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Abstract

Any spacetime containing a degenerate Killing horizon, such as an extremal black hole,
possesses a well-defined notion of a near-horizon geometry. We review such near-horizon
geometry solutions in a variety of dimensions and theories in a unified manner. We discuss
various general results including horizon topology and near-horizon symmetry enhancement.
We also discuss the status of the classification of near-horizon geometries in theories ranging
from vacuum gravity to Einstein–Maxwell theory and supergravity theories. Finally, we discuss
applications to the classification of extremal black holes and various related topics. Several
new results are presented and open problems are highlighted throughout.
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1 Introduction

Equilibrium black-hole solutions to Einstein’s equations have been known since the advent of
general relativity. The most obvious reason such solutions are of physical interest is the expectation
that they arise as the end state of catastrophic gravitational collapse of some suitably localised
matter distribution. A less obvious reason such solutions are important is that they have played a
key role in guiding studies of quantum gravity.

Classically equilibrium black holes are inert objects. However, the laws of black hole mechanics
have a formal similarity with the laws of thermodynamics [17]. By studying quantum fields in a
black-hole background, Hawking demonstrated that this is not a mere analogy and in fact quantum
mechanically black holes are a thermodynamic system [128]. The black hole radiates at small
temperature

𝑇𝐻 =
~𝜅
2𝜋

(1)

proportional to the surface gravity 𝜅 of the horizon, and possesses a large entropy

𝑆BH =
𝐴𝐻

4~
(2)

proportional to the area 𝐴𝐻 of spatial cross sections of the horizon.1

Deriving these semi-classical thermodynamic formulae from statistical mechanics requires a
microscopic understanding of the “degrees of freedom” of the black hole. This has been a major
motivation and driving force for quantum gravity research over the last four decades, although
it is fair to say this is still poorly understood. It is in this context that extremal black holes are
central. By definition, an equilibrium black hole is extremal (or extreme or degenerate), if the
surface gravity

𝜅 = 0. (3)

It immediately follows that the Hawking temperature vanishes – extremal black holes do not
radiate after all! Hence, even semi-classically, extremal black holes are inert objects2 and as such
are expected to have a simpler quantum description.

The main purpose of this review is to discuss the classification of the near-horizon geometries of
extremal black holes. There are a number of different motivations for considering this, which we will
briefly review. As alluded to above, the principle reasons stem from studies in quantum gravity.
In Section 1.1 and 1.2 we discuss the various ways extremal black holes and their near-horizon
geometries have appeared in modern studies of quantum gravity. In Section 1.3 we discuss the
more general black hole classification problem (which is also partly motivated by quantum gravity),
and how near-horizon geometries provide a systematic tool for investigating certain aspects of this
problem for extremal black holes.

1.1 Black holes in string theory

To date, the most promising candidate for a theory of quantum gravity is string theory. Famously,
this predicts the existence of extra spatial dimensions. As discussed above, an important test for
any candidate theory of quantum gravity is that it is able to explain the semi-classical formulae (1)
and (2). A major breakthrough of Strominger and Vafa [200] was to use string theory to supply a
microscopic derivation of Eq. (2) for certain five dimensional extremal black holes.

The black holes in question are higher-dimensional counterparts of the extremal Reissner–
Nordström (RN) black holes. These are supersymmetric solutions to a supergravity theory, which

1 We work in geometrised units throughout.
2 Of course, a charged extremal black hole can always discharge in the presence of charged matter.
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6 Hari K. Kunduri and James Lucietti

can be obtained as a consistent Kaluza–Klein (KK) reduction of the ten/eleven dimensional super-
gravity that describes string theory at low energies. Supersymmetry was crucial for their calcula-
tion, since non-renormalisation results allowed them to perform a weak-coupling string calculation
(involving certain D-brane configurations) to deduce the entropy of the semi-classical black holes
that exist in the strong coupling regime (see [56] for a review). This was quickly generalised to
supersymmetric black holes with angular momentum [30] and supersymmetric four dimensional
black holes [171].

An important assumption in these string theory calculations is that a given black hole is
uniquely specified by its conserved charges: its mass/energy, electric charge and angular momen-
tum. For four dimensional Einstein–Maxwell theory this follows from the black-hole uniqueness
theorem (see [39] for a review). However, Emparan and Reall demonstrated that black hole unique-
ness is violated for five-dimensional asymptotically-flat vacuum spacetimes [73]. This was via the
construction of an explicit counterexample, the black ring, which is a black hole whose spatial hori-
zon topology is 𝑆1 × 𝑆2. Together with the higher-dimensional analogues of the Kerr black hole
(which have spherical topology) found by Myers and Perry [183], this established that the conserved
charges are not sufficient to specify a black hole uniquely and also that other horizon topologies
are possible. Indeed, this remarkable result motivated the study of stationary black holes in higher
dimensional spacetimes. Subsequently, a supersymmetric black ring was constructed [64, 66] that
coexists with the spherical topology black holes used in the original entropy calculations. Although
microscopic descriptions for the black rings have been proposed [20, 51], it is fair to say that the
description of black hole non-uniqueness within string theory is not properly understood (see [74]
for a brief review).

Any supersymmetric black hole is necessarily extremal. Since the Strominger–Vafa calculation,
a substantial amount of work has been directed at removing the assumption of supersymmetry
and extremality, with the ultimate goal being a string theory derivation of the thermodynamics of
realistic black holes such as the four dimensional Schwarzschild or Kerr black holes. Although little
progress has been made in the description of such non-extremal black holes, significant progress
has been made for extremal non-supersymmetric black holes. In particular, this has been via the
black-hole attractor mechanism.

The attractor mechanism is the phenomenon that the entropy of certain extremal black holes in
string theory does not depend on the moduli of the theory (typically scalar fields in the supergravity
theory). This was first observed for supersymmetric static black holes [78, 197, 77] although later
it was realised it is valid for generic extremal black holes [100, 194, 12]. The key idea is that
extremal black holes have a well-defined near-horizon geometry that typically possesses an AdS2
symmetry. Assuming this symmetry, it was argued that the entropy must be independent of the
moduli of the theory. Motivated by this, it was then proved that the near-horizon geometry of any
extremal black hole in this context must in fact possess an AdS2 symmetry [162]. This general
attractor mechanism thus ensures the black hole entropy is independent of the string coupling, so
it can be safely computed at weak coupling. This shows that in fact it is extremality, rather than
supersymmetry, that is behind the success of the string theory microscopic calculations [52, 13].
This also explains the success of the entropy calculations for extremal, non-supersymmetric black
holes in four and five dimensions, e.g., [192, 71, 140].

1.2 Gauge/gravity duality

A significant breakthrough in the study of quantum gravity is the Anti de Sitter/Conformal Field
Theory (AdS/CFT) duality [169, 206, 207, 109]. In principle, AdS/CFT asserts a fully non-
perturbative equivalence of quantum gravity in asymptotically AdS spacetimes with a conformally
invariant quantum field theory in one lower spatial dimension. This is an explicit realisation of a
‘holographic principle’ underlying quantum gravity [202, 201].
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A crucial feature of the duality is that classical gravity in AdS spacetimes is dual to the
strongly-coupled regime in the CFT. This provides a precise framework to analyse the microscopic
description of black holes in terms of well-defined quantum field theories. The duality was originally
proposed [169] in the context of string theory on AdS5×𝑆5, in which case the CFT is the maximally
supersymmetric four dimensional 𝑆𝑈(𝑁) Yang–Mills gauge theory. However, the original idea has
subsequently been generalised to a number of dimensions and theories, and such gauge/gravity
dualities are believed to hold more generally.

Classical non-extremal AdS black holes represent high-energy thermal states in the dual theory
at large 𝑁 and strong coupling [207]. Strong coupling poses the main obstacle to providing a
precise entropy counting for such black holes, although excellent qualitative agreement can be
found via extrapolating weak coupling calculations [108, 23, 130]. Precise agreement has been
achieved [198] for the asymptotically AdS3 Bañados–Teitelboim–Zanelli (BTZ) black hole (even
for the non-extremal case) [15]. This is because generically any theory of quantum gravity in AdS3
must be described by a two dimensional CFT2 with a specific central charge [32]. This allows one to
compute the entropy from Cardy’s formula, without requiring an understanding of the microscopic
degrees of freedom. In fact the string theory calculations described in Section 1.1 can be thought
of as applications of this method. This is because the black holes in question can be viewed (from a
higher-dimensional viewpoint) as black strings with an AdS3 factor in the near-horizon geometry,
allowing AdS3/CFT2 to be applied.

A major open problem is to successfully account for black-hole entropy using a higher dimen-
sional CFT. The best understood case is when the CFT is four dimensional, in which case the black
holes are asymptotically AdS5. As in the original string calculations, a strategy to overcome the
strong-coupling problem is to focus on supersymmetric AdS black holes. The dual CFT states then
belong to certain Bogomol’nyi–Prasad–Sommerfield (BPS) representations, and so weak-coupling
calculations may not receive quantum corrections. It turns out that such black-hole solutions must
rotate and hence are difficult to construct. In fact the first examples of supersymmetric AdS5
black holes [120, 119] were found via a classification of near-horizon geometries. Subsequently, a
more general four-parameter family of black-hole solutions were found [38, 160]. The problem of
classifying all supersymmetric AdS black holes motivated further classifications of near-horizon ge-
ometries, which have ruled out the possibility of other types of black hole such as supersymmetric
AdS black rings [154, 161, 106]. Despite significant effort, a microscopic derivation of the entropy
from the CFT has not yet been achieved in this context. Due to the low amount of supersym-
metry preserved by the black holes, it appears that non-zero coupling effects must be taken into
account [149, 22, 148, 21, 36].

The original AdS/CFT duality was established by arguing that there exist two complementary
descriptions of the low energy physics of the string theory of a stack of 𝑁 extremal D3 black branes.
Near the horizon of the D-brane only low energy excitations survive, which are thus described by
string theory in the AdS5 × 𝑆5 near-horizon geometry. On the other hand, the massless degrees
of freedom on a D-brane arrange themselves into (super) 𝑆𝑈(𝑁) Yang–Mills theory. It is natural
to extend this idea to extremal black holes. Since extremal black holes typically possess an AdS2
factor in their near-horizon geometry, one may then hope that an AdS2/CFT1 duality [199] could
provide a microscopic description of such black holes. Unfortunately this duality is not as well
understood as the higher-dimensional cases. However, it appears that the black-hole entropy can
be reproduced from the degeneracy of the ground states of the dual conformal mechanics [170, 195].

Another recently-developed approach is to generalise the AdS3/CFT2 derivation of the BTZ
entropy to describe more general black holes. This involves finding an asymptotic symmetry group
of a given near-horizon geometry that contains a Virasoro algebra and then applying Cardy’s
formula. This was applied to the extremal Kerr black hole and led to the Kerr/CFT correspon-
dence [110], which is a proposal that quantum gravity in the near-horizon geometry of extremal
Kerr is described by a chiral CFT2 (see the reviews [31, 48]). This technique has provided a
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successful counting of the entropy of many black holes. However, as in the AdS2/CFT1 case, the
duality is poorly understood and it appears that non-trivial excitations of the near-horizon geom-
etry do not exist [60, 4]. The relation between these various approaches has been investigated in
the special case of BTZ [16]. Furthermore, a CFT2 description has been proposed for a certain
class of near-extremal black holes, which possess a local near-horizon AdS3 factor but a vanishing
horizon area in the extremal limit [196, 146].3

Recently, ideas from the gauge/gravity duality have been used to model certain phase transitions
that occur in condensed-matter systems, such as superfluids or superconductors [107, 125]. The key
motivation to this line of research, in contrast to the above, is to use knowledge of the gravitational
system to learn about strongly-coupled field theories. Charged black holes in AdS describe the
finite temperature phases. The non-superconducting phase is dual to the standard planar RN-AdS
black hole of Einstein–Maxwell theory, which is stable at high enough temperature. However, at low
enough temperatures this solution is unstable to the formation of a charged scalar condensate. The
dominant phase at low temperatures is a charged black hole with scalar hair, which describes the
superconducting phase. This instability of (near)-extremal RN-AdS can be understood as occurring
due to the violation of the Breitenlohner–Freedmann bound in the AdS2 factor of the near-horizon
geometry. A similar result has also been shown for neutral rotating AdS black holes [59]. The near-
horizon AdS2 has also been used to provide holographic descriptions of quantum critical points
and Fermi surfaces [76].

1.3 Black hole classification

The classification of higher-dimensional stationary black-hole solutions to Einstein’s equations is
a major open problem in higher dimensional general relativity (see [75, 136] for reviews). As
explained above, the main physical motivation stems from studies of quantum gravity and high
energy physics. However, its study is also of intrinsic value both physically and mathematically. On
the physical side we gain insight into the behaviour of gravity in higher-dimensional spacetimes,
which in turn often provides renewed perspective for the classic four-dimensional results. On
the mathematical side, solutions to Einstein’s equation have also been of interest in differential
geometry [24].4

In four dimensions the black-hole uniqueness theorem provides an answer to the classification
problem for asymptotically-flat black-hole solutions of Einstein–Maxwell theory (see [39] for a re-
view).5 However, in higher dimensions, uniqueness is violated even for asymptotically-flat vacuum
black holes. To date, the explicit black-hole solutions known are the spherical horizon topology
Myers–Perry black holes [183] and the black rings [73, 187] that have 𝑆1 × 𝑆2 horizon topology
(see [75] for a review). If one allows for more complicated boundary conditions, such as KK
asymptotics, then uniqueness is violated even for static black holes (see, e.g., [141]). Although of
less obvious physical relevance, the investigation of asymptotically-flat vacuum black holes is the
fundamental starting case to consider in higher dimensions, since such solutions can be viewed as
limits of black holes with more general asymptotics such as KK, AdS and matter fields.

General results have been derived that constrain the topology of black holes. By generalising
Hawking’s horizon topology theorem [127] to higher dimensions, Galloway and Schoen [91] have
shown that the spatial topology of the horizon must be such that it admits a positive scalar curva-
ture metric (i.e., positive Yamabe type). Horizon topologies are further constrained by topological

3 The emergence of an AdS3 factor for solutions with certain null singularities has been previously observed [68,
18]. We will only consider regular horizons, so the area of spatial cross sections of the horizon is necessarily non-zero.

4 Although spacetimes correspond to Lorentzian metrics, one can often analytically continue these to complete
Riemannian metrics. Indeed, the first example of an inhomogeneous Einstein metric on a compact manifold was

found by Page, by taking a certain limit of the Kerr–de Sitter metrics [185], giving a metric on CP2#CP2
.

5 Albeit, under some technical assumptions such as analyticity of the metric.
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censorship [85, 44]. For asymptotically-flat (and globally AdS) black holes, this implies that there
must be a simply connected (oriented) cobordism between cross sections of the horizon and the
(𝐷 − 2)-dimensional sphere at spatial infinity.6 In 𝐷 = 4, this rules out toroidal black holes,
although for 𝐷 = 5 it imposes no constraint. For 𝐷 > 5 this does provide a logically independent
constraint in addition to the positive Yamabe condition [191, 156].

General results have also been derived that constrain the symmetries of black hole spacetimes.
Firstly, asymptotically-flat, static vacuum black holes must be spherically symmetric and hence
are uniquely given by the higher dimensional Schwarzschild black hole [98].7 By generalising
Hawking’s rigidity theorem [127], it was shown that asymptotically-flat and AdS stationary non-
extremal rotating black holes must admit at least R×𝑈(1) isometry [137, 180] (for partial results
pertaining to extremal rotating black holes see [134]). This additional isometry can be used to
further refine the allowed set of 𝐷 = 5 black hole horizon topologies [133].

An important class of spacetimes, for which substantial progress towards classification has been
made, are the generalised Weyl solutions [72, 124]. By definition these possess an R × 𝑈(1)𝐷−3

symmetry group and generalise 𝐷 = 4 stationary and axisymmetric spacetimes. As in the 𝐷 = 4
case, it turns out that the vacuum Einstein equations for spacetimes with these symmetries are
integrable. For 𝐷 = 5 this structure has allowed one to prove certain uniqueness theorems for
asymptotically-flat black holes with R × 𝑈(1)2 symmetry, using the same methods as for 𝐷 =
4 [138]. Furthermore, this has led to the explicit construction of several novel asymptotically-flat,
stationary, multi–black-hole vacuum solutions, the first example being a (non-linear) superposition
of a black ring and a spherical black hole [67]. For 𝐷 > 5, the symmetry of these spacetimes is
not compatible with asymptotic flatness, that would require the number of commuting rotational
symmetries to not exceed ⌊𝐷−1

2 ⌋, the rank of the rotation group 𝑆𝑂(𝐷 − 1). In this case, Weyl
solutions are compatible with KK asymptotics and this has been used to prove uniqueness theorems
for (uniform) KK black holes/strings [139].

The general topology and symmetry constraints discussed above become increasingly weak as
one increases the number of dimensions. Furthermore, there is evidence that black hole uniqueness
will be violated much more severely as one increases the dimensions. For example, by an analysis
of gravitational perturbations of the Myers–Perry black hole, evidence for a large new family of
black holes was found [193]. Furthermore, the investigation of “blackfolds”, where the long-range
effective dynamics of certain types of black holes can be analysed, suggests that many new types
of black holes should exist, see [70] for a review. In the absence of new ideas, it appears that the
general classification problem for asymptotically-flat black holes is hopelessly out of reach.

As discussed in Section 1.2, the black-hole–classification problem for asymptotically AdS black
holes is of interest in the context of gauge/gravity dualities. The presence of a (negative) cos-
mological constant renders the problem even more complicated. Even in four dimensions, there
is no analogue of the uniqueness theorems. One reason for this comes from the fact that Ein-
stein’s equations with a cosmological constant for stationary and axisymmetric metrics are not
integrable. Hence the standard method used to prove uniqueness of Kerr cannot be generalised.
This also means that constructing charged generalisations, in four and higher dimensions, from a
neutral seed can not be accomplished using standard solution generating methods. In fact, pertur-
bation analyses of known solutions (e.g., Kerr-AdS and higher dimensional generalisations), reveal
that if the black holes rotate sufficiently fast, super-radiant instabilities exist [130, 34, 159, 35].
It has been suggested that the endpoint of these instabilities are new types of non-axisymmetric
black-hole solutions that are not stationary in the usual sense, but instead invariant under a single
Killing field co-rotating with the horizon [159]. (Examples of such solutions have been constructed

6 Two oriented manifolds are said to be oriented-cobordant if there exists some other oriented manifold whose
boundary (with the induced orientation) is their disjoint union.

7 Similarly, any such black hole in Einstein–Maxwell-dilaton theory with a purely electric field strength must be
given by the RN solution [96, 97].
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10 Hari K. Kunduri and James Lucietti

in a scalar gravity theory [58]). A further complication in AdS comes from the choice of asymptotic
boundary conditions. In AdS there is the option of replacing the sphere on the conformal bound-
ary with more general manifolds, in which case topological censorship permits more black-hole
topologies [90].

It is clear that supersymmetry provides a technically-simplifying assumption to classifying
spacetimes, since it reduces the problem to solving first-order Killing spinor equations rather
than the full Einstein equations. A great deal of work has been devoted to developing sys-
tematic techniques for constructing supersymmetric solutions, most notably in five-dimensional
ungauged supergravity [93] and gauged supergravity [92]. These have been used to construct new
five-dimensional supersymmetric black-hole solutions, which are asymptotically flat [66, 64] and
AdS [120, 119, 160], respectively. Furthermore, the first uniqueness theorem for asymptotically-flat
supersymmetric black holes was proved using these methods [191].

Less obviously, it turns out that the weaker assumption of extremality can also be used as
a simplifying assumption, as follows. The event horizon of all known extremal black holes is
a degenerate Killing horizon with compact spatial cross sections 𝐻. It turns out that restricting
Einstein’s equations for a 𝐷-dimensional spacetime to a degenerate horizon gives a set of geometric
equations for the induced metric on such (𝐷 − 2)-dimensional cross sections 𝐻, that depend only
on quantities intrinsic to 𝐻. By studying solutions to this problem of Riemannian geometry on
a compact manifold 𝐻, one can thus consider the possible horizon geometries (and topologies)
independently of the full parent spacetime. This strategy often also works in cases where the
standard black hole uniqueness/classification techniques do not apply (e.g., AdS, higher dimensions
etc.).

One can understand this feature of degenerate horizons in terms of the near-horizon limit,
which, as we explain in Section 2, exists for any spacetime containing a degenerate horizon. This
allows one to define an associated near-horizon geometry, which must also satisfy the full Einstein
equations [191, 162], so classifying near-horizon geometries is then equivalent to classifying possible
horizon geometries (and topologies). Indeed, the topic of this review is the classification of near-
horizon geometries in diverse dimensions and theories.

The classification of near-horizon geometries allows one to explore in a simplified setup the
main issues that appear in the general black-hole classification problem, such as the horizon topol-
ogy, spacetime symmetry and the “number” of solutions. The main drawback of this approach is
that the existence of a near-horizon geometry solution does not guarantee the existence of a corre-
sponding black-hole solution (let alone its uniqueness).8 Hence, one must keep this in mind when
interpreting near-horizon classifications in the context of black holes, although definite statements
can be learned. In particular, one can use this method to rule out possible black-hole horizon
topologies, for if one can classify near-horizon geometries completely and a certain horizon topol-
ogy does not appear, this implies there can be no extremal black hole with that horizon topology
either. A notable example of this method has been a proof of the non-existence of supersymmetric
AdS black rings in 𝐷 = 5 minimal gauged supergravity [161, 106].

1.4 This review

1.4.1 Scope

In this review we will consider near-horizon geometries of solutions to Einstein’s equations, in all
dimensions 𝐷 ≥ 3, that contain smooth degenerate horizons. Our aim is to provide a unified
treatment of such near-horizon solutions in diverse theories with matter content ranging from
vacuum gravity, to Einstein–Maxwell theories and various (minimal) supergravity theories.

8 Indeed counterexamples are known in both senses.
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We do not assume the near-horizon geometry arises as a near-horizon limit of a black-hole solu-
tion. However, due to the application to extremal black holes we will mostly consider horizons that
admit a spatial cross section that is compact. As we will see in various setups, compactness often
allows one to avoid explicitly solving the full Einstein equations and instead use global arguments
to constrain the space of solutions. As a result, the classification of near-horizon geometries with
non-compact horizon cross sections is a much more difficult problem about which less is known.
This is relevant to the classification of extremal black branes and therefore lies outside the scope
of this article. Nevertheless, along the way, we will point out cases in which classification has been
achieved without the assumption of compactness, and in Section 7.5 we briefly discuss extremal
branes in this context.

Although this is a review article, we streamline some of the known proofs and we also present
several new results that fill in various gaps in the literature. Most notably, we fully classify
three dimensional near-horizon geometries in vacuum gravity and Einstein–Maxwell–Chern–Simons
theories, in Section 4.2 and 6.1 respectively, and classify homogeneous near-horizon geometries in
five dimensional Einstein–Maxwell–Chern–Simons theories in Section 6.3.2.

1.4.2 Organisation

In Section 2 we provide key definitions, introduce a suitably general notion of a near-horizon
geometry and set up the Einstein equations for such near-horizon geometries.

In Section 3 we review various general results that constrain the topology and symmetry of
near-horizon geometries. This includes the horizon topology theorem and various near-horizon
symmetry enhancement theorems. We also discuss the physical charges one can calculate from a
near-horizon geometry.

In Section 4 we discuss the classification of near-horizon geometries in vacuum gravity, including
a cosmological constant, organised by dimension. In cases where classification results are not
known, we describe the known solutions.

In Section 5 we discuss the classification of supersymmetric near-horizon geometries in various
supergravity theories, organised by dimension.

In Section 6 we discuss the classification of general near-horizon geometries coupled to gauge
fields. This includes 𝐷 = 3, 4, 5 Einstein–Maxwell theories, allowing for Chern–Simons terms where
appropriate, and 𝐷 = 4 Einstein–Yang–Mills theory.

In Section 7 we discuss various applications of near-horizon geometries and related topics. This
includes uniqueness/classification theorems of the corresponding extremal black-hole solutions,
stability of near-horizon geometries and extremal black holes, geometric inequalities, analytic con-
tinuation of near-horizon geometries, and extremal branes and their near-horizon geometries.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-8

http://www.livingreviews.org/lrr-2013-8


12 Hari K. Kunduri and James Lucietti

2 Degenerate Horizons and Near-Horizon Geometry

2.1 Coordinate systems and near-horizon limit

In this section we will introduce a general notion of a near-horizon geometry. This requires us to first
introduce some preliminary constructions. Let 𝒩 be a smooth9 codimension-1 null hypersurface
in a 𝐷 dimensional spacetime (𝑀, 𝑔). In a neighbourhood of any such hypersurface there exists
an adapted coordinate chart called Gaussian null coordinates that we now recall [179, 86].

Let 𝑁 be a vector field normal to 𝒩 whose integral curves are future-directed null geodesic
generators of 𝒩 . In general these will be non-affinely parameterised so on 𝒩 we have ∇𝑁𝑁 = 𝜅𝑁
for some function 𝜅. Now let 𝐻 denote a smooth (𝐷− 2)-dimensional spacelike submanifold of 𝒩 ,
such that each integral curve of 𝑁 crosses 𝐻 exactly once: we term 𝐻 a cross section of 𝒩 and
assume such submanifolds exist. On 𝐻 choose arbitrary local coordinates (𝑥𝑎), for 𝑎 = 1, . . . , 𝐷−2,
containing some point 𝑝 ∈ 𝐻. Starting from 𝑝 ∈ 𝐻, consider the point in 𝒩 a parameter value 𝑣
along the integral curve of 𝑁 . Now assign coordinates (𝑣, 𝑥𝑎) to such a point, i.e., we extend the
functions 𝑥𝑎 into 𝒩 by keeping them constant along such a curve. This defines a set of coordinates
(𝑣, 𝑥𝑎) in a tubular neighbourhood of the integral curves of 𝑁 through 𝑝 ∈ 𝐻, such that 𝑁 = 𝜕/𝜕𝑣.
Since 𝑁 is normal to 𝒩 we have 𝑁 ·𝑁 = 𝑔𝑣𝑣 = 0 and 𝑁 · 𝜕/𝜕𝑥𝑎 = 𝑔𝑣𝑎 = 0 on 𝒩 .

We now extend these coordinates into a neighbourhood of 𝒩 in 𝑀 as follows. For any point
𝑞 ∈ 𝒩 contained in the above coordinates (𝑣, 𝑥𝑎), let 𝐿 be the unique past-directed null vector
satisfying 𝐿 · 𝑁 = 1 and 𝐿 · 𝜕/𝜕𝑥𝑎 = 0. Now starting at 𝑞, consider the point in 𝑀 an affine
parameter value 𝑟 along the null geodesic with tangent vector 𝐿. Define the coordinates of such
a point in 𝑀 by (𝑣, 𝑟, 𝑥𝑎), i.e., the functions 𝑣, 𝑥𝑎 are extended into 𝑀 by requiring them to be
constant along such null geodesics. This provides coordinates (𝑣, 𝑟, 𝑥𝑎) defined in a neighbourhood
of 𝒩 in 𝑀 , as required.

We extend the definitions of 𝑁 and 𝐿 into𝑀 by 𝑁 = 𝜕/𝜕𝑣 and 𝐿 = 𝜕/𝜕𝑟. By construction the
integral curves of 𝐿 = 𝜕/𝜕𝑟 are null geodesics and hence 𝑔𝑟𝑟 = 0 everywhere in the neighbourhood
of 𝒩 in 𝑀 in question. Furthermore, using the fact that 𝑁 and 𝐿 commute (they are coordinate
vector fields), we have

∇𝐿(𝐿 ·𝑁) = 𝐿 · (∇𝐿𝑁) = 𝐿 · (∇𝑁𝐿) =
1

2
∇𝑁 (𝐿 · 𝐿) = 0 (4)

and therefore 𝐿 ·𝑁 = 𝑔𝑣𝑟 = 1 for all 𝑟. A similar argument shows 𝐿 · 𝜕/𝜕𝑥𝑎 = 𝑔𝑟𝑎 = 0 for all 𝑟.
These considerations show that, in a neighbourhood of 𝒩 in𝑀 , the spacetime metric 𝑔 written

in Gaussian null coordinates (𝑣, 𝑟, 𝑥𝑎) is of the form

𝑔 = 2 d𝑣
(︀
d𝑟 + 𝑟ℎ𝑎 d𝑥

𝑎 + 1
2𝑟𝑓 d𝑣

)︀
+ 𝛾𝑎𝑏 d𝑥

𝑎 d𝑥𝑏 , (5)

where 𝒩 is the hypersurface {𝑟 = 0}, the metric components 𝑓, ℎ𝑎, 𝛾𝑎𝑏 are smooth functions of
all the coordinates, and 𝛾𝑎𝑏 is an invertible (𝐷 − 2) × (𝐷 − 2) matrix. This coordinate chart
is unique up to choice of cross section 𝐻 and choice of coordinates (𝑥𝑎) on 𝐻. Upon a change
of coordinates on 𝐻 the quantities 𝑓, ℎ𝑎, 𝛾𝑎𝑏 transform as a function, 1-form and non-degenerate
metric, respectively. Hence they may be thought of as components of a globally-defined function,
1-form and Riemannian metric on 𝐻.

