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ABSTRACT 

This paper presents methods for determining the elastic shear and peel stresses in an adhesive 

joint between a strengthening plate and a beam. Both closed-form and finite-difference solutions are 

given, allowing loading, temperature effects and plate prestrain to be considered in design. The method 

can be used to design strengthened beams with section properties that change along the beam to be 

examined (such as tapered plates), and can also be used to determine the sensitivity of an adhesive joint 

to bond defects. The results of some typical load cases and geometries are presented to illustrate the 

significance of adhesive stresses. 
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1. INTRODUCTION 

Strengthening beams and columns by bonding plates to their surfaces is an effective method for 

extending the life of ageing infrastructure. Plate bonding relies critically on the strength of the adhesive 

joint, which must be designed to have adequate strength. However, the design of adhesive joints is 

rarely encountered in construction. 

Plate bonding initially developed using steel plates, but has gained new impetus with the use of 

lightweight fibre-reinforced-polymer (FRP) composite materials. Both tests and theoretical work have 

shown that the strength of the adhesive joint is governed by stress concentrations which occur due to 

the mismatch of strains in the beam and plate across the adhesive layer. Concentrations of adhesive 

stress occur in the vicinity of geometric discontinuities, such as those shown in figure 1. Geometric 



 

 

discontinuities include bond defects in the adhesive layer, steps in the number of strengthening plates, 

or (in particular) at the end of a strengthening. 

This paper describes a method for designing the adhesive joint between a strengthening plate 

and a beam. The analysis is general, although it was originally developed for FRP strengthening 

applied to metallic structures [1]. The method predicts stress distributions along the adhesive joint and 

can be used to failure of the adhesive, or the substrates in the immediate vicinity of the joint, failure 

modes typically observed in adhesive joints involving metallic or FRP substrates.  Failure of adhesive 

joints with weaker substrates (such as concrete or timber) usually occurs at some distance from the 

joint (for example, along the flexural reinforcement), a failure mode that is not considered in this paper. 

2. METHODS OF ANALYSING ADHESIVE JOINTS 

Bonded joints have been used since the 1930s, but it is only relatively recently that this 

technology has been transferred to the construction industry. Adhesive joints in construction are often 

on a larger scale than those in the automotive or aerospace industries (for example), and behave in 

different ways. Furthermore, construction projects are one-offs and it is not economic to base design on 

test results, unlike other industries with long production runs.  Consequently, it is important to have 

realistic models for the adhesive joint strength. 

Two approaches can be used to predict the failure of adhesive joints: a stress analysis, or a 

fracture mechanics approach. Fracture mechanics examines the energy required for unstable crack 

propagation along the joint; however, this approach has yet to be successfully applied to infrastructure 

strengthening applications [2]. 

After the adhesive has cured, the strengthening plate and beam act compositely, with load 

transferred between them by a combination of shear stresses (parallel to the joint) and peel stresses 

(normal to the joint). A stress analysis can be used to predict the distributions of shear and peel stress 

along the strengthened beam, for comparison to the limiting strength of the adhesive joint. 

Several closed-form stress analyses are available that predict the distribution of bond stresses 

along a plate bonded to a beam, for example, see references [3] to [10]. These all assume that the 

adhesive is linear-elastic, but involve a variety of simplifying assumptions. High-order solutions (such 

as the analysis presented by Yang, Teng and Chen [9]) model the variation in stress through the 

thickness of the adhesive layer, but are complex. Lower-order solutions (such as the method presented 



 

 

by Deng, Lee and Moy [10]) are simpler, although they assume that the stress does not vary through 

the adhesive thickness and hence do not satisfy the requirement that the adhesive stress at the free end 

of the adhesive is stress free. 

