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Abstract

While  most  research  on  navigation  in  ageing  focuses  on  allocentric  processing  deficits,

impaired strategy switching may also contribute to navigational decline. Using a specifically

designed task involving navigating a town-like virtual environment, we assessed the ability of

young and old participants to switch from following learned routes to finding novel shortcuts.

We found large age differences in the length of routes taken during testing and in use of

shortcuts, as, while nearly all young participants switched from the egocentric

route-following strategy to the allocentric wayfinding strategy, none of the older participants

stably switched. Although secondary tasks  confirmed that older participants were impaired

both  at strategy switching and allocentric processing, the  difficulty in using shortcuts was

selectively related to impaired strategy switching. This may in turn relate to dysfunction of

the prefrontal-noradrenergic network responsible for coordinating switching behaviour. We

conclude that the large  age difference in performance at the shortcutting task demonstrates

for the first time how strategy switching deficits  can have a severe impact on navigation in

ageing.

Keywords: Ageing,  navigation,  strategy  switching,  shortcutting,  route  learning,  virtual

reality

1. Introduction

Ageing impairs a range of cognitive abilities to varying degrees, and navigation may be

among those most severely affected. This is partly attributable to degeneration of multiple
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involved brain areas, such as the hippocampus (West, 1993; Driscoll et al., 2003; Lister &

Barnes, 2009) and entorhinal cortex (Du et al., 2003; Du et al. 2006). This degradation leads

to decline in the numerous navigational processes supported by these areas, for example

cognitive mapping (Rosenzweig et al., 2003; Moffat et al., 2006; Iaria et al., 2009) and path

integration (Allen et al., 2004; Mahmood et al., 2009; Harris & Wolbers, 2012). However,

real world navigation is often dependent on using more than one of these component

processes during a single journey (Wolbers & Hegarty, 2010), due to changes in availability

of cues, or in order to make use of features of different reference frames. We have therefore

previously suggested that a deficit in switching between navigational strategies may also

contribute to age-related navigation impairments (Harris et al., 2012).

Strategy switching is thought to be coordinated by regions of prefrontal cortex (PFC), as

mediated by noradrenaline (NA) produced by the locus coeruleus (LC), in response to

changes in rewards associated with the current behavioural strategy (Aston-Jones & Cohen,

2005; Bouret & Sara, 2005). Supporting studies have demonstrated that depletion of

prefrontal NA – by lesioning of noradrenergic fibres projecting from LC to PFC (Tait et al.,

2007) or by infusion of a NA receptor antagonist into medial PFC (Caetano et al., 2013) –

does seem to produce a deficit in switching between different strategies. Further evidence

shows that ageing degrades LC and disrupts NA function (Manaye et al., 1995; Grudzien et

al., 2007), while the frontal ageing hypothesis suggests that various aspects of age-related

cognitive decline may be attributable to PFC degradation (West, 1996; Pfefferbaum et al.,

2005). It might be expected that these changes in the brain that occur with ageing induce

deficits in strategy switching;  and indeed  these  deficits have been demonstrated in aged

animals and humans using attentional and conceptual set shifting tasks (Moore et al., 2003;

Ashendorf & McCaffrey, 2008; Young et al., 2010).
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Within the context of navigation, strategies may be described as allocentric – in relation to a

fixed external coordinate system; or egocentric – in relation to the body’s changing position

and orientation. For example, an allocentric strategy might involve using distal landmarks to

find a novel route, whereas an egocentric strategy may involve following a familiar route

encoded as a sequence of body movements. Allocentric and egocentric strategies have been

associated with the hippocampus and caudate nucleus, respectively (Cook & Kesner, 1988;

O’Keefe, 1990; Hartley et al., 2003; Iaria et al., 2003). Both systems constantly provide input

to  PFC, which then  appears  to  determine  how each influences  behaviour  (Doeller  et  al.,

2008), based on the appropriate navigational strategy. 

