Query Optimization for Semistructured Data using Path Constraints in a Deterministic Data Model

Citation for published version:

Digital Object Identifier (DOI):
10.1007/3-540-44543-9_13

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Research Issues in Structured and Semistructured Database Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Query Optimization for Semistructured Data using Path Constraints in a Deterministic Data Model

Peter Buneman*
University of Pennsylvania
peter@central.cis.upenn.edu

Wenfei Fan†
Temple University
fan@joda.cis.temple.edu

Scott Weinstein‡
University of Pennsylvania
weinstein@linc.cis.upenn.edu

Abstract

Path constraints have been studied in [4, 11, 12, 13] for semistructured data modeled as a rooted edge-labeled directed graph. They have proven useful in the optimization of path queries. However, in this graph model, the implication problems associated with many natural path constraints are undecidable [11, 13]. A variant of the graph model, called the deterministic data model, was recently proposed in [10]. In this model, data is represented as a graph with deterministic edge relations, i.e., the edges emanating from any node in the graph have distinct labels. The deterministic graph model is more appropriate for representing, for example, ACeDB [27] databases and Web sites.

This paper investigates path constraints for the deterministic data model. It demonstrates the application of path constraints to, among other things, query optimization. Three classes of path constraints are considered: the language P_c introduced in [11], an extension of P_c, denoted by P_c^e, by including wildcards in path expressions, and a generalization of P_c^e, denoted by P_c^*, by representing paths as regular expressions. The implication problems for these constraint languages are studied in the context of the deterministic data model. It shows that in contrast to the undecidability result of [11], the implication and finite implication problems for P_c are decidable in cubic-time and are finitely axiomatizable. Moreover, the implication problems are decidable for P_c^e. However, the implication problems for P_c^* are undecidable.

1 Introduction

Semistructured data is usually modeled as an edge-labeled rooted directed graph [1, 8]. Let us refer to this graph model as the semistructured data model (SM). For data found in many applications, the graph is deterministic, i.e., the edges emanating from each node in the graph have distinct labels. For example, when modeling Web pages as a graph, a node stands for an HTML document and an edge represents a link with an HTML label from one document (source) to another (target). It is reasonable to assume that the HTML label uniquely identifies the target document. Even if this is not literally the case, one can achieve this by including the URL (Universal Resource Locator) of the target document in the edge label. This yields a deterministic graph. As another example, consider ACeDB [27], which is a database management system popular with biologists. A graph representing an ACeDB database is also deterministic. In general, any database with “exportable” data identities can be modeled as a deterministic graph by including the identities in the edge labels. Here by exportable identities we mean directly observable identities such as keys. Some relational and object-oriented database management systems support exportable identities. In particular, in the OEM model (see, e.g., [3]), there are exportable object identities. To capture this, we consider a data model for semistructured data which is a variant of SM, referred to as the deterministic data model (DM). In DM, data is represented as a deterministic, rooted, edge-labeled, directed graph. An important feature of DM is that in this model, each component of a database is uniquely identifiable by a path.

A number of query languages (e.g., [3, 9, 24]) have been developed for semistructured data. The study of semistructured data has also generated the design of query languages for XML (eXtensible Markup Language [7]) documents (e.g., [17]). In these languages, queries are described in terms of navigation paths. To optimize path queries, it often appears necessary to use structural information about the data described by path constraints. Path constraints are capable of expressing natural integrity constraints that are a fundamental part of the semantics of the data, such as inclusion dependencies and inverse relationships. In traditional structured databases such as object-oriented databases, this semantic information is described in schemas. Unlike structured databases, semistructured data does not have a schema, and path constraints are used to convey the semantics of the data. The approach to querying semistructured data with path constraints was proposed in [4] and later studied in [11, 12, 13]. Several proposals (e.g., [6, 19, 21, 22]) for adding structure or type systems to XML data also advocate the need for integrity constraints that can be expressed as path constraints.

To use path constraints in query optimization, it is important to be able to reason about them. That is,
we need to settle the question of constraint implication: given that certain constraints are known to hold, does it follow that some other constraint is necessarily satisfied? In the context of databases, only finite instances (graphs) are considered, and constraint implication is referred to as finite implication. In the traditional logic framework, both infinite and finite instances (graphs) are permitted, and constraint implication is called unrestricted implication or simply implication. For the graph model SM, it has been shown that the implication problems associated with many natural integrity constraints are undecidable. For example, the implication problem for the simple constraint language P_1 studied in [11, 12, 13] is r.e. complete, and the finite implication problem for P_1 is co-r.e. complete [11, 13]. In addition, we have already studied the connection between object-oriented databases and semistructured databases in SM with P_1 constraints in [12]. The results of [12] show that the connection is not simple.

In this paper, we investigate path constraints for the deterministic data model DM. We demonstrate applications of path constraints to semantic specification and query optimization, and study the implication problems associated with path constraints. We show that in contrast to the undecidability result of [11, 13], the implication and finite implication problems for P_1 are decidable in cubic-time and are finitely axiomatizable in the context of DM. That is, there is a finite set of inference rules that is sound and complete for implication and finite implication of P_1 constraints, and in addition, there is an algorithm for testing P_1 constraint implication in time $O(n^3)$, where n is the length of constraints. This demonstrates that the determinism condition of DM simplifies the analysis of path constraint implication. We also introduce and investigate two generalizations of P_1. One generalization, denoted by P_1^r, is defined by including wildcards in path expressions. The other, denoted by P_1^w, represents paths by regular expressions. We show that in the context of DM, the implication and finite implication problems for P_1^r are also decidable. However, the implication and finite implication problems for P_1^w are undecidable in the context of DM. This undecidability result shows that the determinism condition of DM does not reduce the analysis of path constraint implication to a trivial problem.

The rest of the paper is organized as follows. Section 2 uses an example to illustrate how path constraints can be used in query optimization. Section 3 reviews the definition of P_1 constraints proposed in [11], and introduces two extensions of P_1, namely, P_1^c and P_1^w. Section 4 studies the implication and finite implication problems for P_1, P_1^c and P_1^w for the deterministic data model. Finally, Section 5 identifies open problems and directions for further work. A cubic-time algorithm for testing implication and finite implication of P_1 constraints is given in an Appendix.

