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Perturbations in the carbon budget of the tropics
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Abstract

The carbon budget of the tropics has been perturbed as a result of human influences. Here, we attempt to construct a

‘bottom-up’ analysis of the biological components of the budget as they are affected by human activities. There are

major uncertainties in the extent and carbon content of different vegetation types, the rates of land-use change and

forest degradation, but recent developments in satellite remote sensing have gone far towards reducing these uncer-

tainties. Stocks of carbon as biomass in tropical forests and woodlands add up to 271 � 16 Pg with an even greater

quantity of carbon as soil organic matter. Carbon loss from deforestation, degradation, harvesting and peat fires is

estimated as 2.01 � 1.1 Pg annum�1; while carbon gain from forest and woodland growth is 1.85 � 0.09 Pg

annum�1. We conclude that tropical lands are on average a small carbon source to the atmosphere, a result that is

consistent with the ‘top-down’ result from measurements in the atmosphere. If they were to be conserved, they

would be a substantial carbon sink. Release of carbon as carbon dioxide from fossil fuel burning in the tropics is

0.74 Pg annum�1 or 0.57 MgC person�1 annum�1, much lower than the corresponding figures from developed

regions of the world.
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Introduction

The tropical land surface has undergone substantial

changes in the last few decades as forest has been

cleared to enable other forms of land use. These

changes involve the energy balance, the cycling of car-

bon and water and emissions of greenhouse gases at

local and regional scales; they are believed to be suffi-

ciently large to influence the climate system. Simula-

tions using climate models suggest these changes will

lead to significant feedbacks to the climate system,

including an increase in temperature and a decrease in

regional precipitation (Lean & Warringlow, 1989; Shu-

kla et al., 1990; Costa & Foley, 2000; Voldoire & Royer,

2004; Medvigy et al., 2011; Ehn et al., 2014). Precipita-

tion over tropical land masses could decrease signifi-

cantly and possibly weaken the tropical atmospheric

circulation (Vecchi et al., 2006), and these climatic

effects may teleconnect to other parts of the world

(Werth & Avissar, 2002). Consequently, interest in the

carbon balance of the tropics, and especially the impact

of deforestation on the carbon cycle, remains high

(Ciais et al., 2010; Gloor et al., 2012; Patra et al., 2013;

Arag~ao et al., 2014).

Most of the land surface change in the tropics is dri-

ven by the need to clear forests and woodlands to pro-

vide agricultural land (Montoya & Rull, 2011; Galan de

Mera et al., 2012; Houghton et al., 2012) and also to sat-

isfy a growing demand for timber, fibre and – more

recently – biofuel (Koh & Wilcove, 2008; Arag~ao et al.,

2014). Public attention is usually focussed on the loss

and degradation of pristine tropical forests, which are

often presented in media reports as ‘the lungs of the

Earth’ as they exchange huge volumes of gases with the

atmosphere (Laurance, 1999). However, the tropics con-

tain other ecosystems too, most notably secondary for-

ests, savannas (woodlands and grasslands), mangroves,

plantations and many forms of agriculture. Although

these normally contain less carbon per area than intact

rain forests, they nevertheless must be considered in

any attempt to make a comprehensive analysis of the

carbon fluxes and especially the effect of the pressure

placed on the tropics by an increasing population of

human consumers.

Our overall knowledge of carbon stocks and fluxes

has increased hugely in recent years, as a result of new

tools for research, and a vigorous and multi-disciplin-

ary approach to the detection of land-use change. Most

noteworthy have been (i) the attempts to measure car-

bon stock changes of intact forests using networks of
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sample plots (Phillips et al., 1998; Malhi et al., 2002;

Lewis et al., 2009), (ii) the introduction of micrometeo-

rological methods to estimate net carbon fluxes at rep-

resentative tropical forests (Grace et al., 1995; Kruijt

et al., 2004; Saleska et al., 2009), (iii) innovation in satel-

lite remote sensing for the detection of change in land

cover and mapping of carbon stocks (Achard et al.,

2002; Asner et al., 2010; Saatchi et al., 2011; Baccini et al.,

2012; Hansen et al., 2013; Mayaux et al., 2013), (iv) mea-

surements of carbon dioxide concentration in the atmo-

sphere to infer carbon fluxes at a very large scale

(Jacobson et al., 2007; Gatti et al., 2010, 2014; Sarmiento

et al., 2010) and (v) the use of field experimentation to

assess the effect of drought and disturbance on carbon

stocks, fluxes and ecosystem vulnerability (San Jos�e

et al., 2003; Nepstad et al., 2007; Lloyd et al., 2009; Da

Costa et al., 2010; Meir & Woodward, 2010; Don et al.,

2011; Salinas et al., 2011). Despite these efforts, major

uncertainties in the overall carbon budget of the tropics

remain (House et al., 2003; Ziegler et al., 2012; Wright,

2013), and there are strong regional variations which

depend on government policies and changing patterns

of global demand for products (Ciais et al., 2007, 2010;

Williams et al., 2007; Achten & Verchot, 2011; Gloor

et al., 2012). In this article we examine progress made in

the last 10 years to define the stocks and fluxes of car-

bon in the tropics, and to understand the natural and

anthropogenic drivers of change.

The terrestrial surface

The terrestrial surface of the tropics is defined as the

land between latitudes 23.44°N and 23.44°S; it covers

some 44 million km2, scattered between 93 major coun-

tries in tropical parts of Africa, Asia and South and

Central America. It constitutes 8.6 per cent of the plane-

tary surface and 30% of the global land surface; it varies

in elevation from sea level to 6768 m in the Peruvian

Andes.

The land on all continents except Antarctica is to

some extent vegetated and thus takes up substantial

amounts of carbon dioxide (CO2) from the atmosphere

through the process of photosynthesis, most of which is

ultimately released from ecosystems back to the atmo-

sphere via respiration. Globally, the mass of carbon

absorbed by photosynthesis, the Gross Primary Produc-

tivity, GPP, is huge, slightly more than 120 Pg C

annum�1 (Lieth & Box, 1977; Roy et al., 2001; Beer et al.,

2010). Most of this uptake occurs in the tropics, where

the GPP is estimated to be as high as 72 Pg C annum�1

(Beer et al., 2010).

Ecosystems store carbon as macromolecules (lignin,

cellulose, starch, proteins) in plants and soil for a vari-

able period of time (Galbraith et al., 2013), subsequently

releasing CO2 through plant, animal and microbial res-

piration, and fire. The combined efflux to the atmo-

sphere is somewhat less than the uptake by gross

photosynthesis. We know this from changes in the con-

centrations of gases and their isotopes in the atmo-

sphere, and from models (Falkowski et al., 2000; Roy

et al., 2001). In former times these two opposing fluxes

may sometimes have been in equilibrium i.e. the uptake

of CO2 by photosynthesis averaged over a number of

years might well have been balanced by the loss of CO2

from respiration and fire.

Nowadays the carbon cycle is out of equilibrium as a

result two classes of major perturbations. The first, per-

petrated by the rich countries of the world, is the inexo-

rable increase in fossil fuel burning; the second is the

removal of forests in tropical countries. According to

most authorities, the carbon released by deforestation

rose sharply in the 1980s but has decreased somewhat

in recent years (Houghton et al., 2012). In 2010, it was

thought to be less than 1 PgC annum�1 while the global

fossil fuel emissions were still on the increase, recently

standing at 8.7 PgC annum�1 (Boden et al., 2010; Frie-

dlingstein et al., 2010). Geological processes such as

weathering and volcanism also contribute to the

exchange of CO2 between the land and atmosphere but

their contribution is only important on a geological

time scale (Berner, 2003).

Apart from CO2, other carbon species may be signifi-

cant. In particular, methane emissions have changed in

recent decades as a result of human activity. A full dis-

cussion of methane is outside the scope of this article,

and can be found elsewhere (Kirschke et al., 2013). The

global emission of methane is between 0.55 and 0.68 Pg

CH4 annum
�1 and according to recent satellite observa-

tions the tropical component is 0.20 Pg CH4 annum�1

(Frankenberg et al., 2008). Most of the tropical compo-

nent is probably from natural aquatic ecosystems, but

some is associated with land-use change, particularly

the increase in rice production, biomass burning and

the flooding of the land to create reservoirs (Reay et al.,

2010; Fearnside & Pueyo, 2012).