Switching between these two types of strategy has previously been studied in rodents using a

'plus maze' (Ragozzino, 2007; Rich & Shapiro, 2007), which involves finding a reward using

either  an allocentric place strategy,  or an egocentric response strategy,  and  periodically

switching  between  the  two.  Importantly,  inactivation  of  regions  of  medial  PFC  impairs

performance of strategy switches, but not reversals (Ragozzino et al., 1999; Rich & Shapiro,

2007; Young & Shapiro, 2009).  We recently used a virtual adaptation of the plus maze

(VPM) to investigate navigational strategy switching in young and old human subjects. While

we also demonstrated a specific impairment in strategy switches but not reversals, the deficit

was actually  even more specific,  affecting  only  switches  from the  response to the place

strategy (Harris et al., 2012). We suggested that this 'switch-to-place' deficit may relate to a

reduction in functional connectivity between the prefrontal-noradrenergic switching network

and the hippocampus in ageing. However, how accurately switching from the response to the

place strategy within the VPM corresponds to engaging an allocentric strategy during

real-world navigation is uncertain, as the nature of the task and the two strategies used in the
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VPM is relatively simplistic.

The aim of the present study was therefore to demonstrate that switching from an egocentric

to an allocentric strategy is still impaired within a more realistic context. We developed a

novel virtual reality (VR) task, in which participants were repeatedly trained to follow long,

indirect routes to goal locations. Participants were then required to switch to finding shorter,

more direct routes by taking shortcuts during testing. We hypothesised that older participants

would experience greater difficulty in switching from an egocentric route-following to an

allocentric wayfinding strategy. We also administered a shortened version of the VPM

(sVPM), hypothesising that it would again demonstrate a deficit among older participants in

switching to the place strategy, and that switch-to-place performance during the sVPM would

relate to wayfinding performance during the shortcutting task.

2. Materials and methods

2.1. Participants

25 (12 female) young participants (aged 18-29, mean 21.84) and 25 (11 female) old

participants (aged 61-79, mean 68.68) were recruited through local advertising and from an

existing database of psychology research volunteers within the local Edinburgh community,

and were reimbursed for their time at a rate of £7.00 per hour. Most had prior experience of

participating in research, and all had normal or corrected-to-normal vision and no known

cognitive deficits or neurological disorders. 
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2.2. Procedure

Participants provided information on their age and gender, before completing the Montreal

cognitive assessment (MoCA; Nasreddine et al., 2005; scored out of 30) to screen for mild

cognitive  impairment  (MCI)  using  a  cut-off  of  23 (Luis  et  al.,  2009), the national adult

reading test (NART; Nelson, 1982; scored out of 50) as a measure of crystallised intelligence,

and a computer-based version of the Corsi blocks task (Corsi, 1972; Kessels et al., 2000;

maximum sequence length 9) as a measure of spatial working memory. They then completed

the primary shortcutting task, followed by the sVPM, each presented on a 24in widescreen

monitor by a standard desktop computer, providing input through a standard keyboard.

Finally, participants completed a simple cognitive mapping test as a measure of allocentric

processing, which involved labelling landmarks encountered during the shortcutting task on

paper maps of the task's virtual environments (VEs), similar to those shown in fig.1a,  and

gave a combined score out of 17. All participants were made fully aware of the details of the

study and provided consent before participating.

2.2.1. Shortcutting task

This task was based in two realistic virtual town environments designed in 3ds Max

(Autodesk, San Rafael, CA) each consisting of houses and salient buildings (supermarkets,

restaurants, etc.) as landmarks along roads in a grid formation (fig.1). The task, programmed

and run in Vizard (WorldViz, Santa Barbara, CA), involved training participants on long,

indirect routes to four goal locations, then testing their ability to find available shortcuts. The

first two routes each  ran from  a  different  start  point  to  a  different  goal  location,  but

overlapped in the middle of the first VE, and included four junctions between start and end
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points. The other two routes ran through and overlapped in the middle of the second VE, and

included six junctions.

During training, participants actively navigated the routes by using arrow keys to choose

whether to go left, right or straight ahead at each junction, but were not allowed to deviate

from the set routes, which, to begin with, were indicated by arrows at each junction. Training

also incorporated probe trials, which involved placing the participants at a point in the VE

facing a particular landmark and asking them to point to another landmark, again using the

arrow keys. These probe trials were designed to both promote and test the use of landmark

information and allocentric processing while the routes were being learned. Each training

cycle consisted of a traversal of each of the four routes in turn twice, followed by a set of

three probe trials for each of the two VEs. Participants progressed to testing once they were

able to traverse all four routes without directions or errors, and to respond correctly to a full

set of probe trials for each VE. Route learning was also measured in terms of the number of

training cycles before able to navigate each route without directions or errors. As the

direction arrows gradually disappeared throughout the first two training cycles, the minimum

number of training cycles was three, while the maximum, due to time constraints, was seven. 