The motivation behind the approach presented in this paper was the lack of guidance for 

designing FRP strengthening bonded to metallic structures. The method was partially included in a 

recently published report ‘Strengthening metallic structures using externally-bonded FRP’ [1], prior to 

which the maximum adhesive stress had commonly been estimated by applying a factor of five to the 

shear stress obtained from a plane sections analysis [11]. An analysis was required that is easily 

accessible in the design office, hence a low order, linear-elastic, bond analysis was selected for the ease 

with which results can be obtained and visualised. In recognition of the assumptions made, a consistent 

low-order analysis is suggested for determining the limiting adhesive stresses from coupon tests. 

3. THE BOND STRESS ANALYSIS 

The bond analysis allows the distribution of shear stress (τa) and peel stress (σa) along an 

adhesive joint to be determined. The following sections describe the bond analysis conceptually and 

give examples of its use. The detailed bond analysis is derived in Appendix A, which is valid for 

strengthened beams with a constant cross-section. 

3.1 Definitions and assumptions 

Figure 2 summarises the geometric and material properties of the strengthened beam: E & G are 

the Young’s modulus and shear modulus, A is the cross-sectional area, I is the second moment of area, 

and α is the coefficient of thermal expansion. The subscripts ‘b’, ‘p’, and ‘a’ refer to the beam, plate 

and adhesive respectively. The position along the beam is defined by the coordinate ‘x’, measured from 

the geometric discontinuity, and the vertical position is defined by y. 

The shear stress analysis assumes that the curvatures in the beam and plate are equal (since this 

allows the shear stress and peel stress equations to be uncoupled).  This assumption is not made in the 

peel stress solution. 



 

 

3.2 Lack-of-fit across the adhesive joint 

The stresses in the adhesive joint are due to the mismatch in strains between the bonded surfaces 

of the beam and the plate, resulting from load applied after cure of the adhesive joint. The lack-of-fit 

strains can be found by considering the deformation of the beam and plate if there was no adhesive 

joint. For example, figure 3 shows a strengthened beam carrying pure moment. If there was no 

adhesive joint, no load would be applied to the plate and the change in plate strain (Δεpa) and curvature 

(Δψp) would be zero. The strain at the bonded surface of the beam (Δεba) and the beam curvature (Δψb) 

are non zero, and can found using engineering beam theory. 

If the same moment is applied to a beam with bonded strengthening, the lack-of-fit strain across 

the adhesive joint is Δεpb = Δεpa - Δεba (eqn. A5), and the lack-of-fit curvature is Δψpb = Δψp - Δψb 

(eqn. A6). The bond analysis in Appendix A predicts the distributions of adhesive shear (τa) and peel 

(σa) stress due to the lack-of-fit strain (Δεpb) and curvature (Δψpb). 

4. BOND STRESSES IN TYPICAL SIMPLE LOAD CASES 

A number of typical load cases are investigated below to illustrate the use of the closed-form 

bond analysis. A cast iron beam, strengthened with CFRPis analysed, using the section properties given 

in figure 4. The beam carries a brick jack arch bridge deck and requires strengthening due to increased 

traffic loads. The dead loads present at the time of strengthening do not result in stresses in the 

adhesive joint. (For ease of reference, this is similar to the case considered in reference [1], appendix 

A9). 

4.1 Load case 1.  Applied load 

After forming the adhesive joint, the strengthened beam is required to carry an additional 

distributed load of 40 kN/m, which is a typical live load for a cast iron bridge beam to carry due to 

modern traffic. (This load is 10% higher than a completed bridge strengthening project). 

The resultant change in bending moment is 1008020 2 −−=Δ xxMb  kNm, where x is 

measured from the end of the plate (as shown in figure 4). The moment at the end of the plate is 

ΔMb = -100 kNm. (It is often be sufficient to neglect the variation of ΔMb with x, and use a constant 

value equal to the moment at the end of the plate). 