The coordinates developed above are valid in the neighbourhood of any smooth null hypersur-
face 𝒩 . In this work we will in fact be concerned with smooth Killing horizons. These are null
hypersurfaces that possess a normal that is a Killing field 𝐾 in 𝑀 . Hence we may set 𝑁 = 𝐾 in
the above construction. Since 𝐾 = 𝜕/𝜕𝑣 we deduce that in the neighbourhood of a Killing horizon

9 In fact our constructions only assume the metric is 𝐶2 in a neighbourhood of the horizon. This encompasses
certain examples of multi–black-hole spacetimes with non-smooth horizons [33].
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𝒩 , the metric can be written as Eq. (5) where the functions 𝑓, ℎ𝑎, 𝛾𝑎𝑏 are all independent of the
coordinate 𝑣. Using the Killing property one can rewrite ∇𝐾𝐾 = 𝜅𝐾 as d(𝐾 ·𝐾) = −2𝜅𝐾 on 𝒩 ,
where 𝜅 is now the usual surface gravity of a Killing horizon.

We may now introduce the main objects we will study in this work: degenerate Killing horizons.
These are defined as Killing horizons 𝒩 such that the normal Killing field 𝐾 is tangent to affinely
parameterised null geodesics on 𝒩 , i.e., 𝜅 ≡ 0. Therefore, d(𝐾 ·𝐾)|𝒩 = 0, which implies that in
Gaussian null coordinates (𝜕𝑟𝑔𝑣𝑣)|𝑟=0 = 0. It follows that 𝑔𝑣𝑣 = 𝑟2𝐹 for some smooth function 𝐹 .
Therefore, in the neighbourhood of any smooth degenerate Killing horizon the metric in Gaussian
null coordinates reads

𝑔 = 2 d𝑣
(︀
d𝑟 + 𝑟ℎ𝑎(𝑟, 𝑥) d𝑥

𝑎 + 1
2𝑟

2𝐹 (𝑟, 𝑥) d𝑣
)︀
+ 𝛾𝑎𝑏(𝑟, 𝑥) d𝑥

𝑎 d𝑥𝑏 . (6)

We are now ready to define the near-horizon geometry of a 𝐷-dimensional spacetime (𝑀, 𝑔)
containing such a degenerate horizon. Given any 𝜖 > 0, consider the diffeomorphism defined by
𝑣 → 𝑣/𝜖 and 𝑟 → 𝜖𝑟. The metric in Gaussian null coordinates transforms 𝑔 → 𝑔𝜖 where 𝑔𝜖 is given
by Eq. (6) with the replacements 𝐹 (𝑟, 𝑥) → 𝐹 (𝜖𝑟, 𝑥), ℎ𝑎(𝑟, 𝑥) → ℎ𝑎(𝜖𝑟, 𝑥) and 𝛾𝑎𝑏(𝑟, 𝑥) → 𝛾𝑎𝑏(𝜖𝑟, 𝑥).
The near-horizon limit is then defined as the 𝜖 → 0 limit of 𝑔𝜖. It is clear this limit always exists
since all metric functions are smooth at 𝑟 = 0. The resulting metric is called the near-horizon
geometry and is given by

𝑔NH = 2 d𝑣
(︀
d𝑟 + 𝑟ℎ𝑎(𝑥) d𝑥

𝑎 + 1
2𝑟

2𝐹 (𝑥) d𝑣
)︀
+ 𝛾𝑎𝑏(𝑥) d𝑥

𝑎 d𝑥𝑏 , (7)

where 𝐹 (𝑥) = 𝐹 (0, 𝑥), ℎ𝑎(𝑥) = ℎ𝑎(0, 𝑥) and 𝛾𝑎𝑏(𝑥) = 𝛾𝑎𝑏(0, 𝑥). Notice that the 𝑟 dependence of
the metric is completely fixed. In fact the near-horizon geometry is completely specified by the
following geometric data on the (𝐷−2)-dimensional cross section 𝐻: a smooth function 𝐹 , 1-form
ℎ𝑎 and Riemannian metric 𝛾𝑎𝑏. We will often refer to the triple of data (𝐹, ℎ𝑎, 𝛾𝑎𝑏) on 𝐻 as the
near-horizon data.

Intuitively, the near-horizon limit is a scaling limit that focuses on the spacetime near the
horizon 𝒩 . We emphasise that the degenerate assumption 𝑔𝑣𝑣 = 𝑂(𝑟2) is crucial for defining this
limit and such a general notion of a near-horizon limit does not exist for a non-degenerate Killing
horizon.

2.2 Curvature of near-horizon geometry

As we will see, geometric equations (such as Einstein’s equations) for a near-horizon geometry
can be equivalently written as geometric equations defined purely on a (𝐷 − 2)-dimensional cross
section manifold 𝐻 of the horizon. In this section we will write down general formulae relating the
curvature of a near-horizon geometry to the curvature of the horizon 𝐻. For convenience we will
denote the dimension of 𝐻 by 𝑛 = 𝐷 − 2.

It is convenient to introduce a null-orthonormal frame for the near-horizon metric (7), denoted
by (𝑒𝐴), where 𝐴 = (+,−, 𝑎), 𝑎 = 1, . . . , 𝑛 and

𝑒+ = d𝑣, 𝑒− = d𝑟 + 𝑟ℎ𝑎𝑒
𝑎 + 1

2𝑟
2𝐹 d𝑣, 𝑒𝑎 = 𝑒𝑎 , (8)

so that 𝑔 = 𝜂𝐴𝐵𝑒
𝐴𝑒𝐵 = 2𝑒+𝑒− + 𝑒𝑎𝑒𝑎, where 𝑒𝑎 are vielbeins for the horizon metric 𝛾 = 𝑒𝑎𝑒𝑎.10

The dual basis vectors are

𝑒+ = 𝜕𝑣 − 1
2𝐹𝑟

2𝜕𝑟, 𝑒− = 𝜕𝑟, 𝑒𝑎 = 𝜕𝑎 − 𝑟ℎ𝑎𝜕𝑟, (9)

10 To avoid proliferation of indices we will denote both coordinate and vielbein indices on 𝐻 by lower case latin
letters 𝑎, 𝑏, . . . .
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where 𝜕𝑎 denote the dual vectors to 𝑒𝑎. The connection 1-forms satisfy d𝑒𝐴 = −𝜔𝐴
𝐵 ∧ 𝑒𝐵 and are

given by

𝜔+− = 𝑟𝐹𝑒+ + 1
2ℎ𝑎𝑒

𝑎 , 𝜔+𝑎 = 1
2𝑟

2(𝜕𝑎𝐹 − 𝐹ℎ𝑎)𝑒
+ − 1

2ℎ𝑎𝑒
− + 𝑟∇̂[𝑎ℎ𝑏]𝑒

𝑏 ,

𝜔−𝑎 = − 1
2ℎ𝑎𝑒

+ , 𝜔𝑎𝑏 = �̂�𝑎𝑏 − 𝑟∇̂[𝑎ℎ𝑏]𝑒
+ , (10)

where �̂�𝑎𝑏 and ∇̂𝑎 are the connection 1-forms and Levi-Civita connection of the metric 𝛾𝑎𝑏 on 𝐻
respectively. The curvature two-forms defined by Ω𝐴𝐵 = d𝜔𝐴𝐵 + 𝜔𝐴𝐶 ∧ 𝜔𝐶

𝐵 give the Riemann
tensor in this basis using Ω𝐴𝐵 = 1

2𝑅𝐴𝐵𝐶𝐷𝑒
𝐶 ∧ 𝑒𝐷. The curvature two forms are:

Ω𝑎𝑏 = Ω̂𝑎𝑏 + 𝑒+ ∧ 𝑒−∇̂[𝑎ℎ𝑏] + 𝑟𝑒+ ∧ 𝑒𝑑
(︁
−ℎ𝑑∇̂[𝑎ℎ𝑏] + ∇̂𝑑∇̂[𝑎ℎ𝑏] +

1
2ℎ𝑎∇̂[𝑏ℎ𝑑] − 1

2ℎ𝑏∇̂[𝑎ℎ𝑑]

)︁
,

Ω+− =
(︀
1
4ℎ𝑎ℎ𝑎 − 𝐹

)︀
𝑒+ ∧ 𝑒− + 𝑟𝑒𝑏 ∧ 𝑒+

(︁
𝜕𝑏𝐹 − 𝐹ℎ𝑏 +

1
2ℎ𝑎∇̂[𝑎ℎ𝑏]

)︁
+ 1

2∇̂[𝑎ℎ𝑏]𝑒
𝑎 ∧ 𝑒𝑏,

Ω+𝑎 = 𝑟2𝑒+ ∧ 𝑒𝑑
[︁(︁

− 1
2∇̂𝑑 + ℎ𝑑

)︁
(𝜕𝑎𝐹 − 𝐹ℎ𝑎) +

1
2𝐹 ∇̂[𝑎ℎ𝑑] + ∇̂[𝑐ℎ𝑎]∇̂[𝑐ℎ𝑑] +

1
2ℎ[𝑎∇̂𝑑]𝐹

]︁
+ 𝑟𝑒+ ∧ 𝑒−

(︁
ℎ𝑎𝐹 − 𝜕𝑎𝐹 − 1

2ℎ𝑏∇̂[𝑏ℎ𝑎]

)︁
+ 1

2𝑒
− ∧ 𝑒𝑏

(︁
∇̂𝑎ℎ𝑏 − 1

2ℎ𝑎ℎ𝑏

)︁
+ 𝑟𝑒𝑏 ∧ 𝑒𝑑

(︁
−∇̂𝑑∇̂[𝑎ℎ𝑏] +

1
2ℎ𝑎∇̂[𝑑ℎ𝑏] − 1

2ℎ𝑏∇̂[𝑎ℎ𝑑]

)︁
,

Ω−𝑎 = 1
2𝑒

+ ∧ 𝑒𝑏
(︁
∇̂𝑏ℎ𝑎 − 1

2ℎ𝑎ℎ𝑏

)︁
, (11)

where Ω̂𝑎𝑏 is the curvature of �̂�𝑎𝑏 on 𝐻. The non-vanishing components of the Ricci tensor are
thus given by:

𝑅+− = 𝐹 − 1
2ℎ𝑎ℎ𝑎 +

1
2∇̂𝑎ℎ𝑎 ,

𝑅𝑎𝑏 = �̂�𝑎𝑏 + ∇̂(𝑎ℎ𝑏) − 1
2ℎ𝑎ℎ𝑏 ,

𝑅++ = 𝑟2
[︁
− 1

2∇̂
2𝐹 + 3

2ℎ
𝑎∇̂𝑎𝐹 + 1

2𝐹 ∇̂
𝑎ℎ𝑎 − 𝐹ℎ𝑎ℎ𝑎 + ∇̂[𝑐ℎ𝑎]∇̂[𝑐ℎ𝑎]

]︁
≡ 𝑟2𝑆++ ,

𝑅+𝑎 = 𝑟
[︁
∇̂𝑎𝐹 − 𝐹ℎ𝑎 − 2ℎ𝑏∇̂[𝑎ℎ𝑏] + ∇̂𝑏∇̂[𝑎ℎ𝑏]

]︁
≡ 𝑟𝑆+𝑎 , (12)

where �̂�𝑎𝑏 is the Ricci tensor of the metric 𝛾𝑎𝑏 on 𝐻. The spacetime contracted Bianchi identity
implies the following identities on 𝐻:

𝑆++ = − 1
2 (∇̂

𝑎 − 2ℎ𝑎)𝑆+𝑎 , (13)

𝑆+𝑎 = −∇̂𝑏[𝑅𝑏𝑎 − 1
2𝛾𝑏𝑎(𝑅

𝑐
𝑐 + 2𝑅+−)] + ℎ𝑏𝑅𝑏𝑎 − ℎ𝑎𝑅+− , (14)

which may also be verified directly from the above expressions.
It is worth noting that the following components of the Weyl tensor automatically vanish:

𝐶−𝑎−𝑏 = 0 and 𝐶−𝑎𝑏𝑐 = 0. This means that 𝑒− = 𝜕𝑟 is a multiple Weyl aligned null direction and
hence any near-horizon geometry is at least algebraically special of type II within the classification
of [47]. In fact, it can be checked that the null geodesic vector field 𝜕𝑟 has vanishing expansion,
shear and twist and therefore any near-horizon geometry is a Kundt spacetime.11 Indeed, by
inspection of Eq. (7) it is clear that near-horizon geometries are a subclass of the degenerate
Kundt spacetimes,12 which are all algebraically special of at least type II [184].

Henceforth, we will drop the “hats” on all horizon quantities, so 𝑅𝑎𝑏 and ∇𝑎 refer to the Ricci
tensor and Levi-Civita connection of 𝛾𝑎𝑏 on 𝐻.

11 A Kundt spacetime is one that admits a null geodesic vector field with vanishing expansion, shear and twist.
12 A Kundt spacetime is said to be degenerate if the Riemann tensor and all its covariant derivatives are type II

with respect to the defining null vector field [184].
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2.3 Einstein equations and energy conditions

We will consider spacetimes that are solutions to Einstein’s equations:

𝑅𝜇𝜈 = Λ𝑔𝜇𝜈 + 𝑇𝜇𝜈 − 1

𝑛
𝑔𝜌𝜎𝑇𝜌𝜎 𝑔𝜇𝜈 , (15)

where 𝑇𝜇𝜈 is the energy-momentum and Λ is the cosmological constant of our spacetime. We will
be interested in a variety of possible energy momentum tensors and thus in this section we will
keep the discussion general.

An important fact is that if a spacetime containing a degenerate horizon satisfies Einstein’s
equations then so does its near-horizon geometry. This is easy to see as follows. If the metric 𝑔 in
Eq. (6) satisfies Einstein’s equations, then so will the 1-parameter family of diffeomorphic metrics
𝑔𝜖 for any 𝜖 > 0. Hence the limiting metric 𝜖→ 0, which by definition is the near-horizon geometry,
must also satisfy the Einstein equations.

The near-horizon limit of the energy momentum tensor thus must also exist and takes the form

𝑇 = 2 d𝑣
(︀
𝑇+− d𝑟 + 𝑟(𝛽𝑎 + 𝑇+−ℎ𝑎) d𝑥

𝑎 + 1
2𝑟

2(𝛼+ 𝑇+−𝐹 ) d𝑣
)︀
+ 𝑇𝑎𝑏 d𝑥

𝑎 d𝑥𝑏, (16)

where 𝑇+−, 𝛼 are functions on 𝐻 and 𝛽𝑎 is a 1-form on 𝐻. Working in the vielbein frame (8), it
is then straightforward to verify that the 𝑎𝑏 and +− components of the Einstein equations for the
near-horizon geometry give the following equations on the cross section 𝐻:

𝑅𝑎𝑏 =
1
2ℎ𝑎ℎ𝑏 −∇(𝑎ℎ𝑏) + Λ𝛾𝑎𝑏 + 𝑃𝑎𝑏, (17)

𝐹 = 1
2ℎ

2 − 1
2∇𝑎ℎ

𝑎 + Λ− 𝐸, (18)

where we have defined

𝑃𝑎𝑏 ≡ 𝑇𝑎𝑏 −
1

𝑛
(𝛾𝑐𝑑𝑇𝑐𝑑 + 2𝑇+−)𝛾𝑎𝑏, (19)

𝐸 ≡ −
(︂
𝑛− 2

𝑛

)︂
𝑇+− +

1

𝑛
𝛾𝑎𝑏𝑇𝑎𝑏 . (20)

It may be shown that the rest of the Einstein equations are automatically satisfied as a consequence
of Eqs. (17), (18) and the matter field equations, as follows.

The matter field equations must imply the spacetime conservation equation ∇𝜇𝑇𝜇𝜈 = 0. This
is equivalent to the following equations on 𝐻:

𝛼 = − 1
2 (∇

𝑎 − 2ℎ𝑎)𝛽𝑎 , 𝛽𝑎 = −(∇𝑏 − ℎ𝑏)𝑇𝑎𝑏 − ℎ𝑎𝑇+− , (21)

which thus determine the components of the energy momentum tensor 𝛼, 𝛽𝑎 in terms of 𝑇+−, 𝑇𝑎𝑏.
The ++ and +𝑎 components of the Einstein equations are 𝑆++ = 𝛼 and 𝑆+𝑎 = 𝛽𝑎 respectively,
where 𝑆++ and 𝑆+𝑎 are defined in Eq. (12). The first equation in (21) and the identity (13)
imply that the ++ equation is satisfied as a consequence of the +𝑎 equation. Finally, substituting
Eqs. (17) and (18) into the identity (14), and using the second equation in (21), implies the +𝑎
equation. Alternatively, a tedious calculation shows that the +𝑎 equation follows from Eqs. (17)
and (18) using the contracted Bianchi identity for Eq. (17), together with the second equation in
(21).

Although the energy momentum tensor must have a near-horizon limit, it is not obvious that
the matter fields themselves must. Thus, consider the full spacetime before taking the near-horizon
limit. Recall that for any Killing horizon 𝑅𝜇𝜈𝐾

𝜇𝐾𝜈 |𝒩 = 0 and therefore 𝑇𝜇𝜈𝐾
𝜇𝐾𝜈 |𝒩 = 0. This

imposes a constraint on the matter fields. We will illustrate this for Einstein–Maxwell theory whose
energy-momentum tensor is

𝑇𝜇𝜈 = 2
(︀
ℱ𝜇𝜌ℱ 𝜌

𝜈 − 1
4ℱ

2𝑔𝜇𝜈
)︀
, (22)
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where ℱ is the Maxwell 2-form, which must satisfy the Bianchi identity dℱ = 0. It can be
checked that in Gaussian null coordinates 𝑇𝜇𝜈𝐾

𝜇𝐾𝜈 |𝒩 = 2ℱ𝑣𝑎ℱ𝑣𝑏𝛾
𝑎𝑏|𝑟=0 and hence we deduce

that ℱ𝑣𝑎|𝑟=0 = 0. Thus, smoothness requires ℱ𝑣𝑎 = 𝒪(𝑟), which implies the near-horizon limit
of ℱ in fact exists. Furthermore, imposing the Bianchi identity to the near-horizon limit of the
Maxwell field relates ℱ𝑣𝑟 and ℱ𝑣𝑎, allowing one to write

ℱNH = d (𝑟Δ(𝑥) d𝑣) + 1
2𝐵𝑎𝑏(𝑥) d𝑥

𝑎 ∧ d𝑥𝑏 , (23)

where Δ is a function on 𝐻 and 𝐵 is a closed 2-form on 𝐻. The 2-form 𝐵 is the Maxwell field
induced on 𝐻 and locally can be written as 𝐵 = d𝐴 for some 1-form potential 𝐴 on 𝐻. It can be
checked that for the near-horizon limit

𝐸 =
2(𝑛− 1)

𝑛
Δ2 +

1

𝑛
𝐵𝑎𝑏𝐵

𝑎𝑏, (24)

𝑃𝑎𝑏 = 2𝐵𝑎𝑐𝐵
𝑐

𝑏 +

(︂
2

𝑛
Δ2 − 𝐵𝑐𝑑𝐵

𝑐𝑑

𝑛

)︂
𝛾𝑎𝑏 . (25)

We will present the Maxwell equations in a variety of dimensions in Section 6.
It is worth remarking that the above naturally generalises to 𝑝-form electrodynamics, with

𝑝 ≥ 2, for which the energy momentum tensor is

𝑇𝜇𝜈 =
2

(𝑝− 1)!

(︂
ℱ𝜇𝜌1...𝜌𝑝−1

ℱ 𝜌1...𝜌𝑝−1
𝜈 − 1

2𝑝
ℱ2𝑔𝜇𝜈

)︂
, (26)

where ℱ is a 𝑝-form field strength satisfying the Bianchi identity dℱ = 0. It is then easily checked
that 𝑇𝜇𝜈𝐾

𝜇𝐾𝜈 |𝒩 = 0 implies ℱ𝑣𝑎1...𝑎𝑝−1
ℱ 𝑎1...𝑎𝑝−1

𝑣 |𝑟=0 = 0 and hence ℱ𝑣𝑎1...𝑎𝑝−1
|𝑟=0 = 0. Thus,

smoothness requires ℱ𝑣𝑎1...𝑎𝑝−1 = 𝒪(𝑟), which implies that the near-horizon limit of the 𝑝-form
exists. The Bianchi identity then implies that the most general form for the near-horizon limit is

ℱNH = d (𝑌 ∧ 𝑟 d𝑣) +𝑋, (27)

where 𝑌 is a (𝑝− 2)-form on 𝐻 and 𝑋 is a closed 𝑝-form on 𝐻.
The Einstein equations for a near-horizon geometry can also be interpreted as geometrical

equations arising from the restriction of the Einstein equations for the full spacetime to a degenerate
horizon, without taking the near-horizon limit, as follows. The near-horizon limit can be thought
of as the 𝜖 → 0 limit of the “boost” transformation (𝐾,𝐿) → (𝜖𝐾, 𝜖−1𝐿). This implies that
restricting the boost-invariant components of the Einstein equations for the full spacetime to a
degenerate horizon is equivalent to the boost invariant components of the Einstein equations for
the near-horizon geometry. The boost-invariant components are +− and 𝑎𝑏 and hence we see that
Eqs. (17) and (18) are also valid for the full spacetime quantities restricted to the horizon. We
deduce that the restriction of these components of the Einstein equations depends only on data
intrinsic to 𝐻: this special feature only arises for degenerate horizons.13 It is worth noting that
the horizon equations (17) and (18) remain valid in the more general context of extremal isolated
horizons [163, 209, 28] and Kundt metrics [144].

The positivity of 𝐸 and 𝑃𝑎𝑏 can be related to standard energy conditions. For a near-horizon
geometry 𝑅𝜇𝜈(𝐾 − 𝐿)𝜇(𝐾 − 𝐿)𝜈 |𝒩 = −2𝑅𝜇𝜈𝐾

𝜇𝐿𝜈 |𝒩 . Since 𝐾 − 𝐿 is timelike on the horizon,
the strong energy condition implies 𝑅𝜇𝜈𝐾

𝜇𝐿𝜈 |𝒩 ≤ 0. Hence, noting that 𝑅𝜇𝜈𝐾
𝜇𝐿𝜈 |𝒩 = 𝑅+− =

−𝐸 + Λ we deduce that the strong energy condition implies

𝐸 ≥ Λ . (28)

13 The remaining components of the Einstein equations for the full spacetime restricted to 𝒩 give equations for
extrinsic data (i.e., 𝑟-derivatives of 𝐹, ℎ𝑎, 𝛾𝑎𝑏 that do not appear in the near-horizon geometry). On the other hand,
the rest of the Einstein equations for the near-horizon geometry restricted to the horizon vanish.
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On the other hand the dominant energy condition implies 𝑇𝜇𝜈𝐾
𝜇𝐿𝜈 |𝒩 ≤ 0. One can show

𝑇𝜇𝜈𝐾
𝜇𝐿𝜈 |𝒩 = − 1

2𝑃𝑎𝑏𝛾
𝑎𝑏. Therefore, the dominant energy condition implies

𝑃𝛾 ≡ 𝑃𝑎𝑏𝛾
𝑎𝑏 ≥ 0 . (29)

Since 𝑃𝛾 = −2𝑇+−, if 𝑛 ≥ 2 the dominant energy condition implies 𝐸 ≥ 0: hence, if Λ ≤ 0 the
dominant energy condition implies both Eqs. (28) and (29). Observe that Einstein–Maxwell theory
with Λ ≤ 0 satisfies both of these conditions.

In this review, we describe the current understanding of the space of solutions to the basic
horizon equation (17), together with the appropriate horizon matter field equations, in a variety
of dimensions and theories.

2.4 Physical charges

So far we have considered near-horizon geometries independently of any extremal–black-hole so-
lutions. In this section we will assume that the near-horizon geometry arises from a near-horizon
limit of an extremal black hole. This limit discards the asymptotic data of the parent–black-hole
solution. As a result, only a subset of the physical properties of a black hole can be calculated
from the near-horizon geometry alone. In particular, information about the asymptotic stationary
Killing vector field is lost and hence one cannot compute the mass from a Komar integral, nor can
one compute the angular velocity of the horizon with respect to infinity. Below we discuss physical
properties that can be computed purely from the near-horizon geometry [123, 79, 154].

Area. The area of cross sections of the horizon 𝐻 is defined by

𝐴𝐻 =

∫︁
𝐻

𝜖𝛾 , (30)

where 𝜖𝛾 is the volume form associated to the induced Riemannian metric 𝛾𝑎𝑏 on 𝐻.
For definiteness we now assume the parent black hole is asymptotically flat.

Angular momentum. The conserved angular momentum associated with a rotational symmetry,
generated by a Killing vector 𝑚, is given by a Komar integral on a sphere at spacelike infinity
𝑆∞:14

𝐽 =
1

16𝜋

∫︁
𝑆∞

⋆d𝑚. (31)

This expression can be rewritten as an integral of the near-horizon data over𝐻, by applying Stokes’
theorem to a spacelike hypersurface Σ with boundary 𝑆∞ ∪𝐻. The field equations can be used to
evaluate the volume integral that is of the form

∫︀
Σ
⋆𝑅(𝑚), where 𝑅(𝑚)𝜇 = 𝑅𝜇𝜈𝑚

𝜈 . In particular,
for vacuum gravity one simply has:

𝐽 =
1

16𝜋

∫︁
𝐻

(ℎ ·𝑚) 𝜖𝛾 . (32)

For Einstein–Maxwell theories the integral
∫︀
Σ
⋆𝑅(𝑚) can also be written as an integral over 𝐻,

giving extra terms that correspond to the contribution of the matter fields to the angular mo-
mentum. For example, consider pure Einstein–Maxwell theory in any dimension so the Maxwell
equation is d ⋆ ℱ = 0. Parameterising the near-horizon Maxwell field by (23) one can show that,
in the gauge ℒ𝑚𝐴 = 0,

𝐽 =
1

16𝜋

∫︁
𝐻

(ℎ ·𝑚+ 4(𝑚 ·𝐴)Δ) 𝜖𝛾 , (33)

14 The Komar integral associated with the null generator of the horizon 𝜕/𝜕𝑣 vanishes identically. In fact, one
can show that for a general non-extremal Killing horizon, this integral is merely proportional to 𝜅.
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so the angular momentum is indeed determined by the near-horizon data.
In five spacetime dimensions it is natural to couple Einstein–Maxwell theory to a Chern–Simons

(CS) term. While the Einstein equations are unchanged, the Maxwell equation now becomes

d ⋆ ℱ +
2𝜉√
3
ℱ ∧ ℱ = 0 , (34)

where 𝜉 is the CS coupling constant. The angular momentum in this case can also be written
purely as an integral over 𝐻:

𝐽 =
1

16𝜋

∫︁
𝐻

(ℎ ·𝑚+ 4(𝑚 ·𝐴)Δ) 𝜖𝛾 + 16
3
√
3
𝜉(𝑚 ·𝐴)𝐴 ∧𝐵 . (35)

Of particular interest is the theory defined by CS coupling 𝜉 = 1, since this corresponds to the
bosonic sector of minimal supergravity.