2 An example

To demonstrate applications of path constraints, let us consider Figure 1, which collects information on employees and departments. It is an example of semistructured data represented in the deterministic data model. In Figure 1, there are two edges emanating from root node r, which are labeled emp and $dept$ and connected to nodes Emp and $Dept$, respectively. Edges emanating from Emp are labeled with employee ID's and connected to vertices representing employees. An employee node may have three edges emanating from it: an edge labeled $manager$ and connected to the employee's manager, an edge labeled $supervising$ that connects to a node from which there are outgoing edges connected to employees under his/her supervision, and an edge labeled $name$. Similarly, there are vertices representing departments that may have edges connected to employees. Observe that Figure 1 is deterministic.

Path constraints. Typical path constraints on Figure 1 include:

\[\forall x (\text{emp} \cdot \text{name} \cdot \text{manager}(r, x) \rightarrow \text{emp} \cdot \text{name}(r, x)) \quad (\phi_1) \]

\[\forall x (\text{emp} \cdot \text{name} \cdot \text{supervising}(r, x) \rightarrow \text{emp} \cdot \text{name}(r, x)) \quad (\phi_2) \]

\[\forall x (\text{emp} \cdot \text{name}(r, x) \rightarrow \forall y (\text{manager}(x, y) \rightarrow \text{supervising}(y, x))) \quad (\phi_3) \]

![Figure 1: An example semistructured database in DM](image-url)
Here \(r \) is a constant denoting the root of the graph, variables \(x \) and \(y \) range over vertices, and \("\) is a “wildcard” symbol, which matches any edge label. A path in the graph is a sequence of edge labels, which can be expressed as a logic formula \(\alpha(x, y) \) that holds in the graph if \(\alpha \) is a sequence of edge labels from vertex \(x \) to \(y \). For example, \(\text{emp} \cdot \text{e1} \cdot \text{manager} \) can be expressed as a logic formula, which holds in Figure 1. Path formulas can be naturally generalized to include wildcards. The path constraints above describe inclusion relations. More specifically, \(\phi_1 \) states that if a node is reached from the root \(r \) by following \(\text{emp} \cdot \text{manager} \), then it is also reachable from \(r \) by following \(\text{emp} \cdot \text{managing} \). It asserts that the node of any employee is also an employee that occurs in the database. Similarly, \(\phi_2 \) states that if a node is reached from \(r \) by following \(\text{emp} \cdot \text{managing} \), then it is also reachable from \(r \) by following \(\text{emp} \cdot \text{managing} \). Constraint \(\phi_3 \) states that for any employee \(x \) and for any \(y \), if \(x \) is connected to \(y \) by a \(\text{manager} \) edge, then \(x \) is reachable from \(y \) by following \(\text{supervising} \). These are constraints of \(\mathcal{P}_p^\omega \), one of the path constraint languages studied in this paper.

We generalize \(\mathcal{P}_p^\omega \) by representing paths as regular expressions. This generalization is denoted by \(\mathcal{P}_p^* \). For example, the following are constraints of \(\mathcal{P}_p^* \):

\[
\begin{align*}
\forall x (\text{emp} \cdot _{\text{-}} (r, x) & \rightarrow \forall y (\text{managing} \cdot \text{manager}^*(x, y) \\
& \rightarrow \text{supervising} \cdot _{\text{-}} (y, x))) \quad (\psi_1) \\
\forall x (\text{emp} \cdot _{\text{-}} (r, x) & \rightarrow \forall y (\text{supervising} \cdot _{\text{-}} (x, y) \\
& \rightarrow \text{manager} \cdot \text{manager}^*(y, x))) \quad (\psi_2)
\end{align*}
\]

Here \(* \) is the Kleene star. These constraints describe an inverse relationship between \(\text{manager} \cdot \text{manager}^* \) and \(\text{supervising} \). More specifically, \(\psi_1 \) asserts that for any employee \(x \) and for any \(y \), if \(y \) is reachable from \(x \) by following one or more \(\text{manager} \) edges, then \(x \) is reachable from \(y \) by following \(\text{supervising} \). Similarly, \(\psi_2 \) asserts that if \(y \) is reachable from \(x \) by following \(\text{supervising} \), then \(x \) is reachable from \(y \) by following one or more \(\text{manager} \) edges.

A subclass of \(\mathcal{P}_p^\omega \), \(\mathcal{P}_p \), has been investigated in [11, 12, 13] for the graph model \(SM \) for semistructured data. As opposed to \(\mathcal{P}_p^\omega \) constraints, path constraints of \(\mathcal{P}_p \) contain neither wildcards nor the Kleene star. In the deterministic data model, \(\mathcal{P}_p \) constraints express path equalities. For example, the following can be described by \(\mathcal{P}_p \) constraints:

\[
\begin{align*}
\text{emp} \cdot \text{e1} \cdot \text{manager} &= \text{emp} \cdot \text{e2} \quad (\varphi_1) \\
\text{dept} \cdot \text{d1} \cdot \text{emp} \cdot \text{e1} &= \text{emp} \cdot \text{e1} \quad (\varphi_2)
\end{align*}
\]

Observe that the paths in the constraints above contain neither wildcards nor the Kleene closure.

Semantic specification with path constraints.

The path constraints above describe certain typing information about the data. For example, abusing object-oriented database terms, \(\psi_1 \) asserts that a manager of an employee has an “employee type”, and in addition, is in the “extent” of “class” employee. By using \(\psi_1 \), it can be shown that for any employee \(x \) and any \(y \), if \(y \) is reachable from \(x \) by following zero or more \(\text{manager} \) edges, then \(y \) also has an “employee type” and is in the “extent” of employee. A preliminary type system was proposed in [10] for the deterministic data model, in which the types of paths are defined by means of path constraints. This is a step towards unifying the (programming language) notion of a type with the (database) notion of a schema.

Query optimization with path constraints.

To illustrate how path constraints can be used in query optimization, consider again the database represented in Figure 1. Suppose, for example, we want to find the name of the employee with ID e1 in department d1. One may write the query as \(Q_1 \) (in Lorel syntax [3]):

\[
Q_1: \quad \text{select X.name from r.dept.d1.emp.e1 X}
\]

Given path constraint \(\varphi_2 \), the query \(Q_1 \) can be rewritten as \(Q_1' \):

\[
Q_1': \quad \text{select X.name from r.emp.e1 X}
\]

One can easily verify that \(Q_1 \) and \(Q_1' \) are equivalent.

