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On the motive of the group of units
of a division algebra

Evgeny Shinder

February 14, 2014

Abstract

We consider the algebraic group GL1(A), where A is a division algebra of prime degree
over a field F , and the associated motive in the Voevodsky category of motivic complexes
DM eff

− (F ). We relate the motive of GL1(A) to the motive of the Čech simplicial scheme
X , associated to the Severi-Brauer variety of A, and compute the second differential in the
resulting spectral sequence for motivic cohomology.

Keywords: division algebra, Severi-Brauer variety, motivic cohomology

Mathematics Subject Classication 2010: 17A35, 11E57, 14F42, 19E15

1 Introduction

In this paper we consider motives and motivic cohomology of algebraic groups GL1(A) for a
division algebra A of prime degree n over a perfect field F . Motivation to study these groups, as
well as more complicated groups SL1(A) comes from the problems arising in algebraic K-theory,
in particular non-triviality of SK1(A) [S91b], [Me].

It is proved by Biglari [B] that motives of split reductive algebraic groups such as GLn(F )
and SLn(F ) are Tate motives. Furthermore, using higher Chern classes in motivic cohomology
constructed by Pushin [Pu] one can write down explicit direct sum decompositions for the motives
of these two groups with integral coefficients. Proposition 4.2 in the present paper deals with
the case of GLn(F ), and the case of SLn(F ) can be treated similarly. Non-split algebraic groups
such as GL1(A) and SL1(A) are more intricate. We note however that all the complications lie in
n-torsion effects (n = deg(A)): we are back in the split case if we consider motives with coefficients
in Z[1/n].

The motive of GL1(A) is closely related to the motive of the Severi-Brauer variety SB(A). We
follow an idea of Suslin to break up the motive M(GL1(A)) into two pieces: the first piece is a
very simple Tate motive, whereas the second piece is a twisted Tate motive M over X , where X
is the Čech simplicial scheme associated to the Severi-Brauer variety SB(A) (Theorem 4.7). We
investigate the structure of the latter motive M using the twisted slice filtration, and compute the
second differential in the arising spectral sequence (Theorem 4.9). Using the spectral sequence
we compute some lower weight motivic cohomology groups of GL1(A) (Corollary 4.16) when A is
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given by a symbol θ = (χ, a). We also consider the case of degree 2 algebra where one can write
explicit decomposition for M(GL1(A)) (Proposition 4.5).

We now describe the structure of the paper in some detail.
In section 2 we recall the basic facts on central simple algebras, Severi-Brauer varieties and the

groups GL1(A). We formulate and prove Proposition 2.8, which is one of the key geometric tools
we use. Some classical references on Severi-Brauer varieties include [A] and [Q].

In section 3 we recall some constructions and results due to Voevodsky [V00], [V03a], [V10a],
[V10b], and formulate Propositions 3.5 and 3.6, which constitute the second geometric tool we
need and whose proofs are rather straightforward modulo Voevodsky’s general machinery. We
include a version of the Rost nilpotence theorem (Corollary 3.10), which will not be used in the
main body of the text, but fits naturally in the context of motives over X and the slice filtration
and whose proof is this context is also rather straightforward.

In section 4 we consider the motive and motivic cohomology of GL1(A) by first looking at the
split case, then the case of n = 2 and finally the general case of prime n ≥ 3.

Notation: Everywhere in the paper F stands for a perfect field and A is a central simple algebra
over F of degree n which is assumed to be prime in Section 4. Throughout the text we keep track
of a simple explicit example of a quaternion algebra (n = 2) in which case we assume char(F ) 6= 2.
We often use the equality sign to indicate a canonical isomorphism between algebraic varieties or
motives.

Acknowledgments: The author expresses his gratitude to Professor Andrei Suslin for numerous
conversations on matters discussed in the paper, Oleg Podkopaev for careful reading a draft of
this paper, Nikita Semenov, Alexander Vishik and Kirill Zainullin for discussions concerning the
Rost nilpotence theorem, and Joël Riou for his help with the proof of Proposition 4.1. Finally
the author would like to thank the referee for numerous helpful suggestions for improving the
exposition, as well as pointing out some mistakes in the previous version of the text.

2 Varieties associated to central simple algebras

A central simple algebra A of degree n over a field F is an associative unital algebra of dimension
n2 over F that has no nontrivial two-sided ideals and such that the center of A coincides with F .

According to the Wedderburn theorem, A is isomorphic to the matrix algebra Mn(D) over a
central division algebra D over F . A is called split if it is isomorphic to Mn(F ). It is well known
that any central simple algebra splits in some finite separable extension of scalars E/F :

AE = A⊗F E ∼= Mn(E).

Galois descent implies that det : Mn(F sep)→ F sep and tr : Mn(F sep)→ F sep descend to define
the so called reduced norm map Nrd : A→ F and the reduced trace map Trd : A→ F .

Example 2.1. Let char(F ) 6= 2. A quaternion algebra
(
a,b
F

)
is defined for a, b ∈ F ∗ to be an F -

vector space of dimension 4 with the basis 1, i, j, k and multiplication i2 = a, j2 = b, ij = −ji = k.
It follows from the Wedderburn theorem, that

(
a,b
F

)
either splits or is a division algebra. Trd

and Nrd are the usual trace and norm: Trd(x + yi + zj + wk) = 2x, Nrd(x + yi + zj + wk) =
x2 − ay2 − bz2 + abw2.

