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ABSTRACT 

Quantifying ecosystem carbon stocks is vital for understanding the relationship between 

changes in land use and carbon dioxide emissions. Here we estimate carbon stocks in an 

area of miombo woodland in Mozambique, by identifying the major carbon stocks and their 

variability. Data on the biomass of tree stems and roots, saplings, and soil carbon stocks are 5 

reported and compared to other savannas systems around the globe. A new allometric 

relationship between stem diameter and tree stem and root biomass is presented, based on 

the destructive harvest of 29 trees. These allometrics are combined with an inventory of 

12,733 trees on 58 plots over an area of 27 ha. 

Ecosystems carbon stocks totalled 110 tC/ha, with 76 tC/ha in the soil carbon pool 10 

(to 50 cm depth), 21.2 tC/ha in tree stem biomass, 8.5 tC/ha in tree coarse root biomass and 

3.6 tC/ha in total sapling biomass. Plot-level tree root:stem ratio varied from 0.27–0.58, 

with a mean of 0.42, slightly higher than the mean reported for 18 other savanna sites with 

comparable above-ground biomass (R:S = 0.35). Tree biomass (stem + root) ranged from 

3.1-86.5 tC/ha, but the mean (32.1 tC/ha) was well constrained (95% CI 28.4 - 36.6). In 15 

contrast, soil carbon stocks were almost uniformly distributed and varied from 32-133 

tC/ha. Soil carbon stocks are thus the major uncertainty in the carbon storage of these 

woodlands. Soil texture explained 53% of the variation in soil carbon content, but only 13% 

of the variation in woody carbon stocks. The history of disturbance (fire, elephants, 

logging/charcoal production, and shifting cultivation) is likely to decouple changes in 20 

woody carbon stocks from soil carbon stocks, mediated by tree-grass interactions. 
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MIOMBO WOODLANDS ARE CHARACTERISTIC SAVANNA WOODLANDS IN SUB TROPICAL 

SOUTHERN AFRICA, dominated by species of the genera Brachystegia, Julbernardia and 

Isoberlinia. They occupy 11 African countries: Angola, Burundi, Botswana, Democratic 

Republic of the Congo, Malawi, Mozambique, Namibia, South Africa, Tanzania, Zambia 

and Zimbabwe. Miombo woodlands occurs on nutrient poor soils and in areas with a 5 

distinct wet and dry seasons (annual rainfall of 700-1400 mm). They are characterised by 

frequent fires in the dry season (Frost 1996; Ryan and Williams 2010). The range of 

biophysical ecosystem goods and services provided by these woodlands is extensive, 

ranging from the provision of food, fuel, medicine and construction materials to larger-

scale carbon and water management services. More than 100 million people live in, or 10 

obtain resources from, miombo, and a high proportion (up to 50% in some areas) of rural 

income is dependant on the woodlands, particularly among the poorest of the poor 

(Campbell et al. 2007). These woodlands formerly covered 2.7 million km2 (Frost 1996), 

but are currently being lost and degraded to meet agricultural and energy needs (Brouwer 

and Falcão 2004). Rural land use in the miombo region has for centuries been dominated by 15 

subsistence agriculture, in which woodland is cleared, by burning and felling, to grow 

staple crops such as maize and sorghum for a number of years before abandonment (Frost 

1996; Williams et al. 2008).  

Rapidly increasing atmospheric CO2 concentrations have prompted increasing 

attention to the preservation of carbon stocks in tropical ecosystems. The development of a 20 

system of payments to reduce emissions from deforestation and degradation (REDD, 

(Angelsen et al. 2009)), relies on knowledge of the magnitude of such carbon stocks. 
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Indeed Houghton (2005), show that knowledge of the carbon density (tC/ha) of tropical 

land cover is the major uncertainty in the estimation of carbon emissions from land use 

change. Here we address the need for carbon density information, reporting ecosystem 

carbon stocks for a site in the relatively understudied, but wide-spread and unique, miombo 

savanna woodlands. There is a high degree of uncertainty in carbon density estimates for 5 

savannas, particularly in the below-ground component of biomass, which in some savannas 

are reported to exceed the above-ground biomass (Grace et al. 2006). Furthermore, in 

savanna woodlands, soil carbon stocks typically exceed woody carbon stocks, and when the 

woodland is cleared, loss of soil carbon can be a significant flux (Walker and Desanker 

2004). Thus there is a need for: (1) estimates of carbon densities in all the major carbon 10 

pools of miombo woodlands; (2) an assessment of the spatial variability of these stocks; 

and (3) a quantification of the correlation between the different carbon pools, which might 

allow for efficient sampling. 