 

 

Following the approach shown in figure 3, the strains and curvatures in the beam and plate (in 

the absence of the adhesive joint) are given by (eqns. A3 & A4, Appendix A): 

( ) 42 1088.071.0176.0 −×++−=Δ xxbaε    0=Δ paε  

( ) 42 1046.377.269.0 −×−−=Δ xxbψ  /m   0=Δ pψ  

The resulting lack-of-fit across the adhesive joint is thus (eqn. A5): 

( ) 42 1088.071.0176.0 −×−−=Δ xxpbε  

( ) 42 1046.377.269.0 −×++−=Δ xxbψ  /m 

The adhesive shear and peel stresses are plotted in figure 5, which shows a maximum shear 

stress of 4.2 MPa and a maximum tensile peel stress of 2.5 MPa. The zone of influence of the shear 

stress (200mm) is longer than that of the peel stress (75mm). 

These maximum stresses can be reduced by curtailing the strengthening plates in regions of low 

bending stress. For example, the end of the strengthening plate could be extended to 500 mm from the 

support, reducing the bending moment at the end of the plate to 56kNm and the peak shear stress due to 

the applied load to 2.4 MPa (a 45% reduction). 

4.2 Load case 2.  Uniform temperature rise of 30°C 

The coefficients of thermal expansion of a metal beam and a carbon FRP strengthening plate 

can be very different and consequently it is very important to consider the thermal mismatch stresses 

due to differential thermal expansion. 

A uniform temperature rise of ΔT = 30°C is considered for load case 2. This represents a 

strengthening plate applied at a temperature of 15ºC, the temperature of which rises to 45ºC during the 

summer. (The temperature of a beam on the exposed face of a bridge deck might easily rise to 45ºC; for 

example, see the UK Highways Agency design requirements [12]). 

The lack-of-fit due to a temperature rise of ΔT = 30°C after forming the adhesive joint is 

described by (eqns. A3, A4 & A5): 

Δεpa = 30 × 10-6  Δεba = 330 × 10-6  Δεpb = -300 × 10-6 

Δψp = 0  Δψb = 0  Δψpb = 0 



 

 

The adhesive stress distributions are shown in figure 5. The maximum shear stress is 13.8 MPa, 

and the maximum peel stress of 7.9 MPa. Note that the peak adhesive stresses due to the temperature 

increase are three times larger than those due to the applied load (case 1). 

4.3 Load case 3.  Combined applied load and temperature rise 

The adhesive stress distributions due to the combination of applied load and temperature rise are 

also shown in figure 5. The maximum stresses due to applied load and temperature are 18 MPa and 

10 MPa. 

4.4 Load case 4.  The situation after the release of a prestressed plate 

A strengthening plate can be prestressed using a jacking system. The jacking force is transferred 

to the adhesive layer after the adhesive has set. If the pre-strain in the plate prior to forming the 

adhesive joint is 0.05%, the lack-of-fit strains are: 

Δεpa = -0.5 × 10-3  Δεba = 0  Δεpb = -0.5 × 10-3 

Δψp = 0  Δψb = 0  Δψpb = 0 

If an auxiliary end anchorage device is not provided, prestress results in high adhesive stresses 

at the end of the plate, as shown in figure 5. The peak shear stress is 23 MPa and the peak peel stress is 

13 MPa, both of which are higher than any of the previous load cases. 

4.5 Load case 5.  A clamping force applied at the end of the plate. 

In this case, a clamping force of 10 kN is applied at the end of the plate (acting so as to push the 

end of the plate towards the beam). This load case can be used to assess the beneficial effect of 

clamping the end of a bonded plate to resist live load peel stresses. A 10kN clamping force could easily 

be applied using a mechanical anchorage, with bolts tightening a clamp that traps the FRP against the 

bottom flange of the beam. 

The clamping force does not result in a lack-of-fit strain or curvature across the adhesive joint, 

hence Δεpb = Δψpb = 0. The shear force at the end of the plate is equal to the clamping force, 

kN10
0

−=
=xp

V . 



 

 

As shown in figure 6, the clamping force results in only peel stress in the adhesive. The 

maximum compressive peel stress is 6.9MPa, hence a clamping force of 19kN would be sufficient to 

react all of the peel stress associated with the prestress load case.  A clamping force will not reduce the 

adhesive shear stress, although the shear strength of the adhesive is likely to be improved. 