Participants were then tested on each of the four original routes, as well as four new routes,

which crossed from each start point to the opposite goal location in the same VE. These eight

trials were presented in a random order  twice, producing a total of 16 test trials. Before

testing, participants were explicitly informed that they were no longer restricted to the long

training routes, and that the objective during testing was to find the shortest route to each goal

location,  which  they  were  reminded  of  at the start of every  trial. We assessed task

performance in terms of the lengths of the routes taken to each goal location in  number of
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junctions (adjusted for VE differences in route length), as well as whether or not the shortcut

was used on each trial.

2.2.2. Short virtual plus maze task

The sVPM, also designed, programmed and run in 3ds Max and Vizard, was derived from a

previous virtual plus maze task (VPM; cf. Harris et al. 2012), in turn based upon the rodent

plus maze task (e.g. Rich & Shapiro, 2007). As in the standard plus maze task, trials were

grouped into blocks, with the strategy being switched (e.g. from 'go to the north arm' to 'turn

left')  or reversed (e.g.  from 'turn  left'  to  'turn  right')  between blocks, and on each trial

participants approached the central junction of the plus maze from one of two opposing start

arms and decided whether to go left or right to one of two goal arms, where a reward was

presented if coherent with the current strategy. As in our previous VPM, the sVPM was set in

a mountain scenery VE, participants used the arrow keys to provide a response, and a visual

cue was used to signal reward, which also increased a visible running total score. The original

VPM was shortened by reducing the  length of each trial and  the number of trials (155) in

terms of both trials per block (15 or 20, varied pseudorandomly) and total blocks (nine,

allowing four switches and four reversals). We also ensured that the task started with a block

of place strategy trials for all participants, rather than pseudorandomising starting strategy

across participants, in order to avoid exaggerating any age-related allocentric processing

deficits. Performance was assessed in terms of the average number of correct trials for each

block type.

2.3. Data analysis
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Data were analysed in Matlab (Mathworks, Natick, MA). Results of the MoCA, NART, Corsi

blocks task and cognitive mapping test were each represented as a single-value or percentage

score. Cognitive  mapping  test  scores  were  corrected  to  account  for  the  fact  that  it  was

impossible to get only one incorrect.  Results of the sVPM were processed in terms of the

number of correct trials for each block. For the shortcutting task, we assessed route learning

in terms of number of training cycles, and testing performance in terms of route length and

shortcut use. We performed mixed model ANOVAs and paired t-tests to assess group

differences across routes and VEs, and correlated shortcutting task performance with

secondary measures. For  multiple  comparisons,  p  values  were  corrected  using  the

Holm-Bonferroni method (following corrected p values are denoted pHB). Participants were to

be excluded if they scored below 24 on the MoCA, if they failed to learn all of the routes in

the maximum training period allowed, or if their average testing route length was further than

2SDs from the group mean, but no participants met any of these exclusion criteria.

We also employed a Bayesian learning analysis technique  (Smith et al., 2004), run  in

WinBUGs (Lunn et al., 2000) through the “matbugs” Matlab function. This approach can be

used to estimate, at each point throughout a series of trials, the likelihood that responses to all

subsequent trials will be coherent with a certain strategy, based on observed responses. The

point at which the lower 95% confidence interval of this estimation first exceeds and remains

above the chance probability of an individual coherent response corresponds to the point at

which the appropriate strategy has been stably acquired. We used this to determine whether

each  block  of  sVPM  trials  had  been  learned,  as  well  as  to  identify if and when each

participant switched to an allocentric wayfinding strategy in the shortcutting task.
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3. Results

All participants scored 24 or above on the MoCA so none were excluded for showing signs of

MCI. The older group performed significantly better than the young at the NART (t48=5.018,

p<.001), as observed in previous studies (Strauss et al. 2006), and  significantly worse than

the young at the Corsi blocks task (t48=4.729, p<.001), indicating  that  our  participants

represented  typical  samples  of  the  young  and  old  populations.  We later found that

performance at the NART  and  Corsi blocks task did not correlate with shortcut use

throughout the shortcutting task.