This paper seeks to address these needs by providing estimates of ecosystem carbon 

stocks in miombo woodlands for a part of Africa where such data have not been collected 15 

previously. The possible existence of a large below-ground biomass pool is investigated 

and the root:stem biomass ratio is placed in the context of a global data set. We also 

examine the links between soil and woody carbon stocks and relate these to soil textural 

properties. The focus here is the woodlands of Sofala Province, in central Mozambique. 

This paper is novel in that it presents a stem diameter-root biomass allometric for the 20 

miombo ecosystem, and quantifies all the major ecosystem carbon stocks at a single 

miombo site.  
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METHODS 

SITE DESCRIPTION.– The Nhambita area (Fig. S1 & S2) is in the south of Gorongosa District 

in the province of Sofala in central Mozambique (18.979°S, 34.176°E). The area is partly 

inside the Gorongosa National Park, and occupies the western flank of the Rift Valley, the 

Báruè Midlands (Tinley 1977). Nhambita falls into the Köppen Aw climate classification 5 

(Tropical Savanna) with a hot wet summer and cooler dry winter. The nearest source of 

meteorological data is a weather station at Chitengo, 25 km to the east of Nhambita. Here, 

mean annual rainfall (Oct 1-Sept 30) for the years 1956-1969 and 1998-2007 was 850±269 

mm (mean ±SD). The rainfall is highly seasonal, with 82 percent falling in the five months 

between November and March. May-September receive less than 20 mm/mo, on average. 10 

Most of the study area is on free-draining sandy soils derived from metamorphic and 

migmatitic gneiss and granite (Tinley 1977). The soils in the south east of Nhambita are 

more hydromorphic in nature. On the sandy soils, termite (Macrotermes) mounds provide 

‘islands’ of loamy fertile soils and occur at a density of around 1 per hectare (Tinley 1977). 

The vegetation consists of open woodlands, mainly dominated by species of the 15 

Caesalpinioideae, which includes the miombo species. In the less well drained areas, 

species from the genera Acacia and Combretum dominate. The trees form an open canopy 

surrounded by a continuous grass layer. The grass senesces in the dry season and provides 

the fuel for the frequent wildfires. 

CARBON STOCK ASSESSMENT.– The major carbon pools of the ecosystem were quantified 20 

(tree stem and root biomass; sapling stem and root biomass; and soil carbon from 0-50 cm 

depth). To estimate vegetation (tree and sapling) carbon stocks we used the standard 
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approach (Chave et al. 2004) of a tree inventory recording stem diameter (DBH) and an 

allometric relationship to convert diameter to estimates of woody mass. Previous work has 

shown that the choice of allometric equation can strongly influence the calculation of tree 

biomass in miombo (Williams et al. 2008), a widespread problem (Chave et al. 2005). Thus 

we developed a new site-specific allometric equation for both above- and below-ground 5 

biomass.  

TREE STEM AND ROOT BIOMASS.– Stem and root biomass are calculated based on the 

inventory of 58 plots (total area 27.2 ha) and a new allometric model that relates diameter 

to stem and root biomass. Our approach was to compile as much inventory data as possible, 

even if it was collected for different purposes. As such we used data from 58 plots recorded 10 

between 2004 and 2007: 

 Fifteen square permanent sample plots (PSPs) of 1 ha, randomly located with respect 

to the network of tracks and roads in the study area. We established the plots 250 m 

from, and perpendicular to, 15 randomly chosen points on the road and track 

network (‘road markers’). 15 

 Thirty square plots of 0.25 ha (Williams et al. 2008), also perpendicular to the 15 

road markers (above), but at different distances from the road marker (randomly 

selected from 200, 450, 700 and 950 m). 

 Eight triangular 0.28 ha plots subsequently used in the fire experiment of Ryan and 

Williams (2010), near the centre of the study area. 20 
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 Five circular plots of 0.5 ha sampled away from the road network on a randomly 

chosen path through the study area. 

Appendix 1 contains a map of the plot locations. On each plot all live, standing stems >5 

cm DBH (diameter at breast height, 1.3 m) were inventoried. 

DESTRUCTIVE HARVEST.– To estimate biomass from DBH, allometric models of stem, root 5 

and total (stem+root) biomass were parameterised from destructively sampled stems in the 

study area. The allometric models are of the form: 

log(B) = α⋅ log(DBH)+β 

Where B is biomass of the stem or root, and D is the stem diameter. α and β are 

parameters to be estimated with linear least squares (Matlab, Mathworks Inc). log indicates 10 

the natural logarithm. 