Gauge charges. For Einstein–Maxwell theories there are also electric, and possibly magnetic,
charges. For example, in pure Einstein–Maxwell theory in any dimension, the electric charge is
written as an integral over spatial infinity:

𝑄𝑒 =
1

4𝜋

∫︁
𝑆∞

⋆ℱ . (36)

By applying Stokes’ Theorem to a spacelike hypersurface Σ as above, and using the Maxwell
equation, one easily finds

𝑄𝑒 =
1

4𝜋

∫︁
𝐻

Δ𝜖𝛾 . (37)

For 𝐷 = 5 Einstein–Maxwell–CS theory one instead gets

𝑄𝑒 =
1

4𝜋

∫︁
𝐻

Δ𝜖𝛾 + 2√
3
𝜉𝐴 ∧𝐵 . (38)

For 𝐷 = 4 one also has a conserved magnetic charge 𝑄𝑚 = 1
4𝜋

∫︀
𝑆∞

ℱ . Using the Bianchi identity
this can be written as

𝑄𝑚 =
1

4𝜋

∫︁
𝐻

𝐵 . (39)

For 𝐷 > 4 asymptotically-flat black holes there is no conserved magnetic charge. However, for
𝐷 = 5 black rings 𝐻 ∼= 𝑆1 × 𝑆2, one can define a quasi-local dipole charge over the 𝑆2

𝒟 =
1

2𝜋

∫︁
𝑆2

ℱ =
1

2𝜋

∫︁
𝑆2

𝐵 , (40)

where in the second equality we have expressed it in terms of the horizon Maxwell field.
Note that in general the gauge field 𝐴 will not be globally defined on 𝐻, so care must be taken

to evaluate expressions such as (35) and (38), see [123, 155].
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3 General Results

In this section we describe a number of general results concerning the topology and symmetry of
near-horizon geometries under various assumptions.

3.1 Horizon topology theorem

Hawking’s horizon topology theorem is one of the fundamental ingredients of the classic four-
dimensional black-hole uniqueness theorems [127]. It states that cross sections of the event horizon
of an asymptotically-flat, stationary, black-hole solution to Einstein’s equations, satisfying the
dominant energy condition, must be homeomorphic to 𝑆2. The proof is an elegant variational
argument that shows that any cross section with negative Euler characteristic can be deformed
outside the event horizon such that its outward null geodesics converge. This means one has an
outer trapped surface outside the event horizon, which is not allowed by general results on black
holes.15

Galloway and Schoen have shown how to generalise Hawking’s horizon topology theorem to
higher dimensional spacetimes [91]. Their theorem states if the dominant energy condition holds,
a cross section 𝐻 of the horizon of a black hole, or more generally a marginally outer trapped
surface, must have positive Yamabe invariant.16 The positivity of the Yamabe invariant, which we
define below, is equivalent to the existence of a positive scalar curvature metric and is well known
to impose restrictions on the topology, see, e.g., [89]. For example, when 𝐻 is three dimensional,
the only possibilities are connected sums of 𝑆3 (and their quotients) and 𝑆1 × 𝑆2, consistent with
the known examples of black-hole solutions.

In the special case of degenerate horizons a simple proof of this topology theorem can be given
directly from the near-horizon geometry [166]. This is essentially a specialisation of the simplified
proof of the Galloway–Schoen theorem given in [189]. However, we note that since we only use
properties of the near-horizon geometry, in particular only the horizon equation (17), we do not
require the existence of a black hole.

For four dimensional spacetimes, so dim 𝐻 = 2, the proof is immediate, see, e.g., [144, 152].

Theorem 3.1. Consider a spacetime containing a degenerate horizon with a compact cross section
𝐻 and assume the dominant energy condition holds. If Λ ≥ 0 then 𝐻 ∼= 𝑆2, except for the special
case where the near-horizon geometry is flat (so Λ = 0) and 𝐻 ∼= 𝑇 2. If Λ < 0 and 𝜒(𝐻) < 0
the area of 𝐻 satisfies 𝐴𝐻 ≥ 2𝜋Λ−1𝜒(𝐻) with equality if and only if the near-horizon geometry is
AdS2 × Σ𝑔, where Σ𝑔 is a compact quotient of hyperbolic space of genus 𝑔.

The proof is elementary. The Euler characteristic of 𝐻 can be calculated by integrating the
trace of Eq. (17) over 𝐻 to get

𝜒(𝐻) =
1

4𝜋

∫︁
𝐻

𝑅𝛾𝜖𝛾 =
1

8𝜋

∫︁
𝐻

(ℎ · ℎ+ 4Λ + 2𝑃𝛾)𝜖𝛾 , (41)

where 𝜖𝛾 is the volume form of the horizon metric 𝛾. Therefore, for Λ ≥ 0 and matter satisfying
the dominant energy condition 𝑃𝛾 ≥ 0 (see Eq. (29)), it follows that 𝜒(𝐻) ≥ 0. Equality can only
occur if Λ = 0, 𝑃𝛾 ≡ 0, ℎ𝑎 ≡ 0: using Eqs. (17) and (18) this implies 𝑅𝑎𝑏 = 0 and 𝐹 = 0, so the
near-horizon geometry is the trivial flat solution R1,1×𝑇 2. For the Λ < 0 case the above argument

15 The borderline case of 𝑇 2 topology was only excluded later using topological censorship [44]. Furthermore,
these results were generalised to the non-stationary case and asymptotically AdS case [90].

16 A borderline case also arises in this proof, corresponding to the induced metric on 𝐻 being Ricci flat. This was
in fact later excluded [88].
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fails and one finds no restriction on the topology of 𝐻. Instead, for 𝜒(𝐻) < 0, one can derive a
lower bound for the area of 𝐻:

𝐴𝐻 =
2𝜋|𝜒(𝐻)|

|Λ|
+

1

4|Λ|

∫︁
𝐻

(ℎ · ℎ+ 2𝑃𝛾)𝜖𝛾 ≥ 2𝜋|𝜒(𝐻)|
|Λ|

. (42)

This agrees with the lower bounds found in [95, 208] in the more general context of apparent
horizons. The lower bound in Eq. (42) is saturated if and only if ℎ𝑎 ≡ 0, 𝑃𝛾 ≡ 0, which implies
𝑅𝑎𝑏 = −|Λ|𝛾𝑎𝑏 and 𝐹 = Λ, so the near-horizon geometry is AdS2 × Σ𝑔.

It is of interest to generalise these results to higher dimensions along the lines of Galloway and
Schoen. As is well known, the total integral of the scalar curvature in itself does not constrain
the topology of 𝐻 in this case. An analogue of this invariant for dim 𝐻 = 𝑛 ≥ 3 is given by the
Yamabe invariant 𝜎(𝐻). This is defined via the Yamabe constant associated to a given conformal
class of metrics [𝛾] on 𝐻. First consider the volume-normalised Einstein–Hilbert functional

𝐸[𝛾′] ≡
∫︀
𝐻
𝑅𝛾′𝜖𝛾′

(
∫︀
𝐻
𝜖𝛾′)

𝑛−2
𝑛

, (43)

where 𝛾′ is a Riemannian metric on 𝐻 and 𝜖𝛾′ is the associated volume form. As is well known,
this functional is neither bounded from above or below. However, the restriction of 𝐸 to any
conformal class of metrics is always bounded from below: the Yamabe constant 𝑌 (𝐻, [𝛾]) for
a given conformal class is then defined as the infimum of this functional. Parameterising the

conformal class by 𝛾′ = 𝜑
4

𝑛−2 𝛾, for smooth positive functions 𝜑, we have 𝑌 (𝐻, [𝛾]) ≡ inf𝜑>0𝐸𝛾 [𝜑],
where

𝐸𝛾 [𝜑] ≡

∫︀
𝐻

(︁
4(𝑛−1)
𝑛−2 |∇𝜑|2 +𝑅𝛾𝜑

2
)︁
𝜖𝛾(︁∫︀

𝐻
𝜑

2𝑛
𝑛−2 𝜖𝛾

)︁𝑛−2
𝑛

. (44)

The Yamabe invariant 𝜎(𝐻) is defined by 𝜎(𝐻) = sup[𝛾] 𝑌 (𝐻, [𝛾]), where the supremum is taken
over all possible conformal classes. The solution to the Yamabe problem states the following
remarkable fact: for every conformal class [𝛾] on compact 𝐻, the functional 𝐸𝛾 [𝜑] achieves its
infimum and this occurs for a constant scalar curvature metric.

We are now ready to present the degenerate horizon topology theorem.

Theorem 3.2. Consider a spacetime containing a degenerate horizon with a compact cross section
𝐻 and assume the dominant energy condition holds. If Λ ≥ 0, then either 𝜎(𝐻) > 0 or the induced
metric on the horizon is Ricci flat. If Λ < 0 and 𝜎(𝐻) < 0 the area of 𝐻 satisfies

𝐴𝐻 ≥
(︂
𝜎(𝐻)

𝑛Λ

)︂𝑛/2

. (45)

A simple proof exploits the solution to the Yamabe problem mentioned above [189, 166].
First observe that if there exists a conformal class of metrics [𝛾] for which the Yamabe constant
𝑌 (𝐻, [𝛾]) > 0 then it follows that 𝜎(𝐻) > 0. Therefore, to establish that 𝐻 has positive Yamabe
invariant, it is sufficient to show that for some 𝛾𝑎𝑏 the functional 𝐸𝛾 [𝜑] > 0 for all 𝜑 > 0, since the
solution to the Yamabe problem then tells us that 𝑌 (𝐻, [𝛾]) = 𝐸𝛾 [𝜑0] > 0 for some 𝜑0 > 0.

For our Riemannian manifolds (𝐻, 𝛾) it is easy to show, except for one exceptional circumstance,
that 𝐸𝛾 [𝜑] > 0 for all 𝜑 > 0 and thus 𝑌 (𝐻, [𝛾]) > 0. The proof is as follows. The horizon
equation (17) can be used to establish the identity

2|∇𝜑|2 +𝑅𝛾𝜑
2 = 2|D𝜑|2 −∇ · (𝜑2ℎ) + (Λ𝑛+ 𝑃𝛾)𝜑

2 (46)
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for all 𝜑, where we have defined the differential operator D𝑎 ≡ ∇𝑎 + 1
2ℎ𝑎. It is worth noting

that this identity relies crucially on the precise constants appearing in Eq. (17). This implies the
following integral identity over 𝐻:∫︁

𝐻

[︂
4(𝑛− 1)

𝑛− 2
|∇𝜑|2 +𝑅𝛾𝜑

2

]︂
𝜖𝛾 =

∫︁
𝐻

[︂
2|D𝜑|2 + 2𝑛

𝑛− 2
|∇𝜑|2 + (𝑛Λ + 𝑃𝛾)𝜑

2

]︂
𝜖𝛾 . (47)

If Λ ≥ 0, the dominant energy condition 𝑃𝛾 ≥ 0 implies 𝐸𝛾 [𝜑] ≥ 0 for all 𝜑 > 0 with equality only
if ℎ𝑎 ≡ 0, 𝑃𝛾 ≡ 0 and Λ = 0. The exceptional case ℎ𝑎 ≡ 0, 𝑃𝛾 ≡ 0 and Λ = 0 implies 𝑅𝛾 = 0,
which allows one to infer [91] that either 𝑅𝑎𝑏 = 0 or 𝐻 admits a metric of positive scalar curvature
(and is thus positive Yamabe after all).

As in four spacetime dimensions the above argument fails for Λ < 0, and thus provides no
restriction of the topology of 𝐻. Instead, assuming the dominant energy condition, Eq. (47)
implies

𝐸𝛾 [𝜑] ≥ −𝑛|Λ|
∫︀
𝐻
𝜑2𝜖𝛾

(
∫︀
𝐻
𝜑

2𝑛
𝑛−2 𝜖𝛾)

𝑛−2
𝑛

≥ −𝑛|Λ|𝐴2/𝑛
𝐻 (48)

for any 𝜑 > 0, where the second inequality follows from Hölder’s inequality. Therefore, by the

definition of 𝑌 (𝐻, [𝛾]), we deduce that 𝑌 (𝐻, [𝛾]) ≥ −𝑛|Λ|𝐴2/𝑛
𝐻 . It follows that if 𝜎(𝐻) < 0, we

get the stated non-trivial lower bound on the area of 𝐻. We note that the lower bound can
only be achieved if ℎ𝑎 ≡ 0 and 𝑃𝛾 ≡ 0, which implies 𝑅𝛾 = −𝑛|Λ|, in which case 𝛾 necessarily

minimises the functional 𝐸 in the conformal class [𝛾] so that 𝑌 (𝐻, [𝛾]) = −𝑛|Λ|𝐴2/𝑛
𝐻 . However,

since −𝑌 (𝐻, [𝛾]) ≥ |𝜎(𝐻)|, it need not be the case that the lower bound in Eq. (45) is saturated
by such horizon metrics (in contrast to the 𝑛 = 2 case above).

We note that the above topology theorems in fact only employ the scalar curvature of the
horizon metric and not the full horizon equation (17). It would be interesting if one could use the
non-trace part of the horizon equation to derive further topological restrictions.

3.2 AdS2-structure theorems

It is clear that a general near-horizon geometry, Eq. (7), possesses enhanced symmetry: in addition
to the translation symmetry 𝑣 → 𝑣+ 𝑐 one also has a dilation symmetry (𝑣, 𝑟) → (𝜆𝑣, 𝜆−1𝑟) where
𝜆 ̸= 0 and together these form a two-dimensional non-Abelian isometry group. In this section we
will discuss various near-horizon symmetry theorems that guarantee further enhanced symmetry.

3.2.1 Static near-horizon geometries

A static near-horizon geometry is one for which the normal Killing field 𝐾 is hypersurface orthog-
onal, i.e., 𝐾 ∧ d𝐾 ≡ 0 everywhere.

Theorem 3.3 ([162]). Any static near-horizon geometry is locally a warped product of AdS2, dS2

or R1,1 and 𝐻. If 𝐻 is simply connected this statement is global. In this case if 𝐻 is compact and
the strong energy conditions holds it must be the AdS2 case or the direct product R1,1 ×𝐻.

Proof : As a 1-form 𝐾 = 𝐾𝜇 d𝑥
𝜇 = d𝑟 + 𝑟ℎ𝑎 d𝑥

𝑎 + 𝑟2𝐹 d𝑣. A short calculation then reveals that
𝐾 ∧ d𝐾 = 0 if and only if

dℎ = 0 d𝐹 = ℎ𝐹 , (49)

which are the staticity conditions for a near-horizon geometry. Locally they can be solved by

ℎ = d𝜆 𝐹 = 𝐴0𝑒
𝜆 , (50)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-8

http://www.livingreviews.org/lrr-2013-8


22 Hari K. Kunduri and James Lucietti

where 𝜆(𝑥) is a function on 𝐻 and 𝐴0 is a constant. Substituting these into the near-horizon
geometry and changing the affine parameter 𝑟 → 𝑒−𝜆(𝑥)𝑟 gives:

𝑔 = 𝑒−𝜆(𝑥)[𝐴0𝑟
2 d𝑣2 + 2d𝑣 d𝑟] + 𝛾𝑎𝑏(𝑥) d𝑥

𝑎 d𝑥𝑏 . (51)

The metric in the square bracket is a maximally symmetric space: AdS2 for 𝐴0 < 0, dS2 for 𝐴0 > 0
and R1,1 for 𝐴0 = 0. If 𝐻 is simply connected then 𝜆 is globally defined on 𝐻. Now consider
Eq. (18), which in this case reduces to

𝐴0 = 1
2∇

2𝑒−𝜆 − 𝑒−𝜆(𝐸 − Λ) . (52)

Assume 𝜆 is a globally-defined function. Integrating over 𝐻 shows that if the strong energy
condition (28) holds then 𝐴0 ≤ 0. The equality 𝐴0 = 0 occurs if and only if 𝐸 = Λ, in which case
𝜆 is harmonic and hence a constant.

3.2.2 Near-horizon geometries with rotational symmetries

We begin by considering near-horizon geometries with a 𝑈(1)𝐷−3 rotational symmetry, whose orbits
are generically cohomogeneity-1 on cross sections of the horizon 𝐻. The orbit spaces 𝐻/𝑈(1)𝐷−3

have been classified and are homeomorphic to either the closed interval or a circle, see, e.g., [139].
The former corresponds to 𝐻 of topology 𝑆2, 𝑆3, 𝐿(𝑝, 𝑞) times an appropriate dimensional torus,
whereas the latter corresponds to 𝐻 ∼= 𝑇𝐷−3. Unless otherwise stated we will assume non-toroidal
topology.

It turns out to be convenient to work with a geometrically-defined set of coordinates as in-
troduced in [152]. Let 𝑚𝑖 for 𝑖 = 1 . . . 𝐷 − 3 be the Killing vector fields generating the isometry.
Define the 1-form Σ = −𝑖𝑚1

· · · 𝑖𝑚𝐷−3
𝜖𝛾 , where 𝜖𝛾 is the volume form associated with the metric

𝛾 on 𝐻. Note that Σ is closed and invariant under the Killing fields 𝑚𝑖 and so defines a closed
one-form on the orbit space. Hence there exists a globally-defined invariant function 𝑥 on 𝐻 such
that

d𝑥 = −𝑖𝑚1 · · · 𝑖𝑚𝐷−3
𝜖𝛾 . (53)

It follows that |d𝑥|2 = det𝐵, where 𝐵𝑖𝑗 ≡ 𝛾(𝑚𝑖,𝑚𝑗), so d𝑥 vanishes precisely at the endpoints of
the closed interval where the matrix 𝐵𝑖𝑗 has rank 𝐷 − 4. As a function on 𝐻, 𝑥 has precisely one
minimum 𝑥1 and one maximum 𝑥2, which must occur at the endpoints of the orbit space. Hence
𝐻/𝑈(1)𝐷−3 ∼= [𝑥1, 𝑥2].

Introducing coordinates adapted to the Killing fields 𝑚𝑖 = 𝜕/𝜕𝜑𝑖, we can use (𝑥, 𝜑𝑖) as a chart
on 𝐻 everywhere except the endpoints of the orbit space. The metric for 𝑥1 < 𝑥 < 𝑥2 then reads

𝛾𝑎𝑏 d𝑥
𝑎 d𝑥𝑏 =

d𝑥2

det𝐵
+𝐵𝑖𝑗(𝑥) d𝜑

𝑖 d𝜑𝑗 . (54)

By standard results, the one-form ℎ may be decomposed globally on 𝐻 as

ℎ = 𝛽 + d𝜆 , (55)

where 𝛽 is co-closed. Since ℎ is invariant under the 𝑚𝑖, it follows that 𝛽 and d𝜆 are as well.
Further, periodicity of the orbits of the 𝑚𝑖 implies 𝑚𝑖 · d𝜆 = 0, i.e., 𝜆 = 𝜆(𝑥). It is convenient to
define the globally-defined positive function

Γ(𝑥) ≡ 𝑒−𝜆 . (56)

Next, writing 𝛽 = 𝛽𝑥 d𝑥+𝛽𝑖 d𝜑
𝑖 and imposing that 𝛽 is co-closed, implies 𝛽𝑥 (det𝐵)

1/2
= 𝑐, where

𝑐 is a constant. It follows 𝑖𝛽Σ = 𝑐 and since Σ vanishes at the fixed points of the 𝑚𝑖, this implies
𝑐 must vanish. Hence we may write

ℎ =
𝑘𝑖 d𝜑

𝑖

Γ
− Γ′ d𝑥

Γ
, (57)
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where we define 𝑘𝑖(𝑥) ≡ Γℎ𝑖. It is worth noting that in the toroidal case one can introduce
coordinates (𝑥, 𝜑) so that the horizon metric takes the same form, with 𝑥 now periodic and det𝐵 >
0 everywhere, although now the one-form ℎ may have an extra term since the constant 𝑐 need not
vanish [131].

We are now ready to state the simplest of the AdS2 near-horizon symmetry enhancement
theorems:

Theorem 3.4 ([162]). Consider a 𝐷-dimensional spacetime containing a degenerate horizon, in-
variant under an R×𝑈(1)𝐷−3 isometry group, and satisfying the Einstein equations 𝑅𝜇𝜈 = Λ𝑔𝜇𝜈 .
Then the near-horizon geometry has a global 𝐺 × 𝑈(1)𝐷−3 symmetry, where 𝐺 is either 𝑂(2, 1)
or the 2D Poincaré group. Furthermore, if Λ ≤ 0 and the near-horizon geometry is non-static the
Poincaré case is excluded.

Proof: For the non-toroidal case we use the above coordinates. By examining the (𝑥𝑣) and (𝑥𝑖)
components of the spacetime Einstein equations and changing the affine parameter 𝑟 → Γ(𝑥)𝑟, one
can show

𝑔 = Γ(𝑥)
[︀
𝐴0𝑟

2 d𝑣2 + 2d𝑣 d𝑟
]︀
+

d𝑥2

det𝐵
+𝐵𝑖𝑗(𝑥)

(︀
d𝜑𝑖 + 𝑘𝑖𝑟 d𝑣

)︀ (︀
d𝜑𝑗 + 𝑘𝑗𝑟 d𝑣

)︀
, (58)

where 𝐴0 and 𝑘𝑖 are constants. The metric in the square bracket is a maximally-symmetric space:
AdS2 for 𝐴0 < 0, dS2 for 𝐴0 > 0 and R1,1 for 𝐴0 = 0. Any isometry of these 2D base spaces
transforms 𝑟 d𝑣 → 𝑟 d𝑣+ d𝜓, for some function 𝜓(𝑣, 𝑟). Therefore, by simultaneously transforming
𝜑𝑖 → 𝜑𝑖 − 𝑘𝑖𝜓, the full near-horizon geometry inherits the full isometry group 𝐺 of the 2D base,
which for 𝐴0 ̸= 0 is 𝑂(2, 1) and for 𝐴0 = 0 is the 2D Poincaré group.

The toroidal case can in fact be excluded [131], although as remarked above the coordinate
system needs to be developed differently.

In fact as we will see in Section 4 one can completely solve for the near-horizon geometries of
the above form in the Λ = 0 case.

The above result has a natural generalisation for 𝐷 = 4, 5 Einstein–Maxwell theories. For the
sake of generality, consider a general 2-derivative theory describing Einstein gravity coupled to
Abelian vectors 𝐴𝐼 (𝐼 = 1 . . . 𝑁) and uncharged scalars Φ𝐴 (𝐴 = 1 . . .𝑀) in 𝐷 = 4, 5 dimensions,
with action

𝑆 =

∫︁
d𝐷𝑥

√
−𝑔
(︂
𝑅− 1

2
𝑓𝐴𝐵(Φ)𝜕𝜇Φ

𝐴𝜕𝜇Φ𝐵 − 𝑉 (Φ)− 1

4
𝑔𝐼𝐽(Φ)𝐹

𝐼
𝜇𝜈𝐹

𝐽𝜇𝜈

)︂
+ 𝑆top , (59)

where 𝐹 𝐼 ≡ d𝐴𝐼 , 𝑉 (Φ) is an arbitrary scalar potential (which allows for a cosmological constant),
and

𝑆top =
1

2

∫︁
ℎ𝐼𝐽(Φ)𝐹

𝐼 ∧ 𝐹 𝐽 if 𝐷 = 4 , (60)

or

𝑆top =
1

6

∫︁
𝐶𝐼𝐽𝐾𝐹

𝐼 ∧ 𝐹 𝐽 ∧𝐴𝐾 if 𝐷 = 5 , (61)

where 𝐶𝐼𝐽𝐾 are constants. This encompasses many theories of interest, e.g., vacuum gravity with
a cosmological constant, Einstein–Maxwell theory, and various (possibly gauged) supergravity
theories arising from compactification from ten or eleven dimensions.

Theorem 3.5 ([162]). Consider an extremal–black-hole solution of the above 𝐷 = 4, 5 theory
with R × 𝑈(1)𝐷−3 symmetry. The near-horizon limit of this solution has a global 𝐺 × 𝑈(1)𝐷−3

symmetry, where 𝐺 is either 𝑆𝑂(2, 1) or (the orientation-preserving subgroup of) the 2D Poincaré
group. The Poincaré-symmetric case is excluded if 𝑓𝐴𝐵(Φ) and 𝑔𝐼𝐽(Φ) are positive definite, the
scalar potential is non-positive, and the horizon topology is not 𝑇𝐷−2.
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Proof: The Maxwell fields 𝐹 𝐼 and the scalar fields are invariant under the Killing fields 𝑚𝑖, hence
Φ𝐼 = Φ𝐼(𝑥). By examining the (𝑥𝑣) and (𝑥𝑖) components of Einstein’s equations for the above
general theory, and changing the affine parameter 𝑟 → Γ(𝑥)𝑟, one can show that the near-horizon
metric is given by Eq. (58) and the Maxwell fields are given by

𝐹 𝐼 = d
[︀
𝑒𝐼𝑟 d𝑣 + 𝑏𝐼𝑖 (𝑥)

(︀
d𝜑𝑖 + 𝑘𝑖𝑟 d𝑣

)︀]︀
, (62)

where 𝑒𝐼 are constants. Hence both the near-horizon metric and Maxwell fields are invariant under
𝐺. Generic orbits of the symmetry group have the structure of 𝑇𝐷−3 fibred over a 2D maximally-
symmetric space, i.e., AdS2, dS2 or R1,1. AdS2 and dS2 give 𝑆𝑂(2, 1) symmetry, whereas R1,1 gives
Poincaré symmetry. The dS2 and R1,1 cases are excluded subject to the additional assumptions
mentioned, which ensure that the theory obeys the strong energy condition.
Remarks:

∙ In the original statement of this theorem asymptotically-flat or AdS boundary conditions
were assumed [162]. These were only used at one point in the proof, where the property
that the generator of each rotational symmetry must vanish somewhere in the asymptotic
region (on the “axis” of the symmetry) was used to constrain the Maxwell fields. In fact,
using the general form for the near-horizon limit of a Maxwell field (23) and the fact that
for non-toroidal topology at least one of the rotational Killing fields must vanish somewhere,
allows one to remove any assumptions on the asymptotics of the black-hole spacetime.

∙ In the context of black holes, toroidal topology is excluded for Λ = 0 when the dominant
energy condition holds by the black-hole–topology theorems.

An important corollary of the above theorems is:

Corollary 3.1. Consider a 𝐷 ≥ 5 spacetime with a degenerate horizon invariant under a R ×
𝑈(1)𝐷−3 symmetry as in Theorem 3.4 and 3.5. The near-horizon geometry is static if it is either
a warped product of AdS2 and 𝐻, or it is a warped product of locally AdS3 and a (𝐷−3)-manifold.

The static conditions (49) for Eq. (58) occur if and only if: (i) 𝑘𝑖 = 0 for all 𝑖 = 1, . . . , 𝐷 − 3,
or (ii) 𝑘𝑖 = const Γ and 𝑘𝑖𝑘𝑖 = ℓ−2Γ with 𝐴0 = −ℓ−2 < 0. Case (i) gives a warped product of a 2D
maximally-symmetric space and 𝐻 as in Theorem (3.3). For case (ii) one can introduce 𝑈(1)𝐷−3

coordinates (𝑦1, 𝑦𝐼) where 𝐼 = 2, . . . , 𝐷 − 3, not necessarily periodic, so that 𝑘 = ℓ−1𝜕/𝜕𝑦1 and

𝑔 = Γ(𝑥)

[︂
−𝑟

2

ℓ2
d𝑣2 + 2d𝑣 d𝑟 +

(︁
d𝑦1 +

𝑟

ℓ
d𝑣
)︁2]︂

+
d𝑥2

𝐵(𝑥)
+𝐵𝐼𝐽(𝑥) d𝑦

𝐼 d𝑦𝐽 . (63)

The metric in the square brackets is locally isometric to AdS3. If 𝑦1 is a periodic coordinate the
horizon topology is 𝑆1 ×𝐵, where 𝐵 is some (𝐷 − 3)-dimensional manifold.

Theorem (3.5) can be extended to higher-derivative theories of gravity as follows. Consider a
general theory of gravity coupled to Abelian vectors 𝐴𝐼 and uncharged scalars Φ𝐴 with action

𝑆 = 𝑆2 +
∑︁
𝑚≥1

𝜆𝑚
∫︁ √

−𝑔ℒ𝑚 , (64)

where 𝑆2 is the 2-derivative action above, 𝜆 is a coupling constant, and ℒ𝑚 is constructed by
contracting (derivatives of) the Riemann tensor, volume form, scalar fields and Maxwell fields in
such a way that the action is diffeomorphism and gauge-invariant.

Proposition 3.1 ([162]). Consider an extremal black-hole solution of the above higher-derivative
theory, obeying the same assumptions as in Theorem 3.5. Assume there is a regular horizon when
𝜆 = 0 with 𝑆𝑂(2, 1)× 𝑈(1)𝐷−3 near-horizon symmetry, and the near-horizon solution is analytic
in 𝜆. Then the near-horizon solution has 𝑆𝑂(2, 1)× 𝑈(1)𝐷−3 symmetry to all orders in 𝜆.
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Hence Theorem 3.5 is stable with respect to higher-derivative corrections. However, it does not
apply to “small” black holes (i.e., if there is no regular black hole for 𝜆 = 0).