3.1. Shortcutting

The young group generally learned the routes of the shortcutting task in the lowest number of

training cycles possible, while the older group took slightly longer (fig.2). A mixed model

ANOVA revealed a significant main effect of age group on route learning (F1,48=28.330,

p<.001), and post-hoc t-tests demonstrated that this was due to a significant difference in the

number of training cycles taken to learn the two routes in the more complex VE (route 1

[VE1]: t48=2.025, pHB=.097; route 2 [VE1]: t48=1.877, pHB=.067; route 3 [VE2]: t48=3.222,

pHB=.009; route 4 [VE2]: t48=2.882, pHB=.018). However, while the older group took slightly

longer than the young to learn the routes, most participants learned the routes reasonably

quickly, and all successfully learned all routes during the training period. There were no

gender  differences  within  either  the  young  group  (t23=1.174,  p=.477)  or  the  old  group

(t23=1.649, p=.113) in route learning. On the other hand, while most participants – 22 young

and 18 old – managed to respond correctly to a full set of probe trials for at least one of the

VEs,  many –  nine young and 23 old –  did not do  so  for both  VEs, and consequently
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performed the maximum number of training cycles.

During testing, the older group took longer routes (as a proportion of the shortest possible

route in number of junctions) than the young to reach the goal locations (fig.3 top). A mixed

model ANOVA with age and VE as factors demonstrated a significant main effect of age on

test route length (F1,48=104.937, p<.001) and post-hoc t-tests confirmed that older participants

took significantly longer routes in both VE1 (t48=6.796, pHB<.001) and VE2 (t48=8.061,

pHB<.001). This may indicate that the old tended to use the newly available shortcuts less

often than the young. We confirmed this by assessing shortcut use directly, for which there

was an even stronger age effect (F1,48=199.538, p<.001), again driven by differences in both

VEs (VE1: t48=11.405, pHB<.001; VE2: t48=12.561, pHB<.001). As illustrated (fig.3 bottom),

while the young group used the available shortcuts on the majority of test trials, the older

group used the shortcuts on only a small proportion of trials. In terms of number of junctions,

both groups took longer routes in VE2 simply because routes through this VE included more

junctions, but after adjusting the measure of route length to account for this difference, there

was no significant effect of VE (F1,48=.072, p=.789). VE did however  seem to have a small

effect on shortcut use (F1,48=4.617, p=.037), but this difference was not significant for each

age group individually (young: t24=1.297, pHB=.207; old: t24=1.789, pHB=.173). Again, there

were  no  gender  differences  within  either  the  young  (t23=.541,  p=.594)  or  old  (t23=.696,

p=.493) group.

In  the  probe  trials,  participants  had  to  point  to  unseen  landmarks,  hence  successful

completion indicated that they had formed a survey representation of that particular VE. This

means that, as some participants were unable to complete all the probe trials successfully, the

deficit in shortcut use among older participants might have been caused by an inability to
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learn the layout of the environments. To address this problem, we performed an additional

analysis in which we compared shortcut use between younger and older participants only for

those VE’s for which participants  correctly  responded to a full  set  of probe trials  during

training. This analysis confirmed a large age difference in use of shortcuts across both VEs

(t38=14.331, p<.001).

Finally, we  applied the Bayesian learning analysis described above to the data on shortcut

usage in order to assess whether each participant stably switched from an egocentric

route-following strategy to an allocentric wayfinding strategy during testing. Based on the

results, we were able to divide all participants into four categories: those that switched

immediately and used the shortcuts for all test trials; those that switched at some point during

testing and used the shortcuts for all subsequent trials; those that used the shortcuts on some

trials, but either not enough or not consistently enough to suggest that they had stably

switched to a wayfinding strategy; and those that never used the shortcuts (fig.4). The vast

majority of young participants stably switched to the allocentric strategy either immediately

or at some point during testing, with only one participant using the shortcuts inconsistently.

On the other hand, not one of the older group stably switched to the allocentric strategy,

although most did use the shortcut on at least one test trial. 

