS – Genetics of Brain Structure and Function study 

o Subjects: The sample comprised 859 (351M/508F, mean age: 43.2±15.0) Mexican-

American individuals from 73 extended pedigrees (average size, 17.2 people, range = 1-

247) from the San Antonio Family Study (Olvera et al., 2011). Only 814 subjects in the 

sample (350M/464F, mean age 43.1±15.2, ranging from 19 to 85 years) had a significant 

genetic relationship with other subjects and provided contribution to the heritability 

measurement. However, the entire sample was used to estimate the covariate effects. 

Individuals in this cohort have actively participated in research for over 18 years and 

were randomly selected from the community with the constraints that they are of 

Mexican-American ancestry, part of a large family, and live in the San Antonio region. 

All participants provided written informed consent on forms approved by the Institutional 

Review Boards at the University of Texas Health Science Center San Antonio 

(UTHSCSA) and Yale University before participating in any aspect of the study. 

Imaging: All imaging was performed at the Research Imaging Institute, UTHSCSA, on a 

Siemens 3T Trio scanner using a multichannel phased array head coil. A single-shot 

http://enigma.ini.usc.edu/ongoing/dti-working-group/
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single refocusing spin-echo, echo-planar imaging sequence was used to acquire diffusion-

weighted data with a spatial resolution of 1.7 × 1.7 × 3.0 mm. The sequence parameters 

were: TE/TR = 87/8000 ms, FOV = 200 mm, 55 isotropically distributed diffusion 

weighted directions, two diffusion weighting values, b = 0 and 700 s/mm
2
 and three b = 0 

(non-diffusion-weighted) images. 

 

 QTIM – the Queensland Twin IMaging study  

o Subjects: The sample comprised of 625 young adult Australian twins and siblings 

(231M/394F, average age=22.9±2.1 year, range 21-29), all of European ancestry. The 

sample including 79 monozygotic (MZ) pairs, and 80 dizygotic (DZ) pairs and their 

siblings. Additional information on the cohort, inclusion and exclusion criteria, and the 

study goals may be found in (de Zubicaray et al., 2008). 

o Imaging: A high angular resolution diffusion imaging protocol was used, consisting of a 

14.2-minute, 105-image acquisition, with a 4-Tesla Bruker Medspec MRI scanner. 

Imaging parameters were: TR/TE=6090/91.7 ms, FOV=23 cm, with a 128x128 

acquisition matrix. Each 3D volume consisted of 55 2-mm thick axial slices with no gap 

and 1.8x1.8 mm
2
 in-plane resolution. 105 images were acquired per subject: 11 with no 

diffusion sensitization (i.e., T2-weighted b0 images) and 94 diffusion-weighted (DW) 

images (b = 1159 s/mm
2
) with gradient directions uniformly distributed on the 

hemisphere.  

 

 TAOS – the Teen Alcohol Outcomes Study.  

o Subjects: The sample comprised of 319 twin and sibling adolescent participants 

(158M/161F) residing in San Antonio, Texas. Subjects were aged 12 to 15 years, average 

age: 13.4 yr ± 0.96 SD at the time of imaging. The study consisted of 12 pairs of twins 

(MZ=4/DZ=8) and siblings with the average family size of 2.1±0.2. All subjects were 

healthy and free of drug abuse at the time of the imaging.  All subjects and their parents 

signed informed assents and informed consents, respectively. 

o Imaging: Diffusion imaging was performed at the Research Imaging Center, UTHSCSA, 

on a Siemens 3T Trio scanner the same protocol as GOBS study.  

 

 NTR – Netherlands Twin Register 

o Subjects: Subjects: 246 adults (93/153 M/F; average age 33.9±10.1, range 19–57), mono 

and dizogotic twin pairs (72/48/6 MZ/DZ/Sibs), were recruited from the Netherlands 

Twin Registry (!!! INVALID CITATION !!!). Exclusion criteria consisted of having any 

metal material in the head, having a pacemaker, a known history of any major medical 

condition or psychiatric illness. 

o Imaging: Diffusion tensor data were collected on a 3.0T Philips Intera MR scanner (32 

diffusion-weighted volumes with different non-collinear diffusion directions with b-

factor = 1000 s/mm
2
 and one b-factor = 0 s/mm

2
 image, flip angle = 90 degrees; 38 axial 

slices of 3.0 mm; no slice gap; voxel size, 2.0 × 2.0 × 3.0 mm; FOV = 230 mm; TE = 94 

ms; TR = 4863 ms; no cardiac gating; and total scan duration = 185 s). 

 

 BrainSCALE–Brain Structure and Cognition: an Adolescent Longitudinal Twin Study into genetic 

Etiology 

 University Medical Center Utrecht and Netherlands Twin Register, Amsterdam 

o Subjects: 199 children (100M/99F; average age 9.2±0.1, range 9.0–9.6), mono and 

dizygotic twin pairs (42/57 MZ/DZ), were recruited from families participating in the 

BrainSCALE cohort (van Soelen et al., 2012) that was recruited from the Netherlands 

Twin Register (van Beijsterveldt et al., 2013). Imaging of this cohort was performed in 

the University Medical Center Utrecht (Peper et al., 2009). Exclusion criteria consisted of 

having any metal material in the head, having a pacemaker, a known history of any major 

medical condition or psychiatric illness. Zygosity was determined based on DNA 

polymorphisms, using 8–11 highly polymorphic di-, tri- and tetranucleotide genetic 

markers and confirmed by genome-wide single nucleotide polymorphism (SNP) data. All 

subjects and their parents signed informed assents and informed consents, respectively. 