A prising load (with a load at the end of the plate applied away from the beam) could be used to 

assess the peel strength of an adhesive system. 

4.6 Discussion of bond stresses in simple load cases 

The load cases considered above investigate the adhesive stresses in a CFRP-strengthened cast 

iron beam. The relative importance of these load cases is noteworthy. In particular, the adhesive 

stresses due to temperature change are three times greater than those due to the live load carried by the 

beam.  It is thus extremely important to consider temperature effects in metallic structures strengthened 

using carbon fibre composites and the designer must take care deciding the temperature range to which 

the beam will be subjected. 

Prestressed strengthening results in high permanent adhesive stresses, and will usually require a 

permanent mechanical anchorage.  The benefit of reacting the peel stresses using a clamping force at 

the end of the plate is shown in load case 5. 

The above examples illustrate how the bond analysis can be used to investigate the adhesive 

stresses due to a variety of simple load cases. The same analysis can be used to investigate any loading 

effect that can be expressed as a lack-of-fit across the adhesive joint. For example, the method can be 

used to investigate temperature gradients through the depth of a strengthened beam (rather than the 

uniform temperature case considered above). 

5. ADHESIVE STRESSES IN CASES OF MORE COMPLEX GEOMETRY 

The closed-form solution used in the above examples and given in Appendix A is only valid for: 

• a continuous adhesive bond between the beam and plate; 

• a sufficiently long adhesive layer, with no interaction between the two ends of the 

plate; 

• no change in cross-section along the beam (ie: no change in plate, beam or adhesive 

dimensions). 



 

 

It is often desirable to analyse bonded plates with more complex geometry; for example, 

variations in plate thickness, beam depth, or adhesive stiffness.  A numerical solution method, such as a 

finite-difference or finite element approach, is necessary where properties vary along the strengthened 

beam. 

Appendix B outlines a finite-difference method for solving the governing equations derived in 

Appendix A. The approach is similar to that described in more detail by Deng, Lee and Moy [10]. Both 

use a constant node spacing, and require around 4000 nodes for convergence of the solution [10]. A 

more efficient solution (requiring around 500 nodes) can be achieved using variable node spacing, 

biased towards the position of the stress concentration. Further details of the variable node spacing 

solution (used to obtain the results given below) are given by the first author [13]. 

The following sections describe how the finite-difference solution can be used to investigate the 

use of stepped or tapered plates on adhesive stresses, and the sensitivity of a adhesive joint to defects. 

These examples are based on load case 1 (applied load) described above. Similar results would be 

obtained for the other load cases. 

5.1 Reduced plate thickness 

Reducing the plate thickness near its end reduces the maximum adhesive stresses; in particular, 

the peel stress is greatly reduced. Tests have confirmed that reducing the thickness of the end of the 

plate thickness improves the strength of the adhesive joint. The plate thickness can be reduced in two 

ways: 

• stepped plates; 

• gradually tapering the thickness of the plate. 

Stepped plates 

Where multiple layers of plates are used to make up the required area of strengthening, the ends 

of the plates can be stepped (as shown at the right end of figure 1). The finite-difference solution can be 

used to determine the adhesive stresses between the plates and the beam, and between the layers of 

plates. The stresses between the plates are found by treating the cast iron and upper plate as a 

composite section, with the lower plate as the strengthening.   



 

 

Figure 7 shows the beam-plate and plate-plate adhesive stresses for stepped plates subjected to 

the applied load considered in load case 1. The plate thickness is tp=5.5mm for 0<x<100mm, and 

tp=11mm for x>100mm. Stepping the plates gives a reduction in maximum shear stress of 30%, and the 

maximum peel stress is reduced by 20% (compared to the unstepped case). 

Tapered plate 

Figure 8 shows the adhesive stresses in a tapered plate, with thickness increasing from tp=1mm 

at x=0 to tp=11mm at x=100mm. The taper reduces the maximum shear stress by 25% and the 

maximum peel stress by 50% (compared to the unstepped case). 