In October 2007, 29 trees were destructively harvested. Target trees were chosen 

from the dominant four species in the inventory. The DBH range of the target trees exceeded 

the inter-quartile range of each species in the inventory. At five randomly located points on 

the road network, we located trees that matched the DBH and species criteria as closely as 15 

possible. These trees were felled and weighed, separating trunk and branch biomass. 

Thereafter, multiple subsamples were taken from the felled trees from both the trunk (cubes 

~10x10x10 cm) and branches (cylinders ~10 cm long). These subsamples were weighed 

and then dried in an oven (~80 ° C until constant mass) to determine their dry mass fraction 

(DMF, defined as dry mass/wet mass). Three subsamples from 19 of the trees were returned 20 
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to Edinburgh for %C analysis (Carbo-Erba/400 automated CN analyser). Biomass (Bdest, 

kgC) was calculated as the product of wet mass, DMF and %C. 

Twenty three of the destructively harvested trees were excavated to provide data on 

coarse root biomass. For each sampled stem, the area under the canopy was excavated to 

approximately 1 m depth using a mechanical digger. The excavated soil was sifted by hand 5 

and large root (>2 cm diameter) biomass was collected, weighed and then subsampled for 

moisture content and %C using the same method as for the aboveground parts (see above). 

Any large roots that extended deeper than 1 m were excavated individually, although it was 

often impossible to follow them to their very end; we excavated beyond 2 m in most cases, 

and until the remaining roots had a diameter < 5 cm. Large primary roots (>10 cm 10 

diameter) were weighed and sub sampled separately from smaller roots. 

We parameterised separate allometric models for stem, root and total biomass, using 

the log-transformed variables to reduce heteroskedasticity. Values were back-transformed 

directly without the application of correction factors (Sprugel 1983).  

SAPLING STEM AND ROOT BIOMASS.– Saplings, defined as stems <5 cm DBH but greater than 15 

0.3 cm at 10 cm above ground level (D10), were measured and recorded on the eight fire 

experiment plots in 2007. Allometric models of sapling stem, root and total biomass were  

parameterised with data from a destructive sample of 45 saplings. The harvested saplings 

were located in the areas that had to be cleared to excavate the large trees (see above). 

Power fits did not give satisfactory results, so 2nd order polynomials were fitted to the data, 20 

to relate D10 to wet biomass. Because the saplings typically had 3 or 4 similar sized stems 
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growing from a single root stock, we calculate an ‘effective’ D10e of each organism, 

defined as: 

    

 

D10e =  2 ⋅
π D10

2
 
 
 

 
 
 

2

i=1

s

∑
π

 (1) 

Where D10e is the effective diameter of a multiple stemmed sapling and D10 is the diameter 

at 10 cm above the ground of each of the of the s stems.  5 

Ten of the saplings were dried (~80°C for 24 hrs) and reweighed to determine dry 

mass fraction. We measured %C on subsamples of seven saplings using the same 

equipment as for the large trees (above). 

SOIL PROPERTIES.– Soil was sampled on 13 of the permanent sample plots (PSPs). On each 

PSP, nine sampling points were established on a 20 m grid. At five of the sampling points 10 

small pits were dug, and soil sampled at depths of 0, 5, 15, 25 and 50 cm. At the remaining 

sampling points only surface soil was sampled.  

For elemental analysis (%C and %N) all samples were dried, sieved (2 mm sieve) 

and ball milled to produce a fine flour. Percentage C and N was determined using the same 

equipment as the woody samples (above). For particle size analysis, samples at similar 15 

depths were blended to produce one sample per depth per plot. These blended samples were 

sieved (< 2mm), and then air dried. To de-flocculate the sample prior to particle size 

analysis, each sample was left overnight in a sonic bath, in a solution of 4 percent sodium 

hexametaphosphate. It was then analysed for percent particle size by volume using a 
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Beckman Coulter LS 230 laser diffraction system. We report the percentage (by volume) of 

clay (d< 0.002 mm diameter), silt (0.002<d<0.05 mm) and sand (0.05 mm<d<2 mm), 

where d is the particle diameter. 

To estimate bulk density, three replicate samples were extracted using a sharpened 

steel cylinder of known volume (209 cm3) from the depth profile at the centre of each plot 5 

at 2.5 and 30 cm depth. Dry soil bulk density was calculated from dry weight (samples 

were placed in an oven at 40 °C for 24 hours). Total soil C stock was determined by 

stepwise integration of the profile data of soil C content from 0-50 cm.  