 7 

The study was approved by the Central Committee on Research involving Human 

Subjects of the Netherlands (CCMO) and was in agreement with the Declaration of 

Helsinki (Edinburgh amendments).  

o Imaging: MRI data were collected on a 1.5 Philips Achieva MR scanner (32 diffusion-

weighted volumes with different non-collinear diffusion directions with b-factor = 1000 

s/mm
2
 and 8 diffusion-unweighted volumes with b-factor = 0 s/mm

2
; parallel imaging 

SENSE factor = 2.5; flip angle = 90 degrees; 60 slices of 2.5 mm; no slice gap; 96 × 96 

acquisition matrix; reconstruction matrix 128 × 128; FOV = 240 mm; TE = 88 ms; TR = 

9822 ms; two repetitions; no cardiac gating; and total scan duration = 296 s). More 

information may be found in (Brouwer et al., 2010; Brouwer et al., 2012). 

 

 

2.2 ENIGMA-DTI processing 

 

We used the ENIGMA- DTI protocols for multi-site processing and extraction of tract-wise average FA 

values as described in our prior work (Jahanshad et al., 2013b). Briefly, FA images from all subjects were 

non-linearly registered to ENIGMA target brain using FSL fnirt (Smith et al., 2006; Smith et al., 2007) as a 

default registration.  This target was created from the images of the participating studies as the minimal 

deformation target as previously described (Jahanshad et al., 2013b). The data were then processed using 

the tract-based spatial statistics (TBSS) analytic method (Smith et al., 2006; Smith et al., 2007) modified to 

project individual FA values on the ENIGMA-DTI skeleton. Following the extraction of the skeletonized 

white matter and projection of individual FA values, ENIGMA-tract-wise regions of interest, derived from 

the Johns Hopkins University (JHU) white matter parcellation atlas (Mori et al., 2008), were transferred to 

extract the mean FA across the full skeleton and average FA values for twelve major white matter tracts, 

breaking down the corpus callosum into 3 regions, for a total of 15 ROIs. The regions analyzed are listed in 

Table 2. The full brain average FA values were calculated to include all voxels in the ENIGMA-DTI 

skeleton, not just those voxels in the segmented regions of interest, thereby also including peripheral white 

matter regions. The protocol, target brain, hand-segmented skeleton mask, source code and executables, are 

publicly available (http://enigma.ini.usc.edu/ongoing/dti-working-group/). Finally, we analyze the 

voxelwise FA value along the ENIGMA skeleton mask.  

 

[FIGURE 1 – mega workflow] 

 
Table 2 – Regions of interest (ROIs) examined along the ENIGMA-DTI skeleton as defined by the JHU white 

matter parcellation atlas (Mori et al., 2008). Analyses for other JHU ROI are provided in the Supplement.  

Average Skeleton FA 

GCC Genu of the corpus callosum 

BCC Body of corpus callosum 

SCC Splenium of corpus callosum 

FX Fornix 

CGC Cingulum (cingulate gyrus) - L and R combined 

CR Corona radiata - L and R anterior and posterior sections combined 

EC External capsule - L and R combined 

IC Internal capsule - L and R anterior limb, posterior limb, and retrolenticular parts combined 

IFO Inferior fronto-occipital fasciculus - L and R combined 

PTR Posterior thalamic radiation - L and R combined 

SFO Superior fronto-occipital fasciculus 

SLF Superior longitudinal fasciculus 

SS Sagittal stratum (include inferior longitudinal fasciculus and inferior fronto-occipital fasciculus) - 

L and R combined 

CST Corticospinal tract 

 

2.3 Single-site heritability estimation: Analysis of additive genetic variance  

http://enigma.ini.usc.edu/ongoing/dti-working-group/
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The variance components method, as implemented in the Sequential Oligogenic Linkage Analysis Routines 

(SOLAR) software package (http://www.nitrc.org/projects/se_linux) (Almasy and Blangero, 1998) was 

used for all individual cohort heritability estimations. Briefly, the algorithms in SOLAR employ maximum 

likelihood variance decomposition methods and are an extension of the strategy developed by (Amos, 

1994). The covariance matrix  for a pedigree of individuals is given by: 

 
222 eg I       (1) 

where g
2
 is the genetic variance due to the additive genetic factors, 

the pair-wise kinship coefficients among all individuals, e
2
 is the variance due to individual-specific 

environmental effects, and I is an identity matrix (under the assumption that all environmental effects are 

uncorrelated among family members). Narrow sense heritability is defined as the fraction of phenotypic 

varianceP
2
 attributable to additive genetic factors, 

 .                (2) 

The variance parameters are estimated by comparing the observed phenotypic covariance matrix with the 

covariance matrix predicted by kinship (Almasy and Blangero, 1998). Significance of heritability is tested 

by comparing the likelihood of the model in which g
2
 is constrained to zero with that of a model in which 

g
2
 is estimated.  Twice the difference between the loge likelihoods of these models yields a test statistic, 

which is asymptotically distributed as a 1/2:1/2 mixture of a 
2
 variable with 1 degree-of-freedom and a 

point mass at zero.  Prior to testing for the significance of heritability, phenotype values for each individual 

within the cohort were adjusted for covariates including sex, age, age
2
, age x sex interaction, age

2
 x sex 

interaction. Inverse Gaussian transformation was also applied to ensure normality of the measurements. 

Outputs from SOLAR include the heritability value, the significance value (p), and the standard error for 

each trait (ROI or voxel). 

 

 

2.4 Mega-and-Meta genetic analysis of additive genetic variance  

 

A mega-analysis function „polyclass‟ was recently developed for the software package, SOLAR-Eclipse 

(Blangero et al., 2005). It was implemented in the LONI Pipeline infrastructure (Dinov et al., 2010) and 

used for both voxelwise and ROI-level analyses. This function 1) fitted a model for each of the sites 

separately, and 2) performed the mega-analysis where the data for all populations is fitted together using a 

single model. The processing steps for this function are shown in Figure 1. The trait average and variability 

values can vary by site due to study design and measurement biases as shown by non-overlapping 

histograms of average FA values (Figure 1A). Two data normalization steps are performed. In the first, the 

regression of covariates (as specified above) is performed, per site, and then followed by the per-site 

inverse Gaussian normalization of data (Figure 1B). Individual cohort heritability estimates are obtained 

by fitting a polygenic model per population. The heritability value, its significance, and standard error are 

tabulated for the meta-genetic analysis.  