A century ago, when human influences were less

than today, we may guess that all 44 million km2 of the

tropics, with the exception of high mountains and a

few dry areas, would have supported some kind of tree

cover. Now, less than 18 million km2 of forest remain

(FAO, 2011) and deforestation continues albeit at a

reduced rate compared to the period 1960–1980, while

agricultural land keeps expanding (Houghton et al.,

2012). But in experiments where tropical grasslands

and savannas are protected from fire and grazing, trees

return and the land usually becomes forested within a

few years (Bond et al., 2005; Grace et al., 2006). Another

way in which humans are thought to be influencing

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12600
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tropical forests and woodlands is by the increase in

concentrations of CO2 derived from fossil fuel burning.

This increase may be stimulating photosynthesis, which

may contribute significantly to uptake of atmospheric

CO2 (Lloyd & Farquhar, 1996; Lloyd, 2002; Pan et al.,

2011) and may explain the observation that biomass in

undisturbed forest plots is increasing (Phillips et al.,

1998; Lewis et al., 2009). The topic is however contro-

versial as large scale experimentation on the effects of

CO2 enrichment on tropical forests has not yet been

achieved (but see Tollefson, 2013) and estimates of the

CO2 effect rests on work carried out in microcosms

(although some microcosms have been rather large,

Rosenthal, 1998; Kὂrner & Arnone, 1992), or theoretical

considerations from physiological and biochemical

knowledge (Lloyd & Farquhar, 1996). Sometimes,

increases in biomass in sample plots (Phillips et al.,

1998; Lewis et al., 2009) are considered to be evidence

of the impact of rising CO2, but clearly other factors

may also be causing such changes (Wright, 2013).

Forests and woodlands contain large and conspicu-

ous stocks of above-ground carbon, and when they are

cleared to make way for other land uses, much of this

carbon is lost to the atmosphere as CO2. The land area

that can be deemed ‘forest’ clearly depends on the

operational definition of ‘forest’. The Food and Agricul-

ture Organization (FAO) defines forest as ‘land with a

tree cover of more than 10 per cent and an area of more

than 0.5 ha’. The definition further states: ‘the trees

should be able to reach a height of 5 m at maturity in

situ’ (FAO, 2000). It excludes land that is ‘predomi-

nantly used for agriculture’, but clearly includes most

woodland savanna but not grassland savanna.

The published areas of tropical lands covered with

forests, pastures and crops may be obtained from

FAO statistics and satellite remote sensing (Table 1),

although the various definitions of ‘tropical forest’

adopted by authors lead inevitably to confusion and

contradictory figures (see Lambin et al.,2003; Gibbs

et al., 2007; Hansen et al., 2013). Here, we decided to

use satellite data from the European Space Agency

(ESA) as it is readily available and uses the United

Nations Land Cover Classification System.

The ESA GLOBCOVER project created land-cover

maps using observations from the MERIS sensor

(300 m resolution) on board the ENVISAT satellite

mission for periods between December 2004 and

December 2009. It appears from the 2009 product that

tropical lands are about 47% forest, with 26% pasture

and 10% croplands (Table 2). The remaining land falls

outside these definitions, and includes other vegetated

areas, floodplains and urban complexes, and also

grasslands with scattered trees below the 10% canopy

cover threshold. There has been a progressive loss of

tropical forest over the last 50 years, related mostly to

the extent of human development which has steadily

increased in parallel with population growth (DeFries

et al., 2010).

Other natural and semi-natural ecosystems of the tro-

pics include grasslands with various fractions of tree

cover and contain substantially less carbon per area

than forests, although sometimes have a larger stock of

carbon below-ground as soil organic matter (Juo et al.,

1995; San Jos�e & Montes, 2001; Fisher et al., 2007; Saiz

et al., 2012). Mangroves for example are reported to

have extremely high carbon stocks per area, averaging

1023 Mg C ha�1 when the below-ground component is

included, with some of the highest values of Net Pri-

mary Productivity ever recorded (Donato et al., 2011),

but their global area is only 200 thousand km2, just

0.5% of the land in the humid tropics. Forming a fringe

between the lands from the ocean, they export signifi-

cant quantities of recalcitrant carbon compounds to the

Table 1 Wide variation in the reported area of tropical for-

ests (including open forests and dry forests). FAO (2011) uses

country reports, the others are from the interpretation of

remote sensing data. Lewis et al. (2009) used the average of

four different data sets including FAO and remote sensing,

Globcover2009 refers to a global map produced by the Euro-

pean Space Agency using satellite data from January to

December 2009, Saatchi et al. (2011) used various remotely

sensed data products. Units are millions of km2

FAO

(2011)

Lewis

et al.

(2009) GlobCover2009

Saatchi

et al.

(2011) Mean

America 8.90 7.87 9.90 12.1 9.69

Africa 5.95 6.32 9.78 7.75 7.45

Asia 2.94 3.58 1.98 4.74 3.31

Total 17.79 17.77 21.66 24.59 20.45

Table 2 Land use for crops, pastures and forests in the tro-

pics. Data for crops and pastures are from Ramankutty et al.,

(2008) and are based on country data reported from years

1996 to 2003; data for forests are from the last column of

Table 1. Note that the residual ‘Other’ for Asia is negative,

implying some degree of confusion or overlap in the reported

classification between forest and non-forest

Region

Total

land area

(million

km2)

Cropland

(million

km2)

Pasture

(million

km2)

Forest

(million

km2) Other

America 16.36 1.24 3.98 9.69 1.52

Africa 22.97 1.94 7.28 7.45 6.30

Asia 3.80 0.97 0.06 3.31 �0.54

Total 43.13 4.15 11.32 20.45 7.21

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12600
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sea (Silva et al., 1991; Kristensen et al., 2008; Tamooh

et al., 2008; Alongi, 2012). This, along with the export of

plant products, is an example of lateral transport of car-

bon from the tropics (see Gloor et al., 2012).

Ziegler et al. (2012) reported the range of above-

ground carbon per area of tropical ecosystems to vary

from a few tonnes per hectare to over 400 Mg C ha�1

(Fig. 1). The data show that forests contain more above-

ground carbon than the various cropped systems and

suggest that deforestation will inevitably result in a

large loss of carbon.

Substantial stocks of carbon occur in tropical soils as

Soil Organic Carbon (SOC). Estimates by soil scientists

for the carbon stored as SOC in the entire tropics vary

from less than 200 Pg (Amundson, 2001; FAO, 2010) to

500–650 Pg (Eswaran et al., 1993; Sombroek et al., 1993;

Batjes, 1996). One reason for the large discrepancies in

the literature is that some authors consider the soil car-

bon only in the surface layers rather than in the whole

soil profile, assuming the organic matter below the arbi-

trary depth of 1 m to be inactive. Carbonate-carbon is

also significant in some regions (Batjes, 1996), and so is

charcoal remaining from long-past slash and burn;

however this latter component is considered by most

authorities to be inert (but see Bird et al., 1999). If we

take Batjes’s figures of 616–640 Pg for the SOC in the

top 2 m, and divide by the area of tropical lands (taken

as 48 million km2), we may conclude that tropical lands

have, on average 128–133 MgC ha�1 of SOC. Alterna-

tively if we consider only the top metre of soil we have

80–84 MgC ha�1, a figure which is close to the average

found by researchers in the field (Don et al., 2011).

What happens to this soil organic carbon when land

use is changed is not always clear (Table 3, data from

Don et al., 2011). Eclesia et al. (2012) showed that when

forests are replaced by plantations of pine or eucalyptus,

the soil carbon content increases linearly, and after a

century it far exceeds the levels found in the native for-

est, except in the wettest sites. It is often proposed that

plantations may be used to rehabilitate degraded lands,

as they may increase the carbon and nutrient content in

the surface layers (Chazdon, 2008); moreover, long-lived

and slow-growing plantation species are found to have

soils with remarkably high carbon content (Kraenzel

et al., 2003). However, in some cases, conversion of

native forest to fast-growing commercial plantations

such as cocoa, coconut and oil palm is reported to cause

a decline in soil carbon (Chiti et al., 2014). The whole

issue of the carbon balance of tropical plantation

requires further research, to be co-ordinated across

regions and to be funded by agencies which have no

vested interest in the results.