STATISTICAL TESTS.– The distribution of plot-level carbon stocks was tested for goodness of 

fit to the normal and Weibull distributions, using the Jarque-Bera (J-B) and Anderson-10 

Darling test, respectively. Having established an appropriate distribution, we report the 

estimated population mean and its 95% confidence interval, estimated by maximum 

likelihood using Matlab. Unless otherwise stated, ± indicates the standard error of the 

mean. For piecewise curve fitting we used the Shape Language Modeling tool (D'Errico 

2009). We also assessed the degree of spatial dependence of our sampled plots by plotting 15 

and inspecting an experimental semi-variogram. All curve fitting was done in Matlab using 

the curve fitting toolbox (v2.1). We report the adjusted r2 and the root mean squared error 

(RMSE) of each fit. 

TERMINOLOGY.– Throughout this paper we use B to denote tree biomass, SB for sapling 

biomass, R:S for the root:stem ratio. Subscript ‘s’ for stem, ‘r’ for root, ‘t’ for s+r. DBH 20 

indicates diameter at 1.3 m in cm, D10 diameter at 10 cm above the ground, in mm. All 

stocks are in tC/ha on a dry weight basis. We refer to the attributes of the destructively 
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harvested stems with the subscript ‘dest’. log indicates a natural log. All species names 

follow Coates Palgrave (2002). 

RESULTS 

TREE STEM AND ROOT BIOMASS.– The 29 sampled trees ranged in DBH from 5-73 cm. As 

well as the 20 target trees of the five dominant species (Brachystegia boehmii Taub., 5 

Brachystegia spiciformis Benth., Combretum adenogonium Steud. ex A.Rich., 

Diplorhynchus condylocarpon (Muell.Arg.) Pichon), we included nine other trees including 

two further species (Crossopteryx febrifuga (Afzel. ex G.Don) Benth. and Pericopsis 

angolensis (Baker) Meeuwen) that were excavated to allow access to the target species. The 

sampled stems had wet mass from 8 -10,309 kg (mean 1,043 kg). The subsamples had dry 10 

mass fraction (DMF, fresh mass/dry mass) that averaged 0.65±0.01 for the trunk and 

0.59±0.02 for the branches. Trunk subsample moisture content was significantly different 

from the branch subsamples (two tailed t-test, P <0.0001), so dry mass was calculated 

separately for branch and trunk mass, using stem specific moisture content values. This 

calculation yielded dry mass estimates of 4 - 6,954 kg dry matter (mean 674 kg). Percent C 15 

values were not different (two tailed t-test, P = 0.366) between trunk and branch 

subsamples, so the mean (47%±0.20) was used for all conversions to C mass. Final values 

of stem biomass ranged from 2-3268 kg C (mean 320 kg C).  

Root mass for the 23 excavated trees varied from 1-760 kg C, with a mean of 123 

kg C. DBH of the excavated trees ranged from 5-72 cm. Similar to stem values, root carbon 20 

content also averaged 47±0.23 percent. Dry mass fraction averaged 0.59±0.01. 
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We pooled all destructive data from all species to produce one allometric model for 

the site, after preliminary analysis showed no significant difference (no separation of 95% 

CIs) in the model parameters for a fit of DBH,dest and Bdest for the different species. 

Natural log-transformed allometric models of diameter (cm) vs stem, root and total 

woody biomass (kgC) fitted well (Fig. 1, upper panel; Table 1). The stem and root 5 

allometric models showed that root:stem decreases with stem size (Fig. 1, lower panel; 

Table 1). 

INVENTORIES.– The allometric equations were applied to the inventory data to estimate 

stem, root and total woody biomass at a plot level. Plot total tree biomass (Bt) was not 

normally or log-normally distributed, but the Anderson-Darling test showed that our sample 10 

followed a Weibull distribution. Bt varied from 3.1–86.5 tC/ha, with a mean of 32.1 (95% 

CI 28.4, 36.6). Bs ranged from 1.9-60.9 tC/ha with a mean of 21.2 (18.7, 24.3). Br ranged 

from 1.1-17.0 with a mean of 8.5 (7.7-9.6). Plot-level R:S was normally distributed and 

varied from 0.27–0.58, mean 0.42 (0.41-0.44) and was weakly but significantly correlated 

with Bt (R:S = -0.00238 Bt + 0.499, r2 = 0.45, P<0.0001). Br was well correlated with Bs (Br 15 

= 0.87 Bs
0.76, r2 = 0.94, RMSE = 0.87 tC/ha, N = 58). 

Plot basal area was a good predictor of plot total woody carbon stock (Figure 3): 

Bt =  3.972⋅ BA  (2) 

r2 = 0.76, RMSE = 7.82 tC/ha, N = 58 



 14 

Where: Bt is total (above and below ground) tree carbon stock (tC/ha) and BA is tree basal 

area (m2/ha). 