Any central simple algebra of degree two is in fact isomorphic to a quaternion algebra.
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Recall that the Severi-Brauer variety SB(A) is a closed subvariety in Gr(n,A) representing the
functor which associates to a commutative algebra R over F the set

SB(A)(R) = {right ideals of A⊗R which are projective of rank n over R}.

Remark 2.2. Let V be a vector space of dimension n over F , and let A be a split central simple
algebra A = End(V ). In this case we have a canonical identification

SB(End(V )) = P(V ),

where a one-dimensional subspace U ⊂ V corresponds to a right ideal of operators on V whose
image is contained in U . In general we have such a description only over a splitting field of A, so
that an arbitrary Severi-Brauer variety SB(A) is a twisted form of the projective space Pn−1.

Remark 2.3. If SB(A) has a rational point that is to say A has a right ideal I of rank n, then
A has to be split. Indeed, the right multiplication action Rα : I → I, a ∈ A satisfies Rαβ = RβRα,
and the homomorphism

R : A→ End(I)op = End(I∗)

is an isomorphism by the Schur lemma.

Example 2.4. In the case A =
(
a,b
F

)
, SB(A) is isomorphic to a conic in P2 defined by the equation

x2 = ay2 + bz2.

By definition, SB(A) being a subvariety in a Grassmannian is endowed with a locally free sheaf
J of rank n with a right A action. J is a subsheaf of OSB(A)⊗A. We write J ∗ for the dual of J .

Remark 2.5. In the split case A = End(V ), J is identified with V ∗ ⊗O(−1) = Hom(V,O(−1))
over P(V ).

Lemma 2.6. The sheaf of algebras OSB(A) ⊗ A is isomorphic to End(J ∗).

Proof. The isomorphism is given by the right action of A on J , which is fiberwise given in Remark
2.3.

We now define the linear algebraic group GL1(A). For any R is a commutative algebra over F
the R-points of this groups are:

GL1(A)(R) = (A⊗F R)∗ = {g ∈ A⊗F R : Nrd(g) 6= 0}
One can consider GL1(A) either an open subscheme in An2

or as a form of GLn(F ) twisted by
the cocycle defining A.

Example 2.7. For the quaternion algebra A =
(
a,b
F

)
, GL1(A) is an open subscheme in A4 defined

by x2 − ay2 − bz2 + abw2 6= 0.

Let E → T be a vector bundle of rank n and consider the associated group scheme GLT (E) of
local automorphisms of E over T . Let αE be the tautological automorphism of p∗(E) = GLT (E)×T
E (p : GLT (E) → T is the projection) which maps (g, v) to (g, g · v). Via explicit description of
K1 by Gillet and Grayson [GG], αE defines an element [αE] ∈ K1(GLT (E)).

This applies in particular to the case of the trivial rank n bundle E = F n over a point, in
which case we denote the corresponding element in K1(GLn(F )) by [α0].
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Proposition 2.8. There is a canonical isomorphism of varieties over SB(A)

SB(A)×GL1(A) ∼= GLSB(A)(J ∗),

where J is the tautological sheaf of ideals on SB(A).
Furthermore, the tautological class [αJ ∗ ] ∈ K1(GL(J ∗)) corresponds under this isomorphism

to a class in K1(SB(A) × GL1(A)) which in the split case is identified with [p∗1(O(1))] · [p∗2(α0)]
where the product is the standard multiplication for algebraic K-groups K0 ⊗K1 → K1.

Proof. The first assertion follows from Lemma 2.6. Indeed we have a commutative diagram of
locally free sheaves

EndSB(A)(J ∗)
∼=
��

det
// OSB(A)

OSB(A) ⊗ A Nrd
// OSB(A)

and we simply need to pass to subvarieties of non-degenerate elements in both rows.
To prove the second assertion, consider the split case A = End(V ), and identify J ∗ with

V ⊗O(1) by Remark 2.5. Then the isomorphism in question becomes the canonical identification:

P(V )×GL1(End(V )) = GLP(V )(V ⊗O) = GLP(V )(V ⊗O(1)),

and the claim follows from the following lemma.

Lemma 2.9. Let E be a vector bundle and L be a line bundle over the same quasiprojective base T .
Then the tautological class [αE⊗L] ∈ K1(GLT (E ⊗ L)) corresponds to [p∗L] · [αE] ∈ K1(GLT (E))
(p is the projection to T ) under the canonical isomorphism of group schemes over T

GLT (E) ∼= GLT (E ⊗ L).

Proof. Let φ : GLT (E) → GLT (E ⊗ L) denote the isomorphism in question. φ sends each
pair (t ∈ T, g ∈ Aut(Et)), to (t, g ⊗ id ∈ Aut(Et ⊗ Lt)). Thus it follows that for φ∗(αE⊗L) ∈
Aut(p∗(E)⊗ p∗(L)) we have

φ∗(αE⊗L) = αE ⊗ idp∗(L). (2.1)

Using the Jouanolou trick [J], we may assume that T = Spec(R) is affine, and then E corre-
sponds to a finitely generated projective module M over R. In this setting GLT (E) is also affine.
Indeed if M is free of rank r, then GLT (E) = T ×GLr(F ), and in general M is a direct summand
of a trivial R-module, hence GLT (E) is closed in some T ×GLr(F ).