 

A mega-genetic analysis refers to analysis multiple cohorts combined into a single pedigree (Jahanshad et 

al., 2013b) . In this step, a joint pedigree structure was created by merging the kinship matrices from all 

cohorts, and a polygenic model was then fit for the combined dataset. Meta-genetic analyses calculate 

weighted-mean heritability (h
2
) and standard error estimates based on measurements from 

individual cohorts (Li et al., 2003). We chose two methods to calculate the weights: by standard error 

(Sutton, 2000) and, for comparison with most other meta-analysis studies of heritability, by study sample
1
 

(Verweij et al., 2010).  

                                                           
1
 The Verweij et al (2010) study specifically focused on twin studies. Weighting a mix of family studies by 

sample size should be approached with caution as sample sizes in different family based studies do not 

reflect the same power. A certain sample size in a twin study may be more powerful in picking up 

2

2

2

P

g
h

s

s
=

http://www.nitrc.org/projects/se_linux
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We weight the heritability from each study by the heritability standard error, as extracted from the variance 

component model of SOLAR. The heritability weighted by standard error (Sutton, 2000) is:  

 

hMA-SE

2 (v) =
se j

-2hj
2(v)

j
å

se j
-2

j
å

 , (3) 

where v =1 to Nv  indexes voxels or ROIs, and j = 1, …, 5 indexes site. 

 

The mean heritability weighted by sample size is calculated as 

 

hMA-N

2 (v) =
n jhj

2(v)
j

å
n j
j

å
 , (4) 

 

As the heritability estimates for all datasets were computed with SOLAR, the standard error for the 

heritability at each voxel was also available. Therefore, we computed the joint standard error for each MA 

as follows:  

Var hMA-SE

2 (v)( ) =
1

se j
-2 (v)

j
å

,  (5) 

Var hMA-N

2 (v)( ) =
n j

2se j
2(v)

j
å

n j
j

å( )
2

,  (6) 

 

Surprisingly, there is no standard method for calculating the significance, or p-value, for meta-analyses of 

such variance component estimates.  The principal problem is the non-Normality of the heritability 

estimate, reflected in the fact that a variance component p-value cannot exceed ½. To demonstrate some 

possible approaches, we calculated the meta-analysis Z-score in two ways and compared results.  

 

The first approach is based on individual cohort p-values; first they are transformed to cohort Z values 

according to zj(v) = Φ
-1

(pj(v)), where Φ represents the Gaussian normal transformation; if all p-values are 

strictly less than ½, this transformation is valid. These Z values are then combined into meta-analysis Z-

scores following (Willer et al., 2010):  

 

ZMA-SE (v) =
b̂(v)

SE b̂(v)( )
=

b̂ j (v)´ se-2

j (v)
j

å se-2

j (v)
j

å

1 se-2

j (v)
j

å
, (7) 

ZMA-N (v) =
z j (v) n j
j

å

n j
j

å
 , (8) 

 

where, for the SE-weighted meta-analysis, each site‟s effect is estimated as b̂ j (v) = z j (v)´se j (v) , which 

can be interpreted as z-scores in h
2
 SE units.  

 

                                                                                                                                                                             

heritability effects than that same sample size in a large extended pedigree due to lower degrees of shared 

genetic information between more distant relatives. Please see discussion for a more detailed explanation. 
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In the second approach for calculating p-values, the meta-analysis p-values are calculated from the meta-

analysis heritability estimates and their standard error, without consulting individual cohort p-values. 

Specifically, these were found by computing z-scores for both MA-SE and MA-N methods, found as ratios 

of the hMA-SE

2 (v)  and hMA-N

2 (v)values (Eqs. (3) & (4)) with their standard errors (square root of Eqs. (5) 

& (6), respectively); from these z-scores, p-values were found based on the asymptotic Normality of 

maximum likelihood estimates (Lehmann and Casella, 1998). 

 

2.5 Multiple comparisons correction  

 

Multiple statistical tests performed across voxels and/or ROIs can increase the chance of reporting a false 

positive finding at a given significance threshold, unless steps are taken to control for multiple 

comparisons. We use the false discovery rate (FDR) (Benjamini and Hochberg, 1995; Genovese et al., 

2002) approach for controlling false positives.  

 

RESULTS 

Heritability estimates for individual cohorts.  

Heritability analysis for the whole-brain average FA values demonstrated significant heritability for all five 

cohorts (Table 3, Figure 2). The highest heritability estimate was observed for the NTR cohort 

(h
2
=0.84±.03; p<10

-10
), while the lowest heritability was observed for the youngest cohort, BrainSCALE 

(h
2
=0.27±.13; p=.02); there were no significant differences between samples in the heritability estimates for 

the average FA values (1-way ANOVA p=0.07). The heritability for tract-wise average FA measurements 

were significant for all cohorts with exception of the TAOS cohort where heritability estimates for six 

tracts (EC, FX, IFO, SFO, SS, CST) had p>0.05. When correcting for multiple comparisons across all 

regions, the BCC and SCC were also not significant in TAOS. The CST was also not significantly heritable 

in QTIM or BrainSCALE cohorts; the SFO was alson not significantly heritable in BrainSCALE. Also of 

note is that with the exception of the two youngest cohorts (TAOS and BrainSCALE), the standard errors 

for regional measurements were similar for the three remaining cohorts (e.g., 0.06, 0.07, 0.07, vs 0.12 and 

0.26 for GOBS, QTIM, NTR, vs. BrainSCALE and TAOS, for average FA respectively).  