So far, the results described all assume 𝐷− 3 commuting rotational Killing fields. For 𝐷 = 4, 5
this is the same number as the rank of the rotation group 𝑆𝑂(𝐷 − 1), so the above results are
applicable to asymptotically-flat or globally-AdS black holes. For 𝐷 > 5 the rank of this rotation
group is ⌊𝐷−1

2 ⌋, which is smaller than 𝐷−3, so the above theorems do not apply to asymptotically-
flat or AdS black holes. An important open question is whether the above theorems generalise
when fewer than 𝐷 − 3 commuting rotational isometries are assumed, in particular the case with
⌊𝐷−1

2 ⌋ commuting rotational symmetries. To this end, partial results have been obtained assuming
a certain non-Abelian cohomogeneity-1 rotational isometry.

Proposition 3.2 ([79]). Consider a near-horizon geometry with a rotational isometry group
𝑈(1)𝑚 ×𝐾, whose generic orbit on 𝐻 is a cohomogeneity-1 𝑇𝑚-bundle over a 𝐾-invariant homo-
geneous space 𝐵. Furthermore, assume 𝐵 does not admit any 𝐾-invariant one-forms. If Einstein’s
equations 𝑅𝜇𝜈 = Λ𝑔𝜇𝜈 hold, then the near-horizon geometry possesses a 𝐺 × 𝑈(1)𝑚 × 𝐾 isome-
try group, where 𝐺 is either 𝑂(2, 1) or the 2D Poincaré group. Furthermore, if Λ ≤ 0 and the
near-horizon geometry is non-static then the Poincaré group is excluded.

The assumptions in the above result reduce the Einstein equations for the near-horizon geometry
to ODEs, which can be solved in the same way as in Theorem 3.4. The special case 𝐾 = 𝑆𝑈(𝑞),
𝐵 = CP𝑞−1 with 𝑚 = 1 and 𝑚 = 2, gives a near-horizon geometry of the type that occurs for a
Myers–Perry black hole with all the angular momenta of set equal in 2𝑞+2 dimensions, or all but
one set equal in 2𝑞 + 3 dimensions, respectively.

The preceding results apply only to cohomogeneity-1 near-horizon geometries. As discussed
above, this is too restrictive to capture the generic case for 𝐷 > 5. The following result for
higher-cohomogeneity near-horizon geometries has been shown.

Theorem 3.6 ([166]). Consider a spacetime containing a degenerate horizon invariant under
orthogonally transitive17 isometry group R× 𝑈(1)𝑁 , where 1 ≤ 𝑁 ≤ 𝐷 − 3, such that the surfaces
orthogonal to the surfaces of transitivity are simply connected. Then the near-horizon geometry has
an isometry group 𝐺×𝑈(1)𝑁 , where 𝐺 is either 𝑆𝑂(2, 1) or the 2D Poincaré group. Furthermore,
if the strong energy condition holds and the near-horizon geometry is non-static, the Poincaré case
is excluded.

The near-horizon geometry in this case can be written as

𝑔 = Γ(𝑦)[𝐴0𝑟
2 d𝑣2 + 2d𝑣 d𝑟] + 𝛾𝐼𝐽(𝑦)( d𝜑

𝐼 + 𝑘𝐼𝑟 d𝑣)( d𝜑𝐽 + 𝑘𝐽𝑟 d𝑣) + 𝛾𝑚𝑛(𝑦) d𝑦
𝑚 d𝑦𝑛 , (65)

where as in the above cases we have rescaled the affine parameter 𝑟 → Γ𝑟. For the 𝑁 = 𝐷 − 3
case, orthogonal transitivity follows from Einstein’s equations [72], which provides another proof
of Theorem 3.4 and 3.5. For 𝑁 < 𝐷 − 3 this result guarantees an AdS2 symmetry for all known
extremal–black-hole solutions, since all known explicit solutions possess orthogonally-transitive
symmetry groups. In these higher cohomogeneity cases, the relation between Einstein’s equations
and orthogonal transitivity is not understood. It would be interesting to investigate this further.

17 An isometry group whose surfaces of transitivity are 𝑝 < 𝐷 dimensional is said to be orthogonally transitive if
there exists 𝐷 − 𝑝 dimensional surfaces orthogonal to the surfaces of transitivity at every point.
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4 Vacuum Solutions

The Einstein equations for a near-horizon geometry (7) in the absence of matter fields are equivalent
to the following equation on 𝐻

𝑅𝑎𝑏 =
1
2ℎ𝑎ℎ𝑏 −∇(𝑎ℎ𝑏) + Λ𝛾𝑎𝑏 , (66)

with the function 𝐹 determined by

𝐹 = 1
2ℎ

𝑎ℎ𝑎 − 1
2∇𝑎ℎ

𝑎 + Λ , (67)

see Eqs. (17), (18). In this section we will explore solutions to Eq. (66) in various dimensions. It
is useful to note that the contracted Bianchi identity for the horizon metric is equivalent to

∇𝑎𝐹 − 𝐹ℎ𝑎 − 2ℎ𝑏∇[𝑎ℎ𝑏] +∇𝑏∇[𝑎ℎ𝑏] = 0 . (68)

4.1 Static: all dimensions

A complete classification is possible for Λ ≤ 0. Recall from Section 3.2.1, the staticity conditions
for a near-horizon geometry are dℎ = 0 and d𝐹 = ℎ𝐹 .

Theorem 4.1 ([42]). The only vacuum static near-horizon geometry for Λ ≤ 0 and compact 𝐻 is
given by ℎ𝑎 ≡ 0, 𝐹 = Λ and 𝑅𝑎𝑏 = Λ𝛾𝑎𝑏. For 𝐷 = 4 this result is also valid for Λ > 0.

Proof: A simple proof of the first statement is as follows. Substituting the staticity conditions (50)
into (67) gives

∇2𝜓2 + 2Λ𝜓2 = 2𝐴0 , (69)

where 𝜓 ≡ 𝑒−𝜆/2. Irrespective of the topology of 𝐻 one can argue that 𝜓 is a globally-defined
function (for simply connected𝐻 this is automatic, otherwise it can be shown by working in patches
on 𝐻 and exploiting the fact that 𝜆 in each patch is only defined up to an additive constant). For
Λ = 0 it is then clear that compactness implies 𝜓 must be a constant. For Λ < 0, if one assumes
𝜓 is non-constant one can easily derive a contradiction by evaluating the above equation at the
maximum and minimum of 𝜓 (which must exist by compactness). Hence in either case ℎ𝑎 ≡ 0,
which gives the claimed near-horizon data.

In four dimensions one can solve Eq. (66) in general without assuming compactness of 𝐻. For
non-constant 𝜓 and any Λ one obtains the near-horizon geometry (sending 𝑟 → 𝜓2𝑟)

𝑔 = 𝜓2[𝐴0𝑟
2 d𝑣2 + 2d𝑣 d𝑟] +

d𝜓2

𝑃 (𝜓)
+ 𝑃 (𝜓) d𝜒2, (70)

where 𝑃 (𝜓) = 𝐴0 + 𝛽𝜓−1 − 1
3Λ𝜓

2. (This is an analytically-continued Schwarzschild with a cos-
mological constant.) This local form of the metric can be used to show that for Λ > 0 and 𝜓
non-constant, there are also no smooth horizon metrics on a compact 𝐻.

4.2 Three dimensions

The classification of near-horizon geometries in 𝐷 = 3 vacuum gravity with a cosmological constant
can be completely solved. Although very simple, to the best of our knowledge this has not been
presented before, so for completeness we include it here.

The main simplification comes from the fact that cross sections of the horizon 𝐻 are one-
dimensional, so the horizon equations are automatically ODEs. Furthermore, there is no intrinsic
geometry on 𝐻 and so the only choice concerns its global topology, which must be either 𝐻 ∼= 𝑆1

or 𝐻 ∼= R.
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Theorem 4.2. Consider a near-horizon geometry with compact cross section 𝐻 ∼= 𝑆1, which
satisfies the vacuum Einstein equations including cosmological constant Λ. If Λ < 0 the near-
horizon geometry is given by the quotient of AdS3 in Eq. (73). For Λ = 0 the only solution is the
trivial flat geometry R1,1 × 𝑆1. There are no solutions for Λ > 0.

Proof: We may choose a periodic coordinate 𝑥 on 𝐻 so the horizon metric is simply 𝛾 = 𝑑𝑥2 and
the 1-form ℎ = ℎ(𝑥)𝑑𝑥. Observe that ℎ(𝑥) must be a globally-defined function and hence must be
a periodic function of 𝑥. Since the curvature and metric connection trivially vanish, the horizon
equations (66) and (67) simplify to

ℎ′ = 1
2ℎ

2 + Λ, (71)

𝐹 = 1
2ℎ

2 − 1
2ℎ

′ + Λ . (72)

This system of ODEs can be explicitly integrated as we explain below. Instead, we will avoid this
and employ a global argument on 𝐻. If Λ ≥ 0, integrate Eq. (71) over 𝐻 to deduce that ℎ ≡ 0
and Λ = 0, which gives the trivial flat near-horizon geometry R1,1 × 𝑆1. For Λ = − 2

ℓ2 < 0 we
argue as follows. Multiply Eq. (71) by ℎ′ and integrate over 𝐻 to find

∫︀
𝑆1 ℎ

′2 = 0. Hence ℎ must

be a constant and substituting into the horizon equations gives ℎ = 2
ℓ and 𝐹 = 0 (without loss of

generality we have chosen a sign for ℎ). The near-horizon geometry is then

𝑔 = 2d𝑣 d𝑟 +
4𝑟

ℓ
d𝑣 d𝑥+ d𝑥2 = −4𝑟2

ℓ2
d𝑣2 + 2d𝑣 d𝑟 +

(︂
d𝑥+

2𝑟

ℓ
d𝑣

)︂2

. (73)

This metric is locally AdS3 and in the second equality we have written it as a fibration over AdS2.

It is worth remarking that the ODE (71) can be completely integrated without assuming com-
pactness. For Λ < 0 this reveals a second solution ℎ = − 2

ℓ tanh
(︀
𝑥
ℓ

)︀
and 𝐹 = − 2

ℓ2 sech
2
(︀
𝑥
ℓ

)︀
,

where we have set the integration constant to zero by translating the coordinate 𝑥. Upon changing
𝑟 → 𝑟 cosh2

(︀
𝑥
ℓ

)︀
the resulting near-horizon geometry is:

𝑔 = cosh2
(︁𝑥
ℓ

)︁(︂
−𝑟

2

ℓ2
d𝑣2 + 2d𝑣 d𝑟

)︂
+ d𝑥2 . (74)

Again, this metric is locally AdS3. Unlike the previous case though, 𝐻 cannot be taken to be
compact and hence we must have 𝐻 ∼= R. For Λ = 0 there is also a second solution given by
ℎ = − 2

𝑥 and 𝐹 = 1
𝑥2 , although this is singular. For Λ > 0 there is a unique solution given by

ℎ = 2
ℓ tan

(︀
𝑥
ℓ

)︀
and 𝐹 = 1

ℓ2 sec
2
(︀
𝑥
ℓ

)︀
, although this is also singular.18

4.3 Four dimensions

The general solution to Eq. (66) is not known in this case. In view of the rigidity theorem it is
natural to assume axisymmetry. If one assumes such a symmetry, the problem becomes of ODE
type and it is possible to completely solve it. The result is summarised by the following theorem,
first proved in [122, 163] for Λ = 0 and in [154] for Λ < 0.

Theorem 4.3 ([122, 163, 154]). Consider a spacetime containing a degenerate horizon, invariant
under an R × 𝑈(1) isometry, satisfying the vacuum Einstein equations including a cosmological
constant. Any non-static near-horizon geometry, with compact cross section, is given by the near-
horizon limit of the extremal Kerr or Kerr-(A)dS black hole.

18 This can be obtained by analytically continuing Eq. (74) by ℓ → 𝑖ℓ.
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Proof: We present a streamlined version of the proof in [154]. As described in Section 3.2.2,
axisymmetry implies one can introduce coordinates on 𝐻 so that

𝛾𝑎𝑏 d𝑥
𝑎 d𝑥𝑏 =

d𝑥2

𝐵(𝑥)
+𝐵(𝑥) d𝜑2, ℎ =

𝐵𝑘(𝑥)

Γ
d𝜑− Γ′

Γ
d𝑥 . (75)

The 𝑥𝜑 component of Eq. (66) implies 𝑘(𝑥) ≡ 𝑘 is a constant. The 𝑥 component of Eq. (68) then
implies

𝐹 =
𝐴0

Γ
+
𝐵𝑘2

Γ2
, (76)

where 𝐴0 is a constant. Substituting this into Eq. (67) gives

𝐴0 =
1

2
∇2Γ− 𝐵𝑘2

2Γ
+ ΛΓ . (77)

Now subtracting the 𝑥𝑥 component from the 𝜑𝜑 component of Eq. (66) gives

2Γ′′ − Γ′2

Γ
− 𝑘2

Γ
= 0 . (78)

A non-static near-horizon geometry must have 𝑘 ̸= 0 and therefore from the above equation Γ is
non-constant. Using this, one can write Eq. (77) as(︂

𝐵Γ

Γ′

)︂′

=
2(𝐴0 − ΛΓ)Γ

Γ′2 . (79)

The solution to the ODE for Γ is given by

Γ =
𝑘2

𝛽
+
𝛽𝑥2

4
, (80)

where 𝛽 is a positive constant, which can then be used to solve the ODE for 𝐵:

𝐵 =
𝑃 (𝑥)

Γ
, (81)

where

𝑃 (𝑥) = −𝛽Λ𝑥
4

12
+ (𝐴0 − 2Λ𝑘2𝛽−1)𝑥2 + 𝑐1𝑥− 4𝑘2

𝛽2

(︀
𝐴0 − Λ𝑘2𝛽−1

)︀
(82)

and 𝑐1 is a constant. Changing affine parameter 𝑟 → Γ(𝑥)𝑟 in the full near-horizon geometry
finally gives

𝑔 = Γ(𝑥)[𝐴0𝑟
2 d𝑣2 + 2d𝑣 d𝑟] +

Γ(𝑥)

𝑃 (𝑥)
d𝑥2 +

𝑃 (𝑥)

Γ(𝑥)
( d𝜑+ 𝑘𝑟 d𝑣)2 , (83)

with Γ, 𝑃 determined above. Observe that this derivation is purely local and does not assume
anything about the topology of 𝐻 (unlike the derivation in [154], which assumed compactness). If
𝑘 = 0 we recover the general static solution (70), hence let us now assume 𝑘 ̸= 0.

Now assume 𝐻 is compact, so by axisymmetry one must have either 𝑆2 or 𝑇 2. Integrating
Eq. (77) over 𝐻 then shows that if Λ ≤ 0 then 𝐴0 < 0 and so the metric in square brackets is
AdS2. The horizon metric extends to a smooth metric on 𝐻 ∼= 𝑆2 if and only if 𝑐1 = 0. It can then
be checked the near-horizon geometry is isometric to that of extremal Kerr for Λ = 0 or Kerr-AdS
for Λ < 0 [154]. It is also easy to check that for Λ > 0 it corresponds to extremal Kerr-dS. In the
non-static case, the horizon topology theorem excludes the possibility of 𝐻 ∼= 𝑇 2 for Λ ≥ 0. If
Λ < 0 the non-static possibility with 𝐻 ∼= 𝑇 2 can also be excluded [164].

It would be interesting to remove the assumption of axisymmetry in the above theorem. In [145]
it is shown that regular non-axisymmetric linearised solutions of Eq. (66) about the extremal Kerr
near-horizon geometry do not exist. This supports the conjecture that any smooth solution of
Eq. (66) on 𝐻 ∼= 𝑆2 must be axisymmetric and hence given by the above theorem.
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4.4 Five dimensions

In this case there are several different symmetry assumptions one could make. Classifications are
known for homogeneous horizons and horizons invariant under a 𝑈(1)2-rotational symmetry.

We may define a homogeneous near-horizon geometry to be one for which the Riemannian
manifold (𝐻, 𝛾𝑎𝑏) is a homogeneous space whose transitive isometry group 𝐾 also leaves the rest
of the near-horizon data (𝐹, ℎ𝑎) invariant. Since any near-horizon geometry (7) possesses the 2D
symmetry generated by 𝑣 → 𝑣 + 𝑐 and (𝑣, 𝑟) → (𝜆𝑣, 𝜆−1𝑟) where 𝜆 ̸= 0, it is clear that this
definition guarantees the near-horizon geometry itself is a homogeneous spacetime. Conversely, if
the near-horizon geometry is a homogeneous spacetime, then any cross section (𝐻, 𝛾𝑎𝑏) must be a
homogeneous space under a subgroup 𝐾 of the spacetime isometry group, which commutes with
the 2D symmetry in the (𝑣, 𝑟) plane (since 𝐻 is a constant (𝑣, 𝑟) submanifold). It follows that
(𝐹, ℎ𝑎) must also be invariant under the isometry 𝐾, showing that our original definition is indeed
equivalent to the near-horizon geometry being a homogeneous spacetime.

Homogeneous geometries can be straightforwardly classified without assuming compactness of
𝐻 as follows.

Theorem 4.4 ([158]). Any vacuum, homogeneous, non-static near-horizon geometry is locally
isometric to

𝑔 =
(︀
− 1

2𝑘
2 + Λ

)︀
𝑟2 d𝑣2 + 2d𝑣 d𝑟 + (�̂� + 𝑘𝑟 d𝑣)2 + 𝑔 , (84)

where �̂� is a 𝑈(1)-connection over a 2D base space satisfying Ric(𝑔) = �̂�𝑔 with �̂� = 1
2𝑘

2+2Λ. The

curvature of the connection is d�̂� =
√
𝑘2 + 2Λ 𝜖, where 𝜖 is the volume form of the 2D base, and

𝑘2 + 2Λ ≥ 0.

The proof uses the fact that homogeneity implies ℎ must be a Killing field and then one reduces
the problem onto the 2D orbit space. Observe that for 𝑘 → 0 one recovers the static near-horizon
geometries. For 𝑘 ̸= 0 and Λ ≥ 0 we see that �̂� > 0 so that the 2D metric 𝑔 is a round 𝑆2 and the
horizon metric is locally isometric to a homogeneously squashed 𝑆3. Hence we have:

Corollary 4.1. Any vacuum, homogeneous, non-static near-horizon geometry is locally isometric
to the near-horizon limit of the extremal Myers–Perry black hole with 𝑆𝑈(2) × 𝑈(1) rotational
symmetry (i.e., equal angular momenta). For Λ > 0 one gets the same result with the Myers–
Perry black hole replaced by its generalisation with a cosmological constant [129].

For Λ < 0 we see that there are more possibilities depending on the sign of �̂�. If �̂� > 0 we
again have a horizon geometry locally isometric to a homogeneous 𝑆3. If �̂� = 0, we can write
𝑔 = d𝑥2+ d𝑦2 and the 𝑈(1)-connection �̂� =

√︀
2|Λ|(𝑥d𝑦−𝑦 d𝑥) is non-trivial, so the cross sections

𝐻 are the Nil group manifold with its standard homogeneous metric. For �̂� < 0, we can write
|�̂�|𝑔 = (d𝑥2 + d𝑦2)/𝑦2 and the connection |�̂�|�̂� =

√
𝑘2 + 2Λ d𝑥/𝑦, so the cross sections 𝐻 are

the 𝑆𝐿(2,R) group manifold with its standard homogeneous metric, unless 𝑘2 = −2Λ, which gives
𝐻 = R×H2. Hence we have:

Corollary 4.2. For Λ < 0 any vacuum, homogeneous, non-static near-horizon geometry is locally
isometric to either the near-horizon limit of the extremal rotating black hole [129] with 𝑆𝑈(2)×𝑈(1)
rotational symmetry, or a near-horizon geometry with: (i) 𝐻 = Nil and its standard homogenous
metric, (ii) 𝐻 = 𝑆𝐿(2,R) and its standard homogeneous metric or (iii) 𝐻 = R×H2.

This is analogous to a classification first obtained for supersymmetric near-horizon geometries
in gauged supergravity, see Proposition (5.3).

We now consider a weaker symmetry assumption, which allows for inhomogeneous horizons. A
𝑈(1)2-rotational isometry is natural in five dimensions and all known explicit black-hole solutions
have this symmetry. The following classification theorem has been derived:
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Theorem 4.5 ([152]). Consider a vacuum non-static near-horizon geometry with a 𝑈(1)2-rotational
isometry and a compact cross section 𝐻. It must be globally isometric to the near-horizon geometry
of one of the following families of black-hole solutions:

1. 𝐻 ∼= 𝑆1 × 𝑆2: the 3-parameter boosted extremal Kerr string.

2. 𝐻 ∼= 𝑆3: the 2-parameter extremal Myers–Perry black hole or the 3-parameter ‘fast’ rotating
extremal KK black hole [190].

3. 𝐻 ∼= 𝐿(𝑝, 𝑞): the Lens space quotients of the above 𝐻 ∼= 𝑆3 solutions.

Remarks:

∙ The near-horizon geometry of the vacuum extremal black ring [187] is a 2-parameter sub-
family of case 1, corresponding to a Kerr string with vanishing tension [162].

∙ The near-horizon geometry of the ‘slowly’ rotating extremal KK black hole [190] is identical
to that of the 2-parameter extremal Myers–Perry in case 2.

∙ The 𝐻 ∼= 𝑆3 cases can be written as a single 3-parameter family of near-horizon geome-
tries [135].

∙ The 𝐻 ∼= 𝑇 3 case has been ruled out [131].

For Λ ̸= 0, the analogous problem has not been solved. The only known solution in this case is
the 𝐻 ∼= 𝑆3 near-horizon geometry of the rotating black hole with a cosmological constant [129],
which generalises the Myers–Perry black hole. It would be interesting to classify near-horizon
geometries with 𝐻 ∼= 𝑆1 × 𝑆2 in this case since this would capture the near-horizon geometry of
the yet-to-be-found asymptotically-AdS5 black ring. A perturbative attempt at constructing such
a solution is discussed in [152].

4.5 Higher dimensions

For spacetime dimension 𝐷 ≥ 6, so the horizon cross section dim𝐻 ≥ 4, the horizon equation (66)
is far less constraining than in lower dimensions. Few general classification results are known,
although several large families of vacuum near-horizon geometries have been constructed.

4.5.1 Weyl solutions

The only known classification result for vacuum 𝐷 > 5 near-horizon geometries is for Λ = 0
solutions with 𝑈(1)𝐷−3-rotational symmetry. These generalise the 𝐷 = 4 axisymmetric solutions
and 𝐷 = 5 solutions with 𝑈(1)2-symmetry discussed in Sections 4.3 and 4.4 respectively. By
performing a detailed study of the orbit spaces 𝐻/𝑈(1)𝐷−3 it has been shown that the only
possible topologies for 𝐻 are: 𝑆2 × 𝑇𝐷−4, 𝑆3 × 𝑇𝐷−5, 𝐿(𝑝, 𝑞)× 𝑇𝐷−5, and 𝑇𝐷−2 [139].

An explicit classification of the possible near-horizon geometries (for the non-toroidal case) was
derived in [135], see their Theorem 1. Using their theorem it is easy to show that the most general
solution with𝐻 ∼= 𝑆2×𝑇𝐷−4 is in fact isometric to the near-horizon geometry of a boosted extremal
Kerr-membrane (i.e., perform a general boost of Kerr×R𝐷−4 along the {𝑡} × R𝐷−4 coordinates
and then compactify R𝐷−4 → 𝑇𝐷−4). Non-static near-horizon geometries with 𝐻 ∼= 𝑇𝐷−2 have
been ruled out [131] (including a cosmological constant).
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4.5.2 Myers–Perry metrics

The Myers–Perry (MP) black-hole solutions [183] generically have isometry groups R × 𝑈(1)𝑠

where 𝑠 = ⌊𝐷−1
2 ⌋. Observe that if 𝐷 > 5 then 𝑠 < 𝐷 − 3 and hence these solutions fall outside

the classification discussed in Section 4.5.1. They are parameterised by their mass parameter 𝜇
and angular momentum parameters 𝑎𝑖 for 𝑖 = 1, . . . 𝑠. The topology of the horizon cross section
𝐻 ∼= 𝑆𝐷−2. A generalisation of these metrics with non-zero cosmological constant has been
found [99]. We will focus on the Λ = 0 case, although analogous results hold for the Λ ̸= 0
solutions.

The location of the horizon is determined by the largest positive number 𝑟+ such that in odd
and even dimensions Π(𝑟+)− 𝜇 𝑟2+ = 0 and Π(𝑟+)− 𝜇 𝑟+ = 0, respectively, where

Π(𝑟) =

𝑠∏︁
𝑖=1

(𝑟2 + 𝑎2𝑖 ) . (85)

The extremal limit of these black holes in odd and even dimensions is given by Π′(𝑟+) = 2𝜇 𝑟+
and Π′(𝑟+) = 𝜇, respectively. These conditions hold only when the black hole is spinning in all
the two planes available, i.e., we need 𝑎𝑖 ̸= 0 for all 𝑖 = 1, · · · , 𝑠. Without loss of generality we will
henceforth assume 𝑎𝑖 > 0 and use the extremality condition to eliminate the mass parameter 𝜇.
The near-horizon geometry of the extremal MP black holes can be written in a unified form [79]:

𝑔MP = 𝐹+

(︂
−Π′′(𝑟+)

2Π(𝑟+)
𝑟2 d𝑣2 + 2 d𝑣 d𝑟

)︂
+ 𝛾𝜇𝑖𝜇𝑗

d𝜇𝑖 d𝜇𝑗

+ 𝛾𝑖𝑗

(︂
d𝜑𝑖 +

2 𝑟+ 𝑎𝑖
(𝑟2+ + 𝑎2𝑖 )

2
𝑟 d𝑣

)︂ (︃
d𝜑𝑗 +

2 𝑟+ 𝑎𝑗
(𝑟2+ + 𝑎2𝑗 )

2
𝑟 d𝑣

)︃
, (86)

where

𝐹+ = 1−
𝑠∑︁

𝑖=1

𝑎2𝑖 𝜇
2
𝑖

𝑟2+ + 𝑎2𝑖
, 𝛾𝑖𝑗 = (𝑟2+ + 𝑎2𝑖 )𝜇

2
𝑖 𝛿𝑖𝑗 +

1

𝐹+
𝑎𝑖 𝜇

2
𝑖 𝑎𝑗 𝜇

2
𝑗 , (87)

and in odd and even dimensions

𝛾𝜇𝑖𝜇𝑗 d𝜇𝑖 d𝜇𝑗 =

𝑠∑︁
𝑖=1

(𝑟2+ + 𝑎2𝑖 ) 𝑑𝜇
2
𝑖 , 𝛾𝜇𝑖𝜇𝑗 d𝜇𝑖 d𝜇𝑗 = 𝑟2+ d𝛼2 +

𝑠∑︁
𝑖=1

(𝑟2+ + 𝑎2𝑖 ) d𝜇
2
𝑖 , (88)

respectively. The direction cosines 𝜇𝑖 and 𝛼 take values in the range 0 ≤ 𝜇𝑖 ≤ 1 with −1 ≤ 𝛼 ≤ 1
and in odd and even dimensions satisfy

𝑠∑︁
𝑖=1

𝜇2
𝑖 = 1 ,

𝑠∑︁
𝑖=1

𝜇2
𝑖 + 𝛼2 = 1 , (89)

respectively. The generalisation of these near-horizon geometries for Λ ̸= 0 was given in [165]. It is
worth noting that if subsets of the angular momentum parameters 𝑎𝑖 are set equal, the rotational
symmetry enhances to a non-Abelian unitary group.

Since these are vacuum solutions one can trivially add flat directions to generate new solutions.
For example, by adding one flat direction one can generate a boosted MP string, whose near-
horizon geometries have𝐻 ∼= 𝑆1×𝑆𝐷−3 topology. Interestingly, for odd dimensions𝐷 the resulting
geometry has ⌊𝐷−1

2 ⌋ commuting rotational isometries. For this reason, it was conjectured that a
special case of this is also the near-horizon geometry of yet-to-be-found asymptotically-flat black
rings (as is known to be the case in five dimensions) [79].
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4.5.3 Exotic topology horizons

Despite the absence of explicit 𝐷 > 5 black-hole solutions, a number of solutions to Eq. (66) are
known. It is an open problem as to whether there are corresponding black-hole solutions to these
near-horizon geometries.

All the constructions given below employ the following data. Let 𝐾 be a compact Fano Kähler–
Einstein manifold19 of complex dimension 𝑞 − 1 and 𝑎 ∈ 𝐻2(𝐾,Z) is the indivisible class given
by 𝑐1(𝐾) = 𝐼𝑎 with 𝐼 ∈ N (the Fano index 𝐼 and satisfies 𝐼 ≤ 𝑞 with equality iff 𝐾 = CP𝑞−1).
The Kähler–Einstein metric 𝑔 on 𝐾 is normalised as Ric(𝑔) = 2𝑞𝑔 and we denote its isometry
group by 𝐺. The simplest example occurs for 𝑞 = 2, in which case 𝐾 = CP1 ∼= 𝑆2 with 𝑔 =
1
4 ( d𝜃

2 + sin2 𝜃 d𝜒2).
In even dimensions greater than four, an infinite class of near-horizon geometries is revealed by

the following result.