As another example, suppose we want to find the names of the employees connected to Smith by one or more \(\text{manager} \) edges. Without path constraints, one would write the query as \(Q_2 \) (in Lorel syntax):

\[
Q_2: \quad \text{select Y.name from r.emp}% X, X(\text{manager})* Y \text{ where Y.name = "Smith"}
\]

In Lorel, \% denotes wildcard and \((\text{manager})* \) means one or more occurrences of \(\text{manager} \). Given constraints \(\psi_1, \psi_2, \psi_1 \) and \(\psi_2 \), we can rewrite \(Q_2 \) as \(Q_2' \), which finds the names of the employees under the supervision of Smith:

\[
Q_2': \quad \text{select X.name from r.emp}% Y, Y.\text{supervising}% X \text{ where Y.name = "Smith"}
\]

It can be verified that given those path constraints, \(Q_2 \) and \(Q_2' \) are equivalent. In addition, \(Q_2' \) is more efficient than \(Q_2 \) because it does not require the traversal of sequences of \(\text{manager} \) edges. It should be mentioned that to show \(Q_2 \) and \(Q_2' \) are equivalent, we need to verify that certain constraints naturally hold given that \(\psi_1, \psi_2, \psi_1 \) and \(\psi_2 \) hold. That is, they are implied by \(\psi_1, \psi_2, \psi_1 \) and \(\psi_2 \). In particular, we need to show that \(\psi_3 \) below is implied by \(\psi_1, \psi_2, \psi_1 \) and \(\psi_2 \):

\[
\forall x (\text{emp} \cdot _{\text{-}} \cdot \text{manager}^*(r, x) \rightarrow \text{emp} \cdot _{\text{-}} (r, x)) \quad (\psi_3)
\]

Related work. A more general deterministic data model, \(DDM \), was proposed in [10]. In \(DDM \), edge labels also have structure, and a number of database operations may be obtained by manipulation of this structure. In particular, annotations can be described.
in this structure for the purpose of data provenance, i.e., to keep track by what process some piece of data got into the database. To simplify the discussion we do not consider this general model here.

Path constraints have been studied in [4, 11, 12, 13]. The constraints of [4] have either the form \(p \subseteq q \) or \(p = q \), where \(p \) and \(q \) are regular expressions representing paths. These constraints were investigated for the graph model \(SM \) for semi-structured data. The decidability of the implication problems for this form of constraints was established in [4] in the context of \(SM \). Another path constraint language, \(P_c \), was introduced and studied in [11] for \(SM \). It was shown there that despite the simple syntax of \(P_c \), its associated implication and finite implication problems are undecidable in the context of \(SM \). The details of the proofs of these undecidability results can be found in [13]. The interaction between \(P_c \) constraints and type systems was investigated in [12]. However, none of these papers has considered the deterministic data model. In addition, path constraint languages \(P_{cw} \) and \(P_c \) were not studied in these papers.

Recently, the application of integrity constraints to query optimization was also studied in [25]. Among other things, [25] developed an equational theory for query rewriting by using a certain form of constraints.

The connection between semi-structured databases in \(SM \) with \(P_c \) constraints and object-oriented databases has been studied in [12]. Object-oriented databases are constrained by types, e.g., class types with single-valued and set-valued attributes, whereas databases in \(SM \) are in general free of these type constraints. These types cannot be expressed as path constraints and vice versa. As an example, it has been shown in [12] that there is a \(P_c \) constraint implication problem that is decidable in PTIME in the context of \(SM \), but that becomes undecidable when an object-oriented type system is added. On the other hand, there is a \(P_c \) constraint implication problem that is undecidable in the context of \(SM \), but becomes decidable in PTIME when an object-oriented type system is imposed.

There is a natural analogy between the work on path constraints and inclusion dependency theory developed for relational databases. Path constraints specify inclusions among certain sets of objects, and can be viewed as a generalization of inclusion dependencies. Inclusion dependencies have proven useful in semantic specification and query optimization for relational databases. In the same way, path constraints are important in a variety of database contexts, ranging from semi-structured data to object-oriented databases. It should be mentioned that the path constraints considered in this paper are not expressible in any class of dependencies studied for relational databases, including inclusion and tuple-generating dependencies [5]. See [2] for in-depth presentations of dependency theories.

The results established on path constraint implication in this paper may find applications to other fields. Indeed, if we view vertices in a graph as states and labeled edges as actions, then the deterministic graphs considered here are in fact Kripke models studied in deterministic propositional dynamic logic (DPDL). See, e.g., [20, 28]), which is a powerful language for reasoning about programs. These deterministic graphs may also be viewed as feature structures studied in feature logics [26]. It should be mentioned that DPDL and feature logics are modal logics, in which our path constraints are not expressible.

Description logics (see, e.g., [16]) reason about concept subsumption, which can be expressed as inclusion assertions similar to path constraints. There has been work on specifying constraints on semi-structured data by means of description logics [15]. One of the most expressive description logics used in the database context is \(ALCQI_{reg} \) [16], which allows negation, conjunction, disjunction, qualified universal and existential quantification, qualified number restriction, and in addition, provides constructs to form regular expressions such as role union, role concatenation, transitive closure and role identity. It is known that \(ALCQI_{reg} \) corresponds to propositional dynamic logic (PDL) with converse and graded modalities [16, 20]. We should remark here that our path constraints are not expressible in \(ALCQI_{reg} \).

3 Deterministic graphs and path constraints

In this section, we first give an abstraction of semi-structured databases in \(DM \) in terms of first-order logic, and then present three path constraint languages: \(P_c, P_{cw} \) and \(P_{c}^{*} \).

3.1 The deterministic data model

In the graph model \(SM \), a database is represented as an edge-labeled rooted directed graph [1, 8]. An abstraction of databases in \(SM \) has been given in [11] as (finite) first-order logic structures of a relational signature

\[
\sigma = (r, E),
\]

where \(r \) is a constant denoting the root and \(E \) is a finite set of binary relation symbols denoting the edge labels.

In the data model \(DM \), a database is represented as an edge-labeled rooted directed graph with deterministic edge relations. That is, for any edge label \(K \) and node \(a \) in the graph, there exists at most one edge labeled \(K \) going out of \(a \). Along the same lines of the abstraction of databases in \(SM \), we represent a database in \(DM \) as a (finite) \(\sigma \)-structure satisfying the determinism condition:

\[
\bigwedge_{K \in E} \forall x y z (K(x, y) \land K(x, z) \rightarrow y = z).
\]

Such structures are called deterministic structures. A deterministic structure \(G \) is specified by \((G, r^{G}, E^{G}) \), where \(G \) is the set of nodes in \(G \), \(r^{G} \) is the root node, and \(E^{G} \) is the set of binary relations on \(G \), each of which is named by a relation symbol of \(E \).
3.2 Path constraint language P_c

Next, we review the definition of P_c constraints introduced in [11]. To do this, we first present the notion of paths.