 
Table 3 - Individual cohort heritability results (and significance (p) values) for each ROI are listed along with 

the results for the joint analytic approaches. Meta-analysis p-values were computed in two ways as described in 

the Methods section, both of which are reported here. The first p-value presented in the MA columns uses 

individual cohort level data while the second is found directly from the MA heritability and SE values.  

 GOBS QTIM TAOS BrainSCALE NTR Meta 
Analysis 

(SE)  

Meta 
Analysis 

(N) 

Mega 
Analysis  

Whole-
brain 

0.41±0.08 

(5.98E-09) 

0.61±.05 

(p<10-10) 

0.49±0.24 

(0.04) 

0.27±0.13 

(0.02) 

0.84±0.03 

(p<10-10) 

0.71±0.03  

(0, p<10-

10) 

0.51±0.05  

(p<10-10, 
p<10-10) 

0.67±0.03 

(p<10-10) 

BCC 0.49±0.08 

(p<10-10) 

0.69±0.05 

(p<10-10) 

0.69±0.19 

(0.004) 

0.49±0.11  

(7.70E-05) 

0.72±0.05 

(p<10-10) 

0.65±0.03  

(0, p<10-

10) 

0.60±0.04  

(p<10-10, 
p<10-10) 

0.69±0.03 

(p<10-10) 

GCC 0.48±0.09 

(5.62E-10) 

0.59±0.06 

(p<10-10) 

0.82±0.13  

(4.01E-04) 

0.40±0.12  

(9.54E-04) 

0.84±0.03 

(p<10-10) 

0.75±0.02  

(0, p<10-

10) 

0.60±0.04  

(p<10-10, 
p<10-10) 

0.66±0.03 

(p<10-10) 

SCC 0.56±0.09 

(p<10-10) 

0.57±0.06 

(p<10-10) 

0.52±0.17 

(0.007) 

0.37±0.12 

(0.002) 

.78±.05 

(p<10-10) 

0.66±0.03  

(0, p<10-

10) 

0.57±0.05  

(p<10-10, 
p<10-10) 

0.62±0.03 

(p<10-10) 

FX 0.21±0.08 

(8.23E-04) 

0.62±0.06 

(p<10-10) 

0.50±0.29 

(0.077) 

0.45±0.13 

(0.001) 

0.53±0.08 

(2.29E07) 

0.49±0.04  

(0, p<10-

10) 

0.43±0.05  

(p<10-10, 
p<10-10) 

0.56±0.04 

(p<10-10) 

CGC 0.41±0.08 
(2.16E-08) 

0.65±0.05 
(p<10-10) 

0.78±0.20 
(0.002) 

0.47±0.11  
(1.14E-04) 

0.76±0.05 
(p<10-10) 

0.66±0.03  
(0, p<10-

10) 

0.58±0.05  
(p<10-10, 

p<10-10) 

0.63±0.03 
(p<10-10) 

CR 0.50±0.08 
(p<10-10) 

0.77±0.04 
(p<10-10) 

0.76±0.16 
(.006) 

0.49±0.12  
(3.03E-04) 

0.77±0.05 
(p<10-10) 

0.73±0.03  
(0, p<10-

10) 

0.64±0.04  
(p<10-10, 

p<10-10) 

0.75±0.03 
(p<10-10) 

EC 0.49±0.08 
(4.03E-10) 

0.78±0.03 
(p<10-10) 

0.02±0.37 
(0.40) 

0.46±0.13  
(7.68E-04) 

0.83±0.03 
(p<10-10) 

0.77±0.02  
(0, p<10- 0.54±0.06  

(p<10-10, 

0.75±0.03 
(p<10-10) 
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10) p<10-10) 

IC 0.46±0.08 

(5.55E-10) 

0.67±0.05 

(p<10-10) 

0.62±0.21 

(0.02) 

0.48±0.11  

(1.26E-04) 

0.81±0.04 

(p<10-10) 

0.71±0.03  

(0, p<10-

10) 

0.58±0.05  

(p<10-10, 

p<10-10) 

0.71±0.03 

(p<10-10) 

IFO 0.37±0.09 

(1.54E-06) 

0.68±0.05 

(p<10-10) 

0.26±0.44 

(0.22) 

0.65±0.08  

(4.26E-08) 

0.81±0.04 

(p<10-10) 

0.71±0.03  

(0, p<10-

10) 

0.51±0.07  

(p<10-10, 

p<10-10) 

0.73±0.03 

(p<10-10) 

PTR 0.38±0.08 

(2.48E-09) 

0.72±0.04 

(p<10-10) 

0.48±0.19 

(0.01) 

0.39±0.12 

 (0.002) 

0.86±0.03 

(p<10-10) 

0.76±0.02  

(0, p<10-

10) 

0.54±0.04  

(p<10-10, 

p<10-10) 

0.69±0.03 

(p<10-10) 

SFO 0.36±0.08 

(1.16E-07) 

0.67±0.05 

(p<10-10) 

0.29±0.23 

(0.10) 

0.39±0.13  

(0.02) 

0.73±0.05 

(p<10-10) 

0.62±0.03  

(0, p<10-

10) 

0.48±0.05 

(p<10-10, 

p<10-10) 

0.64±0.03 

(p<10-10) 

SLF 0.57±0.09 

(p<10-10) 

0.78±0.03 

(p<10-10) 

0.51±0.29 

(0.05) 

0.41±0.13  

(0.002) 

0.88±0.03 

(p<10-10) 

0.82±0.02 

(0,0) 

0.64±0.06  

(p<10-10, 

p<10-10) 

0.77±0.02 

(p<10-10) 

SS 0.44±0.08 

(1.04E-09) 

0.74±0.04 

(p<10-10) 

0.05±0.31 

(0.50) 

0.25±0.14  

(0.03) 

0.70±0.06 

(p<10-10) 

0.66±0.03  

(0, p<10-

10) 

0.48±0.06  

(p<10-10, 

p<10-10) 

0.65±0.03 

(p<10-10) 

CST 0.33±0.08 

(1.72E-06) 

0.25±0.10 

(0.008) 

0.29±0.39 

(0.23) 

0.37±0.13 

(0.004) 

0.61±0.06 

(p<10-10) 

0.44±0.04  

(0, p<10-

10) 

0.33±0.07  

(p<10-

10,2.54E-
06) 

0.42±0.04 

(p<10-10) 

 

[Figure 2 – Individual site heritability plot] 

 

The significance of voxelwise measurements of heritability varied substantially per cohort (Table 3). 