In the affine case the claim follows from (2.1) which is the definition of the product K0(S) ⊗
K1(S)→ K1(S) (see [Mi], page 27).
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3 Motivic slice filtration

3.1 Generalities on Voevodsky’s categories of motives

We recall some definitions and notation from [V00], [V03a], [V10a]. We work in the category
DM eff

− (F ) of motivic complexes over F as defined in [V00] and in its full subcategory DMX
defined in [V10a] for a simplicial scheme X over F .

Recall that DM eff
− (F ) is a tensor triangulated category which admits a covariant monoidal

functor from the category of smooth varieties over F

M : Sm/F → DM eff
− (F ),

satisfying the usual properties such as Mayer-Vietoris and localization distinguished triangles.
The category of Tate motives is defined as the full subcategory DM eff

− (F ) generated by Tate
motives Z(q)[p], q ≥ 0, p ∈ Z. For example Pk and Ak − {0} have Tate motives:

M(Pk) =
k⊕
j=0

Z(j)[2j]

M(Ak − {0}) = Z⊕ Z(k)[2k − 1].

(3.1)

We will frequently use the Cancellation Theorem [V10b]

HomDMeff
− (F )(M(1), N(1)) = HomDMeff

− (F )(M,N) (3.2)

where M = M ⊗ Z(1) and by equality we mean a canonical isomorphism given by the map from
the group on the right to the group on the left.

For any smooth variety X the morphism X → Spec(F ) gives rise to a morphism of motives

M(X)→M(Spec(F )) = Z.

One includes this morphism into a distinguished triangle

M̃(X)→M(X)→ Z→ M̃(X)[1]. (3.3)

A choice of rational point on X (in the case a rational point exists) determines a splitting

M(X) = M̃(X)⊕ Z. (3.4)

Taking the category DM eff
− (F ) for granted the motivic cohomology groups and the reduced

motivic cohomology groups of degree p ∈ Z and weight q ≥ 0 can be defined to be

Hp,q(X) := HomDMeff
− (F )(M(X),Z(q)[p])

H̃p,q(X) := HomDMeff
− (F )(M̃(X),Z(q)[p]),

so that distinguished triangles in DM eff
− (F ) become long exact sequences in motivic cohomology

of each weight. It is convenient to define motivic cohomology for q < 0 to be identically zero.
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If Z is a closed subvariety in X, then we define the motive of X with supports in Z, MZ(X) as

MZ(X) := C∗(Ztr(X)/Ztr(X − Z)).

We have a distinguished a triangle of motives

M(X\Z)→M(X)→MZ(X)→M(X\Z)[1].

Recall that if Z is smooth of codimension c then we have the Gysin isomorphism ([SV], Theorem
4.10)

MZ(X) ∼= M(Z)(c)[2c]. (3.5)

Lemma 3.1. If T1 ⊂ T0 ⊂ S is a sequence of closed embeddings, then there is a distinguished
triangle in DM eff

− (F )

MT0\T1(S\T1)→MT0(S)→MT1(S)→MT0\T1(S\T1)[1]. (3.6)

Proof. The octahedron axiom of triangulated categories ([BBD], Proposition 1.1.11) implies that
the commutative square

M(S) id //M(S)

M(S\T0) //

OO

M(S\T1)

OO

can be completed to a 3 × 3 commutative square with rows and columns being distinguished
triangles:

MT0(S) //MT1(S) //MT0\T1(S\T1)[1]

M(S) //

OO

M(S) //

OO

0

OO

M(S\T0) //

OO

M(S\T1)

OO

//MT0\T1(S\T1)

OO

Thus cone(MT0(S) → MT1(S)) ∼= MT0\T1(S\T1)[1] and we get the distinguished triangle (3.6).

Recall that the Čech simplicial scheme X = Č(SB(A)) (see [V03a], appendix B) is defined by
Voevodsky to consist of Xk = SB(A)k+1 with the face and degeneracy maps taken to be partial
projections and diagonals. The canonical morphism M(X ) → Z is an isomorphism if SB(A) has
an F -point (i.e. if algebra A splits). Recall that X is an embedded simplicial scheme, which means
be definition that M(X )⊗M(X ) = M(X ).

In [V10a], Voevodsky introduces a tensor triangulated category DM eff
− (X ) of motives over X

and its close relative DMX , a full subcategory of DM eff
− (F ), consisting of objects M satisfying

the property that the canonical morphism

M ⊗M(X )→M ⊗ Z = M

6



is an isomorphism. Note that M(X ) is an object in DMX and we will occasionally write ZX for
M(X ) to emphasize that in the split case ZX is canonically isomorphic to Z.

The full embedding DMX ⊂ DM eff
− (F ) admits a right adjoint functor

Φ : DM eff
− (F )→ DMX ,

which on objects is defined to be
Φ(M) = M ⊗M(X )

(see Lemma 6.10 in [V10a].)

Remark 3.2. It follows from the adjunction property that for any motive M in DMX , q ≥ 0,
p ∈ Z

Hp,q(M,Z) = HomDMeff
− (F )(M,Z(q)[p]) ∼= HomDMX (M,ZX (q)[p]).

Let DT (X ) ⊂ DM eff
− (X ) denote the subcategory of effective Tate motives over X .

3.2 Twisted motivic slice filtration

We need a version of a slice filtration on the categories of motivic complexes (see [V10a] and [HK]).
Let M be an object in DMX . For each q ≥ 0 we define the q-th term of the slice filtration of

M to be:
ν≥qX M = HomDMeff

− (F ))(Z(q),M)(q)⊗ ZX .