3.2. Strategy switching and cognitive mapping

The results of the sVPM also suggest that the older group was  less able to switch between

egocentric and allocentric strategies (fig.5 top). A mixed ANOVA showed  main effects of

age (F1,38=10.105, p=.003) and change type (switch-to-place [S-P], switch-to-response [S-R],

reverse-place  [R-P]  & reverse-response  [R-R];  F1,38=7.783,  p=.008)  on the proportion of
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correct responses to sVPM trials, as well as a significant interaction (F1,38=6.715, p=.014),

which seemed to be due to impaired performance among the older group during blocks

following a switch (t38=3.467, pHB=.003). More specifically, this difference was significant

for switch-to-response blocks (t37=3.197, pHB=.011), although, after correcting for multiple

comparisons, not for switch-to-place blocks (t34=2.013, pHB=.156). However, post-hoc tests

revealed no significant differences in performance between different change types, including

between switch-to-place and switch-to-response blocks (t34=.204, pHB=.840). There were no

gender  differences  in  overall  VPM performance (young:  t22=.911,  p=.372;  old:  t15=1.096,

p=.291), nor in cognitive mapping (young: t23=.854, p=.402; old: t23=1.705, p=.108).

However, there was also a significant age difference in performance at the cognitive mapping

test (t48=7.298, p<.001; fig.5 bottom), suggesting that an allocentric processing deficit may

have contributed to the age difference in use of shortcuts. To assess the effects of strategy

switching  and  cognitive  mapping  on shortcut  use,  we  performed  a  general  linear  model

analysis, modelling use of shortcuts in terms of age group, VPM switching performance and

cognitive mapping score. While both age group (β=-.548, t36=-6.432, p<.001) and strategy

switching  (β=.445,  t36=2.383,  p=.023)  showed  significant  independent  effects  on  use  of

shortcuts,  we  did  not  observe  a  significant  contribution  for  cognitive  mapping  (β=.001,

t36=.918, p=.365). These results are consistent with the results reported in section 3.1, which

show  that  shortcut  use  was  deficient  in  older  adults  even  where  successful  probe  trial

performance indicated that they had formed an allocentric representation of the VE. Although

these combined findings do not rule out the possibility that allocentric impairments may have

affected use of shortcuts, they do suggest that it was mainly a strategy switching deficit that

led to impaired performance at our shortcutting task in the older group. 
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3.3. Crossing routes

Finally, we explored the effects of the novel testing routes, which involved crossing from the

start point of one training route to the end point of another. As these new test routes were not

repetitively trained, we expected that they would make it easier for  participants to switch

from  using  a  route-following  strategy,  and  to  start using the available shortcuts. We

investigated this by assessing the trial type upon which each participant first used a shortcut.

Participants who never used the shortcuts could not be included in this analysis. Of those that

did use a shortcut during testing, 17 of 25 young and six of 19 old participants first did so on

a crossing route test trial (χ2
1=21.184, p<.001), suggesting only the young were prompted to

start using shortcuts. We also assessed the effect of crossing routes  on the length of routes

taken during testing (excluding trials on which the shortcut was taken), but found no

significant differences.

4. Discussion

We used a novel VR task to demonstrate a deficit among older people in switching from an

egocentric route-following strategy to an allocentric wayfinding strategy when navigating in

a  complex  environment. During training, older participants learned long routes to goal

locations almost as quickly as the young, demonstrating a significant difference only for the

more complex  routes. However, during testing, when shortcuts to the goal locations were

available and participants were instructed to take the shortest available route to each goal

location, the older group took longer routes, primarily because they used the available

shortcuts much less often than the young group. Furthermore, while the vast majority of
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young participants stably switched from using a route-following strategy to a wayfinding

strategy either on the first test trial or at some point during testing, the older participants used

the shortcuts either sporadically or not at all, so that not one could be said to have stably

switched to the wayfinding strategy. Crossing routes during testing may have prompted

young participants to use the shortcuts, but old participants were not affected in the same

way. The older group's perseveration with the route-following strategy may still have been

due  either  to  a  reluctance  to  use  an  allocentric  strategy  (due  to  deficits  in  allocentric

processing), or to an impaired ability to switch strategies. However, their much lower use of

the shortcuts was predicted by switching performance,  as measured by the VPM, but not

allocentric  processing  ability,  as  measured  by  the  cognitive  mapping  test.  Our  results

therefore  demonstrate  that,  while  allocentric  impairments  may  still  play  a  role,  strategy

switching deficits in old age have a direct impact on wayfinding in everyday environments.