Following multiple comparisons correction across all voxels using FDR, we observed that the QTIM cohort 

had the highest fraction (79%) of significant voxels, while TAOS cohort had the lowest (1.6%) fraction 

(Table 4).   
 

Table 4 – Voxelwise multiple comparisons correction using FDR was performed for each heritability map based 

on the resulting p-values. The percent of the skeleton that was significantly heritable, along with the FDR 

critical p-value and minimum p-value along the image are listed. 

 % significantly  

heritable (FDR)* 

FDR-critical  

p-value 

minimum  

p-value 

GOBS 59.09 0.0295 p<10
-10

 

QTIM 79.10 0.0395 p<10
-10

 

TAOS 1.61 0.0008 3.0x10
-7

 

BrainSCALE 16.36 0.0082 2.1x10
-10

 

NTR 40.22 0.0201 p<10
-10

 

    

*total voxels in mask = 116524  

 

Meta- and Mega-analysis  

The results for the three approaches for pooling data and obtaining overall estimates of heritability are 

shown in Table 3 and Figure 3. The SE-weighted meta-analysis yielded the highest estimate 

(h
2
=0.71±0.06; p<10

-10
) for the average FA across the whole skeleton, while the N-weighted meta-analysis 

produced the lowest (h
2
=0.51±0.06; p<10

-10
) heritability estimate.. The mega-genetic approach produced an 

intermediate heritability estimate but with the lowest standard error and the highest significance 

(h
2
=0.67±0.04; p<10

-10
). The tract-wise heritability estimates for the SE-weighted meta- with mega-genetic 

analyses were highly correlated (r=0.76, p=0.002) (Table 5), however the correlations of the tract-wise 

estimates for the N-weighted approach with the SE-weighted approach and with the mega-analytical 

approach, were not significant (r=0.48, p=0.11; r=0.41, p=0.15).  
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The tract-wise heritability estimates of the N-weighted meta-analysis was highly correlated with the 

estimates from the TAOS sample (r=0.84, p=0.0006), while the results of the SE-weighted meta-analysis 

was strongly correlated with the NTR cohort (r=0.89, p=0.0001). The ROI results of the mega-analysis 

were more correlated with QTIM, NTR, and BrainSCALE (r=0.74, 0.54 and 0.50, respectively).   

 

[Figure 3 – joint analyses heritability plot + forest plot] 
 

Table 5 –Result of the linear correlation analysis (r-coefficients) between tract-wise heritability measurements 

for three data pooling methods and five cohorts.  The tract-wise heritability estimates of the N-weighted meta-

analysis was highly correlated with the estimates from the TAOS sample (r=0.84, p=0.0006), while the results of 

the SE-weighted meta-analysis was strongly correlated with the NTR cohort (r=0.89, p=0.0001). The ROI results 

of the mega-analysis were more correlated with QTIM, NTR, and BrainSCALE (r=0.74, 0.54 and 0.50, 

respectively).   

  GOBS QTIM TAOS Brain-

SCALE 
NTR Meta 

Analysis 

(SE)  

Meta 

Analysis 

(N) 

Mega 

Analysis  

GOBS  0.11 0.23 -0.21 0.24 0.36 0.49 0.24 

QTIM 0.11  -0.44 -0.01 0.11 0.50 0.00 0.73 

TAOS 0.23 -0.44  0.20 0.13 0.00 0.84 0.11 

BrainSCALE -0.21 -0.01 0.20  0.23 0.13 0.34 0.50 

NTR 0.24 0.11 0.13 0.23  0.89 0.46 0.54 

Meta Analysis 

(SE)  

0.36 0.50 0.00 0.13 0.89  
0.48 

0.76 

Meta Analysis 

(N) 

0.49 0.00 0.84 0.34 0.46 0.48 
 

0.41 

Mega 

Analysis  

0.24 0.73 0.11 0.50 0.54 0.76 
0.41 

 

 

 

Voxelwise, all three data pooling analytic approaches produced a similar spatial pattern of heritability 

(Figure 4). The meta-analysis weighted by N (top) showed the lowest overall voxelwise heritability. The 

meta-analysis weighted by SE (middle) showed a more similar pattern to the mega- analysis (bottom), 

although the mega-analysis appeared to have a smoother spatial distribution of heritability. Notably, all 

three methods produced a significant number of voxel-wise estimates that would pass the most stringent, 

Bonferroni, correction for multiple testing (Table 6).  Both methods of calculating p-values for meta-

analysis produced a significant number of heritable voxels. The SE-MAs included many voxels whose p-

values were exceedingly low (0). Despite this, the mega-analytic analysis was the only one to show a 

majority of voxels surviving Bonferroni correction.  

 

[Figure 4 – voxelwise maps of meta and mega slices]  
 

Table 6 – Multiple comparisons corrections for joint analyses using the most stringent Bonferroni correction. All 

three methods have produced a significant number of voxel-wise estimates that would pass the most stringent, 

Bonferroni, correction for multiple testing. Meta-analysis p-values were computed in two ways as described in 

the Methods section, and values for both corrections are listed below. 