Further examples of the adhesive stresses with tapered plates are given by Deng, Lee & Moy 

[10]. Frost, Lee & Thompson [4] used Bessel functions to extend the analysis presented in Appendix A 

to cover tapers. However, the Bessel function solution requires zero thickness at the end of the plate, 

which is unlikely in practice. 

5.2 Defect sensitivity 

The finite-difference bond solution can also be used to assess the sensitivity of an adhesive joint 

to defects. Potential defects include air bubbles in the adhesive, surface contamination (such as grease), 

and corrosion products in the substrate (further information on bond defects can be found in reference 

[1]). All of these defects can be modelled by an absence of adhesive bond, so that τa = σa = 0 along the 

defect. This approach assumes that the defects are across the whole breadth, ba, of the adhesive joint, 

allowing the worst case to be investigated. 

Surface preparation 

A common defect is poor surface preparation. The dashed line in figure 8 shows the adhesive 

stresses for the tapered plate, with a 50mm long surface preparation defect, starting 10mm from the 

plate’s end. The reduction in maximum shear stress achieved by using a tapered plate is lost; however, 

the maximum peel stress remains significantly lower than the untapered case. 



 

 

End defect 

The ends of the plate are often the most difficult to bond; they are the most susceptible to 

environmental attack; and they correspond to the positions of maximum adhesive stress. Consequently, 

it is important to consider the effect of a bond defect propagating into the end of the adhesive joint. 

Figure 9 shows the variation in maximum adhesive stresses with the length of an end defect for 

the tapered plate considered in figure 8. The end defect significantly increases the maximum adhesive 

stresses, and could lead to unstable debonding of the strengthening plate from the beam. 

6. LIMITING ADHESIVE STRESSES 

An elastic bond stress analysis allows the maximum shear and peel stresses in an adhesive joint 

to be predicted. However, these are of little use unless appropriate limiting adhesive stresses can  be 

determined for the joint being designed. 

The supplier of the adhesive will typically report the strength of the adhesive obtained using a 

lap-shear test (such as BS5350 [14]). These results are the average shear stress along the specimen at 

failure, which are far lower than the peak stress reached in the lap-shear test. The peak shear and peel 

stress in a lap-shear specimen can be obtained by back-analysis, using a consistent linear-elastic 

analysis. C595 [1] describes this approach in detail, based on Goland & Reissner’s [15] analysis of a 

lap-shear test specimen. This is a low-order bond analysis, consistent with the bond analysis used for 

the strengthened beam. 

It should also be recognised that the adhesive supplier’s tests are undertaken on small coupons 

made under factory conditions. Designers must either ensure that the same standard of surface 

preparation and installation is obtained in the real adhesive joint, or use a reduced limiting stress, 

possibly obtained from lap-shear tests with a lower standard of surface preparation. 

7. CONCLUSIONS 

This paper has presented an elastic bond stress analysis suitable for design.  The analysis is a 

powerful tool for investigating the strength of an adhesive joint between a strengthening plate and a 

beam.  A number of illustrative examples have been explored, relating to a cast iron beam strengthened 

with a carbon fibre plate. These show how the adhesive stresses resulting from beam loading, 

temperature change and release of plate prestress can be calculated. In all cases, significant shear and 



 

 

peel stresses arise at the end of a strengthening plate, and these must be compared to the peak stresses 

obtained from a lap-shear test at failure. The high adhesive stresses due to temperature change are 

particular significant, as these are larger than the stresses due to applied load and will often govern 

design. 

A variety of methods can be used to reduce the stresses acting across the adhesive joint.  The 

end of the plate should be located in a region of low moment; a mechanical clamp can be used to react 

tensile peel stress; and the thickness of the plate can be reduced near to its end. A closed form solution 

allows strengthened beams with prismatic cross sections to be analysed and a finite-difference solution 

can be used to investigate more complex geometries, such as tapered or stepped plates. 