Contrary to common expectations, the forest-to-pas-

ture transition may sometimes lead to an increase in

soil carbon, especially in the surface layers of soil (Guo

& Gifford, 2002; Don et al., 2011; Eclesia et al., 2012;

Yonekura et al., 2012) as suspected from earlier research

Fig. 1 Statistical spread of above-ground Biomass for 11 types

of land use in the tropics, plotted from the data of Ziegler et al.

(2012). Box plots represent medians and quartiles, SD and

outliers.

Table 3 Carbon storage in soil organic carbon (SOC) and the

change resulting from a transition in land use (from Don et al.,

2011). Negative denotes loss of organic matter, positive

denotes gain. � shows the SE of the Mean and n is the number

of observations. The data are based on paired sample plots,

the time after the transition varies from 21 and 49 years

Transition

SOC before

change

(Mg ha�1)

Change in

SOC (Mg ha�1) n

Primary forest

to grassland

73 � 7 �12.6 � 3.0 93

Primary forest

to cropland

83 � 9 �20.1 � 5.2 56

Primary forest to

perennial crops

105 � 20 �32.0 � 3.5 20

Primary forest to

secondary forest

91 � 9 �12.6 � 2.4 71

Secondary forest

to grassland

84 � 6 �11.0 � 3.4 66

Secondary forest

to cropland

88 � 12 25.8 � 6.9 26

Secondary forest

to perennial crops

90 � 17 5.6 � 3.0 15

Grassland to

secondary forest

60 � 9 + 12.4 � 6.1 32

Cropland to

secondary forest

70 � 9 + 33.2 � 10.5 25

Grassland to

cropland

64 � 15 + 6.0 � 5.8 15

Cropland to

grassland

61 � 17 + 7.6 � 5.8 16

Cropland to fallow 43 � 7 + 8.9 � 2.9 21

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12600
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on South-American pastures made up of introduced

grasses (Fisher et al., 1994). Often, the largest increases

are in the wetter sites. This analysis is intriguing and

relevant to much of the land-use change occurring in

the tropics today, but the difference in behaviour

between the various types of transition have not been

explained, and results may be quite different for other

plantation types (coconut, oil palm, cacao). Marin-Spo-

itta & Sharma (2013) found trends in soil carbon that

were weaker, with an overwhelming effect of mean

annual temperature and precipitation. In an extensive

review of soils of sub-Saharan Africa, V�agen et al.

(2005) concluded that largest potential for increasing

SOC is through the establishment of natural or

improved fallow systems (agroforestry), which provide

rates of C sequestration in the range of 0.1–5.3
MgC ha�1 annum�1.

Forest biomass derived from national inventories

Prompted by the 1992 United Nations Conference on

Environment and Development (UNCED), the Food

and Agriculture Organization (FAO) publishes a bien-

nial series called State of the World’s Forests in which

data on forest areas reported by national govern-

ments are compiled. Recommendations for standard-

ized reporting of carbon stocks of forests based on

ecosystem mensuration are described in several publi-

cations including Penman et al. (2003) and GOFC-

GOLD (2010). The FAO data on forest area (Table 4)

are widely cited by researchers as a source of infor-

mation on deforestation, and the 2011 report contains

additionally a table of biomass carbon changes

derived from such data (FAO, 2011). Taken at face

value, these figures show an annual carbon flux from

deforestation in the period from 2000 to 2010 of

0.88 PgC annum�1. However, reporting has not been

consistent and the quality of national data is often

questioned (Achard et al., 2002; Grainger, 2008; Gloor

et al., 2012). National inventory data sets are being

rapidly superseded by satellite data, as discussed in a

later section.

Forest biomass derived from research plots

Meanwhile, independent researchers have been pooling

data from their own permanent sample plots, which

are typically 1 ha marked areas in which all trees

greater than 10 cm in diameter have been tagged and

repeatedly measured using a common protocol (Phil-

lips et al., 1998; Malhi et al., 2002; Lewis et al., 2009).

Such data are now vital for the calibration of remotely

sensed information. Perceived limitations of the use of

these 1 ha plots are (i) samples may not be entirely rep-

resentative of the range of tropical forests, considering

that many forests, even when they appear pristine, are

actually in stages of recovery from disturbance, both

natural and anthropogenic (Phillips et al., 2002; Fisher

et al., 2007; Lloyd et al., 2007; Gloor et al., 2009) (ii) the

allometric equations used to convert tree diameter and

height to biomass introduce uncertainties especially for

the large trees which usually contain most of the carbon

(Chave et al., 2005) (iii) further allometric relationships

are required to estimate below-ground biomass,

although below-ground biomass data are scarce

because of the practical difficulties of achieving large

and representative samples (Kenzo et al., 2009; Ryan

et al., 2011) (iv) soil carbon stocks as soil organic matter

and elemental carbon are not generally recorded, and if

they are, the studies are confined to surface layers only.

Despite these difficulties, analysis of some 156 sample

plots covering an area of 163 ha on three continents

suggests these forests have been accumulating carbon

in recent decades at an average rate of 0.49 MgC ha�1

annum�1 (Lewis et al., 2009).

Forest biomass from satellite remote sensing

Satellite observations of land-use change in the tropics

were first used on a large scale for the detection of

deforestation in Brazil (INPE, 2003). These observations

made use of the NASA Landsat satellites, which began

with Landsat 1 in 1972 and continue today with Land-

sat 8. Other satellite missions widely used include the

European SPOT (Syst�eme Pour l’Observation de la

Table 4 Areas and carbon stocks of tropical forests from 1990 to 2010 according to FAO (2011). Also included are the carbon stocks

in dead wood and litter (‘litter’) and soil according to FAO

Areas (millions of km2) Carbon stocks in biomass (PgC) Litter (PgC) Soil (PgC)

1990 2000 2005 2010 1990 2000 2005 2010 2010 2010

America 9.78 9.32 9.09 8.90 110.9 106.2 103.9 102.1 10.0 75.5

Africa 6.64 6.29 6.12 5.95 60.9 58.3 57.1 55.9 7.9 34.5

Asia 3.25 3.01 2.99 2.94 29.1 27.5 26.5 25.2 1.0 16.5

Total 19.76 18.63 18.20 17.81 200.2 192.0 187.5 183.2 18.9 126.5

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12600
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Terre) series of satellites, commencing with SPOT 1

(1986) and leading to SPOT 6 (launched 2012), which

has acquired images with relatively high spatial resolu-

tion (10 m or less); ENVISAT which flew the Moderate

Resolution Imaging Spectrometer MERIS from 2002 to

2012; the NOAA Advanced Very High Resolution Radi-

ometer (AVHRR) from 1978 to the present; and NASA’s

Moderate resolution Imaging Spectroradiometer (MO-

DIS) on board the Terra and Aqua satellites from 2000

to the present.

All of these instruments detect energy from the sun

and sky that has been reflected from the planetary sur-

face, in specific wavebands. Forest and ‘non-forest’

areas have different spectral signatures and so may be

distinguished from each other in ideal conditions. But

in the tropics the use of such optical remote sensing has

been limited because of the frequent presence of clouds.

Mayaux et al. (2013) describe how cloud-free data can

nevertheless be attained by carefully selecting the

images and using multiple satellites to obtain cloud-

free images representing one year. Thus, satellites have

provided valuable indications of the decline of forest

cover over three decades (Achard et al., 2002; Hansen

et al., 2013; Mayaux et al., 2013).