A path is a sequence of edge labels. Formally, paths are defined by the syntax:

$$\rho ::= \varepsilon \mid K \mid K \cdot \rho$$

Here ε is the empty path, $K \in E$, and \cdot denotes path concatenation. Paths defined above are the simplest form of path expressions. We shall present more general forms of path expressions shortly in this section.

A path ρ is said to be a prefix of ϕ if there exists γ, such that $\phi = \rho \cdot \gamma$.

We have seen many examples of paths in Section 2. Among them are:

- $\text{emp} \cdot e1 \cdot \text{manager}$
- $\text{dept} \cdot d1 \cdot \text{emp} \cdot e1$

A path can be expressed as a first-order logic formula $\rho(x, y)$ with two free variables x and y, which denote the tail and head nodes of the path, respectively. For example, the paths above can be described by the following formulas:

$$\exists z (\text{emp}(x, z) \land \exists w (e1(z, w) \land \text{manager}(w, y)))$$
$$\exists z (\text{dept}(x, z) \land \exists w (d1(z, w) \land \exists u (\text{emp}(w, u) \land e1(u, y))))$$

We write $\rho(x, y)$ as ρ when the parameters x and y are clear from the context.

By treating paths as logic formulas, we are able to borrow the standard notion of models from first-order logic [18]. Let G be a deterministic structure, $\rho(x, y)$ be a path formula and a, b be nodes in $|G|$. We use $G \models \rho(a, b)$ to denote that $\rho(a, b)$ holds in G, i.e., there is a path ρ from a to b in G.

The length of path ρ, $|\rho|$, is defined by:

$$|\rho| = \begin{cases}
0 & \text{if } \rho = \varepsilon \\
1 & \text{if } \rho = K \\
1 + |\rho| & \text{if } \rho = K \cdot \rho
\end{cases}$$

For example, $|\text{emp} \cdot e1| = 2$ and $|\text{dept} \cdot d1 \cdot \text{emp} \cdot e1| = 4$.

By a straightforward induction on the lengths of paths, it can be verified that deterministic graphs have the following property.

Lemma 3.1: Let G be a deterministic structure. Then for any path ρ and node $a \in |G|$, there is at most one node b such that $G \models \rho(a, b)$.

This lemma shows that in DM, any component of a database can be uniquely identified by a path.

Path constraints of P_c introduced in [11] are defined in terms of path formulas.

Definition 3.1 [11]: A path constraint ϕ of P_c is an expression of either the forward form

$$\forall x (\alpha(r, x) \rightarrow \forall y (\beta(x, y) \rightarrow \gamma(y, x))))$$

or the backward form

$$\forall x (\alpha(r, x) \rightarrow \forall y (\beta(x, y) \rightarrow \gamma(y, x))))$$

Here α, β, γ are path formulas. Path α is called the prefix of ϕ, denoted by $pf(\phi)$. Paths β and γ are denoted by $lt(\phi)$ and $rt(\phi)$, respectively.

For example, ϕ_1 and ϕ_2 given in Section 2 can be described by P_c constraints.

A forward constraint of P_c asserts that for any vertex x that is reached from the root r by following path α and for any vertex y that is reached from x by following path β, y is also reachable from x by following path γ. Similarly, a backward P_c constraint states that for any x that is reached from r by following α and for any y that is reached from x by following β, x is also reachable from y by following γ.

A proper subclass of P_c was introduced and studied in [4]:

Definition 3.2 [4]: A word constraint is an expression of the form

$$\forall x (\beta(r, x) \rightarrow \gamma(r, x))$$

where β and γ are path formulas.

In other words, a word constraint is a forward constraint of P_c with its prefix being the empty path ε. It has been shown in [11] that many P_c constraints cannot be expressed as word constraints or even by the more general constraints given in [4].

Next, we describe implication and finite implication of P_c constraints in the context of the deterministic data model. We assume the standard notion of model from first-order logic [18]. Let G be a deterministic structure and ϕ be a P_c constraint. We use $G \models \phi$ to denote that G satisfies ϕ (i.e., G is a model of ϕ). Let Σ be a finite set of P_c constraints. We use $G = \Sigma$ to denote that G satisfies Σ (i.e., G is a model of Σ). That is, for every $\phi \in \Sigma$, $G \models \phi$.

Let $\Sigma \cup \{\phi\}$ be a finite subset of P_c. We use $G \models \Sigma \cup \{\phi\}$ to denote that Σ implies ϕ in the context of DM. That is, for every deterministic structure G, if $G \models \Sigma$, then $G \models \phi$. Similarly, we use $\Sigma \models \phi$ to denote that Σ finitely implies ϕ. That is, for every finite deterministic structure G, if $G \models \Sigma$, then $G \models \phi$.

In the context of DM, the implication problem for P_c is the problem to determine, given any finite subset $\Sigma \cup \{\phi\}$ of P_c, whether $\Sigma \models \phi$. Similarly, the finite implication problem for P_c is the problem of determining whether $\Sigma \models \phi$.

In the context of the graph model SM, the structures considered in the implication problems for P_c are σ-structures, which are not necessarily deterministic. It was shown in [11, 13] that in SM, the implication and finite implication problems for P_c are undecidable.

Theorem 3.2 [11]: In the context of SM, the implication problem for P_c is c.e. complete, and the finite implication problem for P_c is co-c.e. complete.
In the next section, we shall show that this undecidability result no longer holds in the context of DM.

3.3 Path constraint language P_{c}^{w}

Let us generalize the syntax of path expressions by including the union operator $+$ as follows:

\[w ::= \epsilon | K | w \cdot w | w + w \]

That is, we define path expressions to be regular expressions which do not contain the Kleene closure. Let us refer to such expressions as s-free regular expressions.

Let p be a s-free regular expression and ρ be a path. We use $\rho \in p$ to denote that ρ is in the regular language generated by p.

We also treat a s-free regular expression p as a logic formula $p(x, y)$, where x and y are free variables. We say that a deterministic structure G satisfies $p(x, y)$, denoted by $G \models p(x, y)$, if there exist path $\rho \in p$ and nodes $a, b \in G$ such that $G \models p(a, b)$.