 % significantly  

heritable* 

Bonferroni 

crtitical  

p-value* 

minimum  

p-value 

Meta-SE 34.87, 49.86 4.3*10
-7

 p<10
-10

 

Meta-N 10.15, 35.75 4.3*10
-7

 p<10
-10

 

Mega 53.1 4.3*10
-7

 p<10
-10
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*total voxels in mask = 116524  

 

 

We note a high voxel-wise correlation of heritability values 0.87-0.90 between the different joint 

approaches (Figure 5). Meta-analyses show a correlation of 0.87. Additionally, when the mega-analysis is 

compared to the SE-weighted meta-analysis, a similar high correlation of 0.87 is obtained (Figure 5b). A 

slightly higher correlation is observed when comparing the mega-analysis to the meta-analysis weighted by 

N (Figure 5c).  

 

[Figure 5 – 3 scatter correlation plots] 
 

Leave-one-cohort out analysis  

Finally, the stability of the joint heritability estimates was ascertained in the regions of interest using a 

leave-one-out analysis. The aim was to study how the joint heritability estimate depended on the 

contribution from any one dataset. For the whole brain average FA values, removing one cohort resulted in 

different results for each type of joint analysis. On average, the SE-weighted meta-analysis approach 

produced the highest heritability estimate, yet with the widest range of results h
2
=0.69 (for average FA for 

example; range 0.51 to 0.74) while the N-weighted meta-analysis approach produced the lowest heritability 

estimate h
2
=0.52 with a narrower range of results (range 0.47 to 0.57). For both meta-analytic approaches, 

the highest h
2
 estimate was observed when leaving out the GOBS cohort and the lowest was observed 

following removal of the NTR cohort. However, for the SE-weighted meta-analysis, the removal of the 

NTR cohort led to a substantially different heritability estimate than removal of each of the others, while 

for the N-weighted meta-analysis, removal of NTR was similar to removing QTIM, and differences in 

estimations were more subtle. Mega-analysis produced an intermediate estimate h
2
=0.67 (cumulative h

2
 

estimates ranging from 0.58 to 0.77). The highest h
2
 estimate was observed following removal of the 

BrainSCALE cohort and the lowest following removal of the QTIM cohort (Figure 6). 

 

[Figure 6 – leave one out for average FA values all joint analyses] 
 

The tract-wise, leave-one-cohort-out analysis produced mainly stable results consistent with the full group 

analysis, with one notable exception. The N-weighted and mega-analyses produced consistent estimates 

that followed the trend of the full group analysis (r=0.91-0.99) (Figure 7). The SE-weighted meta-analysis 

however, appeared to be most influenced by exclusion of the NTR dataset, which had the highest individual 

heritability and lowest SE. Removal of that dataset led to substantially lower heritability estimates across 

the ROIs and lowered the correlation with the results from the complete dataset (r=0.79). Another notable 

observation is that the mega-analytic approach (Figure 7) produced generally higher heritability estimates 

with a narrower error margin compared to both the meta analytical methods. Genetic analyses for other 

regions of the Johns Hopkins DTI atlas are provided in supplement (see Supplement).  

 

[Figure 7 – 3 plots -- leave one out for all ROIS all joint analyses] 
 

IV. DISCUSSION:  
 

We evaluated three data-pooling strategies for performing a multi-site analysis of additive genetic 

contributions to variability in the fractional anisotropy (FA) of cerebral white matter (WM).  The 

ENIGMA-DTI data harmonization protocol, presented in our prior work (Jahanshad et al., 2013b) served as 

the foundation for this analysis.  This protocol was used to assemble and homogenize data collected at five 

sites, using diverse imaging protocols and cohorts that varied in age (9-85 years) and the family structure 

(twins, twins and siblings, and extended family).  Our efforts aim to identify FA measurements that are 

significantly heritable regardless of age, ethnicity, family structure, and methodological variations. To 

summarize our findings, we observed that (as expected) the heritability estimates do vary across cohorts. 

Datasets with smaller numbers of subjects, or less familial relationships, were more likely to produce 

heritability estimates not representative of the pooled trend. Nonetheless, including these datasets improves 

the overall outcome of the joint analysis. We also observe that three analytical approaches for data pooling 
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vary in the both the estimates and the significance of pooled heritability and these estimates may be 

sensitive to inclusion/exclusion of specific datasets.  Overall, our study concluded that despite 

methodological differences, combining genetically informative datasets using meta-and/or-mega-genetic 

approaches led to a significant improvement of the statistical significance. Overall, the pooled heritability 

estimates across the brain showed high heritability, with additive genetic factors explaining over 50% of 

intersubject variance in FA values across most regions.  

 

This manuscript extends and validates the ENIGMA-DTI harmonization protocol (Jahanshad et al., 2013b) 

to a wider range of cohorts. This protocol ensures that imaging data from multiple sites can be harmonized 

for a pooled analysis by transforming them in the common space (a custom spatial normalization template 

derived from four diverse high-resolution datasets) and extracting regional measures; it includes the 

processing steps necessary to prepare DTI data for quantitative genetic analysis, including extraction of 

tract-wise average and voxel-wise FA data, as well as data quality control and assurance procedures. 

Ideally, harmonization of data collection should occur at the onset of the multicenter imaging study as 

demonstrated by the efforts of the Alzheimer‟s Disease Neuroimaging Initiative (Weiner et al., 2012) and 

others (Teipel et al., 2011; Zhan et al., 2012). Clearly, this is only applicable to data that has yet to be 

collected. The ENIGMA-DTI harmonization effort was developed as a post hoc solution to help prepare 

existing data for pooled genetic analyses to facilitate the search for genetic associations with DTI-extracted 

traits. This manuscript evaluated the ENIGMA-DTI protocol by testing its ability to reproduce and replicate 

findings of significant additive genetic contribution to FA values in data collected at five sites.    

 

The contribution of additive genetic variation (i.e., heritability) to individual variability was calculated for 

the whole brain skeleton and regional FA values in five cohorts. The five cohorts were diverse in both the 

age of participants (9-85 years) and family structure (twin, twins + siblings, extended families). Heritability 

is a property of a population sample and may vary from sample to sample. It should not serve as the single 

parameter to estimate and compare across various populations. However, for certain planned collaborative 

efforts to search the genome and discover individual variants contributing to basic white matter properties, 

it is desirable to establish patterns of heritability that are common regardless of the population under study. 