Difficulties arise when we try to make comparisons

between satellite-based estimates by different authors

because quite different criteria to recognize ‘forest’

have been used (compare for example Achard et al.,

2002; Mayaux et al., 1998 and Hansen et al., 2010). This

leads to totally different areas of forest, particularly in

Africa where woodland savanna is a large part of a con-

tinuum that includes open forest and closed forest. If

we define ‘forest’ broadly as having a canopy cover of

10% or more, as the FAO has done, the area of tropical

forest from satellite data is 24.6 million km2 (Saatchi

et al., 2011), somewhat more than the 20 million km2

identified by the FAO methodology. But Achard et al.

(2002) adopt a more restricted definition called ‘humid

tropical forest’, which excludes dry forests and wood-

lands, and they find only 11.5 million km2.

Some of the difficulties of estimating forest areas and

carbon stocks from space have been overcome by new

technological developments. The first of these is the

deployment, from space, of active radar remote sens-

ing, which offers the possibility of not only detecting

the extent of forest but of also estimating biomass from

the back-scattered radar signal (Quegan et al., 2000).

Because radar sensors can ‘see’ the land surface even at

night and when there is cloud cover, more data are

acquired than with optical sensors. Moreover, radar

penetrates the forest canopy to an extent which

depends on its wavelength, and the back-scattered sig-

nal provides information on the amount of biomass per

area of land (Le Toan et al., 2011; Woodhouse et al.,

2012). From 2006 to 2011 the Japanese Advanced Land

Observing Satellite (ALOS) carried a synthetic aperture

radar sensor (PALSAR, the Phased Array type L-band

Synthetic Aperture Radar) which has been used to map

biomass distribution in Africa and elsewhere (Mitchard

et al., 2009; Ryan et al., 2012; Reich et al., 2013).

The second recent development is the use of space-

borne LIDAR to measure the height of the vegetation

and thus to estimate biomass from ground-based cali-

bration data. The NASA satellite ICESat, designed pri-

marily to measure the changing mass of polar ice sheets

using LIDAR, flew from 2003 to 2009 and provided

point estimates of tropical forest mass across the tro-

pics, which were spatially extrapolated into the first

pan-tropical maps of aboveground carbon using ancil-

lary full-cover datasets (Saatchi et al., 2011; Baccini

et al., 2012). Both studies used the ICESat data in combi-

nation with remotely sensed information on forest

cover to model and map the spatial distribution of bio-

mass across three continents for the 2000s.

However, these maps are not exactly the same,

despite their common ICESat origin. The differences

are likely to arise partly from the fact that the calibra-

tion data were from different field plots and the allo-

metric equations used by the two groups working

independently were not the same. Very recently, Mit-

chard et al. (2013a,b) have compared the two sets of

results. On a per country basis or on a biomass density

basis they agree to within 15 per cent, but when com-

pared to the corresponding FAO data both sets of

LIDAR data show significantly more biomass carbon

than estimated from inventories. Overall, the total

above-ground biomass in the tropics is 179 Pg of car-

bon according to the FAO inventory data, 203 Pg

according to Saatchi et al. (2011), and 228 Pg according

to Baccini et al. (2012). The apparent underestimation

by the FAO data is noteworthy, and does significantly

affect the estimates of global deforestation flux. We

may estimate the below-ground biomass using an

‘expansion factor’ of 1.26 calculated from Luyssaert

et al. (2007), and derive the total biomass carbon in the

tropics as 256–287 Pg. Alternatively, if we take the FAO

figures (Table 3) we find 202.1 Pg of carbon in biomass

(with litter) and a further 126 Pg of carbon as soil

organic matter. The very recent satellite data set from

Hansen et al. (2013) does not agree well with the FAO

figures, and is more consistent with Saatchi et al. (2011)

and Baccini et al. (2012).

The nature of the sources and sinks of carbon

Sources and sinks of atmospheric carbon arise when

the input of carbon into the land surface does not equal

the sum of all the carbon outputs. The main carbon

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12600

6 J .GRACE et al.



input is by photosynthesis of green plants and the main

outputs are autotrophic (i.e. plant) respiration Ra, het-

erotrophic (i.e. microbe and animal) respiration Rh and

fire. In the several hundred ecosystems of the world

which have been investigated, the annual sum of pho-

tosynthesis, known as the Gross Primary Productivity

GPP, usually exceeds Ra + Rh (Luyssaert et al., 2007,

2008), implying that ecosystems are often carbon sinks

at least at the local scale and over short (a few years)

time scales. In a few investigations, ecosystems have

been found to be a carbon source, especially following

disturbance (Saleska et al., 2003). Such studies provide

useful insights into processes, but they are short term

and thus generally do not pick up rare catastrophic

events such as storms and fires, when forests suffer

periodic reductions in biomass; these events occur par-

ticularly in relation to climate extremes associated with

the Southern Oscillation (Arag~ao et al., 2008; Flores

et al., 2014). The data base of Luyssaert et al. (2007) pro-

vides consistent quality-controlled information on the

constituent carbon fluxes for forest ecosystem under

undisturbed conditions, enabling us to comment on the

magnitudes of the tropical forest fluxes (Fig. 2). We see

that the photosynthetic input (GPP) of a typical tropical

forest is as high as 32 MgC ha�1 annum�1, much higher

than that of deciduous forest, presumably because con-

ditions for photosynthesis are favourable all the year

round in the humid tropics, whereas in other parts of

the world there are climatological limitations for part of

the year. However, respiratory effluxes Ra and Rh are

also much higher in the tropical forest, so the Net Pri-

mary Productivity (GPP-Ra) is usually between 5 and

10 MgC ha�1 annum�1 (see also Malhi, 2012) not partic-

ularly high compared to other ecosystems in both the

tropics and the temperate zone (Clark et al., 2001; Scur-

lock & Olson, 2002), and not nearly as high as tropical

grassland sometimes can be (Long et al., 1989). One rea-

son why NPP of tropical forests is not much higher

than for temperate forests is that almost all the temper-

ate forests are in a relatively juvenile phase, being man-

aged to be productive and containing trees which are in

their most active growth phase (Luyssaert et al., 2008).

Savanna ecosystems, with or without tree cover, con-

tain much less biomass than rain forests and have a

large fraction of biomass underground, a characteristic

which enables them to recover from fire (Grace et al.,

2006; Ribeiro et al., 2011). They have smaller annual

fluxes, because growth is constrained by a long dry sea-

son in which many species shed their leaves (Sankaran

et al., 2005). They are also frequently burned and so suf-

fer periodic reductions in leaf area. In the wet season,

they may have a rather high rate of carbon assimilation,

partly as a result of the ground cover of C4 grasses

(Miranda et al., 1997; San Jos�e et al., 2003; Santos et al.,

2003, 2004; Veenendaal et al., 2004), which appear to

contribute as much as 59% of the Primary Productivity

of savannas world-wide (Lloyd et al., 2008).

Can the anthropogenic sources and sinks be deduced from
existing data?

The ICESat-derived maps may have indeed provided

the most reliable estimates of forest biomass; however,

to track changes in the carbon stocks over decades one

requires a long-term data set. So far, only the FAO data

provide such a time series covering the whole tropics,

although there are well-documented satellite data over

long periods for particular areas, for example South

America (Gloor et al., 2012). From the available data,

we may estimate the total flux arising directly from

human perturbations as the sum of the constituent

terms, each one representing a type of disturbance:

FTotal ¼ FDeforestation þ FDegradation þ FPlantation þ FSecondary
þ FPrimary þ FHarvest þ FPeat þ FFire

In the following paragraphs, we consider the terms

one-by-one.

FDeforestation the deforestation flux. To estimate the defor-

estation flux requires data on forest area of the

(a)

(c) (d)

(b)

Fig. 2 Typical carbon fluxes for temperate and tropical forests,

and tropical savannah, showing Gross Primary Productivity

(GPP), Net Primary Productivity (NPP), Ra (autotrophic respira-

tion), Rh (heterotrophic respiration) and the overall carbon bal-

ance Net Ecosystem Production (NEP). Units are MgC ha�1

annum�1 for fluxes and MgC ha�1 for biomass stocks (shown in

the central box). Based on data from Luyssaert et al. (2007).