The following should be noted about s-free regular expressions:

- The regular language generated by a s-free regular expression is finite.
- Recall that the wildcard symbol $__$ matches any edge label. We can express $__$ as a s-free regular expression. More specifically, let E, the finite set of binary relation symbols in signature σ, be enumerated as K_1, K_2, \ldots, K_n. Then $__$ can be defined as s-free regular expression:

\[K_1 + K_2 + \ldots + K_n. \]

For example, we have seen in Section 2 the following path expressions that can be represented as s-free regular expressions:

\[\text{emp} \cdot __ \cdot \text{manager}, \quad \text{emp} \cdot __ \cdot \text{supervising} \cdot __. \]

Using s-free regular expressions, we define P_{c}^{w} as follows.

Definition 3.3: A constraint ϕ of P_{c}^{w} is an expression of either the forward form:

\[\forall x (p(r, x) \rightarrow \forall y (q(x, y) \rightarrow s(x, y))), \]

or the backward form:

\[\forall x (p(r, x) \rightarrow \forall y (q(x, y) \rightarrow s(y, x))), \]

where p, q and s are s-free regular expressions, denoted by $p(f(\phi), h(\phi)$ and $r(t(\phi))$, respectively.

For example, path constraints ϕ_1, ϕ_2 and ϕ_3 given in Section 2 are P_{c}^{w} constraints, but they are not in P_{c}.

A deterministic structure G satisfies a constraint ϕ of P_{c}^{w}, denoted by $G \models \phi$, if the following condition is satisfied:

- when ϕ is a forward constraint: for all $a, b \in G$, if there exist paths $\alpha \in p$ and $\beta \in q$ such that $G \models \alpha(r)^{\gamma} \land \beta(a, b)$, then there exists a path $\gamma \in s$ such that $G \models \gamma(a, b)$;
- when ϕ is a backward constraint: for all $a, b \in G$, if there exist paths $\alpha \in p$ and $\beta \in q$ such that $G \models (r)^{\gamma} \alpha \land \beta(a, b)$, then there exists $\gamma \in s$ such that $G \models \gamma(b, a)$.

The implication and finite implication problems for P_{c}^{w} are formalized in the same way as for P_{c}, as described in Section 3.2.

Obviously, P_{c} is properly contained in P_{c}^{w}. Thus the corollary below follows immediately from Theorem 3.2.

Corollary 3.3: In the context of SM, the implication and finite implication problems for P_{c}^{w} are undecidable.

In the next section, we shall show that this undecidability result also breaks down in the context of DM.

3.4 Path constraint language P_{c}^{*}

We next further generalize the syntax of path expressions by including the Kleene closure * as follows:

\[e ::= \epsilon | K | e \cdot e | e + e | e^* \]

That is, we define path expressions to be general regular expressions. Recall that the wildcard symbol can be expressed as a s-free regular expression. In Section 2, we have seen the following path expressions that can be represented as regular expressions:

\[\text{manager} \cdot \text{manager}^*, \quad \text{emp} \cdot __ \cdot \text{manager}^*, \quad \text{emp} \cdot __ \cdot \text{supervising} \cdot __ \cdot \text{manager}^* \]

Let p be a regular expression and ρ be a path. As in Section 3.3, we use $\rho \in p$ to denote that ρ is in the regular language generated by p. Similarly, we also treat p as a logic formula $p(x, y)$, and define the notion of $G \models p(x, y)$ for deterministic structure G.

Using regular expressions, we define P_{c}^{*} as follows.

Definition 3.4: A constraint ψ of P_{c}^{*} is an expression of either the forward form:

\[\forall x (p(r, x) \rightarrow \forall y (q(x, y) \rightarrow s(x, y))), \]

or the backward form:

\[\forall x (p(r, x) \rightarrow \forall y (q(x, y) \rightarrow s(y, x))), \]

where p, q and s are regular expressions, denoted by $p(f(\phi), h(\phi)$ and $r(t(\phi))$, respectively.

For example, ψ_1, ψ_2 and ψ_3 given in Section 2 are P_{c}^{*} constraints, but they are neither P_{c} nor P_{c}^{w}.

As in Section 3.3, for a deterministic structure G and a P_{c}^{*} constraint ψ, we can define the notion of $G \models \psi$. Similarly, we can formalize the implication and finite implication problems for P_{c}^{*}.
For example, let $\Sigma = \{\psi_1, \psi_2, \phi_1, \phi_2\}$. Then the question whether $\Sigma \models \psi_3$ ($\Sigma \models \psi_3$) is an instance of the (finite) implication problem for P_c^*. In Section 2, this implication is used in the proof of the equivalence of the queries Q_2 and Q_2'.

Clearly, P_c^* is a proper subset of P_c^*. Therefore, by Corollary 3.3, we have the following.

Corollary 3.4: In the context of SM, the implication and finite implication problems for P_c^* are undecidable.

In the next section, we shall show that this undecidability result still holds in the context of DM.

4 Path constraint implication

In this section, we study the implication problems associated with P_c^*, P_c^{μ} and P_c^* for the deterministic data model DM. More specifically, we show the following.

Theorem 4.1: In the context of DM, the implication and finite implication problems for P_c are finitely axiomatizable and are decidable in cubic-time.

Proposition 4.2: In the context of DM, the implication and finite implication problems for P_c^{μ} are decidable.

Theorem 4.3: In the context of DM, the implication and finite implication problems for P_c^* are undecidable.

In contrast to Theorem 3.2 and Corollary 3.3, Theorem 4.1 and Proposition 4.2 show that in the context of DM, the implication problems for P_c and P_c^{μ} are decidable. This demonstrates that the determinism condition of DM may simplify reasoning about path constraints. However, Theorem 4.3 shows that this determinism condition does not trivialize the problem of path constraint implication.

4.1 Decidability of P_c

We prove Theorem 4.1 in two steps. We first present a finite axiomatization for P_c constraint implication in the context of DM. That is, we give a finite set of inference rules that is sound and complete for implication and finite implication of P_c constraints. We then show that in the context of DM, there is a cubic-time algorithm for testing implication and finite implication of P_c constraints.

4.1.1 A finite axiomatization

It is desirable to develop a finite set of inference rules for path constraints. Inference rules can be used not only for generating symbolic proofs of implication, but also for studying the essential properties of the constraints. In general, the existence of a finite set of inference rules is a stronger property than the existence of an algorithm for testing implication.