The internal Hom-object above exists by [V00], Proposition 3.2.8.

Remark 3.3. It is easy to see using the adjunction property that

HomDMeff
− (F )(Z(q),M)(q)⊗M(X )

is in fact isomorphic to
HomDMX

(ZX (q),M)(q).

It is also easy to see that for Tate motives our slice filtration coincides with the one from [V10a].

We define νqX as the cone in the distinguished triangle

ν≥q+1
X (M)→ ν≥qX (M)→ νqX (M)→ ν≥q+1

X (M)[1].

The triangulated functors {ν≥qX } commute with extension of scalars and for each k, j ≥ 0 satisfy

ν≥k+jX (M(j)) = ν≥kX (M)(j).

Remark 3.4. For a split Tate motive M = ⊕p,qZX (p)[q]⊕ap,q we have

ν≥kX (M) = ⊕p≥k,qZX (p)[q]⊕ap,q

and
νkX (M) = ⊕qZX (k)[q]⊕ak,q .
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The following two propositions provide geometric criteria for motives to lie in DMX and DT (X )
respectively.

Proposition 3.5. Let T be a variety over F .
1. If T is smooth and for each generic point η of T AF (η) is a split algebra then M(T ) lies in

DMX .
2. Let T ⊂ S be a closed embedding of T into a smooth variety S. If for each scheme-theoretic

point z ∈ T AF (z) is a split algebra then MT (S) lies in DMX .

Proof. (1) We need to show that M(T )⊗ C = 0 where C = cone(M(X )→ Z). This follows from
[V03a], Lemma 4.5.

(2) We filter T by closed subvarieties

TN ⊂ TN−1 ⊂ · · · ⊂ T1 ⊂ T0 = T ⊂ S

where Tk\Tk+1 are nonsingular. We prove by the descending induction on k that MTk(S) is an
object in DMX . The base case k = N follows from (1) and the Gysin isomorphism (3.5): since TN
is smooth,

MTN (S) ∼= M(TN)(c)[2c] ∈ DMX .
For the induction step, we use the distinguished triangle of Lemma 3.1:

MTk\Tk+1
(S\Tk+1)→MTk(S)→MTk+1

(S)→MTk\Tk+1
(S\Tk+1)[1]

Since by induction hypothesis and by applying the first claim of the Lemma again, MTk+1
(S) and

MTk\Tk+1
(S\Tk+1) lie in DMX , MTk(S) also lies in DMX .

Proposition 3.6. Let M be an object in DMX . Assume that MF (SB(A)) is a split Tate motive of
the form ⊕p,qZ(p)[q]⊕ap,q . Then the slice filtration of M in DMX has successive cones which are
split Tate motives

νpX (M) = ⊕qZX (p)[q]⊕ap,q .

In particular, M is a mixed Tate motive over X .

For the proof we need the following lemma, which we borrow from [S].

Lemma 3.7. For any M from DM eff
− (F ) and p ∈ Z the extension of scalars Hp,0(M) →

Hp,0(MF (SB(A))) is an isomorphism.

Proof. It is sufficient to prove the statement in the case M = M(S)[j] where S is a smooth
connected scheme over F . In this case the homomorphism in question takes the form:

Hp−j,0(S)→ Hp−j,0(SF (SB(A))),

and both groups are equal 0 for p 6= j.
S is connected, and SB(A) being geometrically irreducible has separably generated function

field F (SB(A)), hence SF (SB(A)) is connected as well. Therefore if p = j both cohomology groups
in question are isomorphic to Z with the map being the identity.
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Proof of Proposition 3.6. Let νpXM = cp(M)(p). Then

Hom(νpXM,ZX (p)[q])

= Hom(cp(M),ZX [q]) by the Cancellation Theorem (3.2)

= Hq,0(cp(M),Z) by Remark 3.2

= Hq,0(cp(MF (SB(A))),Z) by Lemma 3.7

= Hq,0(⊕rZ[r]⊕ap,r ,Z) by Remark 3.4

= Z⊕ap,q .

Therefore there exists a morphism φp : νpXM → ⊕qZX (p)[q]⊕ap,q such that φp becomes an
isomorphism after scalar extension to F (SB(A)). This implies that cone(φp)F (SB(A)) = 0, so that
cone(φp) = cone(φp)⊗M(X ) = 0 by [V03a], Lemma 4.5, and thus φp is an isomorphism.

Remark 3.8. As the example of M = M(SB(A)) shows, M itself is not always a split Tate motive.
Indeed it is a result of Karpenko [K] that for a division algebra A, M(SB(A)) is indecomposable1.

Example 3.9. Let A =
(
a,b
F

)
, and let Ma,b = M(SB(A)) be the Rost motive. In this case the slice

filtration is the distinguished triangle

ZX (1)[2]→Ma,b → ZX → ZX (1)[3]

from [V03a], Theorem 4.4.

As a corollary of Proposition 3.7 and the existence of the slice filtration we easily deduce the
following version of the Rost nilpotence theorem (cf [CGM], Cor. 8.4 and [R], Cor. 10).

Proposition 3.10. Let M be a Tate motive of the form M =
⊕n

k=0 Z(ik)[2 ik]. Let

f : M(SB(A))⊗M →M(SB(A))⊗M

be a morphism of motives. If fF (SB(A)) is an isomorphism then f is an isomorphism.