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12600
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entire tropics from more than one point in time. We

have extracted the time series from FAO (2011). We

present three estimates of deforestation flux

(Table 5). The first, from FAO (2011) shows evidence

of a decline in deforestation flux from 2000 to 2010,

and stands at 0.80 Pg C annum�1 for 2005–2010. The
second is a modification of the FAO data, obtained

as the product of the area of forest ‘lost’ and the

carbon content per area of land (MgC ha�1),

obtained from regional average data calculated from

Saatchi et al. (2011). The deforestation flux for the

tropics for the period 1990–2010 using this method is

0.77 Pg C annum�1. If we use instead the recent and

probably more reliable satellite-based deforestation

figures (Hansen et al., 2013) instead of the FAO fig-

ures, we obtain a higher value of 0.93 Pg C annum�1

(Table 5). The regional totals from FAO and Hansen

are far from being in agreement, except for South

America where the data are dominated by Brazil, a

country where the deforestation rate reported to the

FAO is estimated by remote sensing and where the

agreement between the FAO data and Hansen’s data

is much better. On the other hand, the deforestation

rates of most African countries are less than the

FAO figures, often by a margin exceeding 50%,

while in Asia the discrepancy is the other way

around (the Hansen deforestation rates of Indonesia

and Malaysia are more than double the reported

rates).

In constructing the trends over time in the carbon

budget in any scenario of deforestation, it must be kept

in mind that the carbon in the trees and litter is not all

immediately oxidized. Some trees may survive and die

later; and below-ground components, once dead,

decompose rather slowly at a rate which is likely to

vary enormously with the wood composition, the mois-

ture content of the soil and the fineness of the dead

material. In the analysis given above, we have made no

attempt to model the decomposition rate, although

some authors have done so (Gloor et al., 2012; Hough-

ton et al., 2012).

FDegradation—‘Forest degradation’ refers to a loss of bio-

mass which is not visible by conventional remote sens-

ing, and which usually goes unreported. It arises

mostly from selective logging, where the fraction of

trees removed is not sufficient to change the land cover

from ‘forest’ to ‘non-forest’ (Nepstad et al. 1999; Asner

et al., 2005). It may also occur as a result of fire or

drought, where damage occurs in the subcanopy and

the large trees are relatively undamaged and so the can-

opy viewed from space is identified as ‘forest’. It may

also be associated with fragmentation, the process

whereby the forest is broken up into small subunits

which may then be exposed to ‘edge effect’ and become

more susceptible to drought. Measuring degradation

has been attempted for specific regions. For example, in

the Congo Basin. Ernst et al. (2013) found that the forest

area affected by degradation was of a similar size as the

deforested area and commented that deforestation and

degradation were usually interrelated. At present,

insufficient information is available to estimate the

tropical degradation flux and it may be the largest

uncertainty in the tropical carbon budget. Here, we

assume that the degradation flux is between 10% and

50% of the deforestation flux, yielding an estimate of

0.27 � 0.11 Pg annum�1. In the future, it is expected

that radar remote sensing will provide regular informa-

tion on biomass as well as forest cover, and so the

uncertainty in degradation flux may be reduced (Le

Toan et al., 2011).

Using Hansen’s data, we estimate deforestation plus

degradation fluxes of 1.20 � 0.17 Pg annum�1, yielding

total fluxes which are more or less consistent with the

many data sets reviewed by Houghton et al. (2012) and

the estimate of ‘about 1.2’ Pg C annum�1 by Van der

Werf et al. (2009) for the emissions associated with

‘deforestation and degradation’. In Fig. 3, we combine

the data of Van der Werf et al. (2009), Houghton et al.

(2012) and the estimates obtained in this study as

FDeforestation + FDegradation using either the FAO data or

the Hansen et al. (2013) data. We see large discrepan-

cies, but the most recent results (which may be more

Table 5 Estimated annual carbon flux from tropical deforestation (FAO, 2011). Comparison is made with the FAO figures using

carbon density data from Saatchi to convert areas to carbon stocks (FAO-S), and satellite data from Hansen et al. (2013) over a simi-

lar period (2000–2012) also using carbon density data from Saatchi et al. (2011) to convert areas of forest loss into carbon fluxes. The

final column is an estimate of the degradation flux (see text). Units PgC annum�1

FAO

1990–2000

FAO,

2000–2005

FAO

2005–2010

FAO-S

2000–2010

Hansen

2000–2012

Degradation flux

2000–2012

America 0.45 0.45 0.38 0.46 0.48 0.05–0.24

Africa 0.28 0.27 0.27 0.21 0.12 0.01–0.06

Asia 0.35 0.05 0.14 0.098 0.33 0.03–0.15

Total 1.09 0.79 0.80 0.77 0.93 0.09–0.46

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12600
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reliable) provide support for van der Werf’s estimate of

1.2 Pg C annum�1.

FPlantation, the growth of plantation flux. A proportion of

the forest detected in each region is in the form of plan-

tations, which vary enormously in their growth rates

(Nambiar, 2008). Some of these are in a stage of particu-

larly rapid growth: Laclau et al. (2000) found growth

rates of 16 Mg biomass ha�1 annum�1 for eucalyptus in

the Congo, and much higher rates are possible with

appropriate silviculture (Stape et al., 2010). But other

tree species are slow growing, including those produc-

ing high-value timber such as teak and mahogany. One

of the fast-increasing types of plantation is palm oil,

motivated by the goal to use the oil as fuel, thus to

reduce fossil fuel emissions (Gibbs et al., 2008 Achten &

Verchot, 2011; Obidzinski et al., 2012). Rubber planta-

tions have also increased; they have expanded rapidly

in tropical parts of China (Yunnan and the island of

Hainen). Like palm oil, there are concerns about the

destruction of species-rich forests in these parts, and

the possible degradation of soil (Cheng et al., 2007; Li

et al., 2007, 2008; Zhai et al., 2012; Song et al., 2013).

Food and Agriculture Organization figures (FAO

2010) suggest that plantations in the tropics have

increased from 90 million ha in 1990 to 144 million ha

by 2010. To estimate the impact, they are having on the

tropical carbon budget we have run a simple model in

which the biomass of plantation forests increases sig-

moidally to reach 120 MgC ha�1 after 100 years (consis-

tent with Ziegler et al., 2012); we further assume a

constant planting rate of 2.44 million ha per year from

1960 to 2010 (matching FAO figures), and then we track

the annual cohort until 2010, finally adding all the

cohorts. In this scenario, plantations develop sink

strength of 0.24 PgC annum�1 by 2010 and accumulate

a stock of 5.48 PgC. However, in achieving this state,

the native forest they replace has been lost: we estimate

the loss has been 15 Pg of carbon altogether. If we take

a much less favourable scenario, with lower growth

rates and shorter stand cycles, the sink is lower, as little

as 0.10 PgC annum�1. These figures could be refined if

reliable information from country-level inventories and

management regimes were to be made available.

FSecondary, the flux from the regrowth of secondary forest. A

secondary forest is a forest or woodland which has

regrown after a major disturbance (fire, wind-throw are

natural disturbances, but the use of the land for agricul-

ture is the major anthropogenic disturbance in the con-

text of this review, see Chokkalingam & de Yong, 2001).

In the tropics, the regrowth usually reaches the biomass

of the original forest in 100 years. The biodiversity

recovers more slowly (Martin et al., 2013), but can be

remarkably high (Berry et al., 2010).

Much of all tropical forest is now secondary forest

(sensu Brown & Lugo, 1990). According to FAO (2010)

about 88% of Africa’s tropical forest is now secondary;

the corresponding figures for Asia and South America

are 62% and 23%. This includes forest developing on

abandoned farmland, forest regrowing from having

been destroyed or logged and woody encroachment

into savanna (Mitchard & Flintrop, 2013). Secondary

forest often accumulates carbon rather rapidly when

young and then more slowly (Brown & Lugo, 1990;

Sierra et al., 2012). In a recent analysis of data from all

three tropical continents, Bonner et al. (2013) found car-

bon uptake rates of secondary forest from 0.25 to 6

MgC ha�1 annum�1, with a central tendency of about

2.5 MgC ha�1 annum�1, not very different from the

value obtained from the much earlier (but smaller) data

set by Brown & Lugo (1990). Working in forests on poor

soils at Chiapas, Mexico, Orihuela-Blemonte et al.,

(2013) found lower rates: the average uptake rate of car-

bon over 40 years, including both live and dead organic

matter and also soil carbon, was 2.66 MgC ha�1

annum�1, and the rate declined over three successive

cycles of slash and burn.