Proposition 4.1 ([156]). Let 𝑚 ∈ Z and 𝑃𝑚 be the principal 𝑆1-bundle over any Fano Kähler–
Einstein manifold 𝐾, specified by the characteristic class 𝑚𝑎. For each 𝑚 > 𝐼 there exists a
1-parameter family of smooth solutions to Eq. (66) on the associated 𝑆2-bundles 𝐻 ∼= 𝑃𝑚 ×𝑆1 𝑆2.

The dim 𝐻 = 2𝑞 ansatz used for the near-horizon data is the 𝑈(1)×𝐺 invariant form

𝛾𝑎𝑏 d𝑥
𝑎 d𝑥𝑏 =

d𝑥2

𝐵(𝑥)
+𝐵(𝑥)𝜔 ⊗ 𝜔 +𝐴(𝑥)2𝑔, (90)

ℎ =
𝑘𝐵(𝑥)𝜔

Γ
− Γ′(𝑥)

Γ
d𝑥 , (91)

where 𝜔 is a 𝑈(1)-connection over𝐾 with curvature 2𝜋𝑚𝑎. The solutions depend on one continuous
parameter 𝐿 > 0 and the integer 𝑚 > 𝐼. The continuous parameter corresponds to the angular
momentum 𝐽 [𝜕𝜑] where 𝜕𝜑 generates the 𝑈(1)-isometry in the 𝑆2-fibre. The various functions are
given by 𝐴(𝑥)2 = 𝐿2(1 − 𝑥2), Γ(𝑥) = 𝜉 + 𝑥2, 𝑘 = ±2

√
𝜉 and 𝐵(𝑥) = 𝑃 (𝑥)/(𝐴(𝑥)2𝑞−2Γ(𝑥)) where

𝑃 is a polynomial in 𝑥2 and smoothness fixes 𝜉 to be a function of 𝑚.
The simplest example is the 𝑞 = 2, Λ = 0 solution, for which the near-horizon data takes the

explicit form

𝛾𝑎𝑏 d𝑥
𝑎 d𝑥𝑏 =

𝐿2(𝜉𝑚 + 𝑥2)(1− 𝑥2)𝑑𝑥2

(4−𝑚2𝑥2)
(︀
𝜉𝑚 − 4𝑥2

3𝑚2

)︀ +
𝐿2(4−𝑚2𝑥2)

(︁
𝜉𝑚 − 4𝑥2

3𝑚2

)︁
(𝜉𝑚 + 𝑥2)(1− 𝑥2)

(︀
d𝜑+ 1

2 cos 𝜃 d𝜒
)︀2

+ 1
4𝐿

2(1− 𝑥2)( d𝜃2 + sin2 𝜃 d𝜒2), (92)

ℎ𝑎 d𝑥
𝑎 = ±

2
√
𝜉𝑚𝐿

2(4−𝑚2𝑥2)
(︁
𝜉𝑚 − 4𝑥2

3𝑚2

)︁
(𝜉𝑚 + 𝑥2)2(1− 𝑥2)

(︀
d𝜑+ 1

2 cos 𝜃 d𝜒
)︀
− 2𝑥

𝜉𝑚 + 𝑥2
d𝑥 , (93)

where

𝜉𝑚 =
4

3

(︂
3− 4

𝑚2

4 +𝑚2

)︂
, (94)

and 𝑚 > 2. The coordinate ranges are −2/𝑚 ≤ 𝑥 ≤ 2/𝑚, 0 ≤ 𝜃 ≤ 𝜋, 𝜑 ∼ 𝜑+ 2𝜋/𝑚, 𝜒 ∼ 𝜒+ 2𝜋.
Cross sections of the horizon 𝐻, are homeomorphic to 𝑆2 × 𝑆2 if 𝑚 is even, or the non-trivial

bundle 𝑆2×̃𝑆2 ∼= CP2#CP2
if 𝑚 is odd. For Λ ̸= 0 the solutions are analogous.

For 𝑞 > 2 the Fano base 𝐾 is higher dimensional and there are more choices available. The
topology of the total space is always a non-trivial 𝑆2-bundle over 𝐾 and in fact different 𝑚 give

19 A complex manifold is Fano if its first Chern class is positive, i.e., 𝑐1(𝐾) > 0. It follows that any Kähler–Einstein
metric on such a manifold must have positive Einstein constant.
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different topologies, so there are an infinite number of horizon topologies allowed. Furthermore,
one can choose𝐾 to have no continuous isometries giving examples of near-horizon geometries with
a single 𝑈(1)-rotational isometry. Hence, if there are black holes corresponding to these horizon
geometries they would saturate the lower bound in the rigidity theorem.

It is worth noting that the local form of the above class of near-horizon metrics includes as a
special case that of the extremal MP metrics 𝐻 ∼= 𝑆2𝑞 with equal angular momenta (for 𝑚 = 𝐼).
The above class of horizon geometries are of the same form as the Einstein metrics on complex line
bundles [186], which in four dimensions corresponds to the Page metric [185], although we may of
course set Λ ≤ 0.

Similar constructions of increasing complexity can be made in odd dimensions, again revealing
an infinite class of near-horizon geometries.

Proposition 4.2. Let 𝑚 ∈ Z and 𝑃𝑚 be the principal 𝑆1-bundle over 𝐾 specified by the charac-
teristic class 𝑚𝑎. There exists a 1-parameter family of Sasakian solutions to Eq. (66) on 𝐻 ∼= 𝑃𝑚.

As a simple example consider 𝐾 = CP1 × CP1. This leads to an explicit homogeneous near-
horizon geometry with

𝛾𝑎𝑏 d𝑥
𝑎 d𝑥𝑏 =

(︂
𝑘2 + 2Λ

2𝜆2

)︂
( d𝜓 + cos 𝜃1 d𝜑1 + cos 𝜃2 d𝜑2)

2

+
1

𝜆

(︀
d𝜃21 + sin2 𝜃1 d𝜑

2
1 + d𝜃22 + sin2 𝜃2 d𝜑

2
2

)︀
ℎ𝑎𝜕𝑎 = 𝑘

√︂
2𝜆2

𝑘2 + 2Λ

𝜕

𝜕𝜓
, (95)

where for convenience we have written ℎ is a vector field, 𝑘 is a constant and 𝜆 = (𝑘2 + 6Λ)/4.
Regularity requires that the Chern number 𝑚 of the 𝑈(1)-fibration over each 𝑆2 to be the same
and the period Δ𝜓 = 2𝜋/𝑚. The total space is a Lens space 𝑆3/Z𝑚-bundle over 𝑆2 and is
topologically 𝐻 ∼= 𝑆3 × 𝑆2. For 𝑘 = 0 and Λ > 0 this corresponds to a Sasaki–Einstein metric on
𝑆3 × 𝑆2 sometimes known as 𝑇 1,1.

The above proposition can be generalised as follows.

Proposition 4.3 ([158]). Given any Fano Kähler–Einstein manifold 𝐾 of complex dimension 𝑞−1
and coprime 𝑝1, 𝑝2 ∈ N satisfying 1 < 𝐼𝑝1/𝑝2 < 2, there exists a 1-parameter family of solutions to
Eq. (66) where 𝐻 is a compact Sasakian (2𝑞 + 1)-manifold.

These examples have 𝑈(1)2 × 𝐺 symmetry, although possess only one independent angular
momentum along the 𝑇 2-fibres. These are deformations of the Sasaki–Einstein 𝑌 𝑝,𝑞 manifolds [94].

There also exist a more general class of non-Sasakian horizons in odd dimensions.

Proposition 4.4 ([157]). Let 𝑃𝑚1,𝑚2
be the principal 𝑇 2-bundle over any Fano Kähler–Einstein

manifold 𝐾, specified by the characteristic classes (𝑚1𝑎,𝑚2𝑎) where 𝑚1,𝑚2 ∈ Z. For a count-
ably infinite set of non-zero integers (𝑚1,𝑚2, 𝑗, 𝑘), there exists a two-parameter family of smooth
solutions to Eq. (66) on the associated Lens space bundles 𝐻 ∼= 𝑃𝑚1,𝑚2 ×𝑇 2 𝐿(𝑗, 𝑘).

The dim 𝐻 = 2𝑞 + 1 form of the near-horizon data in the previous two propositions is the
𝑈(1)2 ×𝐺 invariant form

𝛾𝑎𝑏 d𝑥
𝑎 d𝑥𝑏 =

d𝑥2

det𝐵
+𝐵𝑖𝑗(𝑥)𝜔

𝑖𝜔𝑗 +𝐴(𝑥)2𝑔, (96)

ℎ𝑎 d𝑥
𝑎 =

𝐵𝑖𝑗𝑘
𝑗𝜔𝑖

Γ
− Γ′(𝑥)

Γ
d𝑥 ,
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where 𝜔𝑖 is a principal 𝑇 2-connection over 𝐾 whose curvature is 2𝜋𝑚𝑖𝑎. The explicit functions
𝐴(𝑥)2,Γ(𝑥) are linear in 𝑥 and 𝐵𝑖𝑗(𝑥) are ratios of various polynomials in 𝑥. Generically these
solutions possess two independent angular momenta along the 𝑇 2-fibres. The Sasakian horizon
geometries of Proposition 4.3 arise as a special case with 𝑚1 + 𝑚2 = 𝐼𝑗 and possess only one
independent angular momentum. The base 𝐾 = CP1 gives horizon topologies 𝐻 ∼= 𝑆3 × 𝑆2 or
𝐻 ∼= 𝑆3×̃𝑆2 depending on whether 𝑚1 +𝑚2 is even or odd respectively.

It is worth noting that the local form of this class of near-horizon metrics includes as a special
case that of the extremal MP metrics 𝐻 ∼= 𝑆2𝑞+1 with all but one equal angular momenta. The
above class of horizon geometries are of the same form as the Einstein metrics found in [37, 157].
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5 Supersymmetric Solutions

By definition, a supersymmetric solution of a supergravity theory is a solution that also admits
a Killing spinor, i.e., a spinor field 𝜓 that satisfies 𝐷𝜇𝜓 = 0, where 𝐷𝜇 is a spinorial covariant
derivative that depends on the matter fields of the theory. Given such a Killing spinor 𝜓, the
bilinear 𝐾𝜇 = 𝜓Γ𝜇𝜓 is a non-spacelike Killing field. By definition, a supersymmetric horizon is
invariant under the Killing field 𝐾𝜇 and thus 𝐾𝜇 must be tangent to the horizon. Hence 𝐾𝜇 must
be null on the horizon; in other words the horizon is a Killing horizon of 𝐾𝜇. Furthermore, since
𝐾2 ≤ 0 both outside and inside the horizon, it follows that on the horizon d𝐾2 = 0, i.e., it must
be a degenerate horizon. Hence any supersymmetric horizon is necessarily a degenerate Killing
horizon.

5.1 Four dimensions

The simplest supergravity theory in four dimensions admitting supersymmetric black holes is
minimal 𝒩 = 2 supergravity, whose bosonic sector is simply standard Einstein–Maxwell theory.
The general supersymmetric solution in this theory is given by the Israel–Wilson–Perjés metrics.
Using this fact, the following near-horizon uniqueness theorem has been proved:

Theorem 5.1 ([41]). Any supersymmetric near-horizon geometry in 𝒩 = 2 minimal supergravity
is one of the maximally supersymmetric solutions R1,1 × 𝑇 2 or AdS2 × 𝑆2.

Notice that staticity here follows from supersymmetry. In Section 7 we will discuss the impli-
cations of this result for uniqueness of supersymmetric black holes in four dimensions.

For 𝒩 = 2 gauged supergravity, whose bosonic sector is Einstein–Maxwell theory with a nega-
tive cosmological constant, an analogous classification of supersymmetric near-horizon geometries
has not been performed. Nevertheless, one may deduce the following result, from a classification
of all near-horizon geometries of this theory under the additional assumption of axisymmetry:

Proposition 5.1 ([154]). Any supersymmetric, axisymmetric, near-horizon geometry in 𝒩 = 2
gauged supergravity, is given by the near-horizon limit of the 1-parameter family of supersymmetric
Kerr–Newman-AdS4 black holes [150].

Note that the above near-horizon geometry is non-static. This is related to the fact that
supersymmetric AdS black holes must carry angular momentum. It would be interesting to remove
the assumption of axisymmetry. Some related work has been done in the context of supersymmetric
isolated horizons [29].

Supersymmetric black holes are not expected to exist in 𝒩 = 1 supergravity. For the general
𝒩 = 1 supergravity the following result, supporting this expectation, has been established.

Proposition 5.2 ([115]). A supersymmetric near-horizon geometry of 𝒩 = 1 supergravity is either
the trivial solution R1,1 × 𝑇 2, or R1,1 × 𝑆2 where 𝑆2 may be a non-round sphere.

An example of a supersymmetric near-horizon geometry of the form R1,1 × 𝑆2, with a round
𝑆2, was given in [176].

5.2 Five dimensions

The simplest 𝐷 = 5 supergravity theory admitting supersymmetric black holes is 𝒩 = 1 minimal
supergravity. The bosonic sector is Einstein–Maxwell theory with a Chern–Simons term given by
Eq. (112) with a specific coupling 𝜉 = 1. Supersymmetric solutions to this theory were classified
in [93]. This was used to obtain a complete classification of supersymmetric near-horizon geometries
in this theory.
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Theorem 5.2 ([191]). Any supersymmetric near-horizon geometry of minimal supergravity is
locally isometric to one of the following maximally supersymmetric solutions: AdS3×𝑆2, R1,1×𝑇 3,
or the near-horizon geometry of the Breckenridge–Myers–Peet–Vafa (BMPV) black hole (of which
AdS2 × 𝑆3 is a special case).

Note that here supersymmetry implies homogeneity. The AdS3 × 𝑆2 near-horizon geometry
has cross sections 𝐻 ∼= 𝑆1 × 𝑆2 and arises as the near-horizon limit of supersymmetric black
rings [64, 65] and supersymmetric black strings [93, 19]. Analogous results have been obtained in
𝐷 = 5 minimal supergravity coupled to an arbitrary number of vector multiplets [111]. As discussed
in Section 7, the above theorem can be used to prove a uniqueness theorem for topologically
spherical supersymmetric black holes.

The corresponding problem for minimal gauged supergravity has proved to be more difficult.
The bosonic sector of this theory is Einstein–Maxwell–Chern–Simons theory with a negative cos-
mological constant. The theory admits asymptotically AdS5 black-hole solutions that are relevant
in the context of the AdS/CFT correspondence [120, 38]. The following partial results have been
shown.

Proposition 5.3 ([120]). Consider a supersymmetric, homogeneous near-horizon geometry of
minimal gauged supergravity. Cross sections of the horizon must be one of the following: a homo-
geneously squashed 𝑆3, Nil or 𝑆𝐿(2,R) manifold.

The near-horizon geometry of the 𝑆3 case was used to construct the first example of an asymp-
totically AdS5 supersymmetric black hole [120]. Analogous results in gauged supergravity coupled
to an arbitrary number of vector multiplets (this includes 𝑈(1)3 gauged supergravity) were ob-
tained in [151]. Unlike the ungauged theory, homogeneity is not implied by supersymmetry, and
indeed there are more general solutions.

Proposition 5.4 ([161]). The most general supersymmetric near-horizon geometry in minimal
gauged supergravity, admitting a 𝑈(1)2-rotational symmetry and a compact horizon section, is the
near-horizon limit of the topologically-spherical supersymmetric black holes of [38].

The motivation for assuming this isometry group is that all known black-hole solutions in five
dimensions possess this. Interestingly, this result implies the non-existence of supersymmetric
AdS5 black rings with R× 𝑈(1)2 isometry.

In fact, recent results allow one to remove all assumptions and obtain a complete classification.
Generic supersymmetric solutions of minimal gauged supergravity preserve 1

4 -supersymmetry.

Proposition 5.5 ([121, 106]). Any 1
2 -supersymmetric near-horizon geometry in minimal gauged

supergravity must be invariant under a local 𝑈(1)2-rotational isometry.

Furthermore, the following has also been shown.

Proposition 5.6 ([105]). Any supersymmetric near-horizon geometry in minimal gauged super-
gravity with a compact horizon section must preserve 1

2 -supersymmetry.

This latter result is proved using a Lichnerowicz type identity to establish a correspondence
between Killing spinors and solutions to a horizon Dirac equation, and then applying an index
theorem. Therefore, combining the previous three propositions gives a complete classification
theorem for near-horizon geometries in minimal gauged supergravity.

Theorem 5.3 ([161, 105, 106]). A supersymmetric near-horizon geometry in minimal gauged
supergravity, with a compact horizon section, must be locally isometric to the near-horizon limit
of the topologically-spherical supersymmetric black holes [38], or the homogeneous near-horizon
geometries with the Nil or 𝑆𝐿(2,R) horizons.
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This theorem establishes a striking corollary for the corresponding black hole classification
theorem.

Corollary 5.1. Supersymmetric black rings in minimal gauged supergravity do not exist.

We emphasise that the absence of supersymmetric AdS5 black rings is rather suprising, given
asymptotically-flat counterparts are known to exist [64].

Parts of the above analysis have been generalised by 𝑈(1)𝑛 gauged supergravity, although the
results are slightly different.

Proposition 5.7 ([151]). Consider a supersymmetric near-horizon geometry in 𝑈(1)𝑛 minimal
gauged supergravity with 𝑈(1)2-rotational symmetry and a compact horizon section. It must be
either: (i) the near-horizon limit of the topologically spherical black holes of [160]; or (ii) AdS3×𝑆2

with 𝐻 ∼= 𝑆1 × 𝑆2 or (iii) AdS3 × 𝑇 2 with 𝐻 ∼= 𝑇 3. These latter two cases have constant scalars
and only exist in certain regions of the scalar moduli space (not including the minimal theory).

Therefore, in this theory one cannot rule out the existence of supersymmetric AdS5 black
rings (although as argued in [151] they would not be connected to the asymptotically-flat black
rings [66]). It would be interesting to complete the classification of near-horizon geometries in this
more general theory, along the lines of the minimal theory.

5.3 Six dimensions

The simplest supergravity in six dimensions is minimal supergravity. The bosonic field context of
this theory is a metric and a 2-form potential with self-dual field strength. The classification of
supersymmetric solutions to this theory was given in [112]. This was used to work out a complete
classification of supersymmetric near-horizon geometries.

Theorem 5.4 ([112]). Any supersymmetric near-horizon geometry of 𝐷 = 6 minimal supergravity,
with a compact horizon cross section, is either R1,1 × 𝑇 4, R1,1 ×𝐾3 or locally AdS3 × 𝑆3.

The AdS3×𝑆3 solution has𝐻 ∼= 𝑆1×𝑆3 and arises as the near-horizon limit of a supersymmetric
rotating black string.

Analogous results have been obtained for minimal supergravity coupled to an arbitrary number
of scalar and tensor multiplets [3].

5.4 Ten dimensions

Various results have been derived for heterotic supergravity and type IIB supergravity.
The bosonic field content of 𝐷 = 10 heterotic supergravity consist of the metric, a 2-form

gauge potential and a scalar field (dilaton). The full theory is invariant under 16 supersymmetries.
There are two classes of supersymmetric near-horizon geometries [113]. One is the direct product
R1,1 ×𝐻, with vanishing flux and constant dilaton, where 𝐻 is Spin(7) holonomy manifold, which
generically preserves one supersymmetry (there are solutions in this class which preserve more
supersymmetry provided 𝐻 has certain special holonomy). In the second class, the near-horizon
geometry is a fibration of AdS3 over a base 𝐵7 (with a 𝑈(1)-connection) with a 𝐺2 structure, which
must preserve 2 supersymmetries. This class may preserve 4, 6, 8 supersymmetries if 𝐵7 is further
restricted. In particular, an explicit classification for 1

2 -supersymmetric near-horizon geometries is
possible.

Proposition 5.8 ([113]). Any supersymmetric near-horizon geometry of heterotic supergravity
invariant under 8 supersymmetries, with a compact horizon cross section, must be locally isometric
to one of AdS3 × 𝑆3 × 𝑇 4, AdS3 × 𝑆3 ×𝐾3 or R1,1 × 𝑇 4 ×𝐾3 (with constant dilaton).
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A large number of heterotic horizons preserving 4 supersymmetries have been constructed, includ-
ing explicit examples where 𝐻 is 𝑆𝑈(3) and 𝑆3 × 𝑆3 × 𝑇 2 [114].

The bosonic field content of type IIB supergravity consists of a metric, a complex scalar, a
complex 2-form potential and a self-dual 5-form field strength. The theory is invariant under
32 supersymmetries. A variety of results concerning the classification of supersymmetric near-
horizon geometries in this theory have been derived [102, 101, 103]. Certain explicit classification
results are known for near-horizon geometries with just a 5-form flux preserving more than two
supersymmetries, albeit under certain restrictive assumptions [101]. More generally, the existence
of one supersymmetry places rather weak geometric constraints on the horizon cross sections 𝐻:
generically 𝐻 may be any almost Hermitian spin𝑐 manifold [103]. There are also special cases for
which 𝐻 has a 𝑆𝑝𝑖𝑛(7) structure and those for which it has an 𝑆𝑈(4) structure (where the Killing
spinor is pure). More recently, it has been shown that any supersymmetric near-horizon geometry
in type IIB supergravity must preserve an even number of supersymmetries, and furthermore, if
a certain horizon Dirac operator has non-trivial kernel the bosonic symmetry group must contain
𝑆𝑂(2, 1) [104].

5.5 Eleven dimensions

The bosonic field content of 𝐷 = 11 supergravity consists of a metric 𝑔𝜇𝜈 and a 3-form potential
𝐶𝜇𝜈𝜌. The near-horizon limit of the 4-form field strength ℱ = d𝐶 can be written as Eq. (27),
where 𝑌 and 𝑋 are a 2-form and closed 4-form respectively on the 9-dimensional horizon cross
sections 𝐻. The near-horizon Einstein equations are Eqs. (17) and (18) with Λ = 0 and the matter
field terms are given by [116]

𝑃𝑎𝑏 = − 1
2𝑌𝑎𝑐𝑌

𝑐
𝑏 + 1

12𝑋𝑎𝑐1𝑐2𝑐3𝑋
𝑐1𝑐2𝑐3

𝑏 + 𝛾𝑎𝑏
(︀

1
12𝑌

2 − 1
144𝑋

2
)︀
, (97)

𝐸 = 1
6𝑌

2 + 1
144𝑋

2 . (98)

We note that the dominant and strong energy conditions are satisfied: 𝑃𝑎𝑏𝛾
𝑎𝑏 = 1

4𝑌
2 + 1

48𝑋
2 ≥ 0

and 𝐸 ≥ 0. Therefore, the general results established under these assumptions, discussed in
Section 3, are all valid, including most notably the horizon topology theorem.

Various classification results have been derived for supersymmetric near-horizon geometry solu-
tions under the assumption that cross sections of the horizon are compact. Static supersymmetric
near-horizon geometries are warped products of either R1,1 or AdS2 with 𝑀9, where 𝑀9 admits
a particular 𝐺-structure [117]. We note that these warped product forms are guaranteed by the
general analysis of static near-horizon geometries in Section 3.2.1. Supersymmetric near-horizon
geometries have been studied more generally in [116]. Most interestingly, a near-horizon (su-
per)symmetry enhancement theorem has been established.

Theorem 5.5 ([118]). Any supersymmetric near-horizon geometry solution to eleven dimensional
supergravity, with compact horizon cross sections, must preserve an even number of supersymme-
tries. Furthermore, the bosonic symmetry group must contain 𝑆𝑂(2, 1).

The proof of this follows by first establishing a Lichnerowicz type identity for certain horizon
Dirac operators and then application of an index theorem. As far as bosonic symmetry is concerned,
the above result is a direct analogue of the various near-horizon symmetry theorems discussed in
Section 3.2, which are instead established under various assumptions of rotational symmetry.
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6 Solutions with Gauge Fields

In this section we will consider general near-horizon geometries coupled to non-trivial gauge fields.
We will mostly focus on theories that are in the bosonic sector of minimal supergravity theories
(since these are the best understood cases). Extremal, non-supersymmetric, near-horizon geome-
tries may be thought of as interpolating between vacuum and supersymmetric solutions. They
consist of a much larger class of solutions, which, at least in higher dimensions, are much more dif-
ficult to classify. In particular, we consider 𝐷 = 3, 4, 5 Einstein–Maxwell theory, possibly coupled
to a Chern–Simons term in odd dimensions, and 𝐷 = 4 Einstein–Yang–Mills theory.

6.1 Three dimensional Einstein–Maxwell–Chern–Simons theory

The classification of near-horizon geometries in𝐷 = 3 Einstein–Maxwell theory with a cosmological
constant can be completely solved. To the best of our knowledge this has not been presented before,
so for completeness we include it here. It should be noted though that partial results which capture
the main result were previously shown in [175].

The method parallels the vacuum case in Section 4.2 closely. As in that case the near-horizon
metric data reads ℎ = ℎ(𝑥) d𝑥 and 𝛾 = d𝑥2. Since cross sections 𝐻 of the horizon are one-
dimensional, the Maxwell 2-form induced on 𝐻 must vanish identically. Hence, the most general
near-horizon Maxwell field (23) in three dimensions is ℱNH = d(𝑟Δ(𝑥) d𝑣). It is straightforward
to show that the 3D Maxwell equation d ⋆ ℱ = 0, where ⋆ is the Hodge dual with respect to the
spacetime metric, is equivalent to the following equation on 𝐻:

Δ′ = ℎΔ . (99)

The near-horizon Einstein equations (17) and (18) are simply

ℎ′ = 1
2ℎ

2 + 2Δ2 + Λ, (100)

𝐹 = 1
2ℎ

2 − 1
2ℎ

′ + Λ . (101)

Theorem 6.1. Consider a near-horizon geometry with a compact horizon cross section 𝐻 ∼= 𝑆1

in Einstein–Maxwell-Λ theory. If Λ < 0 the near-horizon geometry must be either AdS2 × 𝑆1 with
a constant AdS2 Maxwell field, or the quotient of AdS3 Eq. (73) with a vanishing Maxwell field. If
Λ = 0 the only solution is the trivial flat near-horizon geometry R1,1 × 𝑆1. If Λ > 0 there are no
solutions.

Proof: Rather that solving the above ODEs we may use a global argument. Compactness requires
𝑥 to be a periodic coordinate on 𝐻 ∼= 𝑆1 and since ℎ,Δ are globally defined they must be periodic
functions of 𝑥. For Λ ≥ 0 simply integrate Eq. (100) over 𝐻 to find that the only solution is the
trivial flat one ℎ ≡ 0,Δ ≡ 0 and Λ = 0. For Λ ≡ − 2

ℓ2 < 0 we may argue as follows. Multiply
Eq. (100) by ℎ′ and integrate over 𝐻 to obtain

0 =

∫︁
𝑆1

(ℎ′2 − 2Δ2ℎ′) d𝑥 =

∫︁
𝑆1

(ℎ′2 + 4Δ2ℎ2) d𝑥 , (102)

where in the second equality we have integrated by parts and used Eq. (99). Hence ℎ must be
a constant and ℎΔ ≡ 0. Equation (100) then implies Δ is also a constant. We deduce the only
possible solutions are ℎ = 0,Δ = ± 1

ℓ , or ℎ = ± 2
ℓ ,Δ = 0. The former gives a near-horizon geometry

AdS2 × 𝑆1 and the latter is the vacuum solution locally isometric to AdS3.
This result implies that the near-horizon limit of any charged rotating black-hole solution to

3D Einstein–Maxwell-Λ theory either has vanishing charge or angular momentum. The AdS2×𝑆1

solution is the near-horizon limit of the non-rotating extremal charged BTZ black hole, whereas
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the AdS3 solution is the near-horizon limit of the vacuum rotating extremal BTZ [15]. Charged
rotating black holes were first obtained within a wide class of stationary and axisymmetric solutions
to Einstein–Maxwell-Λ theory [45], and later by applying a solution generating technique to the
charged non-rotating black hole [46, 174]. We have checked that in the extremal limit their near-
horizon geometry is the AdS2 × 𝑆1 solution, so the angular momentum is lost in the near-horizon
limit, in agreement with the above analysis. It would be interesting to investigate whether charged
rotating black holes exist that instead possess a locally AdS3 near-horizon geometry. In this case,
charge would not be captured by the near-horizon geometry, a phenomenon that is known to occur
for five-dimensional supersymmetric black rings whose near-horizon geometry is locally AdS3×𝑆2.