It is also important to assess the sensitivity of the adhesive joint to bond defects such as poor 

surface preparation or environmental attack, which can significantly reduce the strength of the adhesive 

joint. 

ACKNOWLEDGEMENTS 

The closed-form bond analysis in Appendix A was initially developed by the authors while 

working for FaberMaunsell Ltd., and was included in CIRIA report C595 [1] ‘Strengthening metallic 

structures using externally-bonded FRP’. The useful comments received from the C595 Steering Group 

members on the bond analysis are gratefully acknowledged, with particular thanks to Steve Denton of 

Parsons Brinkerhoff, and Simon Frost of AEA Technology. 

APPENDIX A – ELASTIC ANALYSIS OF AN ADHESIVE JOINT 

The geometry and material properties of the strengthened beam are shown in figure 2 and 

described in the main text. 

Methodology and assumptions 

The analysis of the strengthened beam section determines the distributions of shear stress (τa) 

and peel stress (σa) acting across the adhesive joint, by examining compatibility requirements across 

the adhesive interface in the longitudinal direction (shear) and the through thickness direction (peel). 



 

 

The beam and/or plate will typically be under load at that the time the adhesive joint is formed, 

and it is important to consider the effect of these pre-strains. The compatibility conditions are thus 

written in terms of the lack-of-fit strains due to changes in the external loading after the adhesive set. 

Lack-of-fit across the adhesive joint 

The loading applied after the adhesive set is described by the change in stress resultants ΔNb, 

ΔMb in the beam and ΔNp, ΔMp in the plate. (As described in the main text, these are the stress 

resultants in the beam and plate if the adhesive joint is not present). The change in temperatures in the 

beam and plate after cure of the adhesive are ΔTb & ΔTp. 

Denoting the conditions at the time that the adhesive set as ‘0’, and the conditions at the current 

time as ‘t’: 

0bbtb NNN −=Δ  0bbtb MMM −=Δ  0bbtb TTT −=Δ  (A1) 

0pptp NNN −=Δ  0pptp MMM −=Δ  0pptp TTT −=Δ  (A2) 

These changes in the stress resultants result in a lack-of-fit in the strain across the adhesive 

interface. The strain (Δε) and curvature (Δψ) at the interface between the beam and the adhesive are: 
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Similarly, the strain and curvature at the plate-adhesive interface are: 
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The lack-of-fit strain across the adhesive joint is: 

bapapb εεε Δ−Δ=Δ   (A5) 

The lack-of-fit curvature across the adhesive joint is: 

bppb ψψψ Δ−Δ=Δ   (A6) 



 

 

Equilibrium and constitutive relationships in the beam and plate 

The conditions in the plate and beam, connected by the adhesive joint, are described by the 

stress resultants Np, Mp, Vp in the plate (acting about the plate’s centroid) and Nb, Mb in the beam. As 

shown in figure 2, these must be in equilibrium: 

pb NN −=  ppb MzNM −=  (A7) 

where z is the lever arm between the centroids of the plate and the beam: 

bap ytyz ++=   (A8) 

Constitutive relationships allow the strains (ε) and curvatures (ψ) in the beam and the plate to be 

expressed in terms of the plate stress resultants. In the plate: 
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In the beam (using eqn. A7): 
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Equilibrium and constitutive relationships across the adhesive joint 

The mean shear stress (τa) and peel stress (σa) acting across the adhesive joint are assumed to 

act about the mid-plane of the adhesive layer. By considering equilibrium of a short length of the plate 

(figure 2): 

• Equilibrium in the x direction gives the shear stress: 
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• For rotational equilibrium (about the top-centre of the plate element): 
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 where Mp
* is the transformed moment about the plate-adhesive interface, 

pppp NyMM −=*   (A13) 



 

 

• Equilibrium in the y direction gives the peel stress: 
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The constitutive response of the adhesive is described by: 
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Shear compatibility of adhesive layer 

The shear stress, τa, across the adhesive interface is determined by examining shear 

compatibility across the adhesive joint. The longitudinal displacements at the beam-adhesive (uba) and 

plate-adhesive (upa) interfaces can be expressed in terms of the horizontal and vertical displacements at 

the centroids of the beam (ub, vb) and the plate (up, vp): 
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where u and v are defined parallel to and in the same direction as x and y.  Δuba and Δupa are the 

lack-of-fit displacements associated with the change in load after the adhesive set (eqns. A1 & A2). 