Using the FAO figures on the extent of secondary for-

est, we may estimate the uptake of carbon from these

forests as being from 0.8 PgC to 1.6 PgC annum�1. This

value is consistent with the tropical regrowth sink of
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Fig. 3 Estimates of the carbon flux from deforestation and deg-

radation in the tropics. The solid black line is redrawn from

Houghton et al. (2012). From the current analysis: black dashed

line from the data of Hansen et al., 2013; the dark blue lines

from calculations using the FAO data. The remaining lines are

redrawn from the synthesis by Van der Werf et al. (2009) as fol-

lows: purple, DeFries et al., 2002; black dots, IPCC working

group III (Barker et al., 2007; Nabuurs et al., 2007); pale blue,

Achard et al., 2002; brown, IPCC working group I (Denman &

Brasseur, 2007).
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1.6 � 0.5 PgC annum�1 proposed by Pan et al. (2011).

In the past, many authors have neglected the secondary

forest sink and focussed attention on the sink in the pri-

mary forests (Lewis et al., 2009; Wright, 2013), despite

the availability of remotely sensed and inventory data

on the extent of secondary forests, and its increasing

importance as the expanding agricultural land reaches

the point of abandonment (Lucas et al., 2000; FAO,

2010; Arag~ao et al., 2014).

Of all the tropical continents, Africa is the most diffi-

cult to analyse in terms of the areas of secondary vs.

primary forest because its land cover and land use is

the most complex, and the science infrastructure is con-

siderably weaker than elsewhere. Recent reviews (Bom-

belli et al., 2009; Ciais et al., 2010; Valentini et al., 2013)

have brought the area into sharp focus and it is hoped

that the research effort in Africa will eventually match

that in Latin America. Presently, Africa remains one of

the largest sources of uncertainty in our attempt to pro-

duce a tropical carbon budget. The most recent analysis

concludes that land-use emissions for Africa amount to

0.32 � 0.05 Pg C annum�1, while the African continent

as a whole is a small but uncertain net sink because the

accumulation of carbon in forests and woodlands

exceeds the land-use emissions (Ciais et al., 2010;

Valentini et al., 2013).

FPrimary, sink in the intact forest. The adjectives ‘intact’,

‘pristine’ and ‘virgin’ are used almost interchangeably

to describe forest which has not been disturbed in liv-

ing memory. Here, we use ‘intact’ acknowledging that

‘intact’ forest is neither pristine or virgin, having been

disturbed in various ways by humans over thousands

of years (including subsistence agriculture based on

slash and burn which may have occurred hundreds of

years ago, see Whitney et al., 2014).

It was formerly considered that intact forest is more

or less at a steady state (e.g. Odum, 1966). However, a

global data set suggests it is close to but not exactly in

steady state, and that even old forests accumulate car-

bon at a measurable rate (Luyssaert et al., 2008). This

may be the result of a CO2 fertilization effect, for rea-

sons enunciated by Lloyd & Farquhar (1996) and oth-

ers, or there may be other reasons or artefacts

pertaining to how forest plots have been selected and

sampled (Fisher et al., 2008). The data compiled by

Lewis et al. (2009) from primary forests on three conti-

nents suggest a very large pan-tropical forest sink of

1.3 Pg C annum�1, which these authors tentatively

attributed to CO2 fertilization. In making their estimate,

Lewis et al. (2009) estimated a rate of carbon accumula-

tion of 0.49 MgC ha�1 annum�1 from a large network

of forest plots which were ‘undisturbed’. If we apply

that rate over the pan-tropical areas which are intact

forests (a smaller area than that used by Lewis et al.,

2009 who seems to have lumped some secondary for-

ests with primary forests), we obtain an estimate of the

pan-tropical sink strength in primary forests of 0.47 Pg

annum�1.

FHarvest, the harvested products. Tropical forests are har-

vested (i) to provide wood-fuel and charcoal at the local

level and (ii) for timber and other wood products that

may be exported. Wood for fuel constitutes 70% of the

total wood harvest (FAO, 2011). The two categories

have different average lifetimes, but here we assume

that both are destined to be converted to CO2 immedi-

ately. In harvesting timber, the species that are highly

valued for their strength, appearance and durability are

selected. When harvesting wood-fuel there is still some

selection but it is less. The gathering of wood for fuel,

or for conversion into charcoal to sell in markets, is tra-

ditionally less than the biological wood production, but

in sparse African woodlands this is not always the case

and villagers walk far to seek fuel-wood, consuming

about 1 m3 of wood per person per year (Zimmerman

& Kormos, 2012).

To calculate the carbon flux from harvesting, we

assume that one cubic metre of timber contains

0.25 tonnes of carbon. The tropical timber harvest flux

calculated from this method, derived from the har-

vested volumes published in FAO (2011) is 0.34 PgC

annum�1, most of it being fuel-wood. If allowance is

made for wastage (assume a maximum of 50%) at the

saw mill, this figure increases only slightly to 0.36

because only a small fraction of the harvested product

is destined for the saw mill. Some of the harvested tim-

ber is for export markets and so part of the emissions

from this source may occur outside the tropics.

FPeat, the flux from the loss of tropical peat lands. Large

quantities of peat have been deposited in some areas of

the humid tropics over thousands of years (Page et al.,

2011). The tropical peat-land area is thought to be over

441 000 km2 (i.e. 11% of the global peat-land area) of

which more than half is in south-east Asia. In the

undisturbed state, the peat deposits are assumed to

decompose very slowly, so slowly that over a year their

contribution to emission can be assumed to be zero. But

in the process of conversion from undisturbed rain for-

est to industrial plantations, this peat is drained and

exposed to aerobic conditions; in some cases it may

burn and smoulder for years. It thus produces substan-

tial emissions of CO2 directly to the atmosphere and

may also lose carbon in the drainage waters (Moore

et al., 2013). The extent of this loss has been estimated

as high as 20 MgC ha�1 annum�1 from measurements

of subsidence at specific research sites (Hooijer et al.,

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12600
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2010, 2012). Of the 27.1 Mha of peat land in south-east

Asia, Hooijer et al. (2010) stated that 12.9 Mha had been

deforested and mostly drained by 2006. Thus, we may

expect this deforestation would lead to an average

efflux of some 0.54 PgC annum�1, a large figure which

has been overlooked by most researchers. Very large

losses may occur in some particular years: Page et al.

(2002) estimated that between 0.81 and 2.57 Gt of

carbon were lost in 1997 as a result of peat fires in

Indonesia.

FFire, the fire flux. Large amounts of CO2, CO and CH4

and black carbon are released into the atmosphere dur-

ing biomass burning (Seiler & Crutzen, 1980; Van der

Werf et al., 2003; Scholes et al., 2011). However, most of

the carbon fluxes have already been accounted for

above in our analysis of Fd, the deforestation flux.

There are also fluxes from shifting agriculture in

regions where the natural vegetation can be either sec-

ondary forest or savanna. These result from the clearing

of the woody vegetation which has developed over

periods that may vary from 2 to 30 years. In a most

detailed analysis, Silva et al. (2011) examined the fluxes

of greenhouse gases from shifting agriculture in the tro-

pics. Using FAO agricultural statistics and land areas

from the Global Land Cover 2000 (GLC2000) data set,

they estimate that carbon fluxes from the tropics were

as high as 0.20 PgC annum�1 though any losses from

burning might be expected to be offset by the carbon

sequestration in recovering fallows, as Silva et al. (2011)

acknowledged, but only in the final sentence of their

article.

In burning, not all of the biomass carbon is converted

to gaseous form. Working in the Amazon forest, Fearn-

side et al. (2001, 2007) found that 1.8% of the above-

ground carbon remained as charcoal. Its fate is not

well-known but some information may be gleaned

from consideration of Brazil’s Atlantic forest. This for-

est was largely removed between the 1850s and the

1970s, but the black carbon from charcoal stored in the

soil continues to be found today in the drainage water

(Dittmer et al., 2012).