In 2+1 dimensions an Abelian gauge field monopole is not isolated. Electric charge can be
“screened” by adding a mass term to the gauge field. A natural way to do this is to add a Chern–
Simons term 𝜇

∫︀
𝒜∧ℱ to the spacetime action, resulting in a topologically-massive gauge theory.

This only modifies the Maxwell equation:

d ⋆ ℱ + 𝜇ℱ = 0 , (103)

where 𝜇 is the mass parameter of the gauge field. For the near-horizon Maxwell field it can be
shown that this is equivalent to

Δ′ = (ℎ+ 𝜇)Δ . (104)

As in the pure Einstein–Maxwell case, a complete classification of near-horizon geometries to this
theory is possible. To the best of our knowledge this has not been presented before.

Theorem 6.2. Consider a near-horizon geometry with a cross section 𝐻 ∼= 𝑆1 in Einstein–
Maxwell-Λ theory with a Chern–Simons term and mass 𝜇. If Λ < 0 the functions Δ and ℎ are
constant and the near-horizon geometry is the homogeneous 𝑆1-bundle over AdS2 (106). If Λ = 0
the only solution is the trivial flat near-horizon geometry R1,1×𝑆1. If Λ > 0 there are no solutions.

For Λ ≥ 0 the proof of this is identical to the Einstein–Maxwell case above. For Λ = − 2
ℓ2 one

can also use the same argument as the Einstein–Maxwell case. Using the horizon equation (100)
and Maxwell equation (104) one can show

0 =

∫︁
𝑆1

(ℎ′2 − 2Δ2ℎ′) d𝑥 =

∫︁
𝑆1

(ℎ′2 + 4Δ2(ℎ+ 𝜇)2) d𝑥 , (105)

which implies ℎ must be a constant and Δ(ℎ+ 𝜇) ≡ 0. The horizon equation then implies Δ is a
constant. If Δ = 0 one gets the vacuum AdS3 solution. If Δ ̸= 0 then ℎ = −𝜇 and 1

2𝜇
2+2Δ2 = 2

ℓ2 .
The rest of the near-horizon data is given by 𝐹 = 1

2𝜇
2+Λ and hence the near-horizon geometry is

𝑔 = −2Δ2𝑟2 d𝑣2 + 2d𝑣 d𝑟 − 2𝜇𝑟 d𝑣 d𝑥+ d𝑥2

= −
(︀
1
2𝜇

2 + 2
ℓ2

)︀
𝑟2 d𝑣2 + 2d𝑣 d𝑟 + (d𝑥− 𝜇𝑟 d𝑣)2 (106)

and ℱ = Δd𝑟 ∧ d𝑣. Note that if 𝜇 = 0 we recover the AdS2 × 𝑆1 solution, whereas if Δ → 0 we
recover the vacuum AdS3 solution.

This implies that the near-horizon geometry of any charged rotating black-hole solution to this
theory is either the vacuum AdS3 solution, or the non-trivial solution (106), which is sometimes
referred to as “warped AdS3”. Examples of charged rotating black-hole solutions in this theory
have been found [2].

6.2 Four dimensional Einstein–Maxwell theory

The spacetime Einstein–Maxwell equations are Eqs. (15), (22) with 𝑛 = 2 and d⋆ℱ = 0, where ⋆ is
the Hodge dual with respect to the spacetime metric, and the Bianchi identity dℱ = 0. The near-
horizon Maxwell field is given by (23). The near-horizon geometry Einstein–Maxwell equations are
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given by Eqs. (17) and (18), where

𝑃𝑎𝑏 = 2𝐵𝑎𝑐𝐵𝑏𝑑𝛾
𝑐𝑑 +Δ2𝛾𝑎𝑏 −

𝛾𝑎𝑏
2
𝐵2, (107)

𝐸 = Δ2 +
𝐵2

2
, (108)

d ⋆2 𝐵 = ⋆2𝑖ℎ𝐵 + ⋆2( dΔ−Δℎ) , (109)

where ⋆2 is the Hodge dual with respect to the horizon metric 𝛾𝑎𝑏. Observe that ⋆2𝐵 is a function
on 𝐻.

Static near-horizon geometries have been completely classified. For Λ = 0 this was first derived
in [43], and generalised to Λ ̸= 0 in [154].

Theorem 6.3 ([43, 154]). Consider a static near-horizon geometry in 𝐷 = 4 Einstein–Maxwell-Λ
theory, with compact horizon cross section 𝐻. For Λ ≥ 0 it must be AdS2 ×𝑆2. For Λ < 0 it must
be AdS2 ×𝐻 where 𝐻 is one of the constant curvature surfaces 𝑆2, 𝑇 2,Σ𝑔.

It is worth remarking that if one removes the assumption of compactness one can still completely
classify near-horizon geometries. The extra solution one obtains can be written as a warped product

𝑔 = 𝜓2(𝐴0𝑟
2 d𝑣2 + 2d𝑣 d𝑟) +

d𝜓2

𝑃 (𝜓)
+ 𝑃 (𝜓) d𝜑2, (110)

ℱ = 𝑒d𝑟 ∧ d𝑣 + 𝑏𝜓−2 d𝜓 ∧ d𝜑 , (111)

where 𝑃 (𝜓) = 𝐴0 − 𝑐(2𝜓)−1 − (𝑒2 + 𝑏2)𝜓−2 −Λ𝜓2/3, which is an analyticaly continued Reissner–
Nordström-Λ solution.

Non-static near-horizon geometries are not fully classified, except under the additional assump-
tion of axisymmetry.

Theorem 6.4 ([163, 154]). Any axisymmetric, non-static near-horizon geometry in 𝐷 = 4 Einstein–
Maxwell-Λ theory, with a compact horizon cross section, must be given by the near-horizon geometry
of an extremal Kerr–Newman-Λ black hole.

[163] solved the Λ = 0 in the context of isolated degenerate horizons, where the same equations
on 𝐻 arise. [154] solved the case with Λ ̸= 0. Note that the horizon topology theorem excludes
the possibility of toroidal horizon cross sections for Λ ≥ 0. [164] also excluded the possibility of a
toroidal horizon cross section if Λ < 0 under the assumptions of the above theorem.

It is worth noting that the results presented in this section, as well as the techniques used to
establish them, are entirely analogous to the vacuum case presented in Section 4.3.

6.3 Five dimensional Einstein–Maxwell–Chern–Simons theory

The field equations of 𝐷 = 5 Einstein–Maxwell theory coupled to a Chern–Simons term are given
by Eqs. (15) and (22) with 𝑛 = 3 and

d ⋆ ℱ +
2𝜉√
3
ℱ ∧ ℱ = 0 (112)

where ℱ is the Maxwell two form and dℱ = 0. The cases of most interest are 𝜉 = 0 and 𝜉 = 1,
which correspond to pure Einstein–Maxwell theory and the bosonic sector of minimal supergravity
respectively. The near-horizon Maxwell field is given by (23). The corresponding near-horizon
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geometry equations are given by Eqs. (17) and (18) and

𝑃𝑎𝑏 = 2𝐵𝑎𝑐𝐵𝑏𝑑𝛾
𝑐𝑑 +

(︂
2Δ2

3
− 1

3
𝐵2

)︂
𝛾𝑎𝑏, (113)

𝐸 =
4Δ2

3
+
𝐵2

3
, (114)

d ⋆3 𝐵 = − ⋆3 𝑖ℎ𝐵 − ⋆3( dΔ−Δℎ) +
4𝜉√
3
Δ𝐵 , (115)

where ⋆3 is the Hodge dual with respect to the 3D horizon metric 𝛾𝑎𝑏. In this section we summarise
what is known about solutions to these equations, which is mostly restricted to the Λ = 0 case.
Hence, unless otherwise stated, we assume Λ = 0 in this section.

A number of new complications arise that render the classification problem more difficult,
most obviously the lack of electro-magnetic duality. Therefore, purely electric solutions, which
correspond to Δ ̸= 0 and 𝐵 ≡ 0, are qualitatively different to purely magnetic solutions, which
correspond to Δ ≡ 0 and 𝐵 ̸= 0.

6.3.1 Static

Perhaps somewhat surprisingly a complete classification of static near-horizon geometries in this
theory has not yet been achieved. Nevertheless, a number of results have been proved under various
extra assumptions. All the results summarised in this section were proved in [153].

As in other five dimensional near-horizon geometry classifications, the assumption of 𝑈(1)2

rotational symmetry proves to be useful. Static near-horizon geometries in this class in general are
either warped products of AdS2 and 𝐻, or AdS3 and a 2D manifold, see the Corollary 3.1. The
AdS3 near-horizon geometries are necessarily purely magnetic and can be classified for any 𝜉.

Proposition 6.1. Any static AdS3 near-horizon geometry with a 𝑈(1)2-rotational symmetry, in
Einstein–Maxwell–Chern–Simons theory, with a compact horizon cross section, is the direct product
of a quotient of AdS3 and a round 𝑆2.

This classifies a subset of purely magnetic geometries. By combining the results of [153] together
with Proposition 6.4 of [155], it can be deduced that for 𝜉 = 1 there are no purely magnetic AdS2
geometries; therefore, with these symmetries, one has a complete classification of purely magnetic
geometries.

Corollary 6.1. Any static, purely magnetic, near-horizon geometry in minimal supergravity, pos-
sessing 𝑈(1)2-rotational symmetry and compact cross sections 𝐻, must be locally isometric to
AdS3 × 𝑆2 with 𝐻 = 𝑆1 × 𝑆2.

We now turn to purely electric geometries.

Proposition 6.2. Consider a static, purely electric, near-horizon geometry in Einstein–Maxwell–
Chern–Simons theory, with a 𝑈(1)2-rotational symmetry and compact cross section. It must be
given by either AdS2 × 𝑆3, or a warped product of AdS2 and an inhomogeneous 𝑆3.

The latter non-trivial solution is in fact the near-horizon limit of an extremal RN black hole
immersed in a background electric field (this can be generated via a Harrison type transformation).

Finally, we turn to the case where the near-horizon geometry possess both electric and magnetic
fields. In fact one can prove a general result in this case, i.e., without the assumption of rotational
symmetries.

Proposition 6.3. Any static near-horizon geometry with compact cross sections 𝐻, in Einstein–
Maxwell–Chern–Simons theory with coupling 𝜉 ̸= 0, with non-trivial electric and magnetic fields,
is a direct product of AdS2 ×𝐻, where the metric on 𝐻 is not Einstein.
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Explicit examples for 0 < 𝜉2 < 1/4 were also found, which all have 𝐻 ∼= 𝑆3 with 𝑈(1)2-
rotational symmetry. However, we should emphasise that no examples are known for minimal
supergravity (𝜉 = 1). Hence there is the possibility that in this case static near-horizon geometries
with non-trivial electric and magnetic fields do not exist, although this has not yet been shown.
If this is the case, then the above results fully classify static near-horizon geometries with 𝑈(1)2-
rotational symmetry. For 𝜉 = 0 the analysis of electro-magnetic geometries is analogous to the
purely magnetic case above; in fact there exists a dyonic AdS2 geometry that is a direct product
AdS2 × 𝑆2 × 𝑆1 and it is conjectured there are no others.

6.3.2 Homogeneous

The classification of homogeneous near-horizon geometries can be completely solved, even including
a cosmological constant Λ. This does not appear to have been presented explicitly before, so for
completeness we include it here with a brief derivation. We may define a homogeneous near-
horizon geometry as follows. The Riemannian manifold (𝐻, 𝛾𝑎𝑏) is a homogeneous space, i.e.,
admits a transitive isometry group 𝐾, such that the rest of the near-horizon data (𝐹, ℎ𝑎,Δ, 𝐵𝑎𝑏)
are invariant under𝐾. As discussed in Section (4.4), this is equivalent to the near-horizon geometry
being a homogeneous spacetime with a Maxwell field invariant under its isometry group.

An immediate consequence of homogeneity is that an invariant function must be a constant
and any invariant 1-form must be a Killing field. Hence the 1-forms ℎ and 𝑗 ≡ ⋆3𝐵 are Killing
and the functions 𝐹 , Δ, ℎ2, 𝑗2 must be constants. Thus, the horizon Einstein equations (17), (18),
(113), (114) and Maxwell equation (115) simplify.

Firstly, note that if ℎ and 𝑗 vanish identically then 𝐻 is Einstein 𝑅𝑎𝑏 = 1
2 (Δ

2 + 2Λ)𝛾𝑎𝑏, so
𝐻 is a constant curvature space 𝑆3,R3,H3 (the latter two can only occur if Λ < 0). This family
includes the static near-horizon geometry AdS2 ×𝐻.

Now consider the case where at least one of ℎ and 𝑗 is non-vanishing. By contracting the
Maxwell equation (115) with 𝑗𝑎𝑗𝑏 one can show that (𝑗 · ℎ)2 = 𝑗2ℎ2 and hence by the Cauchy–
Schwarz inequality 𝑗 and ℎ must be parallel as long as they are both non-zero. Thus, if one of ℎ, 𝑗
is non-vanishing, we can write ℎ𝑎 = 𝑘𝑢𝑎 and 𝑗𝑎 = 𝑞𝑢𝑎 for some constants 𝑘, 𝑞 where 𝑢𝑎 is a unit
normalised Killing vector field. The near-horizon equations now reduce to

𝑅𝑎𝑏 =
1
2

(︀
𝑘2 − 4𝑞2

)︀
𝑢𝑎𝑢𝑏 +

(︀
4
3𝑞

2 + 1
2Δ

2 + Λ
)︀
𝛾𝑎𝑏, (116)

𝐹 = 1
2𝑘

2 − 2
3𝑞

2 −Δ2 + Λ, (117)

𝑞𝑑𝑢 =
(︁√

3
2 𝑘 + 2𝜉𝑞

)︁
Δ ⋆ 𝑢 . (118)

This allows one to prove:

Theorem 6.5. Any homogeneous near-horizon geometry in Einstein–Maxwell–CS-Λ theory for
which one of the constants 𝑘, 𝑞 is non-zero, must be locally isometric to

𝑔 =
(︀
− 1

2𝑘
2 − 2

3𝑞
2 −Δ2 + Λ

)︀
𝑟2 d𝑣2 + 2d𝑣 d𝑟 + (�̂� + 𝑘𝑟 d𝑣)2 + 𝑔, (119)

ℱ = Δd𝑟 ∧ d𝑣 + 𝑞𝜖 , (120)

where �̂� is a 𝑈(1)-connection over a 2D base with metric 𝑔 satisfying Ric(𝑔) = �̂�𝑔, with �̂� =
1
2𝑘

2 + 2
3𝑞

2 +Δ2 +2Λ, and 𝜖 is the volume form of the 2D base. The curvature of the connection is

d�̂� = [𝑘2 − 4
3𝑞

2 +Δ2 + 2Λ]1/2 𝜖 and 𝑘2 − 4
3𝑞

2 +Δ2 + 2Λ ≥ 0. If 𝑞 ̸= 0 the constants must satisfy

𝑘2 − 4
3𝑞

2 +Δ2 + 2Λ = 1
4𝑞

−2Δ2
(︁√

3𝑘 + 4𝜉𝑞
)︁2

, (121)

whereas if 𝑞 = 0 one must have 𝑘Δ = 0.
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The proof of this proceeds as in the vacuum case, by reducing the horizon equations to the 2D
orbit space defined by the Killing field 𝑢. The above result contains a number of special cases of
interest, which we now elaborate upon. Firstly, note that 𝑞 = Δ = 0 reduces to the vacuum case,
see Theorem 4.4.

Before discussing the general case consider 𝑘 = 0, so the near-horizon geometry is static, which
connects to Section 6.3.1. The constraint on the parameters is (1− 4𝜉2)Δ2 = 4

3𝑞
2 − 2Λ and hence,

if Λ ≤ 0 one must have 0 ≤ 𝜉2 < 1
4 . For 𝜉 = 0 the connection is trivial and hence the near-horizon

geometry is locally isometric to the dyonic AdS2 × 𝑆1 × 𝑆2 solution. For 0 < 𝜉2 < 1
4 we get

examples of the geometries in Proposition (6.3), where 𝐻 ∼= 𝑆3 with its standard homogeneous
metric.

Now we consider Λ = 0 in generality so at least one of 𝑘, 𝑞,Δ is non-zero, in which case �̂� > 0
and so 𝑔 is the round 𝑆2. The horizon is then either 𝐻 ∼= 𝑆3 with its homogeneous metric or
𝐻 ∼= 𝑆1 × 𝑆2, depending on whether the connection �̂� is non-trivial or not, respectively. Notably
we have:

Corollary 6.2. Any homogeneous near-horizon geometry of minimal supergravity is locally isomet-
ric to AdS3×𝑆2, or the near-horizon limit of either (i) the BMPV black hole (including AdS2×𝑆3),
or (ii) an extremal nonsupersymmetric charged black hole with 𝑆𝑈(2)×𝑈(1) rotational symmetry.

The proof of this follows immediately from Theorem 6.5 with Λ = 0 and 𝜉 = 1. In this case the
constraint on the parameters factorises to give two branches of possible solutions (a) 𝑘 = −2𝑞/

√
3

or (b) Δ2(𝑘 + 2
√
3𝑞) = 4𝑞2(𝑘 − 2𝑞/

√
3)/3. Case (a) gives two solutions. If Δ ̸= 0 it must have

𝐻 ∼= 𝑆3 and corresponds to the BMPV solution (i) (for 𝑞 → 0 this reduces to AdS2×𝑆3), whereas
if Δ = 0 it is the AdS3 × 𝑆2 solution with 𝐻 ∼= 𝑆1 × 𝑆2. Case (b) also gives two solutions. If
𝑘 = 2𝑞/

√
3 then Δ = 0, which gives AdS3 × 𝑆2 with 𝐻 ∼= 𝑆1 × 𝑆2, otherwise we get solution (ii)

with 𝐻 ∼= 𝑆3. Note that solution (ii) reduces to the vacuum case as Δ, 𝑞 → 0.
The black-hole solution (ii) may be constructed as follows. A charged generalisation of the MP

black hole can be generated in minimal supergravity [50]. Generically, the extremal limit depends
on 3-parameters with two independent angular momenta 𝐽1, 𝐽2 and R×𝑈(1)2 symmetry. Setting
|𝐽1| = |𝐽2| gives two distinct branches of 2-parameter extremal black-hole solutions with enhanced
𝑆𝑈(2)×𝑈(1) rotational symmetry corresponding to the BMPV solution (i) (which reduces to the
RN solution if 𝐽 = 0) or solution (ii) (which reduces to the vacuum extremal MP black hole in the
neutral limit).

It is interesting to note the analogous result for pure Einstein–Maxwell theory:

Corollary 6.3. Any homogeneous near-horizon geometry of Einstein–Maxwell theory is locally
isometric to either (i)

𝑔 = −
(︀
1
2𝑘

2 + 2𝑞2
)︀
𝑟2 d𝑣2 + 2d𝑣 d𝑟 +

(︂
𝑑𝜓 +

𝑘 cos 𝜃 d𝜑
1
2𝑘

2 + 2𝑞2
+ 𝑘𝑟 d𝑣

)︂2

+
d𝜃2 + sin2 𝜃 d𝜑2

1
2𝑘

2 + 2𝑞2
,

ℱ = ± 2√
3
𝑞 d𝑟 ∧ d𝑣 +

𝑞 sin 𝜃 d𝜃 ∧ d𝜑
1
2𝑘

2 + 2𝑞2
, (122)

or (ii)

𝑔 = −
(︀
Δ2 + 4

3𝑞
2
)︀
𝑟2 d𝑣2 + 2d𝑣 d𝑟 +

(︂
𝑑𝜓 +

Δcos 𝜃 d𝜑

Δ2 + 4
3𝑞

2
± 2√

3
𝑞𝑟 d𝑣

)︂2

+
d𝜃2 + sin2 𝜃 d𝜑2

Δ2 + 4
3𝑞

2
,

ℱ = Δd𝑟 ∧ d𝑣 +
𝑞 sin 𝜃 d𝜃 ∧ d𝜑

Δ2 + 4
3𝑞

2
. (123)

This also follows from application of Theorem 6.5 with Λ = 0 and 𝜉 = 0. Solution (i) for
𝑞 → 0 reduces to the vacuum solution of Theorem 4.4, whereas for 𝑘 = 0, it gives the static dyonic
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AdS2 × 𝑆1 × 𝑆2 solution. Solution (ii) for Δ = 0 gives AdS3 × 𝑆2, whereas for Δ ̸= 0 it gives a
near-horizon geometry with 𝐻 ∼= 𝑆3, which for 𝑞 → 0 is AdS2 ×𝑆3. A charged rotating black-hole
solution to Einstein–Maxwell theory generalising MP is not known explicitly. Hence this corollary
could be of use for constructing such an extremal charged rotating black hole with R×𝑆𝑈(2)×𝑈(1)
symmetry.

For Λ = −4/ℓ2 < 0 there are even more possibilities, since �̂� may be positive, zero, or negative.
One then gets near-horizon geometries that generically have 𝐻 ∼= 𝑆3,Nil, 𝑆𝐿(2,R), respectively,
equipped with their standard homogeneous metrics. Each of these may have a degenerate limit
with 𝐻 ∼= 𝑆1×𝑆2, 𝑇 3, 𝑆1×H2, as occurs in the vacuum and supersymmetric cases. The full space
of solutions interpolates between the vacuum case given in Corollary 4.2, and the supersymmetric
near-horizon geometries of gauged supergravity of Proposition 5.3. For example, the supersym-
metric horizons [120] correspond to 𝑘 = −2

√
3𝑞 and 𝑘2 = 9/ℓ2 with �̂� = Δ2 − 3ℓ−2. We will not

investigate the full space of solutions in detail here.

6.3.3 𝑈(1)2-rotational symmetry

The classification of near-horizon geometries in 𝐷 = 5 Einstein–Maxwell–CS theory, under the
assumption of 𝑈(1)2 symmetry, turns out to be significantly more complicated than the vacuum
case. This is unsurprising; solutions may carry two independent angular momenta, electric charge
and dipole/magnetic charge (depending on the spacetime asymptotics). As a result, there are
several ways for a black hole to achieve extremality. Furthermore, such horizons may be deformed
by background electric fields [153].

In the special case of minimal supergravity one can show:

Proposition 6.4 ([155]). Any near-horizon geometry of minimal supergravity with 𝑈(1)2-rotational
symmetry takes the form of Eqs. (58) and (62), where the functional form of Γ(𝑥), 𝐵𝑖𝑗(𝑥), 𝑏𝑖(𝑥) can
be fully determined in terms of rational functions of 𝑥. In particular, Γ(𝑥) is a quadratic function.

The method of proof is discussed in Section 6.4. Although this solves the problem in principle,
it turns out that in practice it is very complicated to disentangle the constraints on the constants
that specify the solution. Hence an explicit classification of all possible solutions has not yet been
obtained, although in principle it is contained in the above result.

We now summarise all known examples of five dimensional non-static near-horizon geometries
with non-trivial gauge fields, which arise as near-horizon limits of known black hole or black string
solutions. All these examples possess 𝑈(1)2 rotational symmetry and hence fall into the class of
solutions covered by Theorem 3.5, so the near-horizon metric and field strength (𝑔,ℱ) take the
form of Eqs. (58) and (62) respectively. We will divide them by horizon topology.

Spherical topology

Charged Myers–Perry black holes: This asymptotically-flat solution is known explicitly only for
minimal supergravity 𝜉 = 1 (in particular it is not known in pure Einstein–Maxwell 𝜉 = 0),
since it can be constructed by a solution-generating procedure starting with the vacuum MP
solution. It depends on four parameters 𝑀,𝐽1, 𝐽2, and 𝑄 corresponding to the ADM mass, two
independent angular momenta and an electric charge. The extremal limit generically depends on
three parameters and gives a near-horizon geometry with 𝐻 ∼= 𝑆3.

Charged Kaluza–Klein black holes: The most general known solution to date was found in [204] (see
references therein for a list of previously known solutions) and carries a mass, two independent
angular momenta, a KK monopole charge, an electric charge and a ‘magnetic charge’20. The

20 This is a conserved charge for such asymptotically KK spacetimes.
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extremal limit will generically depend on five-parameters, however, as for the vacuum case the
extremal locus must have more than one connected component. These solutions give a large
family of near-horizon geometries with 𝐻 ∼= 𝑆3.

𝑆1 × 𝑆2 topology

Supersymmetric black rings and strings: The asymptotically-flat supersymmetric black ring [64]
and the supersymmetric Taub–NUT black ring [65] both have a near-horizon geometry that is
locally AdS3 × 𝑆2. There are also supersymmetric black string solutions with such near-horizon
geometries [93, 19].

Dipole black rings: The singly-spinning dipole black ring [69] is a solution to Einstein–Maxwell–
CS for all 𝜉. It is a 3-parameter family with a single angular momentum and dipole charge
possessing a 2-parameter extremal limit. The resulting near-horizon geometry with 𝐻 ∼= 𝑆1 × 𝑆2

is parameterised by 4-parameters (𝑞, 𝜆,𝑅1, 𝑅2) with one constraint relating them. Asymptotic
flatness of the full black-hole solution imposes one further constraint, although from the viewpoint
of the near-horizon geometry, this is strictly an external condition and we will deal with the general
case here. The solution is explicitly given by

𝑔 = Γ(𝑥)

[︂
−𝑟

2 d𝑣2

ℓ2
+ 2d𝑣 d𝑟

]︂
+
ℓ2Γ(𝑥) d𝑥2

(1− 𝑥2)

+
𝑅2

1𝜆(1 + 𝜆)𝐻(𝑥)

𝑞(1− 𝜆)𝐹 (𝑥)

(︃
d𝜑1 +

(1− 𝜆)

𝜆𝑅1𝑅2

√︂
1− 𝜆

1 + 𝜆
𝑟 d𝑣

)︃2

+
𝑅2

2𝑞
2𝜔2

0(1− 𝑥2)

𝐻(𝑥)2
( d𝜑2)2,

ℱ =

√
3

2
d

[︂√︂
1− 𝑞

1 + 𝑞

𝜔0𝑞𝑅2(1 + 𝑥)

𝐻(𝑥)
𝑑𝜑2
]︂
, (124)

where Γ(𝑥) =
√︁

𝑞(1−𝜆)
𝜆(1+𝜆)𝐹 (𝑥)𝐻(𝑥) with 𝐹 (𝑥) = 1+𝜆𝑥, 𝐻(𝑥) = 1− 𝑞𝑥 and we have also defined the

length scale ℓ2 = 𝑅2
2

√︁
𝜆(1+𝜆)𝑞3

1−𝜆 . The parameters satisfy 0 < 𝜆, 𝑞 < 1. The local metric induced on

spatial cross sections 𝐻 extends smoothly to a metric on 𝑆1 × 𝑆2 provided 𝜔0 =
√︀
𝐹 (1)𝐻(1)3 =√︀

𝐹 (−1)𝐻(−1)3.

Charged non-supersymmetric black rings: The dipole ring solution admits a three-parameter
charged generalisation with one independent angular momentum and electric and dipole charges
[63] (the removal of Dirac-Misner string singularities imposes an additional constraint, so this
solution has the same number of parameters as that of [69]). The charged black ring has a two-
parameter extremal limit with a corresponding two-parameter near-horizon geometry. As in the
above case, at the level of near-horizon geometries there is an additional independent parameter
corresponding to the arbitrary size of the radius of the 𝑆1.

Electro-magnetic Kerr black strings: Black string solutions have been constructed carrying five
independent charges: mass 𝑀 , linear momentum 𝑃 along the 𝑆1 of the string, angular momentum
𝐽 along the internal 𝑆2, as well as electric 𝑄𝑒 and magnetic charge 𝑄𝑚 [49]. These solutions admit
a four parameter extremal limit, which in turn give rise to a five-parameter family of non-static
near horizon geometries (the additional parameter is the radius of the 𝑆1 at spatial infinity) [155].

