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Abstract
Pressure swing adsorption (PSA) is a cyclic adsorption process for gas separation and
purification. PSA offers a broad range of design possibilities influencing the device be-
haviour. In the last decade much attention has been devoted towards simulation and op-
timisation of various PSA cycles. The PSA beds are modelled with hyperbolic/parabolic
partial differential algebraic equations and the separation performance should be assessed
at cyclic steady state (CSS). Detailed mathematical models together with the CSS con-
straint makes design difficult. We propose a surrogate based optimisation procedure based
on kriging for the design of PSA systems. The numerical implementation is tested with a
genetic algorithm, with a multi-start sequential quadratic programming method and with
an efficient global optimisation algorithm. The case study is the design of a dual piston
PSA system for the separation of a binary gas mixture of N2 and CO2.
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1. Introduction
Pressure swing adsorption (PSA) (Ruthven et al., 1993) is a cyclic adsorption process for
gas separation and purification and is a cost efficient alternative to traditional absorption
techniques. The main characteristic of a PSA process is to swing between adsorption and
desorption by increasing and decreasing the system pressure respectively. For practical
applications the PSA process is operated at cyclic steady state (CSS). The performance
of PSA systems is a function of the number of adsorption beds, the bed dimensions, the
layers, the cycle configuration and the operating conditions. To fully investigate PSA
systems by experimental means is an intractable aim in practise; instead, computer sim-
ulation is used (Agarwal et al., 2009; Biegler et al., 2005). To address the computational
challenges, we use Surrogate Based Optimisation (SBO) methods with kriging models,
see e.g. (Jones, 2001). An SBO procedure, with a genetic algorithm (GA), a multi-
start sequential quadratic programming method (SQP), and efficient global optimisation
(EGO) (Jones et al., 1998), has been applied and analysed for the design of a dual piston
PSA system.

2. Modelling and simulation of dual piston pressure swing adsorption
The dual piston PSA (DP-PSA) system is an extension of the conventional PSA pro-
cess (Ruthven et al., 1993): the movement of the pistons generates fluid flow and pressure
variations which induce the separation of the mixture. Operating the pistons out of phase
introduces a cyclic variation in pressure and flow which generates adsorption and desorp-
tion process steps. The DP-PSA is capable of separating binary mixtures.



Figure 1: Schematic of the DP-PSA system.

This study considers a binary gas mixture of 80%N2 and 20%CO2 in a closed DP-PSA
system with zeolite 13X packed column. Zeolite 13X has shown potential for the adsorp-
tion of CO2 from flue gas and the adsorption isotherms are reported in the literature (Xiao
et al., 2008). The separation performance, i.e. the ratio of the heavy component in piston
1 and 2, is analysed in this study. The DP-PSA model is from (Arvind et al., 2002). The
model assumptions are: i) isothermal system; ii) ideal gas law applies; iii) no frictional
pressure drop; iv) linear driving force mass transfer; v) Langmuir adsorption isotherm; vi)
well-mixed piston chambers. The resulting mathematical model is a system of parabolic
partial differential algebraic equations which is solved by the method of lines. The spatial
coordinate along the length of the column is discretised with a flux-limiting finite volume
scheme with the van Leer flux limiter (Laney, 1998). This discretisation scheme is con-
servative and guarantees the correct behaviour of the solution; the former is especially
important for the simulation of closed systems, such as the DP-PSA, and the latter for
the simulation of systems with sharp, moving fronts. The SUNDIALS solver suite (Hind-
marsh et al., 2005) is used to solve the resulting system of differential algebraic equations
in time. The system is simulated cycle by cycle until CSS is reached.

3. Surrogate based optimisation
The optimal design of a PSA system is represented by

max
x∈Ω

y(q(t,x))

subject to F(q(t,x)) = 0,
g(q(t,x)) ≥ 0,
CSS conditions,

(1)

where F are model equations, g are design constraints, q is the state variable vector,
x = (x1, x2, . . . , xd) is the design variable vector, Ω ⊂ R

d is the design space, and
y : Ω → R is a scalar response which we wish to optimise. For simplicity, we refer
to y(q(t,x)) by y(x). When the objective function y(x) is computationally expensive,
surrogate models, which can be much faster to evaluate, could be introduced to replace
y(x), partially or in full, to guide the search more efficiently. Surrogate models (also
known as response surfaces, metamodels, or emulators) are approximate functions of
input-response mapping. A surrogate model ŷ : Ω → R is a predictor of response y fitted
to a generated input-response dataset (X,Y) of y on Ω, where X = (x1,x2, . . . ,xm),
xj = (x1, x2, . . . , xd) ∈ Ω ⊂ R