During burning, carbon particles enter the atmo-

sphere as smoke, and are widely dispersed over vast

regions of land and ocean. They are resistant to biologi-

cal decomposition, but probably not as resistant as was

thought previously (see Bird et al., 1999). This carbon

flux was estimated by Kuhlbusch & Crutzen (1996) to

be 0.05–0.20 PgC annum�1, but a recent estimate

(which we adopt in this analysis) suggests a much

lower figure of 0.007 PgC annum�1 (Bond et al., 2013).

It should nevertheless be kept in mind that elemental

carbon, whether as charcoal or smoke, is sometimes

considered to be a carbon sink as it represents transfer

from the relatively volatile form (biomass) to a rela-

tively stable form (elemental carbon). On the other

hand, the presence of black carbon in the atmosphere is

probably a major contributor to global warming (Bond

et al., 2013).

Sum of the CO2 fluxes

The sum of the sink terms FPlantation, FSecondary, FPrimary

is 1.85 � 0.09 Pg C annum�1, while the sum of the

source terms FDeforestation, FDegradation, FHarvest and FPeat
is 2.01 � 1.10 Pg annum�1, making the tropics a net

carbon source of 0.16 Pg annum�1 with an uncertainty

of about � 1.1 (Fig. 4). Considering the uncertainties,

we may conclude that the land surface is nearly carbon

neutral, but could be a strong sink if deforestation and

degradation were to cease.

It may be useful to compare these data with the emis-

sions from fossil fuel burning. For tropical countries,

this now amounts to 0.74 PgC annum�1 (Boden et al.,

2010). The per capita fossil fuel emissions of tropical

countries are closely related to economic activity and

trade (DeFries et al., 2010) and have increased sharply

since 2004 suggesting that those tropical countries that

have achieved significant economic development have

done so by burning fossil fuels rather than by using bio-

mass. The average annual per capita emissions of the

tropical countries in this study is 0.57 MgC person�1,

much lower than the corresponding figures from devel-

oped regions of the world (Australia is 5.0, USA is 4.6,

UK is 2.09 MgC person�1 annum�1), and lower than

the global average of 1.30 MgC person�1 annum�1.

Carbon flux (Pg annum–1)

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5

Deforestation

Peat burn

Harvest

Degradation

Primary forest

Secondary forest

Plantations

Fig. 4 Components of human-induced change in the tropical

biological carbon balance, with uncertainties. Negative denotes

uptake from the atmosphere to the land surface, positive

denotes loss of carbon to the atmosphere. The data are applica-

ble to the period 2005–2010.
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The atmospheric signal

The carbon cycle is ‘boundless’ as several authors have

emphasized (Battin et al., 2009) and site-related (ecosys-

tem) studies suffer from the fact that sampling field

plots across the entire world in a proper statistical man-

ner is an impossibility. Not only is vegetation enor-

mously diverse in its natural formations and even more

so in its disturbed state, but also there are lateral flows

of dissolved carbon that we are only beginning to

understand (Richey et al., 2002; Grace & Malhi, 2002).

At best, plot-based studies such as those discussed

above may be used to reveal component processes and

define underlying trends which can be associated with

climatological variation, and used to calibrate models

(Friend et al., 2007).

An alternative approach is to estimate sources and

sinks from the effect the land surface has on the concen-

tration of CO2 in the atmosphere. This can be done by

using (i) measurement of CO2 concentration from a glo-

bal network of points followed by an approach known

as ‘atmospheric inversion’, a procedure first realized by

Bolin & Keeling (1963), then developed by Enting &

Mansbridge (1989) and Tans et al. (1989) or (ii) exami-

nation of many profiles of CO2 in the planetary bound-

ary layer, achieved by aircraft flights (Chou et al., 2002;

Gatti et al., 2010). Interpretation of the data is greatly

enhanced by the use of isotopic concentrations: fluxes

over land and ocean can be distinguished by their car-

bon isotopic signal d13C, as photosynthesis favours

uptake of 12CO2 against
13CO2, while the purely physi-

cal gas exchange between the atmosphere and the

ocean is isotope-indiscriminate. Thus, the contributions

to global sources and sinks made by ocean vs. the land

may be compared.

Initially, research groups working at global scale

developed their own computational procedures to esti-

mate fluxes from concentrations, but in the late 1990s

there were strong attempts to work together (Gurney

et al., 2004). Data on the global distribution of fossil fuel

emissions (Boden et al., 2010) are subtracted from the

calculated terrestrial fluxes to reveal an estimate of the

natural carbon fluxes associated with photosynthesis,

respiration and air-sea exchange. Gurney et al., (2004)

and Peylin et al. (2013) have reported the results from

several different models covering the periods 1992–
1996 and 2002–2008 respectively (Table 6). Both results

say that the northern hemisphere contains a large land

sink of carbon, of order 2.0 Pg annum�1, usually attrib-

uted to the extensive areas of growing forests and plan-

tations in the temperate and boreal regions. The

uncertainty term is much lower than the estimate. But

for the tropics, the uncertainty is generally similar to, or

greater than, the estimate. For example, of the 11 mod-

els reported by Peylin et al. (2013) one indicates the tro-

pics to be a land sink, four suggest the tropics to be a

very weak source, and five show a source greater than

1 Pg annum�1. The main reason for the large uncer-

tainty from the inversion result is the small number of

sampling stations located in the tropics. Another possi-

bly reason is that the biological components of carbon

flux are highly sensitive to temperature and drought,

and thus vary across sampling periods and across sam-

pling space.

Several groups have inferred fluxes from vertical pro-

files of concentration using aircraft (Chou et al., 2002;

Lloyd et al., 2007; Gatti et al., 2010, 2014). Many such

data were compiled by Stephens et al. (2007), who

found evidence for a rather different balance between

tropical and northern sinks: they suggested that the

temperate zone is less of a sink than previously

thought, while the tropics may be a significant sink.

A recent aircraft study provides insights into the

behaviour of the carbon sink in the Brazilian Amazon

(Gatti et al., 2014). Vertical profiles of CO2 up to 4 km

showed marked differences between the burning sea-

son (July–October) when the surface concentrations

were enriched by several parts per million of CO2. In

the rest of the year, photosynthesis by the vegetation

drew down the surface concentration below the back-

ground. By contrasting the year 2010 (a drought year)

with 2011 (a more normal year), and by also measuring

carbon monoxide (a marker for fire), the researchers

were able to separate the impact of drought on the basic

biological process and on the fire occurrence. In the

drought year, the uptake of carbon dioxide by the

Table 6 Global sources and sinks according to atmospheric inversions, not counting the fossil fuel emissions. The stated values

are the mean of several models followed by � Standard Deviation (often used as the measure of uncertainty). Units: PgC annum�1

Authors Period

Global North Tropical South

Land Ocean Land Ocean Land Ocean Land Ocean

Gurney

et al., (2004)

1992–1996 �1.4 � 0.8 �1.5 � 0.8 �2.3 � 0.8 �1.3 � 0.6 1.1 � 1.1 0.3 � 0.5 �0.2 � 0.7 �0.8 � 0.5

Peylin

et al. (2013)

2001–2004 �1.5 � 0.6 �1.6 � 0.5 �2.2 � 0.5 �1.1 � 0.3 0.9 � 1.0 0.8 � 0.2 �0.1 � 0.4 �1.3 � 0.3

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12600
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vegetation was reduced by 0.22 PgC. Overall, the

Amazon basin was changed from being more or less

carbon neutral in the normal year of 2011 to being a

source of 0.48 PgC of carbon in the drought year.