Before we present a finite axiomatization for P_c, we first study basic properties of P_c constraints in the context of DM. While Lemma 4.6 given below holds in the context of both SM and DM, Lemmas 4.4 and 4.5 hold in the context of DM but not in SM. Their proofs require Lemma 3.1. We omit the proofs of these lemmas due to the lack of space, but we encourage the reader to consult [14].

Lemma 4.4: Let φ be a forward constraint of P_c:

$$\varphi = \forall x (\alpha(r, x) \rightarrow \forall y (\beta(x, y) \rightarrow \gamma(x, y)))$$

and ψ be a word constraint:

$$\psi = \forall x (\alpha \cdot \beta(r, x) \rightarrow \alpha \cdot \gamma(r, x)).$$

Then for every deterministic structure G, $G \models \varphi$ if $G \models \psi$.

Word constraints are described in Definition 3.2.

Lemma 4.5: Let φ be a backward constraint of P_c:

$$\varphi = \forall x (\alpha(r, x) \rightarrow \forall y (\beta(x, y) \rightarrow \gamma(y, x)))$$

and ψ be a word constraint:

$$\psi = \forall x (\alpha(r, x) \rightarrow \alpha \cdot \beta \cdot \gamma(r, x)).$$

Then for every deterministic structure G, if it is given that $G \models \exists x (\alpha \cdot \beta(r, x))$, then $G \models \varphi$ if $G \models \psi$.

Lemma 4.6: For every finite subset $\Sigma \cup \{\varphi\}$ of P_c,

$$\Sigma \models \varphi \iff \Sigma \cup \{\exists x (pf(\varphi) \cdot \ltf(\varphi)(r, x))\} \models \varphi,$$

$$\Sigma \models \varphi \iff \Sigma \cup \{\exists x (pf(\varphi) \cdot \ltf(\varphi)(r, x))\} \models \varphi,$$

where $pf(\varphi)$ and $lt(\varphi)$ are described in Definition 3.1.

Based on Lemma 4.6, we extend P_c by including constraints of the existential form as follows:

$$P_c^* = P_c \cup \{\exists x \rho(r, x) \mid \rho \text{ is a path}\}.$$ Constraints of the existential form enable us to assert the existence of paths. As pointed out by [23], this ability is important for specifying Web link characteristics.

For P_c^*, we consider a set of inference rules, I_c, given below. Note that the last four inference rules in I_c are sound in DM because of Lemmas 4.4 and 4.5.

- Reflexivity:

$$\forall x (\alpha(r, x) \rightarrow \alpha(r, x))$$

- Transitivity:

$$\forall x (\alpha(r, x) \rightarrow \beta(r, x)) \land \forall x (\beta(r, x) \rightarrow \gamma(r, x)) \rightarrow \forall x (\alpha(r, x) \rightarrow \gamma(r, x))$$

- Right-congruence:

$$\forall x (\alpha(r, x) \rightarrow \beta(r, x)) \land \forall x (\alpha \cdot \gamma(r, x) \rightarrow \beta \cdot \gamma(r, x))$$
there is an

to denote that

Let \(/D M/\)

\[/j/\]

\(/j/\)

success to show the following:

\[W \text{ord-to-bac kw ard:} \]

\[B \text{ac kw ard-to-w ord:} \]

\[E m p t y/-p at h: \]

\[/= /\]

The following theorem shows that in the context of

Soundness of

To see why this claim suffices, suppose it is given that

\[\Sigma \cup \{ \exists x \ (p f (\varphi) \cdot \mathbf{lt} (\varphi) (r, x)) \} \models I_x \varphi, \]

Soundness of \(I_x \) can be verified by induction on the lengths of \(I_x \)-proofs. For the proof of completeness, it suffices to show the following:

Claim: There is a finite deterministic structure \(G \) such that

\[G \models \Sigma \cup \{ \exists x \ (p f (\varphi) \cdot \mathbf{lt} (\varphi) (r, x)) \} \]

In addition, if \(G \models \varphi \), then \(\Sigma \cup \{ \exists x \ (p f (\varphi) \cdot \mathbf{lt} (\varphi) (r, x)) \} \models I_x \varphi. \]

To see why this claim suffices, suppose it is given that

\[\Sigma \cup \{ \exists x \ (p f (\varphi) \cdot \mathbf{lt} (\varphi) (r, x)) \} \models \varphi. \]

By the claim, \(G \models \Sigma \cup \{ \exists x \ (p f (\varphi) \cdot \mathbf{lt} (\varphi) (r, x)) \} \). Therefore, we have

\[G \models \varphi. \]

In addition, since \(G \) is finite, it is the case where \(\Sigma \cup \{ \exists x \ (p f (\varphi) \cdot \mathbf{lt} (\varphi) (r, x)) \} \models I_x \varphi \), then we also have \(G \models \varphi. \)

Thus again by the claim, we have that

\[\Sigma \cup \{ \exists x \ (p f (\varphi) \cdot \mathbf{lt} (\varphi) (r, x)) \} \models I_x \varphi. \]
An algorithm having the properties described in the proposition is given in the Appendix. The algorithm constructs the structure G. Each step of the construction corresponds to an application of some inference rule in Σ. The algorithm has low complexity because, by Lemma 3.1, every constraint in Σ is used at most once by the algorithm. We do not include the proof of this proposition due to the lack of space. The interested reader should see [14] for a detailed proof.

By Theorem 4.7, we can use this algorithm for testing implication and finite implication of P_c constraints in the context of DM.

4.2 Decidability of P^e_c

We next prove Proposition 4.2. To establish the decidability of the implication and finite implication problems for P^e_c, it suffices to give a finite model argument. That is, it suffices to show the following claim.

Claim: Let $\Sigma \cup \{\phi\}$ be a finite subset of P^e_c, and let $\phi = \bigwedge \Sigma \land \neg \varphi$. If there is a deterministic structure G such that $G \models \phi$, then there is a finite deterministic structure H such that $H \models \phi$.

For if the claim holds, then the implication and finite implication problems for P^e_c coincide and are decidable.