SAPLING BIOMASS.– The allometric equations for sapling stem and root biomass were fitted 

with 2nd order polynomials and had r2 from 0.65-0.75 (Table 2). Dry mass fraction was 

0.61±0.05, based on moisture measurements of the 10 saplings that were dried. %C was 5 

44.6±0.3, based on 7 subsamples.  

Using these allometric equations, and the dry mass and %C data to calculate 

standing stock of sapling biomass, yielded the following plot level data: SBr, ranged from 

0.7-5.1 tC/ha, with a mean of 2.5 tC/ha (95%CI 1.0-3.9). SBs ranged from 0.3-2.4 tC/ha, 

with a mean of 1.1 tC/ha (0.49-1.8); SBt ranged from 1.0-7.5 with a mean of 3.6 tC/ha (1.5-10 

5.6). Plot level sapling root:stem averaged 2.16 (2.13-2.19). 

SOIL CARBON AND NITROGEN.– Across the 13 PSPs with soil data, soil carbon content was 

~3 percent at the surface (Fig 4 c), decreasing to ~ 1 percent at 15 cm depth, and remained 

around this value at greater depths. Nitrogen content followed a similar profile (Fig 4 d) 

with the C:N ratio decreasing from 17.2 at the surface to 14.5 at a depth of 0.5 m. 15 

Soil carbon stocks (Fig 5) averaged 8.0±0.4 tC/ha (± 1 SEM) from 0-2.5 cm, 

17.7±2.0 from 2.5-10 cm, 16.0±2.4 from 10-20 cm and 34.5±5.4 tC/ha from 20-50 cm. 

Summing the 0-50 cm profile, soil C stocks averaged 76.3±9.9 tC/ha. However, the 

distribution of the 13 plot-level soil C stock values was almost uniform and ranged from 

32-133 tC/ha (Fig 2), so that estimating the population mean is problematic. The mean bulk 20 

density at the surface was 1.2±0.03 t/m3, and 1.5±0.04 t/m3 at 30 cm.  
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SOIL TEXTURE.– Soil texture at plot level varied from 3-9 percent clay, 20-48 percent silt 

and 46-76 percent sand, with a profile mean of 6, 33 and 60 percent, respectively. There 

was very little variation in soil texture with depth: mean silt content decreased down the 

profile from 34 to 28 percent and clay content increased from 5.6-6.7  percent (Fig 4a & b). 

Soil texture was correlated with plot level soil carbon stock (Fig 6, Table 3). There 5 

was no correlation between plot level tree biomass (Bt) and soil carbon stock (Cs) (P = 0.5 

r2 =0.05, N = 13), and total tree biomass was only weakly negatively correlated with clay 

content (P = 0.16, r2 = 0.10; see Table 3). 

DISCUSSION 

OVERVIEW AND COMPARISON WITH OTHER SITES. – At our site, ecosystem carbon stocks 10 

totalled 110±13 tC/ha (Table 4). Soil carbon dominated the total, contributing 76.2 tC/ha 

(70%). Woody biomass totalled 33.3 tC/ha (30%), dominated by tree biomass (29.7 tC/ha). 

The division between soil carbon and total carbon stocks in Nhambita (70% in soil) is 

similar to the 60 percent reported in Walker and Desanker (2004) for Malawian miombo.  

Above-ground woody biomass in Nhambita (21.2 tC/ha) can be compared to Frost’s 15 

(1996) “average for dry miombo” in Zimbabwe and Zambia of 26 tC/ha (dry mass is 

converted to C mass assuming 47 %C throughout this discussion). Comparing this study to 

that of Ribeiro et al (2008a) in Niassa Reserve in miombo woodland in Northern 

Mozambique (annual rainfall 900-1200 mm), our woodlands falls into their ‘Medium 

density woodland’ class for which Bs was 19.5 tC/ha. Williams’ (2007) summary of the 20 

data in Post (1982) and Gibbs (2006), found a “live biomass” of 28.2 tC/ha (our data: 29.7) 
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at the latitude of Nhambita (interpolating their data points with a spline), and soil carbon 

stocks of 86.6 tC/ha (to 1 m depth; our data 76.2 tC/ha, to 50 cm). 

Frost (1996) developed a relationship between annual rainfall and aboveground 

woody biomass in miombo: using a value for our site of 850 mm/yr, and Frost’s equation 

(Y= 0.14 X – 56.21; Y is Mg/ha of dry matter; X is rainfall in mm), our biomass data (21.2 5 

tC/ha) are lower that the equation’s prediction (29.5 tC/ha).  

Plot level root:stem ratios in this study varied from 0.28-0.58, with a mean of 0.42. 