Sensitivity of the flux to climate change

The question of whether the carbon balance of the land

surface changes from year to year, and whether there

are long-term changes associated with global warming

remains highly controversial since the modelling paper

by Cox et al. (2000), which predicted that the rainforest

would be converted to savanna as a result of warming,

with the loss of substantial stocks of soil carbon, a pro-

cess involving a positive feedback on global warming

caused by the additional release of CO2. From a physio-

logical viewpoint, the evidence at that time was slim,

and even now there are still only a few long-term

experiments that have a bearing on the issue (Wood

et al., 2012). Reliance on models which make simplified

assumptions without any experimental evidence seems

ill-advised, as matters such as the effect of elevated

CO2 on photosynthesis and the effect of warming on

soil respiration in the long term are not properly estab-

lished. Indeed, a recent report of model outputs tends

to rebut Cox’s notion: only one of 22 models suggests

that tropical rain forests will decline by the end of the

century (Huntingford et al., 2013). There are however a

few lines of enquiry which do not rely on models, but

on empirical evidence, as outlined below.

Eddy covariance data of CO2 fluxes over tropical eco-

systems may be used in an attempt to investigate the

sensitivity of those fluxes to changes that occur natu-

rally as a result of changing weather patterns or sea-

sons. Using a statistical model fitted to a very limited

data set, Grace et al. (1995) found that small increases

in temperature turned the forest from a modest sink of

carbon to a large source, as a result of the effect of tem-

perature on respiration, especially soil respiration. Most

of studies on gas exchange of vegetation and soils have

been short term, particularly those on soil respiration.

For soils, longer term and larger scale observations sug-

gest a somewhat different outcome from that obtained

in short campaigns, because over a period of weeks

and years the microbial populations change in a pro-

cess which is (speculatively) termed ‘acclimation’ (Giar-

dina & Ryan, 2000; Grace & Rayment, 2000; Knorr et al.,

2005). This may involve shifts in the quantity and qual-

ity of the organic matter available for the microbial

population (Davidson & Janssens, 2006). Perhaps new

microbes with different temperature sensitivities estab-

lish a strong presence in the forest soil.

The respiratory fluxes from soil are large (Fig. 2).

One review of the available tropical data reported

annual rates of soil respiration of 3–6 lmol

CO2 m�2 s�1, equating to 11–22 MgC ha�1 annum�1

compared to typical intact forest growth rates of 2–4
t ha�1 annum�1 (Sotta et al., 2004). Some of this flux is

autotrophic respiration, originating from plant roots,

but about half is heterotrophic respiration arising from

the microbial breakdown of organic matter (Butler

et al., 2012). This breakdown releases nitrogen and

phosphorus from organic compounds and so is impor-

tant not only because of CO2 release but also because of

the possible stimulatory role in plant nutrition. In

short-term experiments (hours, days) the rate of respi-

ration is a more or less exponential function of temper-

ature over the normal environmental range (Lloyd &

Taylor, 1994). Given that the observed temperature in

the tropics has increased by about 0.5 °C since 1950,

and is set to increase even more (IPCC 2007), it seems

likely that carbon efflux from the soil has been increas-

ing over the last 50 years and will continue to do so.

Wood et al. (2012) draw no firm conclusions about the

effect of temperature on the soil carbon efflux but

instead they call for long-term field experimentation in

the tropics.

Some longer term manipulation experiments do exist.

There have been two long-term (at least 7 years)

drought experiments in the Amazon where about half

the annual rainfall was excluded by means of shelters.

Nepstad et al. (2007) reported an increased mortality of

trees. In a very similar but independent experiment, Da

Costa et al. (2010) demonstrated that 38 MgC ha�1 were

lost over seven years (i.e. 5.4 MgC ha�1 annum�1) and

an increased mortality of trees occurred. Individual

years of extreme drought, like 2005 and 2010, are likely

to cause large carbon losses according to estimates by

Phillips et al. (2010) quite apart from any direct adverse

effects of associated high temperatures.

There are rather few recent attempts to measure

directly the effect of changing temperature on the

growth of tropical trees (Clark et al., 2013; Vlam et al.,

2014). They show a decline in growth rate with increas-

ing temperature.

Modelling the effect of rising temperature on the bal-

ance between photosynthetic uptake and respiratory

losses by ecosystems is challenging because there are

many processes to be considered as components of

‘ecosystem metabolism’ (Malhi, 2012): the photosyn-

thetic uptake is likely to interact with water, nutrient

and CO2 supply, while the respiratory losses involve

both autotrophic and heterotrophic components which

are likely to be especially sensitive to water and nutri-

ent supply, but not in the same way as photosynthesis

(Lloyd & Farquhar, 1996). The temperature effect on

soil respiration over long periods appears to be quite

different from the exponential relation found in

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12600
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short-term experiments (Giardina & Ryan, 2000; Grace

& Rayment, 2000; Knorr et al., 2005). Thus, modelling is

not sufficiently reliable to establish a firm link between

temperature and ecosystem carbon storage.

One approach towards exploring the temperature

sensitivity of the carbon cycle over the long term is to

investigate carbon stocks along well-defined geographi-

cal gradients. In a meta-analysis of pan-tropical data

from three continents, Raich et al. (2006) demonstrated

that soil organic matter decreased by 8 MgC ha�1 for

every degree Kelvin, while plant biomass increased by

5.2 MgC ha�1 K�1. The differences between these two

fluxes, 2.8 MgC ha�1 K�1, may be speculatively con-

sidered to be a measure of the extent to which carbon

accumulation falls with temperature in the tropics. Up-

scaling this temperature coefficient to the entire area of

tropical forests (including primary, secondary and

plantations, about 20 million km2) suggests a carbon

loss of 5.6 Pg for every degree of warming. Such a

large signal should be evident in the atmospheric data.

To some extent it is: Langenfelds et al. (2002) showed

that the interannual variations in global atmospheric

CO2 concentrations were associated fluctuations in

d13CO2, showing the importance of terrestrial vegeta-

tion in the carbon cycle. They further demonstrated

that years with high CO2 were associated with high

CH4, CO and H2, all gases coming from biomass burn-

ing. Later, Heimann & Reichstein (2008) showed that

such high CO2 years were associated with large scale

El Ni�no influences. The causal processes in that case

may be: El Ni�no ? Drought and high surface tempera-

tures ? Fire ? Carbon Loss. This chain of cause-

and-effect may be more important than: Warm year ?
High respiration and Low photosynthesis ? Carbon

Loss.

Models, however preliminary, provide a means to

begin the integration of knowledge and to upscale the

information to reveal the bigger picture. Cox et al.

(2013) present the most recent attempt to use climate-

carbon models to infer the sensitivity of the tropical

carbon cycle to warming. Seven such models were run,

and their results showed considerable scatter; however

the authors were able to conclude that warming is

likely to release 53 � 17 Pg carbon per degree Kel-

vin over the period 1960–2099. Assuming two degrees

of global warming, the annual increase in emis-

sions would therefore be substantial, at 0.76 PgC

annum�1.

Concluding remarks

The perturbations to the tropical carbon cycle brought

about directly by human activities cause about two

million tonnes of carbon per year to be added to the

atmosphere as CO2. We have shown how this loss of

carbon is more or less balanced by the strong forest

sink. Based on our analysis, it is difficult to deny Pan’s

assertion of a ‘large and persistent carbon sink in the

world’s forests’ (Pan et al., 2011), although Wright has

recently tried to do so (Wright, 2013). There seems little

doubt that the combination of primary and secondary

forest produces a sink approaching 2 PgC annum�1 in

the tropics. The contribution of the secondary forests

has not been fully recognized previously, and seems to

have been overlooked (Wright, 2013).

To what extent is the knowledge and understanding

of the tropical carbon budget now adequate as the basis

for REDD and REDD+ projects? The important techni-

cal advances made recently have been in satellite

remote sensing, which has delivered moderately high

resolution data on forest cover change (Hansen et al.,

2013) and promises to provide data on biomass from

radar backscatter (Le Toan et al., 2011). Previously, the

technical challenge of doing this and the inadequacy of

inventory-based reporting were often cited as an obsta-

cle to the progress of REDD+. Future developments in

remote sensing, outlined above, promise additional

capability to detect change at scales that are appropri-

ate to assessment of change in the global carbon cycle

and even to monitor quite small, community-based,

carbon projects (Mitchard et al., 2013a,b). It remains

important to make such data easily available and free

to governments and land managers.
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