To show the claim, assume that there is a deterministic structure G satisfying ϕ. Recall that a constraint ψ of P^e_c is of the form

- $\forall x(pf(\psi)(r, x) \rightarrow \forall y(lt(\psi)(x, y) \rightarrow rt(\psi)(x, y)))$ (i.e., the forward form), or the form
- $\forall x(pf(\psi)(r, x) \rightarrow \forall y(lt(\psi)(x, y) \rightarrow rt(\psi)(y, x)))$ (i.e., the backward form),

where $pf(\psi)$, $lt(\psi)$ and $rt(\psi)$ are s-free regular expressions, as described in Definition 3.3. Let

- $PEs(\phi) = \{pf(\psi) \cdot lt(\psi), pf(\psi) \cdot rt(\psi) \mid \psi \in \Sigma \cup \{\phi\}, \psi \text{ is of the forward form}\}$
- $\cup \{pf(\psi) \cdot lt(\psi) \cdot rt(\psi) \mid \psi \in \Sigma \cup \{\phi\}, \psi \text{ is of the backward form}\}$

$Pts(\phi) = \{\rho \mid \rho \text{ is a path, } \rho \in PEs(\phi), \rho \subseteq \rho\}$

$CloPts(\phi) = \{\rho \mid \rho \in Pts(\phi), \rho \leq \rho\}$

Here $\rho \subseteq \rho$ means that path ρ is in the regular language generated by s-free regular expression p, and $\rho \leq \rho$ stands for that path ρ is a prefix of path ρ. Let E_ϕ be the set of edge labels appearing in some path in $Pts(\phi)$. Then we define H to be $([H], \rho^H, E^H)$ such that

- $[H] = \{a \mid a \in G, \rho \in CloPts(\phi), G \models \rho(c^H, a)\}$
- $\rho^H = c^H$
- for all $a, b \in [H]$ and $K \in E$, $H \models K(a, b)$ iff $K \in E_\phi$ and $G \models K(a, b)$.

It is easy to verify that $H \models \phi$ and H is deterministic, since G has these properties. By Lemma 3.1, the size of $|H|$ is at most the cardinality of $CloPts(\phi)$, which is finite because the regular expression generated by a s-free regular expression is finite. This proves the claim. It should be noted that E_ϕ and $CloPts(\phi)$ are determined by ϕ only.

4.3 Undecidability of P^e_c

Next, we prove Theorem 4.3. We establish the undecidability of the implication and finite implication problems for P^e_c by reduction from the word problem for (finite) monoids. Before we give the proof, we first review the word problem for (finite) monoids.

4.3.1 The word problem for (finite) monoids

Let Σ be a finite alphabet and $(?, \star, \cdot, \epsilon)$ be the free monoid generated by Σ. An equation over Σ is a pair (α, β). For if the equation holds, then the implication and finite implication of Σ coincide and are decidable.

By Theorem 4.11, both the word problem for monoids and the word problem for finite monoids are undecidable.

4.3.2 Reduction from the word problem

We next present an encoding of the word problem for (finite) monoids in terms of the (finite) implication problem for P^e_c in the context of DM.

Let Σ be a finite alphabet and Θ_0 be a finite set of equations over Σ_0. Without loss of generality, assume $\Sigma_0 \subseteq E$, where E is the set of binary relation symbols in signature Σ described in Section 3. Assume

- $\Sigma_0 = \{K_j \mid j \in [1, m], K_i \neq K_j \text{ if } i \neq j\}$
- $\Theta_0 = \{(\alpha_i, \beta_i) \mid \alpha_i, \beta_i \in \Sigma_0, i \in [1, n]\}$

Note here that each symbol in Σ_0 is a binary relation symbol in E. Therefore, every α in Σ_0 can be represented as a path, also denoted by α. We use \cdot to denote the concatenation operator for both paths and strings.

Let e_α be the regular expression defined by:

- $e_\alpha = (K_1 + K_2 + \ldots + K_m)^*$

We encode Θ_0 in terms of a subset Σ of P^e_c, which includes the following: for each $i \in [1, n]$,

- $\forall x(e_\alpha(r, x) \rightarrow \forall y(\alpha_i(x, y) \rightarrow \beta_i(x, y)))$
- $\forall x(e_\alpha(r, x) \rightarrow \forall y(\beta_i(x, y) \rightarrow \alpha_i(x, y)))$.
Let \((\alpha, \beta)\) be a test equation, where \(\alpha\) and \(\beta\) are arbitrary strings in \(\varphi^*\). We encode this test equation as
\[
\varphi = \forall x (e_0(r, x) \rightarrow \forall y (\alpha(x, y) \rightarrow \beta(x, y))].
\]
It should be noted that in the encoding above, only forward constraints of \(P^*_c\) are used. In addition, for each \(\psi \in \Sigma \cup \{\varphi\}\), \(H(\psi)\) and \(r(\psi)\) are simply paths rather than complex regular expressions, where \(H(\psi)\) and \(r(\psi)\) are described in Definition 3.4.

The lemma below shows that the encoding above is indeed a reduction from the word problem for (finite) monoids. From this lemma and Theorem 4.11, Theorem 4.3 follows immediately.

Lemma 4.12: In the context of \(D M\),
\[
\Theta_0 = (\alpha, \beta) \iff \Sigma \models \varphi. \quad (a)
\]
\[
\Theta_0 = \bot (\alpha, \beta) \iff \Sigma \not\models \varphi. \quad (b)
\]

Proof sketch: We give a proof sketch of (b). The proof of (a) is similar and simpler. Owing to the space limit, we omit the details of the lengthy proof, but we encourage the interested reader to consult [14].

If Suppose that \(\Theta_0 \not\models \bot (\alpha, \beta)\). Then there exist a finite monoid \(M\) and a homomorphism \(h : \varphi^* \rightarrow M\) such that \(h(\alpha_i) = h(\beta_i)\) for \(i \in [1, n]\), but \(h(\alpha) \neq h(\beta)\). We show that there exists a finite deterministic structure \(G\), such that \(G \models \Sigma\) and \(G \not\models \varphi\).

To do this, we define an equivalence relation on \(\varphi^*_c\):
\[
\rho \sim_\varphi \iff h(\rho) = h(\varphi).
\]
For every string \(\rho \in \varphi^*_c\), let \(\bar{\rho}\) be the equivalence class of \(\rho\) with respect to \(\sim\), and let \(\alpha(\bar{\rho})\) be a distinct node. Then we define a structure \(G = (\{\varphi\}, \varphi^*, E^G)\), such that \(G \models \Sigma\) and the root \(\varphi = \alpha(\varphi)\). The binary relations are populated in such that for each \(E \in \varphi\) and \(\alpha(\varphi) \in G\), \(G \models E(\alpha(\varphi), \alpha(\varphi))\) if \(\rho \cdot E \in \varphi\). It can be verified that \(G\) is indeed a finite deterministic structure. In addition, \(G \models \Sigma\) and \(G \not\models \varphi\). A property of \(e_0\) used in the proof is that \(e \in e_0\). That is, the empty path \(e\) is in the language generated by the regular expression \(e_0\).