Proof. Consider the slice filtration on M(SB(A))⊗M . By Lemma 3.6 the slices νpX (M(SB(A))⊗
M) are equal to ZX (p)[2p]⊕ap , for some ap ≥ 0. The morphisms induced on the slices are given by
matrices with coefficients in Hom(ZX ,ZX ), and this group is identified with Z using Remark 3.2
and Lemma 3.7.

The slice filtration gives rise to an exact couple for each weight j

Ep,q = Hp+q(νqX (M),Z(j)),

Dp,q = Hp+q(M, ν≥q+1
X (M),Z(j)),

1This result is proved in [K] in the category of Chow motives CHM(F ), which is a full subcategory of DMeff
− (F )

(see [V00], Proposition 2.1.4 and Remark after Corollary 2.1.5 for the statement in characteristic zero; for an
arbitrary perfect field one also needs [V03b]). CHM(F ) is Karoubian, therefore any direct sum decomposition of

M(SB(A)) in DMeff
− (F ) would lead to a decomposition in CHM(F ).
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· · · → Dp+1,q−1 → Dp,q → Ep,q → Dp+2,q−1 → . . .

and the corresponding spectral sequence

Ep,q
2 = Hp+q(νqX (M),Z(j))⇒ Hp+q(M,Z(j)), (3.7)

with the differential d2 : Hp+q−1(νq+1
X M,Z(j))→ Hp+q(νqXM,Z(j)) induced by the q-th connecting

morphism ∂q,M given by the composition of morphisms forming the slice filtration:

∂q,M : νqX (M)→ ν≥q+1
X (M)[1]→ νq+1

X (M)[1]. (3.8)

4 The motive of GL1(A)

4.1 The split case

We consider the group variety GLn(F ) over a field F . To give an explicit description of M(GLn(F ))
we use the higher Chern classes cj,i for motivic cohomology

cj,i : Kj(X)→ H2i−j,i(X), i, j ≥ 0. (4.1)

Note that the ordinary Chern classes are ci = c0,i. In the computations in this section we use c1,i.
We recall the construction of the higher Chern classes using A1-motivic homotopy category

H•(F ) of Morel and Voevodsky. The construction we give is essentially the same as in [Pu] but we
follow the approach of [Ri]. The basic references for A1-homotopy is [MV], see [V98] for a short
introduction.

In the homotopy category of pointed spaces H•(F ) both higher algebraic K-theory and motivic
cohomology are representable: if X is a smooth variety over F , then

Kj(X) = HomH•(F )(Σ
jX+,Z×Gr)

H2i−j,i(X) = HomH•(F )(Σ
jX+,H(Z(i), 2i))

in analogy with the situation in topology. If in addition we define

K̃j(X) = HomH•(F )(Σ
jX+,Gr)

then
K0(X) = K̃0(X)⊕ Z
Kj(X) = K̃j(X), j > 0.

The Chern classes (4.1) are induced by a morphism of pointed spaces

ci : Z×Gr→ H(Z(i), 2i)

(cf [Ri], Theorem 6.2.1.2). It follows from this definition that cj,i are natrual transformations of
functors. We will need the following product formula.
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Proposition 4.1. Let X be a smooth variety. If λ ∈ Pic(X) = H2,1(X) and α ∈ Kj(X), j > 0

or α ∈ K̃0(X), then

cj,i(λ · α) =
k−1∑
l=0

(−1)l
(
i− 1

l

)
λl cj,i−l(α)

= cj,i(α)− (i− 1)λ cj,i−1(α) +
(i− 1)(i− 2)

2
λ2 cj,i−2(α) + · · ·+ (−1)i−1λi−1 cj,1(α)

(4.2)

(the formula is independent of j).

Proof. Assume that α is an element in K0(X) of virtual rank r. Using the splitting principle it is
easy to see that

ci(λ · α) =
k∑
l=0

(
r − i+ l

i

)
λlci−l(α) ∈ H2i,i(X,Z). (4.3)

In particular, if α ∈ K̃0(X), so that r = 0, then
(−i+l

l

)
= (−1)l

(
i−1
l

)
and

ci(λ · α) =
k−1∑
l=0

(−1)l
(
i− 1

l

)
λlci−l(α). (4.4)

To extend the formula (4.4) to Kj we use the method of [Ri]: we consider two natural trans-
formations of presheaves on the category Sm/X of smooth schemes over X:

θj, θ
′
j : Kj(−)→ H2i−j,i(−)

given for p : Y → X by
α ∈ Kj(Y ) 7→ cj,i(p

∗(λ) · α)

and

α ∈ Kj(Y ) 7→
k−1∑
l=0

(−1)l
(
r(α)− i+ l

l

)
p∗(λ)l cj,i−l(α)

respectively. Note that the virtual rank r(α) can be non-zero only for α ∈ K0(X).
By construction θj, θ

′
j are induced by two morphisms

Θ,Θ′ : Z×Gr→ H(Z(i), 2i)

(independent of j ≥ 0). By [Ri] Theorem 1.1.6 to check that Θ = Θ′ is suffices to show that
θ0 = θ′0 : K0(−)→ H2i,i(−). This holds by (4.3).

From now on in this section we only work with Chern classes

ci := c1,i : K1(−)→ H2i−1,i(−).

If α ∈ K1(X) and I is a multi-index

I = {1 ≤ i1 < · · · < ir ≤ n}
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we let
|I| = i1 + · · ·+ ir

l(I) = r

and
cI(α) = ci1(α) · · · · · cir(α) ∈ H2|I|−l(I),|I|(X).