Despite differences in age, structure and ethnicity among our cohorts, there was no significant difference in 

the average heritability estimates. While this does not signify that the same genes contribute to the level of 

heritability in the different populations, we can be confident that each of the regions has the potential to 

serve as a promising endophenotype to discover genes that exert controls over white matter structure in 

general. Our experiments demonstrate that heritability estimates from smaller cohorts with non-twin sibling 

family structures (TAOS) may be underpowered, particularly for smaller regions, and possibly not be 

representative of the group at large compared to those of extended pedigrees or primarily twin based 

cohorts. Despite these variations, we show joint analytic procedures have limited sensitivity to such 

differences and can still benefit from the addition of individually underpowered cohorts.  

 

The cohorts that yielded the highest and the lowest heritability estimates for the full skeleton (NTR and 

BrainSCALE, respectively) were twin samples recruited from the same twin register in The Netherlands. 

Moreover, the two populations were imaged using similar DTI-protocols implemented on Philips MRI 

scanners. The low heritability estimate in the BrainSCALE cohort may be due to a combination of factors. 

Its original study suggested that the low heritability estimate might have been due to the young age of the 

sample (average age=9.2±0.1 years) (Brouwer et al., 2010).  It hypothesized that the on-going cerebral 

myelination may lead to higher intersubject variance, thereby reducing heritability estimates. 

Unsurprisingly, the subject‟s age was not a significant covariate in this cohort (p>0.5) and this may be 

responsible for the inflation of the overall variance in FA values (Brouwer et al., 2010). While potentially 

masked by differences is pedigree structure, the trends in heritability across cohorts do not appear to be due 

to the young age in the cohort. The next youngest cohort, TAOS, was also collected in adolescent subjects 

with a narrow age window (average age=13.4 yr ± 0.96) where the subject‟s age was also a non-significant 

covariate (p=0.41). However, the heritability estimates from this cohort were nearly twice that observed in 

the BrainSCALE sample (h
2
=0.49 vs. 0.27). The heritability estimates in the TAOS cohort had a low 

significance. This is because it was composed of siblings and therefore had a lower statistical power 

compared to twin cohorts.  Clearly, this topic of age-by-heritability change during cerebral development 

deserves further study. These said, in this study, the variation in heritability estimates for cohorts with small 

subject number is likely to be caused by subject selection rather than methodological issues and/or biases.  
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The three data pooling methods succeeded in producing similar estimates of heritability using data from all 

five cohorts. However, there were a few notable differences. The two-meta-analytical approaches produced 

the lowest and the highest heritability estimates for the average FA values (h
2
=0.51, p<10

-10
 and 0.71, p 

<10
-10 

for N- and SE-weighted approaches, respectively), while mega-genetic analysis produced 

intermediate heritability estimates with the highest significance (h
2
=0.67, p=<10

-10
). A similar pattern was 

observed for the tract-wise and voxel-wise measurements: over 50% of the voxel-wise estimates obtained 

by the mega-genetic approach satisfied even the strictest Bonferroni threshold for multiple comparisons. 

Importantly, the voxel-wise correlation of heritability estimates showed high levels of shared regional 

variance (r=0.87-0.90), suggesting a high concordance among the three data-pooling approaches. 

Importantly, aggregated heritability estimates presented here showed a high level of concordance with 

previous estimates calculated in the GOBS and only the twin pairs from the QTIM cohorts 

(N=1151)(Jahanshad et al., 2013b). For instance, the average FA heritability estimate by the mega-genetic 

approach was nearly identical to a mega-genetic estimate obtained in the prior study h
2
=0.67, p=7.6·10

-49
 

vs. h
2
=0.68, p=1.9·10

-11
, for present and past mega-genetic estimates. While the present meta-genetic 

heritability estimates here were higher than these obtained in the previous sample (h
2
=0.51 and 0.71 vs. 

0.42 and 0.43 for the N- and SE-weighted estimates for present and previous studies) (Jahanshad et al., 

2013b), the by-tract correlations of current (N=2203) vs past (N=1151) analysis showed high consistency 

(r=0.70-.86; p≤0.01) for all three data pooling methods (Table 7).  

 
Table 7 - Correlation between our past (Jahanshad et al., 2013b) and present by-tract heritability estimates. 

Past Estimates Present N-Weighted Present SE-
Weighted 

Present Mega 

N-Weighted 0.77 0.86 0.80 

SE-Weighted 0.69 0.86 0.86 

Mega 0.70 0.84 0.86 

 

 

Meta-analysis methods approximate global effect-size by computing a weighted estimate of the effect-

sizes from individual studies. The weighs, or scaling factors, for effect sizes are assigned based on the 

precision of the effect size estimates per study. Studies with more precise estimate of the effect size 

may therefore be given higher weights. In general, the precision of the effect-size is directly related to 

the study’s sample size (N). The sample size, or N-weighted, meta-analysis is, therefore, a commonly 

used approach. On the other hand, the design of genetic studies also plays an important role in 

affecting the precision of the estimate (Borenstein et al., 2009). Particularly in the case of variance-

component derived heritability estimates, different family based study designs may have different 

correlation structures such that the sample size may not directly reflect the estimate precision. For 

instance, matched twin studies provide more precise estimates of heritability than populations with 

the same number of more distantly related relatives.  On the other hand, the latter type provides a 

better estimate of covariate effects and thereby may provide more precise estimates of genetic effects 

(Blangero et al., 2013). 