Differentiating these equations with respect to x gives the corresponding strains at the adhesive 

interfaces. Writing 22 dxvd=ψ for the curvatures gives: 

( ) pappppa y εψεε Δ++=  ( ) babbbba y εψεε Δ+−=  (A17) 

Assuming that the displacement field varies linearly through the adhesive layer, the average 

shear strain in the adhesive layer is given by: 
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Differentiating with respect to x and substituting in the longitudinal strains gives: 
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Substituting for the strains using the constitutive relationships (eqns. A9, A10 & A15) gives the 

compatibility equation for shear strain across the adhesive interface: 
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The unknown variables, Np & Mp are coupled. To simplify the solution, the difference between 

the beam and plate curvatures is assumed negligible for the purposes of determining Np: 
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Mp can now be eliminated from eqn. A20, giving the governing equation for Np: 
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The solution of the governing equation is: 

xx
PSp eCeCNN λλ +− ++= 21   (A24) 

λ is a measure of the relative flexibility of the beam, plate and adhesive: 

12 ff=λ   (A25) 

The particular solution, NPS, is found by substitution of eqn. A24 into eqn. A22. Assuming that 

the lack-of-fit strain varies quadratically along the beam: 

( ) 2
210 xxxpb εεεε Δ+Δ+Δ=Δ   (A26) 

the particular solution is given by: 
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The constants of integration (C1, C2) are found by applying suitable boundary conditions: 

• the force in the plate is known at the discontinuity, 



 

 

• the force in the plate at another known point (for example the other end of the plate), 

or, if the beam is symmetric the shear stress at the centre of the beam must be zero, 

hence (from eqn. A11), dNP/dx = 0. 

For design purposes, it is usually be sufficient to assume that C2 = 0, which implies that the 

length over which the stress concentration acts is small compared to the length of the adhesive joint. 

Applying the first boundary condition gives C1. The axial force in the plate at position x=0 is denoted 

0=xp
N . From eqn. A24: 
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The shear stress in the adhesive can now be found using eqn. A11: 
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The maximum shear stress occurs at x = 0: 
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Substituting for 
0=x

PS
dx
dN

 from eqn. A27, C1 from eqn. A28, and rearranging gives: 
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(The Δε1 term corresponds to St. Venant theory for shear stress in beam carrying shear load that 

causes lack-of-fit).  

Through thickness compatibility of adhesive layer 

The peel stress, σa, is found by examining the through-thickness strain, εa, in the adhesive, the 

difference in vertical displacement across the adhesive joint: 
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Re-writing in terms of stress and differentiating twice with respect to x: 
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Substituting for the curvatures using eqns. A3, A4, A6, A9 & A10 gives the compatibility 

equation for peel: 
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Re-writing this in terms of the transformed moment (Mp
*), and substituting for the peel stress 

(σa) using eqn. A14 gives: 
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where: 
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The solution of this equation is: 
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The particular solution moment is found by substituting Δψpb into eqns. A33 & A35. Assuming 

that the lack-of-fit curvature can be written as a quadratic function: 
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the particular solution moment is: 
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The transformed moment Mp
* (and hence the peel stress) approach zero for large values of x, 

hence the constants of integration C5 and C6 will be zero.  C3 and C4 are found from the plate boundary 

conditions at x=0, where the bending moment and shear force are known: 
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Applying the moment boundary condition to eqn. A37 gives C3: 
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Applying the shear boundary condition to the first differential of eqn. A37 gives C4: 
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The peel stress is found by substituting the differentials of eqns. A37 and A40 into eqn. A14: 
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The maximum value of the peel stress occurs at x=0: 
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APPENDIX B – FINITE-DIFFERENCE SOLUTION FOR VARYING SECTION 

PROPERTIES 

The governing equations for shear (eqn. A22) and peel (eqn. A35) are valid for plated beams 

with geometric and material properties that vary along its length, however, the coefficients (f1, a1 etc) 

vary in x, and a closed form solution is not possible. A finite-difference method can be used to find the 

adhesive stresses for cases with varying section properties. 