Our main finding, that older people were less able to switch from following a learned route to

finding a novel shortcut, is consistent with both our primary hypothesis and our previous

VPM work demonstrating a specific deficit in switching from an egocentric to an allocentric

navigational strategy (Harris et al., 2012). This study therefore corroborates this earlier

finding, but also, due to the more realistic nature of the shortcutting task, provides support for

the assumption that a strategy switching deficit observed in the relatively abstract VPM does

translate to a real-world navigational impairment. As strategy switching  is  thought  to  be

coordinated by PFC and the LC-NA system (Aston-Jones & Cohen, 2005; Bouret & Sara,

2005; Caetano et al., 2013), this navigational strategy switching deficit can be explained in

terms of age-related  dysfunction of PFC (West,  1996;  Pfefferbaum et al.,  2005),  perhaps

causing an underlying deficit in the ability to decide which strategy to use, and/or the LC-NA

system (Manaye et al., 1995; Grudzien et al., 2007), affecting the ability to engage the correct
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strategy.  More specifically,  if  the deficit  only affects  switching from an egocentric  to  an

allocentric  strategy,  it  may  relate  to reduced  functional  interconnectivity  between  the

prefrontal-noradrenergic  strategy  switching  network  and  the  hippocampus,  the  neural

substrate of allocentric processing (O’Keefe, 1990; Hartley et al., 2003; Iaria et al., 2003).

Unfortunately, due to the complex nature of our shortcutting task, assessing switching in the

opposite  direction  could  not  be  easily  incorporated  while  maintaining  a  reasonable

experimental  duration,  which  meant  that  it  was  unable  to  confirm the  specificity  of  the

switching deficit.

However,  the sVPM did  assess  switching  in  the  opposite  direction  and, contrary to our

hypotheses and to our previous VPM work, switching to the response strategy was impaired.

In  fact,  the apparent age difference in switching to the place strategy did not remain

significant after correcting for multiple comparisons,  although  there  was  no  significant

difference between these two change types. These results are more concordant with a general

strategy  switching  deficit,  which  would  not  relate  to  reduced  prefrontal-hippocampal

connectivity, as previously suggested, but instead to dysfunction within the LC-NA system or

PFC, as above. Our previous findings may have been due to a discrepancy between the two

strategies in terms of difficulty (Floresco et al., 2008), which we may have alleviated in this

study by ensuring that all participants started on the more difficult  place strategy. As our

general linear model also demonstrated an age-independent relationship between switching

performance and use of shortcuts,  we argue that  the observed impairment  in  shortcutting

reflects  a  general  strategy switching deficit,  rather  than  a  specific  deficit  in  engaging an

allocentric strategy. Our main findings may therefore relate more directly to previous work

on age-related switching deficits in other cognitive domains (Moore et al., 2003; Ashendorf

& McCaffrey, 2008; Young et al., 2010).
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In addition to deficits in switching between strategies, the large age difference in performance

on the cognitive mapping test is indicative of an allocentric processing deficit. Such cognitive

mapping tests have been criticised because survey maps can theoretically be generated from a

quantitatively scaled route representation (Montello et al., 2004), but the results are consistent

with previous work demonstrating allocentric processing deficits in older people (Begega et

al., 2001; Moffat et al., 2006; Antonova et al., 2009; Iaria et al., 2009; Wiener et al., 2012).

Furthermore, many more older participants than young failed to respond correctly to a full set

of probe trials for both VEs, also indicating an impairment in formation or use of a cognitive

map. It seems likely that an allocentric processing impairment would have contributed to the

age  difference  in  use  of  shortcuts,  as  older  people  may  have  been  less  able  to  use  a

wayfinding strategy, and/or less inclined to attempt to switch to one.  However, while only

two older participants responded correctly to a full set of probe trials for both VEs, most of

them managed to do so for at least one VE, suggesting that they were able to form and use

allocentric representations of the environments. Moreover, when only assessing shortcut use

within VEs for which each participant did pass a set of probe trials, we still found a large age

difference, suggesting that older participants failed to switch to a wayfinding strategy even

when they had formed an allocentric representation of the environment. Similarly, while none

of the older participants stably switched to the wayfinding strategy, the majority did use a

shortcut at least once, confirming that they were able to do so. Furthermore, navigating

overlapping routes has been shown to depend more heavily upon the hippocampus (Brown et

al.,  2010),  yet  older participants did not seem to find the crossing routes more difficult.

Finally, while our general linear model demonstrated an age-independent effect of strategy

switching, it did not show a specific effect of cognitive mapping ability on use of shortcuts.