Proposition 4.2. The motive M(GLn(F )) admits the following direct sum decomposition:

M(GLn(F )) ∼=
⊕
I

Z(|I|)[2|I| − l(I)],

where the morphism
M(GLn(F ))→ Z(|I|)[2|I| − l(I)]

corresponds to the class
cI(α) ∈ H2|I|−l(I),|I|(GLn(F )),

[α] is the tautological class in K1(GLn(F )) defined in the paragraph preceding Proposition 2.8.

Proof. We define the morphism

φ : M(GLn(F ))→
⊕
I

Z(|I|)[2|I| − l(I)]

using the classes cI . We claim that φ is an isomorphism.
First note, that for any reductive split group G over F the motive M(G) is a Tate motive

[B], Proposition 4.2. Therefore by the Yoneda lemma it is sufficient to check that φ induces
isomorphism on the motivic cohomology groups.

According to [Pu], Lemma 13, motivic cohomology of GLn(F ) is generated freely by the classes
cI(α) and the statement follows.

We also need a relative version of Proposition 4.2.

Proposition 4.3. Let E → T be a vector bundle of rank n, and let αE be the tautological class in
K1(GL(E)). The motive M(GL(E)) admits the following decomposition:

M(GL(E)) =
⊕
I

M(T )(|I|)[2|I| − l(I)]

where the morphism
M(GL(E))→M(T )(|I|)[2|I| − l(I)]

is the composition

M(GL(E))→M(GL(E))⊗M(GL(E))→M(GL(E))(|I|)[2|I| − l(I)]→

M(T )(|I|)[2|I| − l(I)]

of multiplication by the class
cI(αE) ∈ H2|I|−l(I),|I|(GL(E)).

followed by the canonical projection.

Proof. The statement follows from Proposition 4.2 and the Mayer-Vietoris distinguished triangle.
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4.2 The case n = 2

Let A =
(
a,b
F

)
, and let C = SB(A) be the norm conic. In this case GL1(A) is the complement to

Q ⊂ A4 − {0} in A4 − {0}, where

Q = {(x, y, z, w) ∈ A4 − {0} : x2 − ay2 − bz2 + abw2 = 0}.

Lemma 4.4. M(Q) = M(C)⊕M(C)(2)[3].

Proof. First note that the projective quadric {x2 − ay2 − bz2 + abw2 = 0} ⊂ P3 is isomorphic to
C × C. Indeed we have the Segre embedding

C × C = SB(A)× SB(A) ∼= SB(A)× SB(A∨)→ SB(A⊗ A∨) ∼= SB(EndF (A)) ∼= P(A) ∼= P3

and the image consists of elements of rank 1 and thus the image is given by one homogeneous
equation Nrd(α) = x2 − ay2 − bz2 + abw2 = 0.

It can be proved analogously to Proposition 2.8 that C ×C is a projective line bundle over C,
therefore

M(C × C) = M(C)⊕M(C)(1)[2].

Q over C × C is the complement to the zero section in the line bundle O(−1). We have a
distinguished triangle

M(C)(1)[1]⊕M(C)(2)[3]→M(Q)→M(C)⊕M(C)(1)[2]→M(C)(1)[2]⊕M(C)(2)[4],

with the third morphism being the natural one and the claim follows since after separating the
summand M(C)(1)[2] the resulting distinguished triangle is split.

Proposition 4.5. There is a decomposition

M(GL1(A)) = Z⊕M(C)(1)[1]⊕ Za,b(3)[4],

where we temporarily use the notation Za,b for the cone of the canonical morphism Z(1)[2]→M(C)
corresponding to the fundamental class [C] ∈ CH0(C) = CH1(C).

Proof. Consider the distinguished triangle corresponding to the open embedding

GL1(A) ⊂ A4 − {0} :

MQ(A4 − {0})[−1]→ M̃(GL1(A))→ M̃(A4 − {0})→MQ(A4 − {0}). (4.5)

We have M̃(A4 − {0}) = Z(4)[7] and also

MQ(A4 − {0}) = M(Q)(1)[2] = M(C)(1)[2]⊕M(C)(3)[5],

with the first equality being Gysin isomorphism and the second one comes from Lemma 4.4.
The distinguished triangle (4.5) now can be rewritten as:

M(C)(1)[1]⊕M(C)(3)[4]→ M̃(GL1(A))→ Z(4)[7]→M(C)(1)[2]⊕M(C)(3)[5].
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By dimension reasons Hom(Z(4)[7],M(C)(1)[2]) = 0, therefore

M̃(GL1(A)) = M(C)(1)[1]⊕ cone(Z(4)[7]→M(C)(3)[5])[−1].

The morphism Z(4)[7]→ M(C)(3)[5] corresponds to a class in CH1(C) = CH0(C) which can be
computed after passing to a splitting field by Lemma 3.7. In the split case we can verify that the
morphism in question corresponds via the Cancellation Theorem (3.2) to the fundamental class
[C].

Remark 4.6. Note that in the split case C = P1 and Za,b = Z so that the we have

M(GL2(F )) = Z⊕ Z(1)[1]⊕ Z(2)[3]⊕ Z(3)[4]

in agreement with Proposition 4.2.