A finite-difference solution using constant node spacing, h, is outlined below. The nodes are 

numbered i = 1…n (from x=0 to x=L/2, the centre of the beam). Virtual nodes (-1, 0, n+1, n+2) are 

used to allow derivatives to be defined at nodes 1 and n.  Superscripts are used to define node numbers 

in the following equations. 



 

 

Shear stress solution 

The governing equation for the plate force (eqn. A22) can be written at each node (i = 1…n) 

along the beam: 
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Boundary condition (1): 
0=

=
xpp NN  at x=0 (c.f. eqn. A28): 
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Boundary condition (2): 0== dxdNpτ  at the centre of a symmetric beam (see discussion 

following eqn. A27): 
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These n+2 simultaneous equations are solved explicitly to find the plate force at each of the n+2 

nodes. An implicit solution method (for example, by varying the shear stress at node 1 so as to satisfy 

boundary condition (2) at node n) will not be successful, due to the sensitivity of conditions at node n 

to small changes at node 1. 

The shear stress distribution follows from eqn. A11: 
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Peel stress solution 

A fourth-order finite-difference solution is required to find the transformed plate moment. The 

governing equation for peel (eqn. A35) is written at each node (i = 1…n) along the beam: 
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Boundary condition (1): 
0

**
=

=
xpp MM  at x=0 (c.f. eqn. A41): 
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Boundary condition (2): 
0

*
=

==
xppp VdxdMV  at x=0 (c.f. eqn. A41): 
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Boundary condition (3): 0* == dxdMV pp  at the centre of a symmetric beam: 
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Boundary condition (4): 0
3*3 =dxMd p  at the centre of a symmetric beam: 
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These n+4 simultaneous equations are solved explicitly for the plate force at each of the n+4 

nodes. The peel stress distribution follows from eqn. A14: 
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Figure 1 - Geometric discontinuities that cause adhesive stress concentrations. 
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Figure 2 - Equilibrium between the plate, beam and adhesive joint, and the geometry and material properties of the bonded plate and beam. 

 

 



 

 

With no adhesive joint:
Strain in beam at bonded surface = Δεba

No deformation of plate

Curvature in beam = Δψb

Lack-of-fit across adhesive joint is:

Δεpa=0 Δψp=0

bapapb εεε Δ−Δ=Δ

bppb ψψψ Δ−Δ=Δ
 

 

 

Figure 3 - Lack-of-fit for a strengthened beam carrying pure moment. 
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Figure 4 - Details of the strengthened cast iron considered in the examples. 
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Figure 5 - Adhesive stresses due to (1) applied load, (2) a uniform temperature rise of 30ºC, and (3) release of prestressed plate. 
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Figure 6 - Adhesive stresses due to a 10kN prising force applied at the end of the plate. 

 

 



 

 

0
0

1

2

3

5

4

50 150100 200

x (mm)

τ 
(N

/m
m

)2

-2

0

1

2

3

50 150 200

x (mm)

σ
 (N

/m
m

)2

plate-plate

beam-plateStepped
plates

No step

{}

 

 

 

Figure 7 - Adhesive stresses in a beam strengthened with two stepped plates subjected to applied load, at (1) the beam-plate interface and (2) between the plates. 
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Figure 8 - Adhesive stresses in a beam strengthened with a tapered plate, subjected to applied load: (1) with a complete adhesive layer and (2) with a 50mm long 

defect in the adhesive layer. 
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Figure 9 - The change in maximum adhesive stresses with a tapered plate due to propagation of a bond defect into the end of the adhesive joint. 