d, and Y = (y1, y2, . . . , ym), yj ∈ R. The cost to eval-
uate a surrogate model rapidly increases as the dimension of the input data, d, increases.
Multivariate polynomial regression, artificial neural networks, support vector regression,
radial basis function interpolation, and kriging are popular surrogate modelling techniques
(Forrester and Keane, 2009). Recently a kriging based SBO method using DACE Matlab
Kriging Toolbox (Lophaven et al., 2002) was applied for the design of a vaccum swing
adsorption system (Faruque Hasan et al., 2011). We consider kriging: a response y(x)
can be understood as a realisation of a stochastic process, Y(x), described by a linear
spatial regression model

Y(x) = μ(x) + ε(x), E[ε(x)] = 0, (2)

1218J. Beck et al.



where E[·] is the expected value operator, the stochastic model Y(x) consists of a re-
gression model, μ(x), representing the drift or mean of y(x), and a centred residual
stochastic process, ε(x), with covariance cov (ε(xi), ε(xj)) = σ2 corr (ε(xi), ε(xj)),
for xi,xj ∈ X, where corr(·, ·) is the spatial correlation function and σ2 represents the
global variation of y. The preferred choice of spatial correlation function (Sacks et al.,
1989) is

corr (ε(xi), ε(xj)) =

d∏
�=1

exp (−θj |xi,� − xj,�|p�) , (3)

for any xi,xj ∈ X, with parameters θ� ≥ 0 and 2 ≥ p� > 0. The regression term
μ(x) is a linear combination of a family of multivariate polynomials (fk(x))kN:k≤n for
some n ∈ N0. Let us introduce the following notation in order to formulate the kriging
predictor. Let Σ ∈ R

m×m denote the covariance matrix, where the elements (i, j) are
given by cov (ε(xi), ε(xj)) for xi,xj ∈ X; c(x) = (cov(x,xi))xi∈X ∈ R

m; f(x) =
(fk(x))k∈N:k≤n ∈ R

n for n ∈ N0, and F = (fk(xi))k∈N,xi∈X ∈ R
n×m. Then, μ(x) =

f(x)T δ for mean parameter δ. Here AT denotes the transpose of a matrix A.
By assuming (X,Y) has been generated from a stochastic model, eq. (2), with correlation
between the residuals, eq. (3), the kriging predictor ŷ is the best unbiased linear predictor
of y (Gaetan and Guyon, 2010) and can be written as

ŷ(x) = f(x)T δ̂ + c(x)TΣ−1(Y − Fδ̂), (4)

where δ̂ = (FTΣ−1F)−1FTΣ−1Y.
The values of parameters θ� and p� in eq. (3) are often unknown but can be estimated
to maximise the likelihood function of (X,Y). μ(x) = α, where α is a constant, and
p� = 2, are common assumptions. When p� = 2, eq. (3) is the Gaussian kernel. Let
θ� ∈ [0.001, 10]. An attractive feature with kriging is that the sample variance of the
prediction error (MSE), s2(x), can be easily computed, see (Gaetan and Guyon, 2010).
A consequence of ε(x) being a Gaussian process, the distribution of the kriging predictor
at an unobserved point x is normally distributed with mean ŷ(x) and variance s2(x). We
propose a SBO based on kriging, see Algorithm 1 where ‖ · ‖ is the Euclidean norm and
Eμ,σ[f(Y)] is the expected value operator of a function f(Y) with Y being a Gaussian
process with mean μ and variance σ2.

Algorithm 1 Surrogate based optimisation procedure based on kriging.
1: Generate dataset (X,Y)
2: Let i = 1 and imax ∈ N

3: while i ≤ imax do
4: Fit kriging model ŷ(x), x ∈ Ω, to (X,Y)

5: solve x∗ = arg max
x∈Ω:

‖x−x̃‖
‖x̃‖ ≥ε ∀x̃∈X

ŷ(x)

6: or x∗ = arg max
x∈Ω:

‖x−x̃‖
‖x̃‖ ≥ε ∀x̃∈X

Eŷ(x),s(x) [max{ŷ(x)−max(Y), 0}] (EGO (Jones et al., 1998))