Root biomass estimates in miombo are rare, but the average of root:stem in this study 

(0.42) can be compared to Chidumayo’s (1997) values of 0.53 and 0.47 for two wet 

miombo plots in Zambia (calculated in Frost 1996). Outside of the miombo region, we 10 

found comparable data on Bs and R:S for 18 sites in 11 countries in Latin America and 

Africa (Sarmiento and Vera 1979; Murphy and Lugo 1986; Castellanos et al. 1991; 

Woomer 1993; Malimbwi et al. 1994; Frost 1996; De Castro and Kauffman 1998; Tiessen 

et al. 1998; Lilienfein et al. 2001; Jaramillo et al. 2003). This summary shows that R:S falls 

rapidly as Bs increases, but is very variable, up to values of Bs of around 10 tC/ha (Fig. 7), 15 

thereafter R:S levels off at between 0.3 and 0.5. It can be modelled with a piecewise linear 

equation, fitted with SLM (Fig. 7):  

Where Bs < 11:   R:S = -0.30 Bs + 3.62 

Where Bs ≥ 11:   R:S = 0.35     (3) 

Where R:S is the root:stem ratio, Bs is aboveground biomass (tC/ha).  20 
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For the data from this study, a simple linear model can be fitted: 

R:S = -0.0046⋅ Bs + 0.498 (4) 

N = 60, r2=0.46, RMSE = 0.041. 

The mean R:S found in this study (0.42) was slightly higher than that found at sites with 

comparable above-ground biomass (R:S = 0.35), according to our review of the literature 5 

(Fig 7). Also, our plot-level R:S data showed a different relationship with aboveground 

biomass: the Nhambita plots with low Bs had much lower R:S than comparable sites in the 

literature (Fig. 7). This suggests a difference, probably in stem size distributions, between 

low biomass miombo plots, and other savannas with low biomass. Some of our low Bs plots 

are dominated by a few, large trees, and thus have a lower R:S than if they were composed 10 

of many small trees which tend to have a high individual R:S. 

The Bs vs R:S relationship can be compared to the IPCC LULCF Good Practice 

Guidelines (Penman et al. 2003) default figure for ‘Woodland/savanna’ of 0.48±0.19 SD, 

which is based on Australian and Indian data. This default figure appears to underestimate 

root biomass for low biomass savannas in the neotropics and West Africa, but is similar to 15 

values from this study, and for savannas with BS > 11 tC/ha. 

THE RELATIONSHIP BETWEEN CARBON STOCKS IN MIOMBO WOODLAND.– This study has 

shown that soil and woody carbon stocks are the dominant carbon pools in miombo 

woodland, but that the size of each carbon pool was not correlated. Soil carbon is highly 

variable (32-133 tC/ha; Fig 2), and soil texture explained around half of this variation (Fig 20 

6; Table 3) as is common in tropical soils (Feller and Beare 1997). Woody biomass was 
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less variable (3.1-86.5 tC/ha), but only weakly correlated with soil texture. This decoupling 

of the soil and woody carbon stocks is expected, because although the dynamics of wood 

and soil carbon are clearly linked, there are many other controls on pool size. We 

summarise the key processes below. 

Woody biomass in miombo shows both regional trends with rainfall (see above, 5 

Frost 1996) and smaller scale trends with topography (Chidumayo 1997). The topographic 

trends relate to the catenal patterns, with low woody biomass in dambos (bottom lands with 

impeded drainage (von der Heyden 2004)) and higher biomass on interfluves (Chidumayo 

1997). This catenal pattern may account for the weak negative correlation between clay 

content and woody biomass found in this study. However, this simple dambo-interfluve 10 

pattern is far from universal, and we have frequently observed higher levels of woody 

biomass along river lines, compared to interfluves, primarily on deeper, more fertile 

alluvial soil.  

The spatial pattern of woody biomass described above is subject to frequent and 

widespread disturbances (Frost 1996) that reduce biomass: primarily clearance for 15 

agriculture (Williams et al. 2008), charcoal production (Brouwer and Falcão 2004; Falcão 

2008) and fire (Ryan and Williams 2010). Elephant activity can also reduce tree 

populations significantly (Guy 1989; Ribeiro et al. 2008b), as can rare frosts 

(Tafangenyasha 1997), and the interactions of all these effects. Clearance for agriculture is 

the start of a cycle whereby woody biomass is reduced nearly to zero for the duration of the 20 

agricultural activity, but then recovers to pre-disturbance levels within around 30 years of 

abandonment (Williams et al. 2008), creating a mosaic of land cover. The regular fires in 
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the miombo region can, if too frequent or intense, cause mortality of large and small trees 

and prevent regeneration (Ryan and Williams 2010), thus leading to a gradual degradation 

of the woodlands until no woody tree biomass is present (Furley et al. 2008). 