4.3 The general case

We assume n ≥ 3 is a prime. Let Z be the complement of GL1(A) in An2−{0}, i.e. the subvariety
in An2−{0} given by equation NrdA = 0. Let M = MZ(An2−{0})[−1] be a motive with supports
which is determined by the distinguished triangle

M →M(GL1(A))→M(An2 − {0})→M [1]. (4.6)

We concentrate on studying the motive M .

Theorem 4.7. 1. For j < n2 and p ∈ Z we have a canonical isomorphism

H̃p,j(GL1(A))→ Hp,j(M).

2. If A splits, then we have a decomposition

M = M̃(GL1(A))⊕ Z(n2)[2n2 − 2] =
⊕
I 6=∅

ZX (|I|)[2|I| − l(I)]⊕ Z(n2)[2n2 − 2].

3. M is an object in DT (X ) and the slices of the slice filtration are given by:

νqX (M) =


⊕
|I|=q ZX (q)[2q − l(I)], 1 ≤ q ≤ n(n+1)

2

ZX (n2)[2n2 − 2], q = n2

0, otherwise

Proof. Motivic cohomology of GL1(A) and that of M are related via the long exact sequence

H̃p,j(An2 − {0})→ H̃p,j(GL1(A))→ Hp,j(M)→ H̃p+1,j(An2 − {0}),

and the first claim follows since using (3.1) we see that

H̃p,j(An2 − {0}) = Hp,j(Z(n2)[2n2 − 1]) = 0
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for j < n2 and any p ∈ Z.
If the algebra A is split, then in the distinguished triangle

M → M̃(GLn(F ))→ M̃(An2 − {0})→M [1]

the second morphism is zero, since as a simple computation using Proposition 4.2 shows,
Hom(M̃(GLn(F )), M̃(An2−{0})) = 0. The triangle splits yielding the first equality in the second
claim. The second equality follows from Proposition 4.2.

To prove the third claim note that any point of z ∈ Z splits A: AF (z) has a non-zero non-
invertible element (given by z) therefore AF (z) is not a division algebra, and since we assume that
the degree n of A is prime, AF (z) splits. The third claim now follows from Propositions 3.5 and
3.6.

We investigate the slice spectral sequence (3.7) for the motive M . If we consider the weights

j < n2, then by Theorem 4.7 the spectral sequence in question actually converges to H̃∗,j(GL1(A)).
It also follows from Theorem 4.7 that the second page E2 of the spectral sequence will be formed
from the motivic cohomology groups of ZX . The second differential will be naturally given in
terms of cohomology classes in H3,1(ZX ).

Lemma 4.8. If A is non-split, then there is a canonical isomorphism

H3,1(ZX ) = Z/n,

and if A is split, H3,1(ZX ) = 0.

Proof. Assume first that A is non-split. The isomorphism

H3,1(ZX ) ∼= Ker(res : H2
et(F, µn)→ H2

et(F (SB(A)), µn)).

is established in [MS], Proposition 1.4 (the assumption made in [MS] that the class [A] ∈ nBr(F )
is a symbol does not play a role in the proof).

On the other hand for any field H2
et(F, µn) is canonically isomorphic to the n-torsion of the

Brauer group Br(F ), and the kernel of the restriction map Br(F ) → Br(F (X)) is generated by
the class of algebra A by the classical theorem of Amitsur. Since the period of A is equal to n the
statement of the Lemma follows.

If A is split, then ZX = M(Spec(F )) and we have H3,1(ZX ) = H3,1(Spec(F )) = 0 by standard
vanishing theorems for motivic cohomology.

We denote the generator of H3,1(ZX ) = Z/n corresponding to [A] ∈ Br(F ) in the proof of
Lemma 4.8 by δ. This notation is consistent with [MS], 1.5.

Let 1 ≤ q < n(n+1)
2

. The second differential d2 in the slice spectral sequence for M is induced
by the morphism of motives (3.8)⊕

|I|=q ZX (q)[2q − l(I)] νqX (M)

∂q
��

νq+1
X (M)[1]

⊕
|J |=q+1 ZX (q + 1)[2q + 3− l(J)]
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with components
∂I,J : ZX (q)[2q − l(I)]→ ZX (q + 1)[2q + 3− l(J)] (4.7)

corresponding to multi-indices I, |I| = q and J, |J | = q+1. Each morphism ∂I,J determines a class

∂I,J ∈ H3−l(J)+l(I),1(ZX ).

Theorem 4.9. Let A be a division algebra of prime degree n ≥ 3.
1. The morphism ∂I,J in (4.7) is zero unless l(I) = l(J) and the sequence J is obtained from

the sequence I by increasing exactly one index by one.
2. If A is a division algebra, then there exists c = c(A) ∈ Z/n, c 6= 0 with the following

property: if the sequence J is obtained from the sequence I by increasing an index it by one, then

∂I,J = it · c · δ ∈ H3,1(ZX ).

Finally, if A is a split algebra, then all ∂I,J = 0.

Proof. The idea of the proof is to compare the slice filtration of M with that of the motive of
the Severi-Brauer variety M(SB(A)). More precisely we will express all potentially non-vanishing
∂I,J in terms of the 0-th connecting morphism ∂′ := ∂0,M(SB(A)) (3.8) in the slice filtration of
M(SB(A)).

We fix a weight q and a multi-index

I = {i1, . . . , ir}

such that

|I| =
r∑
t=1

it = q.