7: X ← x∗
8: Y ← y(x∗)
9: i ← i+ 1

10: end while

We consider a GA and a multi-start SQP for the inner optimisation at line 5 in Algorithm
1, henceforth referred to as SbGA and SbSQP (“Sb” means “Surrogate based”). The
optimisation problem at line 6 is known as Efficient Global Optimization (EGO) (Jones
et al., 1998), where the expected improvement rather than the kriging predictor ŷ is max-
imised, here through the use of a GA. GA is also used at line 4 for the maximum likeli-
hood estimation when fitting the kriging model. The numerical implementation of kriging
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closely follows the DACE Matlab Kriging Toolbox (Lophaven et al., 2002). The GA is
an in-house implementation and the configurations have been chosen carefully based on
experience (Fiandaca et al., 2009). The SQP is fmincon provided in MATLAB 2010b.

4. Numerical results
For the optimisation problem, eq. 1, with the DP-PSA model described, the response of
interest, y, is the purity of CO2 in piston chamber 1 at CSS. The design space, Ω, is a
six-dimensional hyperrectangle domain defined by the decision variables: cycle time tc
∈ [1, 20] (s), offset angles of piston 1 and 2, φ1 and φ2 ∈ [0, 2π], volumes of piston
chamber 1 and 2, V1 and V2 ∈ [0.5, 15.0] (m3), and temperature T ∈ [15, 70] (◦C).
We have restricted the computation to 50 full evaluations of y, of which 20 are initially
generated with latin hypercube sampling and used as the initial dataset (X,Y) for the
SBO methods (SbGA, SbSQP, and EGO) and as the initial population for the GA. For the
standalone GA, we allowed 150 evaluations. The SBO methods were configured to make
similar numbers of calls to the kriging predictor. Design point diversity is enforced by
ε = 10−4. Here follows a comparison between GA and the SBO methods followed by a
visualisation of the best DP-PSA designs found.

Full evaluations Elapsed time (s)
GA 150 12400
SbGA 50 5900
SbSQP 50 6000
EGO 50 6300

The SBO methods all outperform GA in
elapsed time to reach same quality of solution,
see table above and Figure 2. The performance
is similar between the different SBO methods
in terms of quality of solution, although Sb-
SQP has marginally better performance as the
number of full evaluations increases. The krig-
ing predictor has smooth and infinitely differ-
entiable responses, which suits SQP as it is a
local optimiser guided by gradient and hessian
information. Even if the underlying objec-
tive is multi-modal, with good initial guesses,
which could be obtained with the multi-start
algorithm, the SbSQP exhibits a rapid local
convergence behaviour and ensures global ex-
ploration of the kriging response surface.
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Figure 2: CO2 purity obtained us-
ing 5 different initial datasets for each
method, where the range between the
best and worse performance curves is
filled.

The SBO methods show qualitative agreement in optimum when reached 50 full evalua-
tions, whereas the GA, for some initial populations, does not, see Figures 3 (a-d). See the
evolution of the optimum found with GA in Figures 3 (d-f).

5. Conclusions
Conventional PSA cycles are often more complex and demand longer cycle times than the
single column DP-PSA system and for this reason also more computationally demanding.
When designing these complex systems we are usually limited to a moderate number of
full evaluations, and the numerical results therefore motivate the use of SBO to achieve
a faster convergence towards regions of quality designs. The proposed SBO procedure
with kriging (see Algorithm 1) has here been shown to suffice with GA and multi-start
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SQP, while also allowing the use of other optimisation methods. The numerical results
presented in Figures 3 (a-c) indicate that a DP-PSA system should be designed as fol-
lows: use longer cycle times to operate close to equilibrium, intermediate offset between
piston 1 and 2, the piston chamber volume should be small and large for piston 1 and 2,
respectively, and the column should be at a high temperature. These design guidelines
are reached by optimising the purity alone. The influence of further objectives such as
recovery and energy requirements will be investigated in a future publication.
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(a) SbSGA with 50 full eval-
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(b) SbSQP with 50 full eval-
uations
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(c) EGO with 50 full evalua-
tions

 0

 0.2

 0.4

 0.6

 0.8

 1

tc φ1 φ2 V1 V2 T Purity (%)

V
ar

ia
bl

e 
va

lu
es

 (n
or

m
al

is
ed

)

Design variables and objective

(d) GA with 50 full evalua-
tions
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(e) GA with 100 full evalua-
tions
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Figure 3: High dimensional visualisation of the collection of best design point found with
SbGA, SbSQP, EGO and GA, respectively, using 5 different initial datasets.
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