For simplicity we will restrict our attention to the solutions with 𝑃 = 𝑄𝑒 = 0. The resulting
near-horizon solution is parameterised by (𝑎, 𝑐𝛽 , 𝑠𝛽) with 𝑐2𝛽 − 𝑠2𝛽 = 1 and corresponds to an
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extremal string with non-zero magnetic charge and internal angular momentum:

𝑔 = Γ(𝑥)

[︂
−𝑟

2 d𝑣2

ℓ2
+ 2d𝑣 d𝑟

]︂
+
ℓ2Γ(𝑥) d𝑥2

(1− 𝑥2)
+

4𝑎4(𝑐4𝛽 + 𝑠2𝛽)
2(1− 𝑥2)

ℓ2Γ(𝑥)
𝜔2

+ 𝑎2

[︃
𝑅 d𝜑1

𝑎
−

8𝑎2𝑐3𝛽𝑠
3
𝛽

ℓ4
𝑟 d𝑣 +

2𝑎2𝑐𝛽𝑠𝛽(𝑐
2
𝛽 + 𝑠2𝛽)(1− 𝑥2)

ℓ2Γ(𝑥)
𝜔

]︃2
,

ℱ =
2
√
3𝑎3𝑠𝛽𝑐𝛽(𝑐

4
𝛽 + 𝑠4𝛽)

ℓ2
d

[︂
𝑥

Γ(𝑥)
𝜔

]︂
, (125)

where we have defined the one-form 𝜔 = d𝜑2− (𝑐2𝛽+𝑠2𝛽)

ℓ2(𝑐4𝛽+𝑠4𝛽)
𝑟 d𝑣, the function Γ(𝑥) = 𝑎2

ℓ2 (1+𝑥
2+4𝑐2𝛽𝑠

2
𝛽)

and the length scale ℓ2 = 2𝑎2(𝑐4𝛽 + 𝑠4𝛽). The induced metric on cross sections of the horizon 𝐻

extends smoothly to a cohomogeneity-1 metric on 𝑆1 × 𝑆2.

Although the two solutions (124) and (125) share many features, it is important to emphasise
that only the former is known to correspond to the near-horizon geometry of an asymptotically-flat
black ring. It is conjectured that there exists a general black-ring solution to minimal supergravity
that carries mass, two angular momenta, electric and dipole charges all independently. Hence
there should exist corresponding 4-parameter families of extremal black rings. [155] discusses the
possibility that the tensionless Kerr-string solution is the near-horizon geometry of these yet-to-
be-constructed black rings.

6.4 Theories with hidden symmetry

Consider 𝑈(1)𝐷−3-invariant solutions of a general theory of the form (59). One may represent such
solutions by a three-dimensional metric ℎ𝜇𝜈 and a set of scalar fields Φ𝑀 (potentials) all defined on
a three-dimensional manifold, see, e.g., [155]. Equivalently, such solutions can be derived from the
field equations of a three-dimensional theory of gravity coupled to a scalar harmonic map whose
target manifold is parameterised by the Φ𝑀 with metric 𝐺𝑀𝑁 (Φ) determined by the specific theory.
In certain theories of special interest, the scalar manifold is a symmetric space 𝐺/𝐾 equipped with
the bi-invariant metric

𝐺𝑀𝑁 (Φ) dΦ𝑀 dΦ𝑁 =
1

4𝑚
Tr(Φ−1 dΦ)2 , (126)

where Φ is a coset representative of 𝐺/𝐾 and 𝑚 is a normalisation constant dependent on the
theory. Then the theory is equivalent to a three-dimensional theory of gravity coupled to a non-
linear sigma model with target space 𝐺/𝐾.

Consider near-horizon geometries with 𝑈(1)𝐷−3 isometry in such theories. It can be shown
[162, 135, 155] that the classification problem reduces to an ODE on the orbit space 𝐻/𝑈(1)𝐷−3

for the Φ𝑀 , while ℎ𝜇𝜈 is completely determined. We will assume non-toroidal horizon topology so
the orbit space is an interval, which without loss of generality we take to be [−1, 1] parameterised
by the coordinate 𝑥. The ODE is the equation of motion for a non-linear sigma model defined on
this interval:

d

d𝑥

[︂
(1− 𝑥2)Φ−1 dΦ

d𝑥

]︂
= 0 , (127)

where the a coset representative Φ depends only on 𝑥. It is straightforward to integrate this matrix
equation and completely solve for the scalar fields Φ𝑀 , which can then be used to reconstruct the
full 𝐷-dimensional solution. Hence in principle one has the full functional form of the solution.
However, in practice, reconstructing the near-horizon data is hindered by the non-linearity of the
scalar metric.
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The most notable example which can be treated in the above formalism is vacuum𝐷-dimensional
gravity for which 𝐺/𝐾 = 𝑆𝐿(𝐷−2,R)/𝑆𝑂(𝐷−2). The classification problem for near-horizon ge-
ometries has been completely solved using this approach [135], as discussed earlier in Section 4.5.1.

Four-dimensional Einstein–Maxwell also possesses such a structure where the coset is now
𝐺/𝐾 = 𝑆𝑈(2, 1)/𝑆𝑈(2), although the near-horizon classification discussed earlier in Section 6.2
does not exploit this fact.

It turns out that 𝐷 = 5 minimal supergravity also has a non-linear sigma model structure
with 𝐺/𝐾 = 𝐺2,2/𝑆𝑂(4) (𝐺2,2 refers to the split real form of the exceptional Lie group 𝐺2).
The classification of near-horizon geometries in this case was analysed in [155] using the hidden
symmetry and some partial results were obtained, see Proposition 6.4.

It is clear that this method has wider applicability. It would be interesting to use it to classify
near-horizon geometries in other theories possessing such hidden symmetry.

We note that near-horizon geometries in this class extremise the energy functional of the har-
monic map Φ : 𝐻/𝑈(1)𝐷−3 → 𝐺/𝐾, with boundary conditions chosen such that the corresponding
near-horizon data is smooth. Explicitly, this functional is given by

𝐸[Φ] =

∫︁ 1

−1

[︂
(1− 𝑥2)

1

4𝑚
Tr(Φ−1𝜕𝑥Φ)

2 − 2

1− 𝑥2

]︂
d𝑥 (128)

and from [155] it can be deduced this vanishes on such extrema. For vacuum gravity, for which
𝑚 = 1, it was proved that 𝐸[Φ] ≥ 0 with equality if and only if Φ corresponds to a near-horizon
geometry, i.e., near-horizon geometries are global minimisers of this functional [1, 132]. This
result has also been demonstrated for four dimensional Einstein–Maxwell theory [87] and 𝐷 =
4, 5 Einstein–Maxwell-dilaton theory [210, 211]. It would be interesting if this result could be
generalised to other theories with hidden symmetry such as minimal supergravity.

6.5 Non-Abelian gauge fields

Much less work has been done on classifying extremal black holes and their near-horizon geometries
coupled to non-Abelian gauge fields.

The simplest setup for this is four-dimensional Einstein–Yang–Mills theory. As is well known,
the standard four dimensional black-hole uniqueness theorems fail in this case (at least in the non-
extremal case), for a review, see [205]. Nevertheless, near-horizon geometry uniqueness theorems
analogous to the Einstein–Maxwell case have recently been established for this theory.

Static near-horizon geometries in this theory have been completely classified.

Theorem 6.6 ([164]). Consider 𝐷 = 4 Einstein–Yang–Mills-Λ theory with a compact semi-simple
gauge group 𝐺. Any static near-horizon geometry with compact horizon cross section is given by:
AdS2 × 𝑆2 if Λ ≥ 0; AdS2 ×𝐻 where 𝐻 is one of 𝑆2, 𝑇 2,Σ𝑔 if Λ < 0.

The proof employs the same method as in Einstein–Maxwell theory. However, it should be
noted that the Yang–Mills field need not be that of the Abelian embedded solution. The horizon
gauge field may be any Yang–Mills connection on 𝑆2, or on the higher genus surface as appropriate,
with a gauge group 𝐺 (if there is a non-zero electric field 𝐸 the gauge group 𝐺 is broken to the
centraliser of 𝐸). The moduli space of such connections have been previously classified [14]. Hence,
unless the gauge group is 𝑆𝑈(2), one may have genuinely non-Abelian solutions. It should be noted
that static near-horizon geometries have been previously considered in Einstein–Yang–Mills–Higgs
under certain restrictive assumptions [25].

Non-static near-horizon geometries have also been classified under the assumption of axisym-
metry.
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Theorem 6.7 ([164]). Any axisymmetric non-static near-horizon geometry with compact horizon
cross section, in 𝐷 = 4 Einstein–Yang–Mills-Λ with a compact semi-simple gauge group, must be
given by the near-horizon geometry of an Abelian embedded extreme Kerr–Newman-Λ black hole.

The proof of this actually requires new ingredients as compared to the Einstein–Maxwell theory.
The AdS2-symmetry enhancement theorems discussed in Section 3.2 do not apply in the presence
of a non-Abelian gauge field. Nevertheless, assuming the horizon cross sections are of 𝑆2 topology
allows one to use a global argument to show the symmetry enhancement phenomenon still occurs.
This implies the solution is effectively Abelian and allows one to avoid finding the general solution
to the ODEs that result from the reduction of the Einstein–Yang–Mills equations. One can also
rule out toroidal horizon cross sections, hence giving a complete classification of horizons with a
𝑈(1)-symmetry.

Interestingly, Einstein–Yang–Mills theory with a negative cosmological constant is a consistent
truncation of the bosonic sector of 𝐷 = 11 supergravity on a squashed 𝑆7 [188]. It would be
interesting if near-horizon classification results could be obtained in more general theories with
non-Abelian Yang–Mills fields, such as the full 𝒩 = 8, 𝐷 = 4, 𝑆𝑂(8)-gauged supergravity that
arises as a truncation of 𝐷 = 11 supergravity on 𝑆7.
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7 Applications and Related Topics

7.1 Black-hole uniqueness theorems

One of the main motivations for classifying near-horizon geometries is to prove uniqueness theorems
for the corresponding extremal black-hole solutions. This turns out to be a much harder problem
and has only been achieved when extra structure is present that constrains certain global aspects of
the spacetime. The role of the near-horizon geometry is to provide the correct boundary conditions
near the horizon for the global–black-hole solution.

7.1.1 Supersymmetric black holes

Uniqueness theorems for supersymmetric black holes have been proved in the simplest four and
five-dimensional supergravity theories, by employing the associated near-horizon classifications
described in Section 5.

In four dimensions, the simplest supergravity theory that admits supersymmetric black holes
is 𝒩 = 2 minimal supergravity; its bosonic sector is simply Einstein–Maxwell theory.

Theorem 7.1 ([41]). Consider an asymptotically-flat, supersymmetric black-hole solution to 𝒩 =
2, 𝐷 = 4 minimal supergravity. Assume that the supersymmetric Killing vector field is timelike
everywhere outside the horizon. Then it must belong to the Majumdar–Papapetrou family of black
holes. If the horizon is connected it must be the extremal RN black hole.

It would be interesting to remove the assumption on the supersymmetric Killing vector field to
provide a complete classification of supersymmetric black holes in this case.

In five dimensions, the simplest supergravity theory that admits supersymmetric black holes is
𝒩 = 1 minimal supergravity. Using general properties of supersymmetric solutions in this theory,
as well as the near-horizon classification discussed in Section 5, the following uniqueness theorem
has been obtained.

Theorem 7.2 ([191]). Consider an asymptotically-flat, supersymmetric black-hole solution to
𝒩 = 1, 𝐷 = 5 minimal supergravity, with horizon cross section 𝐻 ∼= 𝑆3. Assume that the su-
persymmetric Killing vector field is timelike everywhere outside the horizon. Then it must belong
to the BMPV family of black holes [30].

Remarks:

∙ The BMPV solution is a stationary, non-static, non-rotating black hole with angular momen-
tum 𝐽 and electric charge 𝑄. For 𝐽 = 0 it reduces to the extremal RN black hole.

∙ It would be interesting to investigate the classification of supersymmetric black holes without
the assumption on the supersymmetric Killing vector field.

∙ An analogous uniqueness theorem for supersymmetric black rings [66], i.e., for 𝐻 ∼= 𝑆1 ×𝑆2,
remains an open problem.

∙ An analogous result has been obtained for minimal supergravity theory coupled to an arbi-
trary number of vector multiplets [111].

Analogous results for asymptotically AdS black holes in gauged supergravity have yet-to-be-
obtained and this remains a very interesting open problem. This is particularly significant due
to the lack of black-hole uniqueness theorems even for pure gravity in AdS. However, it is worth
mentioning that the analysis of [120] used the homogeneous near-horizon geometry of Theorem 5.3
with 𝐻 ∼= 𝑆3, together with supersymmetry, to explicitly integrate for the full cohomogeneity-1
AdS5 black hole solution. It would be interesting to prove a uniqueness theorem for supersymmetric
AdS5 black holes assuming R× 𝑈(1)2 symmetry.
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7.1.2 Extremal vacuum black holes

The classic black-hole uniqueness theorem of general relativity roughly states that any stationary,
asymptotically-flat black-hole solution to the vacuum Einstein equations must be given by the
Kerr solution. Traditionally this theorem assumed that the event horizon is non-degenerate, at a
number of key steps. Most notably, the rigidity theorem, which states that a stationary rotating
black hole must be axisymmetric, is proved by first showing that the event horizon is a Killing
horizon. Although the original arguments [127] assumed non-degeneracy of the horizon, in four
dimensions this assumption can be removed [179, 180, 134].

This allows one to reduce the problem to a boundary value problem on a two-dimensional
domain (the orbit space), just as in the case of a non-degenerate horizon. However, the boundary
conditions near the boundary corresponding to the horizon depend on whether the surface gravity
vanishes or not. Unsurprisingly, the boundary conditions near a degenerate horizon can be deduced
from the near-horizon geometry. Curiously, this has only been realised rather recently. This has
allowed one to extend the uniqueness theorem for Kerr to the degenerate case.

Theorem 7.3 ([178, 5, 80, 40]). The only four-dimensional, asymptotically-flat, stationary and
axisymmetric, rotating, black-hole solution of the Einstein vacuum equations, with a connected
degenerate horizon with non-toroidal horizon sections, is the extremal Kerr solution.

We note that [178] employs methods from integrability and the inverse scattering method.
The remaining proofs employ the near-horizon geometry classification theorem discussed in Sec-
tion 4.3 together with the standard method used to prove uniqueness of non-extremal Kerr. The
above uniqueness theorem has also been established for the extremal Kerr–Newman black hole in
Einstein–Maxwell theory [5, 40, 177].

The assumption of a non-toroidal horizon is justified by the black-hole–horizon topology the-
orems. Similarly, as discussed above, axisymmetry is justified by the rigidity theorem under the
assumption of analyticity. Together with these results, the above theorem provides a complete
classification of rotating vacuum black holes with a single degenerate horizon, under the stated
assumptions. The proof that a non-rotating black hole must be static has only been established
for non-degenerate horizons, so the classification of non-rotating degenerate black holes remains
an open problem.

Of course, in higher dimensions, there is no such simple general uniqueness theorem. For
spacetimes with R × 𝑈(1)𝐷−3 symmetry though, one has a mathematical structure analogous
to 𝐷 = 4 stationary and axisymmetric spacetimes. Namely, one can reduce the problem to an
integrable boundary-value problem on a 2D orbit space. However in this case the boundary data
is more complicated. It was first shown that non-degenerate black-hole solutions in this class are
uniquely specified by certain topological data, which specifies the 𝑈(1)𝐷−3-action on the manifold,
referred to as interval data (i.e., rod structure) [138, 139]. The proof is entirely analogous to that
for uniqueness of Kerr amongst stationary and axisymmetric black holes. This has been extended
to cover the degenerate case, again by employing the near-horizon geometry to determine the
correct boundary conditions.

Proposition 7.1 ([80]). Consider a five-dimensional, asymptotically-flat, stationary black-hole so-
lution of the vacuum Einstein equations, with R×𝑈(1)2 isometry group and a connected degenerate
horizon (with non-toroidal sections). There exists at most one such solution with given angular
momenta and a given interval structure.

It is worth emphasising that although there is no near-horizon uniqueness theorem in this
case, see Section 4.4, this result actually only requires the general 𝑆𝑂(2, 1) × 𝑈(1)2 form for the
near-horizon geometry and not its detailed functional form.

It seems likely that the results of this section could be extended to R × 𝑈(1)𝐷−3 invariant
extremal black holes in Einstein–Maxwell type theories in higher dimensions. In 𝐷 = 5 it is known
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that coupling a CS term in such a way to give the bosonic sector of minimal supergravity, implies
such solutions are determined by a non-linear sigma model analogous to the pure vacuum case.
Hence it should be straightforward to generalise the vacuum uniqueness theorems to this theory.

7.2 Stability of near-horizon geometries and extremal black holes

All known near-horizon geometries are fibrations of the horizon cross section 𝐻 over an AdS2
base (see Section 3.2). By writing the AdS2 in global coordinates one obtains examples of smooth
complete spacetimes that solve the Einstein equations. Explicitly, by converting the near-horizon
geometry (65) to AdS2 global coordinates, such spacetimes take the general form

d𝑠2 = ℓ2Γ(𝑦)
[︀
− cosh2 𝜌 d𝑡2 + d𝜌2

]︀
+ 𝛾𝑚𝑛(𝑦) d𝑦

𝑚 d𝑦𝑛

+𝛾𝐼𝐽(𝑦)( d𝜑
𝐼 + ℓ2𝑘𝐼 sinh 𝜌 d𝑡)( d𝜑𝐽 + ℓ2𝑘𝐽 sinh 𝜌 d𝑡) , (129)

where we have written the constant 𝐴0 = −ℓ−2 in terms of the radius of AdS2. These spacetimes
possess two timelike boundaries, and of course do not contain a horizon. It is of interest to consider
the stability of such “global” near-horizon geometries, as spacetimes in their own right. It turns
out that this problem is rather subtle.

In fact, general arguments suggest that any near-horizon geometry must be unstable when
backreaction is taken into account and the nearby solution must be singular [18]. This follows
from the fact that 𝐻 is marginally trapped, so there exist perturbations that create a trapped
surface and by the singularity theorems the resulting spacetime must be geodesically incomplete.
If the perturbed solution is a black hole sitting inside the near-horizon geometry, then this need
not be an issue.21 For AdS2 × 𝑆2, heuristic arguments also indicating its instability have been
obtained by dimensional reduction to an AdS2 theory of gravity [170]. In particular, this suggests
that the backreaction of matter in AdS2 × 𝑆2, is not consistent with a fall-off preserving both of
the AdS2 boundaries.

So far we have been talking about the non-linear stability of near-horizon geometries. Of course,
linearised perturbations in these backgrounds can be analysed in more detail. A massless scalar
field in the near-horizon geometry of an extremal Kerr black hole (NHEK) reduces to a massive
charged scalar field in AdS2 with a homogeneous electric field [18]. This turns out to capture
the main features of the Teukolsky equation for NHEK, which describes linearised gravitational
perturbations of NHEK [4, 60]. In contrast to the above instability, these works revealed the
stability of NHEK against linearised gravitational perturbations. In fact, one can prove a non-linear
uniqueness theorem in this context: any stationary and axisymmetric solution that is asymptotic
to NHEK, possibly containing a smooth horizon, must in fact be NHEK [4].

So far we have discussed the stability of near-horizon geometries as spacetimes in their own
right. A natural question is what information about the stability of an extremal black hole can be
deduced from the stability properties of its near horizon geometry. Clearly, stability of the near-
horizon geometry is insufficient to establish stability of the black hole, but it has been argued that
certain instabilities of the near-horizon geometry imply instability of the black hole [62]. For higher
dimensional vacuum near-horizon geometries, one can construct gauge-invariant quantities (Weyl
scalars), whose perturbation equations decouple, generalising the Teukolsky equation [62].22 One
can then perform a KK reduction on 𝐻 to find that linearised gravitational (and electromagnetic)
perturbations reduce to an equation for a massive charged scalar field in AdS2 with a homogeneous
electric field (as for the NHEK case above). The authors of [62] define the near-horizon geometry to
be unstable if the effective Breitenlohner–Freedman bound for this charged scalar field is violated.

21 Similarly, higher-dimensional pure-AdS spacetime is unstable to the formation of small black holes [27].
22 This stems from the fact that such spacetimes admit null geodesic congruences with vanishing expansion,

rotation, and shear (i.e., they are Kundt spacetimes and hence algebraically special).
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They propose the following conjecture: an instability of the near-horizon geometry (in the above
sense), implies an instability of the associated extreme black hole, provided the unstable mode
satisfies a certain symmetry requirement. This conjecture is supported by the linear stability of
NHEK and was verified for the known instabilities of odd dimensional cohomogeneity-1 MP black
holes [57]. It is also supported by the known stability results for the five-dimensional MP black
hole [181] and the Kerr-AdS4 black hole [61]. This conjecture suggests that even-dimensional
near-extremal MP black holes, which are more difficult to analyse directly, are also unstable [203].

Recently, it has been shown that extremal black holes exhibit linearised instabilities at the
horizon. This was first observed for a massless scalar field in an extremal RN and extremal
Kerr–black-hole background [8, 7, 6, 9]. The instability is somewhat subtle. While the scalar
decays everywhere on and outside the horizon, the first transverse derivative of the scalar does not
generically decay on the horizon, and furthermore the 𝑘th-transverse derivative blows up as 𝑣𝑘−1

along the horizon. These results follow from the existence of a non-vanishing conserved quantity
on the horizon linear in the scalar field. If the conserved quantity vanishes it has been shown
that a similar, albeit milder, instability still occurs on the horizon [54, 26, 11, 167]. It should be
noted that this instability is not in contradiction with the above linear stability of the near-horizon
geometry. From the point of view of the near-horizon geometry, it is merely a coordinate artefact
corresponding to the fact that the Poincaré horizon of AdS2 is not invariantly defined [167].

The horizon instability has been generalised to a massless scalar in an arbitrary extremal black
hole in any dimension, provided the near-horizon geometry satisfies a certain assumption [168]. This
assumption in fact follows from the AdS2-symmetry theorems and hence is satisfied by all known
extremal black holes. Furthermore, by considering the Teukolsky equation, it was shown that a
similar horizon instability occurs for linearised gravitational perturbations of extremal Kerr [168].
This was generalised to certain higher-dimensional vacuum extremal black holes [182]. Similarly,
using Moncrief’s perturbation formalism for RN, it was shown that coupled gravitational and
electromagnetic perturbations of extremal RN within Einstein–Maxwell theory also exhibit such
a horizon instability [168]. An interesting open question is what is the fate of the non-linear
evolution of such horizon instabilities. To this end, an analogous instability has been established
for certain non-linear wave equations [10].

7.3 Geometric inequalities

Interestingly, near-horizon geometries saturate certain geometric bounds relating the area and
conserved angular momentum and charge of dynamical axisymmetric horizons, see [53] for a review.

In particular, for four-dimensional dynamical axially-symmetric spacetimes, the area of black-
hole horizons with a given angular momentum is minimised by the extremal Kerr black hole. The
precise statement is:

Theorem 7.4 ([55, 143]). Consider a spacetime satisfying the Einstein equations with a non-
negative cosmological constant and matter obeying the dominant energy condition. The area of any
axisymmetric closed (stably outermost) marginally–outer-trapped surface 𝑆 satisfies

𝐴 ≥ 8𝜋|𝐽 | , (130)

where 𝐽 is the angular momentum of 𝑆. Furthermore, this bound is saturated if and only if the
metric induced on 𝑆 is that of the (near-)horizon geometry of an extreme Kerr black hole.

Furthermore, it has been shown that if 𝑆 is a section of an isolated horizon the above equality is
saturated if and only if the surface gravity vanishes [142] (see also [172]). An analogous area-angular
momentum-charge inequality has been derived in Einstein–Maxwell theory, which is saturated by
the extreme Kerr–Newman black hole [87].
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The above result can be generalised to higher dimensions, albeit under stronger symmetry
assumptions.

Theorem 7.5 ([132]). Consider a 𝐷-dimensional spacetime satisfying the vacuum Einstein equa-
tions with non-negative cosmological constant Λ that admits a 𝑈(1)𝐷−3-rotational isometry. Then
the area of any (stably outer) marginally–outer-trapped surface satisfies 𝐴 ≥ 8𝜋|𝐽+𝐽−|1/2 where
𝐽± are distinguished components of the angular momenta associated to the rotational Killing fields,
which have fixed points on the horizon. Further, if Λ = 0 then equality is achieved if the space-
time is a near-horizon geometry and conversely, if the bound is saturated, the induced geometry on
spatial cross sections of the horizon is that of a near-horizon geometry.

In particular, for 𝐷 = 4, the horizon is topologically 𝑆2 and 𝐽+ = 𝐽− and one recovers (130).
Other generalisations of such inequalities have been obtained in 𝐷 = 4, 5 Einstein–Maxwell-

dilaton theories [210, 211].
The proof of the above results involve demonstrating that axisymmetric near-horizon geometries

are global minimisers of a functional of the form (128) that is essentially the energy of a harmonic
map, as discussed in Section 6.4.

7.4 Analytic continuation

In this section we discuss analytic continuation of near-horizon geometries to obtain other Lorentzian
or Riemannian metrics. As we will see, this uncovers a number of surprising connections between
seemingly different spacetimes and geometries.

As discussed in Section 3.2, typically near-horizon geometries have an 𝑆𝑂(2, 1) isometry. Gener-
ically, the orbits of this isometry are three-dimensional line or circle bundles over AdS2. One can
often analytically continue these geometries so AdS2 → 𝑆2 and 𝑆𝑂(2, 1) → 𝑆𝑈(2) (or 𝑆𝑂(3)) with
orbits that are circle bundles over 𝑆2. It is most natural to work with the near-horizon geometry
written in global AdS2 coordinates (129). Such analytic continuations are then obtained by setting
𝜌→ 𝑖(𝜃 − 𝜋

2 ) and 𝑘
𝐼 → 𝑖𝑘𝐼 .

First we discuss four dimensions. One can perform an analytic continuation of the near-horizon
geometry of extremal Kerr to obtain the zero mass Lorentzian Taub–NUT solution [162]. More
generally, there is an analytic continuation of the near-horizon geometry of extremal Kerr–Newman-
Λ to the zero mass Lorentzian RN–Taub–NUT-Λ solution [154]. In fact, Page constructed a smooth
compact Riemannian metric on the non-trivial 𝑆2-bundle over 𝑆2 with 𝑆𝑈(2)×𝑈(1) isometry, by
taking a certain limit of the Euclidean Kerr-dS metric [185]. He showed that locally his metric
is the Euclidean Taub–NUT-Λ with zero mass. Hence, it follows that there exists an analytic
continuation of the near-horizon geometry of extremal Kerr-Λ to Page’s Einstein manifold. (Also
we deduce that Page’s limit is a Riemannian version of a combined extremal and near-horizon
limit).

Explicitly, the analytic continuation of the near-horizon extremal Kerr-Λ metric (83) to the Page
metric, can be obtained as follows. First write the near-horizon geometry in global coordinates
(129), then analytically continue 𝜌 → 𝑖(𝜃 − 𝜋

2 ) and ℓ2𝑘 = 2𝑖𝛼2, ℓ2𝛽 = 4𝛼2 and redefine the
coordinates (𝑡, 𝜑) → (𝜑, 𝜓) appropriately, to find

d𝑠2 =
𝛼2(1− 𝑥2) d𝑥2

𝑃 (𝑥)
+

4𝛼2𝑃 (𝑥)

(1− 𝑥2)
( d𝜓 + cos 𝜃 d𝜑)

2
+ 𝛼2(1− 𝑥2)

(︀
d𝜃2 + sin2 𝜃 d𝜑2

)︀
(131)

with
𝑃 (𝑥) = 1 + 𝑥2 − (1 + 2𝑥2 − 1

3𝑥
4)𝛼2Λ . (132)

By an appropriate choice of parameters, this metric extends to a smooth global, inhomogeneous
Einstein metric on the non-trivial 𝑆2 bundle over 𝑆2, as follows. Compactness and positive defi-
niteness requires one to take Λ > 0 and −𝑥1 < 𝑥 < 𝑥1 where ±𝑥1 are two adjacent roots of 𝑃 (𝑥)
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such that |𝑥1| < 1. The (𝑥, 𝜓) part of the metric has conical singularities at 𝑥 = ±𝑥1, which are
removed by imposing

Δ𝜓 =
2𝜋𝑥1

1− Λ𝛼2(1− 𝑥21)
(133)

resulting in an 𝑆2 fibre. This fibration is globally defined if𝑚Δ𝜓 = 4𝜋, where𝑚 ∈ N, so combining
these results implies

𝑚 =
4𝑥1(3 + 𝑥21)

3 + 6𝑥21 − 𝑥41
. (134)

As Page showed, the only solution is 𝑚 = 1, which implies the 𝑆2-bundle is non-trivial. This

manifold is diffeomorphic to the first del Pezzo surface CP2#CP2.
Similarly, there is an analytic continuation of the near-horizon geometry of the extremal Kerr–

Newman-Λ that gives a family of smooth Riemannian metrics on 𝑆2-bundles over 𝑆2 that satisfy the
Riemannian Einstein–Maxwell equations (and hence have constant scalar curvature). Interestingly,
this leads to an infinite class of metrics (i.e., there are an infinite number of possibilities for the
integer 𝑚). The local solution can be derived directly by classifying solutions of the Riemannian
Einstein–Maxwell equations with 𝑆𝑈(2)×𝑈(1) isometry group acting on three-dimensional orbits
(see, e.g., [173]). One finds the geometry is given by (131) but with 𝑃 (𝑥) now given by

𝑃 (𝑥) = 1 + 𝑥2 + 𝑐− (1 + 2𝑥2 − 1
3𝑥

4)𝛼2Λ , (135)

where 𝑐 is a constant related to the electric and magnetic charges of the analytically continued
extremal Kerr–Newmann black hole. The regularity condition now becomes

𝑚 =
4𝑥1(3 + 𝑥21)

3 + 6𝑥21 − 𝑥41
+

8𝑐(3− 𝑥21)𝑥1
(1− 𝑥21)(3 + 6𝑥21 − 𝑥41)

, (136)

which for 𝑐 = 0 reduces to Eq. (134). One can check the 2nd term above is monotonically increasing
in the range 0 < 𝑥1 < 1 and unbounded as 𝑥1 → 1. If 𝑐 > 0 then there is a unique solution for
every integer 𝑚 ≥ 1. For 𝑐 < 0 the only allowed solution is 𝑚 = 1, and in fact there exist values
of 𝑐 < 0 such that there are two solutions with 𝑚 = 1. For 𝑚 even, the metric extends to a global

metric on the trivial 𝑆2 bundle over 𝑆2, whereas for 𝑚 odd, globally the space is CP2#CP2. Hence
one obtains a generalisation of the Page metric.