(only if) Suppose that there is a finite deterministic structure \(G\) such that \(G \models \Sigma\) and \(G \not\models \varphi\). Then we define a finite monoid \((M, \circ, [\rho])\) and a homomorphism \(h : \varphi^*_c \rightarrow M\) such that for every \(i \in [1, n]\), \(h(\alpha_i) = h(\beta_i)\), but \(h(\alpha) \neq h(\beta)\).

To do this, we define another equivalence relation \(\sim_\varphi\) on \(\varphi^*_c\) as follows:
\[
\rho \sim \varphi \iff G \models \forall x (e_0(r, x) \rightarrow \forall y (\rho(x, y) \rightarrow \varphi(x, y))) \land \forall x (e_0(r, x) \rightarrow \forall y (\rho(x, y) \rightarrow \varphi(x, y))).
\]
For every \(\rho \in \varphi^*_c\), let \([\rho]\) denote the equivalence class of \(\rho\) with respect to \(\sim\). Then define \(M = \{[\rho] \mid \rho \in \varphi^*_c\}\), operator \(\circ\) by \([\rho] \circ [\rho] = [\rho \cdot \rho]\), identity \(id = [\varnothing]\), and \(h : \varphi^*_c \rightarrow M\) by \(h : \rho \rightarrow [\rho]\). It can be verified that \((M, \circ, [\rho])\) is a finite monoid, \(h\) is a homomorphism, and in addition, for every \(i \in [1, n]\), \(h(\alpha_i) = h(\beta_i)\), but \(h(\alpha) \neq h(\beta)\). In the proof, we use the following property of \(e_0\): for any \(\rho \in \varphi^*_c\), \(e_0 \cdot \rho \subseteq e_0\). That is, the language generated by the regular expression \(e_0 \cdot \rho\) is contained in the language generated by \(e_0\).

5 Conclusion

We have investigated path constraints for the deterministic data model \(D M\). Three path constraint languages have been considered: \(P_c, P^w_c\) and \(P^*_c\). While \(P_c\) was studied for the graph model \(SM\) for semistructured data [11, 13], \(P^w_c\) and \(P^*_c\) have not appeared in any literature. We have demonstrated how constraints of these languages might be used for, among other things, query optimization. We have also studied implication problems associated with these constraint languages in the context of \(D M\). More specifically, we have shown that in contrast to the undecidability result of [11, 13] established for \(SM\), the implication and finite implication problems for \(P_c\) and \(P^w_c\) are decidable in the context of \(D M\). In particular, the implication problems associated with \(P_c\) are decidable in cubic-time and are finitely axiomatizable. These results show that the determinism condition of \(D M\) may simplify the analysis of path constraint implication. However, we also show that the implication and finite implication problems for \(P^*_c\) remain undecidable in the context of \(D M\). This shows that the determinism condition does not trivialize the problem of path constraint implication.

A number of important questions are open.

First, a more general deterministic data model for semistructured data, \(D D M\), was proposed in [10], in which edge labels may also have structure. A type system for \(D D M\) is currently under development, in which certain path constraints are embedded. A natural question here is: do the decidability and undecidability results established here hold in \(D D M\)? This question becomes more intriguing when types are considered. As shown in [12], adding a type to the data in some cases simplifies reasoning about path constraints, and in other cases makes it harder.

Second, to define a richer data model for semistructured data, one may want to replace the set of edge labels with a set of logic formulas, which possesses a decidable satisfiability problem. A question here is: in this new setting, do the decidability results of this paper still hold?

Third, can path constraints help in reasoning about the equivalence of data representations?

Finally, how should path constraints be used in reasoning about the containment and equivalence of path queries? What kind of automatic tools should be developed to achieve this?

Acknowledgements. We thank Victor Vianu for comments and discussions.
References

Appendix

The algorithm for testing implication and finite implication of P_e constraints is shown in Table 1. The procedure merge used in the algorithm is given in Table 2.

Algorithm

Input: a finite subset Σ of P_e and paths α, β

Output: the structure G described in Proposition 4.10

1. $E_0 := \text{the set of edge labels appearing in either } \alpha \cdot \beta \text{ or some path in constraints of } \Sigma$;
2. $Rules := \Sigma$;
3. $G := (G, r^G, E^G_0)$, where
 - $|G| = \{o(\rho) \mid \rho \leq \alpha \cdot \beta, o(\rho) \text{ is a distinct node}\}$,
 - $r^G = o(e)$,
 - E^G_0 is populated such that $G \models K(o(\rho), o(\varrho))$ iff $\varrho = \rho \cdot K$;
4. repeat until no further change:
 1. if there is $o \in G$ such that $G \models \xi \cdot K(o, o)$ then
 (a) add to G a distinct node $o_{\theta \xi}$;
 (b) add to E^G_0 an edge labeled K from $o_{\theta \xi}$ to $o_{\theta \xi}$;
 2. if there is no $o \in G$ such that $G \models \xi \cdot K(o_{\theta \xi}, o)$ then
 (a) add to G a distinct node $o_{\theta \xi}$;
 (b) add to E^G_0 an edge labeled K from $o_{\theta \xi}$ to $o_{\theta \xi}$;
5. output G.

Table 1: An algorithm for testing P_e constraint implication in DM

\begin{tabular}{|c|}
\hline
procedure $\text{merge}(a, b)$ \\
\hline
1. for each $K \in E_0$ do \\
 if there is $o \in G$ such that $G \models K(o, b)$ then \\
 (1) delete from E^G_0 the edge labeled K from o to b; \\
 (2) add to E^G_0 an edge labeled K from o to a; \\
2. for each $K \in E_0$ do \\
 if there is $o_b \in G$ such that $G \models K(b, o_b)$ then \\
 (1) delete from E^G_0 the edge labeled K from b to o_b; \\
 (2) add to E^G_0 an edge labeled K from b to o_b; \\
 (3) if there is $o_a \in G$ such that $G \models K(a, o_a)$ and $o_a \neq o_b$ then \\
 $\text{merge}(o_a, o_b)$; \\
3. $G := G \setminus \{b\}$; \\
\hline
\end{tabular}

Table 2: Procedure merge