This does not prove that allocentric processing deficits did not affect use of shortcuts, and in
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fact it is likely that they did; but if older people were less able or less willing to switch to a

wayfinding strategy due to impaired allocentric processing, cognitive mapping, as a measure

of such, would be expected to predict use of shortcuts. Together,  our results indicate that

shortcutting  was  more  dependent  on  strategy  switching,  suggesting  that  the  large  age

difference we observed in use of shortcuts does reflect a strategy switching deficit.

Our study was limited by its cross-sectional design, because the older sample could have

contained cases of borderline cognitive impairments that were not detected with only one

neuropsychological assessment. This could be addressed with a longitudinal study involving

more extensive neuropsychological testing, which our results suggest would be worthwhile.

In addition, studying shortcutting using neuroimaging could also be useful in determining the

neural mechanisms that underlie deficits in switching to an allocentric navigational strategy.

4.1. Conclusions

In  summary,  our  findings  illustrate  a  large  effect  of  age  on  the  ability  to  switch  from

following a known route to using a novel shortcut in order to take the optimal route to a goal

location. This confirms that the age-related deficit in navigational strategy switching that we

previously identified using the VPM does affect performance at a more realistic navigational

task and provides an example of how real-world navigation may be affected by this deficit.

Older  participants  also  showed  evidence  of  allocentric  processing  difficulties,  which  are

likely  to contribute as well,  but their  perseveration with the route-following strategy was

more closely related to strategy switching performance,  confirming that it  can be at least

partly explained in terms of a general strategy switching impairment. This impairment may

result  from degradation of PFC or dysfunction of the LC-NA system, causing underlying
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deficits  in  decision  making  or  in  engaging a  behavioural  strategy,  although  exactly  how

age-related changes in function of this prefrontal-noradrenergic network lead to navigational

strategy  switching  deficits  remains  to  be  explored.  Overall,  our  findings  show  how  a

relatively subtle age-related impairment in a single executive process can contribute to much

more  substantial  effects  on navigational  performance  and on the  everyday lives  of  older

people.
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Figures and legends

Figure 1 Shortcutting task. Top: Maps of the two VEs, with the four long routes to each goal

location (followed during training) and the shortcuts (available during testing) marked.

Bottom left: Screen capture from VE 1 during training, approaching one of the goal locations.

Bottom right: Screen capture illustrating a probe trial (in which the post office was directly to

the left).
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Figure 2 Speed of route learning during training by route and age group, in terms of mean

number of training cycles until the route could be followed without directions or errors. As

directions were present throughout the first two cycles, the minimum possible number of

training cycles in which this criterion could be reached was three. The younger group is

represented by red bars, the older group by blue bars. Error bars represent standard error of

the mean. Asterisks indicate significant differences at the pHB<.05 (*) and pHB<.01 (**) levels.
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Figure 3 Shortcutting task performance by VE and age group, in terms of mean length of

route to goal location in number of junctions (adjusted for VE differences in route length;

top) and mean percentage of test trials on which the available shortcut was used (bottom).

The younger group is represented by red bars, the older group by blue bars. Error bars

represent standard error of the mean. *** indicates  a significant difference at the pHB<.001

level.
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Figure 4 Strategy use classifications by age group. Always used shortcuts: Participants that

used the available shortcuts from the first test trial and throughout testing. Switched  to

shortcuts: Participants that followed the long training routes at the beginning of testing, but

stably switched to a shortcutting strategy at some point during testing. Used  shortcuts

inconsistently: Those that occasionally used the available shortcuts, but not consistently

enough to be classified as having stably switched to a shortcutting strategy. Never  used

shortcuts: Those that employed a route following strategy throughout testing and never used

the shortcuts. 
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Figure 5 sVPM task and cognitive mapping test results. Top: sVPM performance, in terms of

mean percentage of trials correct,  by  age  group  and for switch-to-place  (S-P),

switch-to-response  (S-R), reverse-place (R-P) and reverse-response (R-R) trial blocks.

Bottom: Cognitive mapping task performance by age group, in terms of mean percentage of

landmarks correctly labelled. The younger group is represented by red bars, the older group

by blue bars. Error bars represent standard error of the mean. Asterisks indicate  significant

differences at the pHB<.05 (*) and pHB<.001 (***) levels.
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