 

The N-weighted meta-analytic approach used in this study was developed for meta-analysis of twin 

data (Li et al., 2003; Rhee and Waldman, 2002; Verweij et al., 2010). Here it was used for a meta-

analysis of both twin and family population.  This may be a limitation as scaling of statistical power 

per subject may be different for family-based versus twin-based studies. However, we believe that in 

our case it is a minor limitation. To test this, we used power calculation methods implemented in 

SOLAR-Eclipse (Blangero et al., 2013) to model the statistical power for detecting heritability in each 

of the five samples. We observed that for the range of expected heritability estimates (h
2
=0.3-0.7), the 

statistical power per cohort was directly proportional to the sample size (r=~0.9), supporting the 

basic assumption of N-weighted meta-analysis.   Further, we compared the estimates from N-

weighted approach to these derived using the standard-error weighted meta and mega-genetic 

analyses. The estimates derived from the N-weighted meta-analysis overlapped with the confidence 

intervals of the other approaches, suggesting that it homed in on appropriate heritability estimates. 
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Furthermore, a single weighting scheme of a meta-analysis may not be available for every condition 

and it is also possible that the difference weighting may have minimal effects (Brannick et al., 2011). 

Nonetheless, this limitation signifies the urgent need for development of more universal meta-genetic 

analytical approaches for an effective sample-size estimate based on within and between family 

variance. For instance, simulation modeling of statistical power based on the study designs (Blangero 

et al., 2013) may become a promising novel approach to derive the scaling factors.  

 

 

The leave-one-out analysis was performed to test the stability of the pooled heritability estimates on 

inclusion and exclusion of specific cohorts. The average FA heritability estimates following the removal 

of each of the five cohorts were similar to the overall pooled heritability estimate for the both the N-

weighted meta- and mega-genetic analyses (h
2
=0.51 and 0.67, respectively). The N-weighted meta-

analysis showed the smallest variability in heritability estimates because the cohorts with the highest 

and lowest heritability estimates (NTR and BrainSCALE) had the two smallest numbers of subjects 

and this limited their contribution to this pooled heritability estimate. Nonetheless, the N-weighted 

meta-analysis was shown to be most sensitive to removal of the GOBS cohort (Figure 7A). Removal 

of this cohort led to a change in the heritability estimate from h
2
=0.51 to 0.57. This was expected 

since the GOBS cohort had the largest number of subjects and thereby exerted the highest weight in 

the N-weighted combined heritability estimate. On the other hand, the SE-weighted approach was 

sensitive to removal of the NTR cohort. The removal of this cohort reduced the pooled MA-SE heritability 

estimate from h
2
=0.71 to 0.51. This led to the highest standard deviation in pooled heritability estimates 

among the three methods (std dev = 0.10, 0.07 and 0.05 for SE-weighted, mega and N-weighted 

approaches, respectively). This was also expected, as the NTR cohort had the highest heritability estimates 

with the lowest standard error. The highest change in mega-genetic analysis h
2
=0.67 to 0.78 (for average 

FA) was observed following the exclusion of the BrainSCALE cohort due to its lowest heritability 

estimates and its twin-design that produced population structure with high statistical power. While overall, 

the pooled estimates are exceedingly similar across regions of interest and voxelwise FA measurements, 

when data-sharing is not a viable option for mega-analysis, careful consideration of cohort structure and 

inherent power should be taken into account for meta-analytic approaches.  

 

Overall, we observed that regional heritability estimates varied among individual cohorts and to a 

lesser degree between the joint analyses methods. As the heritability of a phenotype is dependent on 

the study population, we would not expect to see the same heritability estimates across geographically 

and ethnically diverse cohorts. Pooling diverse datasets and populations through joint analytical 

approach of variance-components analysis provides global means of heritability across a variety of 

populations.  As no standards exist for jointly analyzing such data, we provided results from three 

different types of analyses and observe the variability between these joint estimators. In addition, we 

used leave-one out analyses to evaluate stability of each method and its sensitivity to individual 

cohorts. These stability tests suggest that adequately powered independent studies will likely produce 

heritability estimates that will fall within the range derived from the set of joint analyses. However, 

given that only 5 cohorts were used in this study and 4 out of 5 were of children or young adults, and 

common environmental effects were not assessed, it is also possible that heritability estimates of an 

independent cohort will be significantly different. The ENIGMA-DTI protocols available online 

(http://enigma.ini.usc.edu/ongoing/dti-working-group/), and the joint analytical methods described 

here, may now be used by others to expand upon the joint heritability analyses. Ideally, with enough 

cohorts, joint estimation of heritability will be analyzed using random-effects modeling (Normand 

1999) to further account for underlying differences and similarities between cohorts.  

 

CONCLUSION: 

Here we test the reliability of the FA endophenotypes measured from DTI data and extensively evaluated 

three data pooling approaches to study the additive genetic contribution to variability in FA. This step of 

optimizing methods and protocols brings us closer to fulfilling the overall aim of the ENIGMA Consortium 

-- using imaging phenotypes studies to help discover genes that associate with brain structure and may in 

turn be associated with, behavior, cognition, and neuropsychiatric disorders. We used five datasets of 

various ages, ethnicities and family structure to demonstrate that data pooling approaches provide robust 

estimates of FA heritability in almost all white matter regions, suggesting that despite differences in 

http://enigma.ini.usc.edu/ongoing/dti-working-group/
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acquisition and cohort structure, data pooling is feasible. We showed that both global and regional 

heritability estimates from pooled approaches were much more similar than heritability estimates derived 

from individual cohorts were to each other. We determined stability in the pooling approaches by showing 

the differences in pooled estimates, using subsets of the data. While we generally showed that mega-

analytic approaches have greater stability and highest power for jointly analyzing data, we note that meta-

analytic approaches are comparable when full individual-level data sharing is not feasible, although caution 

and careful evaluation of cohort trends should be taken when making the choice of a meta-analytic 

approach. We provide our joint heritability results online at http://enigma.ini.usc.edu/ongoing/dti-working-

group/ to serve as a voxelwise heritability atlas for future studies. 
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