Soil carbon is also generally reduced after clearance for agriculture (Walker and 

Desanker 2004). Indeed Walker and Desanker (2004) report that upon conversion to 5 

agricultural land, miombo woodland loses around 47 percent of its soil C (to 1.5 m depth). 

Using the same proportion, conversion to agriculture at our site would thus result in a loss 

of 36 tC/ha from the soil, slightly larger than that if all the tree biomass were to be lost 

(29.7 tC/ha). Soil carbon is also lower on plots subjected to frequent fires, but the effect of 

different fire regimes is similar in magnitude to the influence of soil texture (Bird et al. 10 

2000). 

It is important to note that there is no a priori reason to think that low woody cover 

leads to lower inputs to the soil carbon pool. Grass productivity in miombo is comparable 

to tree productivity and because low woody biomass tends to encourage high grass biomass 

(Frost 1996), the input to the soil could be similar under high and low woody cover. 15 

However, evidence from Bird et al (2000) suggests that soil carbon stocks are higher 

beneath trees than in adjacent open areas of woodland, which argues for the importance of 

carbon inputs from trees (or animals that defecate beneath them). However, the lack of a 

correlation between woody and soil carbon stocks in this study indicates that many other 

factors influence this relationship at larger scales. 20 

The correlation between soil texture and soil carbon stocks shown here (Fig. 6) 

offers the most promising route to mapping soil carbon stocks and dealing with their 
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variability on a range of spatial scales. In contrast, tree below-ground biomass is very well 

correlated with above-ground biomass, and Br can easily be estimated using the R:S 

reported here (where only plot level data is available) or our allometric equations (if stem 

level data is available). 

LIMITATIONS.– In summarising ecosystem C stocks, several caveats must be mentioned. 5 

Firstly our plots are located on a transition from miombo woodland to the plains of the Rift 

valley, where a change in soil type produces a more diverse and complex woodland 

formation. Secondly, our plots are not evenly or randomly distributed across the landscape, 

but instead follow the network of small tracks and roads that provide access, and are 

clumped together. To address this, we examined a variogram of Bp (Fig. S3). The variogram 10 

showed no relationship between separation distance and the variance. This suggests that the 

variance between closely located plots (<2 km apart) is no different from more widely 

spaced plots (>10 km) and supports the use of the closely spaced plots as independent data. 

Furthermore, if we use the mean of each set of plots perpendicular to the same road marker 

as a single value, then our result for above-ground woody biomass is 21.0 (95% CI 18.1-15 

23.8; N = 28), very similar to the mean of the 58 plots: 21.2 (18.7-24.3).  

A further caveat is that the use of allometric models, even site specific ones, can 

introduce significant biases depending on their form, and how the heteroskedasticity of the 

destructive data is dealt with (Brown et al. 1989; Parresol 1999). Our estimates are bound 

to be subject to such biases, a subject we will address in a further paper. We also note that 20 

soils were only sampled at 13 of the plots rather than at all 58. Finally, we did not measure 

the more transient carbon pools such as fine roots, tree leaves and grass biomass, which 
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contribute to the total ecosystem carbon stocks. The major missing pool is likely to be grass 

biomass. 

CONCLUSIONS 

At a site in the miombo woodlands of Mozambique, carbon stocks are dominated by soil 

carbon: 76 tC/ha of the total 110 tC/ha are in the surface 50 cm of soil. However soil 5 

carbon is very variable across the landscape, and has a broad and almost uniform 

distribution, rather than converging around a mean. This requires further investigation at 

various spatial scales if estimates of carbon stocks in this ecosystem are to be better 

constrained. Soil texture is a reasonable predictor of soil carbon stocks, but soil C was not 

obviously correlated to woody C stocks. 10 

Woody tree carbon averaged 21.3±1.4 tC/ha above-ground and 8.6±0.5 tC/ha 

below-ground, based on allometric relationships. Sapling total biomass averages 3.6±0.9 

tC/ha. Coarse root biomass is a major carbon pool in these ecosystems and is proportionally 

more important at low values of above-ground biomass because of shifts in root:stem ratio 

of trees as they grow.  15 
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TABLES 

TABLE 1. Tree biomass allometric equations. Bdest is the destructively sampled tree stem biomass (s), tree 

coarse root biomass (r), and total tree biomass (t, i.e. stem + root), all in kgC. DBH,dest is diameter at breast 

height in cm. Log is the natural log. R:Sdest is the root stem ratio. 