Curiously, in five dimensions there exist analytic continuations of near-horizon geometries to
stationary black-hole solutions [162]. For example, one can perform an analytic continuation of the
near-horizon geometry of an extremal MP black hole with 𝐽1 ̸= 𝐽2 to obtain the full cohomogeneity-
1 MP black hole with 𝐽1 = 𝐽2 (which need not be extremal). In this case the 𝑆1 bundle over 𝑆2 that
results after analytic continuation is the homogenous 𝑆3 of the resulting black hole. This generalises
straightforwardly with the addition of a cosmological constant and/or charge. Interestingly, this
also works with the near-horizon geometries of extremal black rings. For example, there is an
analytic continuation of the near-horizon geometry of the extremal dipole black ring that gives a
static charged squashed KK black hole with 𝑆3 horizon topology. In these five-dimensional cases,
the isometry of the near-horizon geometries is 𝑆𝑂(2, 1) × 𝑈(1)2, which has 4D orbits; hence one
can arrange the new time coordinate to lie in these orbits in such a way it is not acted upon by
the 𝑆𝑈(2). This avoids NUT charge, which is inevitable in the four-dimensional case discussed
above. As in the four-dimensional case, there are analytic continuations which result in Einstein
metrics on compact manifolds. For example, there is an analytic continuation of the near-horizon
geometry of extremal MP-Λ that gives an infinite class of Einstein metrics on 𝑆3-bundles over 𝑆2,
which were first found by taking a Page limit of the MP-dS black hole [126].

In higher than five dimensions one can similarly perform analytic continuations of Einstein
near-horizon geometries to obtain examples of compact Einstein manifolds. The near-horizon
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geometries of MP-Λ give the Einstein manifolds that have been constructed by a Page limit of the
MP-dS metrics [99]. On the other hand, the new families of near-horizon geometries [156, 157],
discussed in Section 4.5.3, analytically continue to new examples of Einstein metrics on compact
manifolds that have yet to be explored.

So far we have discussed analytic continuations in which the AdS2 is replaced by 𝑆2. Another
possibility is to replace the AdS2 with hyperbolic space H2. For simplicity let us focus on static
near-horizon geometries. Such an analytic continuation is then easily achieved by replacing the
global AdS2 time with imaginary time, i.e., 𝑡→ 𝑖𝑡 in Eq. (129). In this case, instead of a horizon,
one gets a new asymptotic region corresponding to 𝜌→ ∞. General static Riemannian manifolds
possessing an end that is asymptotically extremal in this sense were introduced in [81]. Essentially,
they are defined as static manifolds possessing an end in which the metric can be written as an
Euclideanised static spacetime containing a smooth degenerate horizon. It was shown that Ricci
flow preserves this class of manifolds, and furthermore asymptotically-extremal Ricci solitons must
be Einstein spaces [81]. These results were used to numerically simulate Ricci flow to find a new
Einstein metric that has an interesting interpretation in the AdS/CFT correspondence [81], which
we briefly discuss in Section 7.5. It would be interesting to investigate non-static near-horizon
geometries in this context.

7.5 Extremal branes

Due to the applications to black-hole solutions, we have mostly focused on the near-horizon geome-
tries of degenerate horizons with cross sections 𝐻 that are compact. However, as we discussed in
Section 2, the concept of a near-horizon geometry exists for any spacetime containing a degenerate
horizon, independent of the topology of 𝐻. In particular, extremal black branes possess horizons
with non-compact cross sections 𝐻. Hence the general techniques discussed in this review may be
used to investigate the classification of the near-horizon geometries of extremal black branes. In
general, this is a more difficult problem, since as we have seen, compactness of 𝐻 can often be used
to avoid solving for the general local metric by employing global arguments. Since it is outside
the scope of this review, we will not give a comprehensive overview of this topic; instead we shall
select a few noteworthy examples.

First consider AdSD space written in Poincaré coordinates

d𝑠2 = 𝑦2(−d𝑡2 + d𝑥𝑖 d𝑥𝑖) +
d𝑦2

𝑦2
, (137)

where 𝑖 = 1, . . . , 𝐷−2. The surface 𝑦 = 0, often called the Poincaré horizon, is a degenerate Killing
horizon of the Killing field 𝐾 = 𝜕/𝜕𝑡. However, these coordinates are not valid at 𝑦 = 0 (the
induced metric is singular) and hence are unsuitable for extracting the geometry of the Poincaré
horizon. One may introduce coordinates adapted to the Poincaré horizons by constructing Gaussian
null coordinates as described in Section 2. We need to find null geodesics 𝛾(𝜆) that in particular
satisfy 𝐾 · �̇� = 1. Explicitly, this condition is simply 𝑡 = −𝑦−2. Now, since 𝜕/𝜕𝑥𝑖 are Killing fields,
along any geodesic the quantities (𝜕/𝜕𝑥𝑖) · �̇� must be constant; this gives �̇�𝑖 = −𝑘𝑖𝑦−2, where
𝑘𝑖 are constant along the geodesics. The null constraint now simplifies to �̇�2 = 1 − 𝑘𝑖𝑘𝑖 and so
𝑘𝑖𝑘𝑖 < 1. This latter equation is easily integrated to give 𝑦(𝜆) and using the above we may now
integrate for 𝑡(𝜆) and 𝑥𝑖(𝜆). The result is

𝑦 =
√︀
(1− 𝑘𝑖𝑘𝑖)𝜆 , 𝑡 = 𝑣 +

1

(1− 𝑘𝑖𝑘𝑖)𝜆
, 𝑥𝑖 =

𝑘𝑖

(1− 𝑘𝑖𝑘𝑖)𝜆
, (138)

where 𝑣 is an integration constant and we have set the other integration constants to zero to ensure
the horizon is at 𝜆 = 0. This gives a family of null geodesics parameterised by (𝑣, 𝑘𝑖), which shoot
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out from every point on the horizon; hence we may take the (𝑣, 𝑘𝑖) as coordinates on the horizon.
We can then change from Poincaré coordinates (𝑡, 𝑥𝑖, 𝑦) to the desired Gaussian null coordinates
(𝑣, 𝜆, 𝑘𝑖). Indeed, one can check that in the coordinates (𝑣, 𝜆, 𝑘𝑖), the Killing field 𝐾 = 𝜕/𝜕𝑣 and
the metric takes the form (6) (with 𝑟 = 𝜆). In fact, as is often the case, it is convenient to use a
different affine parameter 𝑟 = 𝜆(1− 𝑘𝑖𝑘𝑖). Also, since 𝑘𝑖𝑘𝑖 < 1 we may write 𝑘𝑖 = tanh 𝜂 𝜇𝑖, where
𝜇𝑖𝜇𝑖 = 1 parameterise a unit (𝐷 − 3)-sphere. Now the coordinate transformation becomes

𝑦 = 𝑟 cosh 𝜂 , 𝑡 = 𝑣 +
1

𝑟
, 𝑥𝑖 =

tanh 𝜂 𝜇𝑖

𝑟
, (139)

and the AdSD metric in these coordinates is

d𝑠2 = cosh2 𝜂
(︀
−𝑟2 d𝑣2 + 2d𝑣 d𝑟

)︀
+ d𝜂2 + sinh2 𝜂 dΩ2

𝐷−3 . (140)

It is now manifest that the surface 𝑟 = 0 is a smooth degenerate Killing horizon of 𝜕/𝜕𝑣, corre-
sponding to the Poincaré horizon, which we may now extend onto and through by taking 𝑟 ≤ 0.
Cross sections of the Poincaré horizon are non-compact and of topology R𝐷−2 with a (non-flat)
induced metric given by the standard Einstein metric on hyperbolic space H𝐷−2. Observe that the
above expresses AdSD as a warped product of AdS2 and hyperbolic space H𝐷−2, i.e., as a static
near-horizon geometry (with no need to take a near-horizon limit!), as observed in [81].

The BPS extremal 𝐷3,𝑀2,𝑀5 black branes of 10,11-dimensional supergravity are well known
to have a near-horizon geometry given by AdS5 × 𝑆5, AdS4 × 𝑆7 and AdS7 × 𝑆4 respectively with
their horizons corresponding to a Poincaré horizon in the AdS factor. However, as discussed above,
the standard Poincaré coordinates are not valid on the horizon and hence unsuitable if one wants
to extend the brane geometry onto and beyond the horizon. To this end, it is straightforward to
construct Gaussian null coordinates adapted to the horizon of these black branes and check their
near-horizon limit is indeed given by Eq. (140) plus the appropriate sphere.23

Of course, extremal branes occur in other contexts. For example, the Randall–Sundrum model
posits that we live on a 3+1 dimensional brane in a 4+1-dimensional bulk spacetime with a
negative cosmological constant. A longstanding open problem has been to construct solutions to
the five-dimensional Einstein equations with a black hole localised on such a brane, the brane-
world black hole.24 In the five-dimensional spacetime, the horizons of such black holes extend out
into the bulk. [147] constructed the near-horizon geometry of an extremal charged black hole on
a brane. This involved constructing (numerically) the most general five dimensional static near-
horizon geometry with 𝑆𝑂(3) rotational symmetry, which turns out to be a 1-parameter family
generalisation of Eq. (140) (this is the 5D analogue of the 4D general static near-horizon geometry
with a non-compact horizon, see Section 4.1).

Notably, [83] numerically constructed the first example of a brane-world black-hole solution.
This corresponds to a Schwarzschild-like black hole on a brane suspended above the Poincaré
horizon in AdS5. An important step towards this solution was the construction of a novel asymp-
totically AdS Einstein metric with a Schwarzschild conformal boundary metric and an extremal
Poincaré horizon in the bulk (sometimes called a black droplet) [81]. This was found by numerically
simulating Ricci flow on a suitable class of stationary and axisymmetric metrics. This solution is
particularly interesting since by the AdS/CFT duality it is the gravity dual to a strongly coupled
CFT in the Schwarzschild black hole, thus allowing one to investigate strongly coupled QFT in
black-hole backgrounds. Recently, generalisations in which the boundary black hole is rotating
have been constructed, in which case there is also the possibility of making the black hole on the
boundary extremal [82, 84].

23 We would like to thank Carmen Li for verifying this.
24 There is a vast literature on this problem, which we will not attempt to review here.
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[15] Bañados, M., Teitelboim, C. and Zanelli, J., “Black Hole in Three-Dimensional Spacetime”, Phys.
Rev. Lett., 69, 1849–1851 (1992). [DOI], [arXiv:hep-th/9204099 [hep-th]]. (Cited on pages 7 and 40.)

[16] Balasubramanian, V., de Boer, J., Sheikh-Jabbari, M.M. and Simón, J., “What is a chiral 2d CFT?
And what does it have to do with extremal black holes?”, J. High Energy Phys., 2010(02), 017
(2010). [DOI], [arXiv:0906.3272 [hep-th]]. (Cited on page 8.)

[17] Bardeen, J.M., Carter, B. and Hawking, S.W., “The Four Laws of Black Hole Mechanics”, Commun.
Math. Phys., 31, 161–170 (1973). [DOI], [ADS]. (Cited on page 5.)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-8

http://dx.doi.org/10.1088/0264-9381/28/10/105014
http://arxiv.org/abs/1012.2413
http://dx.doi.org/10.1103/PhysRevD.78.064065
http://arxiv.org/abs/0807.4241
http://dx.doi.org/10.1088/0264-9381/29/5/055002
http://arxiv.org/abs/1109.4254
http://dx.doi.org/10.1088/1126-6708/2009/09/044
http://arxiv.org/abs/0906.2376
http://dx.doi.org/10.1103/PhysRevD.81.024033
http://arxiv.org/abs/0906.2367
http://dx.doi.org/10.1007/s00023-011-0110-7
http://arxiv.org/abs/1110.2009
http://arxiv.org/abs/1110.2009
http://dx.doi.org/10.1007/s00220-011-1254-5
http://arxiv.org/abs/1110.2007
http://arxiv.org/abs/1110.2007
http://dx.doi.org/10.1016/j.jfa.2012.08.015
http://arxiv.org/abs/1110.2006
http://adsabs.harvard.edu/abs/2012arXiv1206.6598A
http://arxiv.org/abs/1206.6598
http://dx.doi.org/10.1103/PhysRevD.87.084052
http://adsabs.harvard.edu/abs/2013PhRvD..87h4052A
http://arxiv.org/abs/1304.4616
http://dx.doi.org/10.1088/0264-9381/30/9/095010
http://arxiv.org/abs/1212.1103
http://dx.doi.org/10.1088/1126-6708/2006/10/058
http://arxiv.org/abs/hep-th/0606244
http://dx.doi.org/10.1007/s10714-008-0616-6
http://arxiv.org/abs/hep-th/0611140
http://dx.doi.org/10.1098/rsta.1983.0017
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://dx.doi.org/10.1007/JHEP02(2010)017
http://arxiv.org/abs/0906.3272
http://dx.doi.org/10.1007/BF01645742
http://adsabs.harvard.edu/abs/1973CMaPh..31..161B
http://www.livingreviews.org/lrr-2013-8


60 Hari K. Kunduri and James Lucietti

[18] Bardeen, J.M. and Horowitz, G.T., “The Extreme Kerr throat geometry: A vacuum analog of
AdS2×S2”, Phys. Rev. D, 60, 104030 (1999). [DOI], [arXiv:hep-th/9905099 [hep-th]]. (Cited on
pages 8 and 52.)

[19] Bena, I., “Splitting hairs of the three charge black hole”, Phys. Rev. D, 70, 105018 (2004). [DOI],
[arXiv:hep-th/0404073 [hep-th]]. (Cited on pages 36 and 46.)

[20] Bena, I. and Kraus, P., “Microscopic description of black rings in AdS/CFT”, J. High Energy Phys.,
2004(12), 070 (2004). [DOI], [arXiv:hep-th/0408186 [hep-th]]. (Cited on page 6.)

[21] Berkooz, M. and Reichmann, D., “Weakly renormalized near 1/16 SUSY Fermi liquid operators in
𝒩 = 4 SYM”, J. High Energy Phys., 2008(10), 084 (2008). [DOI], [arXiv:0807.0559 [hep-th]]. (Cited
on page 7.)

[22] Berkooz, M., Reichmann, D. and Simón, J., “A Fermi surface model for large supersymmetric AdS5

black holes”, J. High Energy Phys., 2007(01), 048 (2007). [DOI], [arXiv:hep-th/0604023 [hep-th]].
(Cited on page 7.)

[23] Berman, D.S. and Parikh, M.K., “Holography and rotating AdS black holes”, Phys. Lett. B, 463,
168–173 (1999). [DOI], [arXiv:hep-th/9907003 [hep-th]]. (Cited on page 7.)

[24] Besse, A.L., Einstein Manifolds, (Springer, Berlin; Heidelberg, 1987). [DOI], [Google Books]. (Cited
on page 8.)
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[99] Gibbons, G.W., Lü, H., Page, D.N. and Pope, C.N., “Rotating black holes in higher dimensions
with a cosmological constant”, Phys. Rev. Lett., 93, 171102 (2004). [DOI], [arXiv:hep-th/0409155
[hep-th]]. (Cited on pages 31 and 56.)

[100] Goldstein, K., Iizuka, N., Jena, R.P. and Trivedi, S.P., “Non-supersymmetric attractors”, Phys. Rev.
D, 72, 124021 (2005). [DOI], [arXiv:hep-th/0507096 [hep-th]]. (Cited on page 6.)

[101] Gran, U., Gutowski, J.B. and Papadopoulos, G., “IIB black hole horizons with five-form flux and
extended supersymmetry”, J. High Energy Phys., 2011(09), 047 (2011). [DOI], [arXiv:1104.2908
[hep-th]]. (Cited on page 38.)

[102] Gran, U., Gutowski, J.B. and Papadopoulos, G., “IIB black hole horizons with five-form flux and KT
geometry”, J. High Energy Phys., 2011(05), 050 (2011). [DOI], [arXiv:1101.1247 [hep-th]]. (Cited
on page 38.)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-8

http://adsabs.harvard.edu/abs/2006gr.qc.....8118G
http://arxiv.org/abs/gr-qc/0608118
http://adsabs.harvard.edu/abs/2011arXiv1111.5356G
http://arxiv.org/abs/1111.5356
http://books.google.com/books?id=12eGVHojt2UC&pg=PA159
http://dx.doi.org/10.1103/PhysRevD.60.104039
http://arxiv.org/abs/gr-qc/9902061
http://dx.doi.org/10.1007/s00220-006-0019-z
http://arxiv.org/abs/gr-qc/0509107
http://arxiv.org/abs/gr-qc/0509107
http://dx.doi.org/10.1103/PhysRevD.68.105009
http://arxiv.org/abs/hep-th/0304064
http://dx.doi.org/10.1088/0264-9381/20/21/005
http://arxiv.org/abs/hep-th/0209114
http://arxiv.org/abs/hep-th/0403038
http://dx.doi.org/10.1088/0264-9381/16/6/302
http://arxiv.org/abs/hep-th/9809167
http://dx.doi.org/10.1103/PhysRevLett.89.041101
http://arxiv.org/abs/hep-th/0206049
http://dx.doi.org/10.1103/PhysRevD.66.044010
http://arxiv.org/abs/hep-th/0206136
http://arxiv.org/abs/hep-th/0206136
http://dx.doi.org/10.1143/PTPS.148.284
http://arxiv.org/abs/gr-qc/0203004
http://arxiv.org/abs/gr-qc/0203004
http://dx.doi.org/10.1103/PhysRevLett.93.171102
http://arxiv.org/abs/hep-th/0409155
http://arxiv.org/abs/hep-th/0409155
http://dx.doi.org/10.1103/PhysRevD.72.124021
http://arxiv.org/abs/hep-th/0507096
http://dx.doi.org/10.1007/JHEP09(2011)047
http://arxiv.org/abs/1104.2908
http://arxiv.org/abs/1104.2908
http://dx.doi.org/10.1007/JHEP05(2011)050
http://arxiv.org/abs/1101.1247
http://www.livingreviews.org/lrr-2013-8


Classification of Near-Horizon Geometries of Extremal Black Holes 65

[103] Gran, U., Gutowski, J.B. and Papadopoulos, G., “IIB horizons”, arXiv, e-print, (2013). [ADS],
[arXiv:1304.6539 [hep-th]]. (Cited on page 38.)

[104] Gran, U., Gutowski, J.B. and Papadopoulos, G., “Index theory and dynamical symmetry enhance-
ment near IIB horizons”, arXiv, e-print, (2013). [arXiv:1306.5765 [hep-th]]. (Cited on page 38.)

[105] Grover, J., Gutowski, J.B., Papadopoulos, G. and Sabra, W.A., “Index Theory and Supersymmetry
of 5D Horizons”, arXiv, e-print, (2013). [ADS], [arXiv:1303.0853 [hep-th]]. (Cited on page 36.)

[106] Grover, J., Gutowski, J.B. and Sabra, W.A., “Supersymmetric AdS Black Rings”, arXiv, e-print,
(2013). [ADS], [arXiv:1306.0017 [hep-th]]. (Cited on pages 7, 10, and 36.)

[107] Gubser, S.S., “Breaking an Abelian gauge symmetry near a black hole horizon”, Phys. Rev. D, 78,
065034 (2008). [DOI], [arXiv:0801.2977 [hep-th]]. (Cited on page 8.)

[108] Gubser, S.S., Klebanov, I.R. and Peet, A.W., “Entropy and temperature of black 3-branes”, Phys.
Rev. D, 54, 3915–3919 (1996). [DOI], [arXiv:hep-th/9602135 [hep-th]]. (Cited on page 7.)

[109] Gubser, S.S., Klebanov, I.R. and Polyakov, A.M., “Gauge theory correlators from non-critical string
theory”, Phys. Lett. B, 428, 105–114 (1998). [DOI], [arXiv:hep-th/9802109 [hep-th]]. (Cited on
page 6.)

[110] Guica, M., Hartman, T., Song, W. and Strominger, A., “The Kerr/CFT Correspondence”, Phys.
Rev. D, 80, 124008 (2009). [DOI], [arXiv:0809.4266 [hep-th]]. (Cited on page 7.)

[111] Gutowski, J.B., “Uniqueness of five-dimensional supersymmetric black holes”, J. High Energy Phys.,
2004(08), 049 (2004). [DOI], [arXiv:hep-th/0404079 [hep-th]]. (Cited on pages 36 and 50.)

[112] Gutowski, J.B., Martelli, D. and Reall, H.S., “All supersymmetric solutions of minimal supergrav-
ity in six dimensions”, Class. Quantum Grav., 20, 5049–5078 (2003). [DOI], [ADS], [arXiv:hep-
th/0306235 [hep-th]]. (Cited on page 37.)

[113] Gutowski, J.B. and Papadopoulos, G., “Heterotic Black Horizons”, J. High Energy Phys., 2010(07),
011 (2010). [DOI], [arXiv:0912.3472 [hep-th]]. (Cited on page 37.)

[114] Gutowski, J.B. and Papadopoulos, G., “Heterotic horizons, Monge-Ampère equation and del Pezzo
surfaces”, J. High Energy Phys., 2010(10), 084 (2010). [DOI], [arXiv:1003.2864 [hep-th]]. (Cited on
page 38.)

[115] Gutowski, J.B. and Papadopoulos, G., “Topology of supersymmetric 𝒩 = 1, 𝐷 = 4 supergravity
horizons”, J. High Energy Phys., 2010(11), 114 (2010). [DOI], [ADS], [arXiv:1006.4369 [hep-th]].
(Cited on page 35.)

[116] Gutowski, J.B. and Papadopoulos, G., “M-Horizons”, J. High Energy Phys., 2012(12), 100 (2012).
[DOI], [ADS], [arXiv:1207.7086 [hep-th]]. (Cited on page 38.)

[117] Gutowski, J.B. and Papadopoulos, G., “Static M-horizons”, J. High Energy Phys., 2012(01), 005
(2012). [DOI], [ADS], [arXiv:1106.3085 [hep-th]]. (Cited on page 38.)

[118] Gutowski, J.B. and Papadopoulos, G., “Index theory and dynamical symmetry enhancement of M-
horizons”, J. High Energy Phys., 2013(05), 088 (2013). [DOI], [ADS], [arXiv:1303.0869 [hep-th]].
(Cited on page 38.)

[119] Gutowski, J.B. and Reall, H.S., “General supersymmetric 𝐴𝑑𝑆5 black holes”, J. High Energy Phys.,
2004(04), 048 (2004). [DOI], [arXiv:hep-th/0401129 [hep-th]]. (Cited on pages 7 and 10.)

[120] Gutowski, J.B. and Reall, H.S., “Supersymmetric 𝐴𝑑𝑆5 black holes”, J. High Energy Phys.,
2004(02), 006 (2004). [DOI], [arXiv:hep-th/0401042 [hep-th]]. (Cited on pages 7, 10, 36, 45, and 50.)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-8

http://adsabs.harvard.edu/abs/2013arXiv1304.6539G
http://arxiv.org/abs/1304.6539
http://arxiv.org/abs/1306.5765
http://adsabs.harvard.edu/abs/2013arXiv1303.0853G
http://arxiv.org/abs/1303.0853
http://adsabs.harvard.edu/abs/2013arXiv1306.0017G
http://arxiv.org/abs/1306.0017
http://dx.doi.org/10.1103/PhysRevD.78.065034
http://arxiv.org/abs/0801.2977
http://dx.doi.org/10.1103/PhysRevD.54.3915
http://arxiv.org/abs/hep-th/9602135
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://dx.doi.org/10.1103/PhysRevD.80.124008
http://arxiv.org/abs/0809.4266
http://dx.doi.org/10.1088/1126-6708/2004/08/049
http://arxiv.org/abs/hep-th/0404079
http://dx.doi.org/10.1088/0264-9381/20/23/008
http://adsabs.harvard.edu/abs/2003CQGra..20.5049G
http://arxiv.org/abs/hep-th/0306235
http://arxiv.org/abs/hep-th/0306235
http://dx.doi.org/10.1007/JHEP07(2010)011
http://arxiv.org/abs/0912.3472
http://dx.doi.org/10.1007/JHEP10(2010)084
http://arxiv.org/abs/1003.2864
http://dx.doi.org/10.1007/JHEP11(2010)114
http://adsabs.harvard.edu/abs/2010JHEP...11..114G
http://arxiv.org/abs/1006.4369
http://dx.doi.org/10.1007/JHEP12(2012)100
http://adsabs.harvard.edu/abs/2012JHEP...12..100G
http://arxiv.org/abs/1207.7086
http://dx.doi.org/10.1007/JHEP01(2012)005
http://adsabs.harvard.edu/abs/2012JHEP...01..005G
http://arxiv.org/abs/1106.3085
http://dx.doi.org/10.1007/JHEP05(2013)088
http://adsabs.harvard.edu/abs/2013JHEP...05..088G
http://arxiv.org/abs/1303.0869
http://dx.doi.org/10.1088/1126-6708/2004/04/048
http://arxiv.org/abs/hep-th/0401129
http://dx.doi.org/10.1088/1126-6708/2004/02/006
http://arxiv.org/abs/hep-th/0401042
http://www.livingreviews.org/lrr-2013-8


66 Hari K. Kunduri and James Lucietti

[121] Gutowski, J.B. and Sabra, W.A., “Enhanced Horizons”, Class. Quantum Grav., 27, 235011 (2010).
[DOI], [arXiv:0807.4714 [hep-th]]. (Cited on page 36.)
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[145] Jezierski, J. and Kamiński, B., “Towards uniqueness of degenerate axially symmetric Killing horizon”,
Gen. Relativ. Gravit., 45, 987–1004 (2013). [DOI], [ADS], [arXiv:1206.5136 [gr-qc]]. (Cited on
page 28.)

[146] Johnstone, M., Sheikh-Jabbari, M.M., Simón, J. and Yavartanoo, H., “Extremal Black Holes and
First Law of Thermodynamics”, arXiv, e-print, (2013). [ADS], [arXiv:1305.3157 [hep-th]]. (Cited
on page 8.)

[147] Kaus, A. and Reall, H.S., “Charged Randall-Sundrum black holes and 𝑁 = 4 super Yang-Mills in
𝐴𝑑𝑆2 × 𝑆2”, J. High Energy Phys., 2009(05), 032 (2009). [DOI], [arXiv:0901.4236 [hep-th]]. (Cited
on page 57.)

[148] Kim, S. and Lee, K.-M., “1/16-BPS black holes and giant gravitons in the 𝐴𝑑𝑆5×𝑆5 Space”, J. High
Energy Phys., 2006(12), 077 (2006). [DOI], [arXiv:hep-th/0607085 [hep-th]]. (Cited on page 7.)

[149] Kinney, J., Maldacena, J.M., Minwalla, S. and Raju, S., “An Index for 4 Dimensional Super Confor-
mal Theories”, Commun. Math. Phys., 275, 209–254 (2007). [DOI], [arXiv:hep-th/0510251 [hep-th]].
(Cited on page 7.)
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