Equation R2 RMSE N 

log(Bdest,s) = 2.601 log(DBH,dest)-3.629 0.93 0.52 log(kgC) 29 

log(Bdest,r) = 2.262 log(DBH,dest)-3.370 0.94 0.43 log(kgC) 23 

log(Bdest,t) = 2.545 log(DBH,dest)-3.018 0.98 0.30 log(kgC) 23 

R:Sdest = -0.2671 • log(DBH,dest) + 1.334 0.36 0.27 23 

 5 
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TABLE 2. Sapling biomass allometric equations. SBdest is wet sapling biomass in kg, D10e is the effective 

diameter (mm) of the harvested saplings at 10 cm above ground (see Eq 1). 

Equation R2 RMSE N 

SBs,dest = 0.0007645⋅ D10e2 + 0.004645⋅ D10e + 0.03876 0.65 0.47 kg 45 

SBr,dest = 0.001784⋅ D10e2 + 0.0001413⋅ D10e + 0.15839 0.72 0.84 kg 45 

SBt,dest = 0.0025485⋅ D10e 2 + 0.0047865⋅ D10e + 0.19715 0.75 1.1 kg 45 
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TABLE 3. Relationships between soil texture and carbon stocks. Cs is soil carbon stock (0-50 cm) in tC/ha, Bt 

is tree carbon stock (above- and below-ground, tC/ha), K and Z are clay and sand contents in percent by 

volume.  

Equation r2 RMSE (tC/ha) P N 

Cs = 12.98⋅ K + 0.2 0.53 25.5  0.004 13 

Cs = -2.70⋅ Z + 243 0.51 24.9 0.004 13 

Bt = -3.70⋅ K + 54.3 0.10 16.8 0.16 13 

Bt = 0.81⋅ Z -17.2 0.13 16.6 0.13 13 

 

5 
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TABLE 4. Summary of ecosystem carbon stocks in the Nhambita area. All values in tC/ha. ± indicates the 

standard error of the mean. 

Carbon pool  Carbon stock (tC/ha) 

saplings stem  1.1±0.3   

 roots  2.5±0.6   

 sapling total  3.6±0.9  

trees stem  21.2±1.4   

 roots  8.5±0.5   

 tree total   29.7±2.1  

soil  0-2.5 cm  8.0±0.4   

  2.5-10 cm  17.7±2.0   

  10-20 cm  16.0±2.4   

  20-50 cm  34.5±5.4   

 soil total   76.3±9.9  

Grand total     110±13 
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FIGURE CAPTIONS 

FIGURE 1. A) The allometric models of stem, root and total biomass and the destructively harvested data. 

The models are fitted to the log of DBH and Bdest, but are shown back transformed. B) The allometry of the 

root:stem ratio of the destructively harvested stems.  

FIGURE 2. Histograms of plot-level stem, root and total woody biomass carbon stocks on the 58 plots, and 5 

soil carbon stocks (to 50 cm depth) on 13 plots, as well as plot-level root:stem on the 58 plots. Note change in 

X-axis values for soil carbon stocks. 

FIGURE 3. Plot-level woody carbon stocks regressed against plot basal area. The dashed line shows the 95% 

prediction interval for a new observation. 

FIGURE 4. Mean depth profiles of soil texture and elemental concentrations for the 13 plots. The black line 10 

shows the mean and the grey area the full range of the observations.  

FIGURE 5. Soil carbon stocks at various depths on thirteen of the 1 ha permanent sample plots.  

FIGURE 6. Soil texture regressed against soil carbon stock. All data are plot means (N=13) averaged down 

the profile (0-50 cm depth) in the case of texture, and summed down the profile in the case of carbon stock. 

Thick lines shows the line of best fit, and the dotted lines show the 95% predication intervals.  15 

FIGURE 7. Root:stem ratios as a function of aboveground biomass, across the seasonally dry tropics. 

Definitions of stem and root biomass vary according to the source, but are ‘coarse’ roots (often >2 cm 

diameter) and trees (mainly >5 cm DBH).  
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Figure 5.  
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Figure 6. Soil texture regressed against soil carbon stock. All data are plot means (n=13) averaged 

down the profile (0-50 cm depth) in the case of texture and summed down the profile in the case of 

carbon stock. Thick lines shows the line of best fit, and the dotted lines show the 95% predication 5 

intervals. 
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Figure 7. 
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APPENDIX 1 

Figure S1. Study Area Location 
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Figure S2. Plot locations 
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Figure S3. Variogram of the above ground biomass of the sample plots 

Separation distance of the plots is plotted against the mean variance 

between them, in 1 km bins.  
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