Consider the motive M(SB(A)×GL1(A)). According to Proposition 2.8

SB(A)×GL1(A) = GLSB(A)(J ∗),

and Proposition 4.3 implies that M(SB(A)×GL1(A)) admits a direct summand

M(SB(A))(q)[2q − r] ⊂M(SB(A)×GL1(A))

corresponding to the class cI(αE). We denote this embedding by ι and consider the diagram

M(SB(A))(q)[2q − r]

ψ
,,

ι //M(GLSB(A)(J ∗)) M(GL1(A)× SB(A))

��
M(GL1(A))

(4.8)

Lemma 4.10. There exists a unique morphism φ which fits in the diagram:

M(SB(A))(q)[2q − r]
φ

�� ψ ))
M //M(GL1(A))
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Proof. From the distinguished triangle (4.6) defining M we see that it is sufficient to show that

Hom(M(SB(A))(q)[2q − r],M(An2 − {0})[ε]) = 0,

for ε = 0,−1. We have M(An2 − {0})[ε] = Z[ε]⊕ Z(n2)[2n2 − 1 + ε] so that

Hom(M(SB(A))(q)[2q−r],M(An2−{0})[ε]) = Hε−(2q−r),−q(SB(A))⊕H2n2−1+ε−(2q−r),n2−q(SB(A)).

Now both cohomology groups are zero: the first one because it is of strictly negative weight, and
second one because the degree is greater than weight plus dimension:

2n2 − 1 + ε− (2q − r)− (n2 − q) = n2 − q + r − 1 + ε > dim(SB(A)) = n− 1,

under the assumptions n ≥ 3 and q < n(n+1)
2

.

The morphism
φ : M(SB(A))(q)[2q − r]→M

that we have just defined induces a morphism on the slice filtrations of the source and target
motives. For each q ≤ k ≤ q + n− 1 we get a commutative diagram

νkX (M(SB(A))(q)[2q − r])
νkX (φ)

// νkX (M)

ZX (k)[2k − r]
⊕νkX (φ)J

//
⊕
|J |=k ZX (k)[2k − l(J)]

where the equality on the left follows from Proposition 3.6 and the equality on the right is estab-
lished by Theorem 4.7.

Each νkX (φ)J , |J | = k is an element in the group

Hom(ZX (k)[2k − r]ZX (k)[2k − l(J)]) = Hom(ZX ,ZX [r − l(J)]) = Hr−l(J),0(ZX )

(the second isomorphism comes from Remark 3.2). By Lemma 3.7 the latter cohomology group is
isomorphic to Z when l(J) = r and is zero otherwise. Thus in what follows each symbol νkX (φ)J
will be considered as an integer or zero.

Lemma 4.11. 1. For a sequence J with |J | = q, we have

νqX (φ)J =

{
1, J = I = {i1, . . . , ir}
0, otherwise

2. For a sequence J with |J | = q + 1,

νq+1
X (φ)J =

{
it, J = {i1, . . . , it + 1, . . . , ir}, t = 1 . . . r
0, otherwise
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Proof. According to Lemma 3.7, integers νqX (φ)J and νq+1
X (φ)J do not change under the extension

of scalars to the field F (SB(A)). Therefore we may assume that A is split.
The diagram (4.8) takes the form

M(P(V ))(q)[2q − r]

ψ
,,

ι //M(GLP(V )(J ∗)) M(P(V )×GLn(F ))

��
M(GLn(F ))

and for each q ≤ k ≤ q + n− 1 the morphism ψ gives rise to a morphism of slices

νkX (ψ) : Z(k)[2k − r]→
⊕
|J |=k

Z(k)[2k − l(J)].

We have νkX (M) = νkX (GLn(F )) by Theorem 4.7(2) and also νkX (φ) is equal to νkX (ψ). The
component νkX (ψ)J can be non-zero only for J with l(J) = l(I) = r, and for such J it can be
computed as follows. Consider the induced morphism on motivic cohomology:

ψ∗ : H∗,∗(GLn(F ))→ H∗−(2q−r),∗−q(P(V )).

Let h = c1(O(1)) ∈ CH1(P(V )); then

ψ∗(cJ(α0)) =
∑
k≥q

νkX (ψ)J · hk−q ∈ CH∗(P(V )). (4.9)

By Proposition 4.3 motivic cohomology H∗,∗(GLP(V )(J ∗)) considered as a module over
H∗,∗(P(V )) is free and both

{cJ(αJ ∗)}J
and

{cJ(p∗2α0)}J
are bases for this module. Note that by Proposition 2.8 we have [p∗2(α0)] = [p∗1(O(−1))] · [αJ ∗ ]
and multiplicativity formula of the higher Chern classes (4.2) will give the transformation matrix
between the two bases above. In particular from

cjt(p
∗
2(α0)) ≡ cjt(αJ ∗) + (jt − 1)h cjt−1(αJ ∗) (mod h2)

we see that for J = {j1, . . . , jr} we have

cJ(p∗2(α0)) =
r∏
t=1

cjt(p
∗
2(α0)) ≡

≡
r∏
t=1

(
cjt(αJ ∗) + (jt − 1)h cjt−1(αJ ∗)

)
(mod h2) ≡

≡ cJ(αJ ∗) +
r∑
t=1

(jt − 1)h cj1,...,jt−1,...,jr(αJ ∗) (mod h2).
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Therefore

ψ∗(cJ(α0)) = ι∗(cJ(p∗2(α0))) ≡


1, J = I
ith, J = {i1, . . . , it + 1, . . . , ir}, t = 1 . . . r
0, otherwise

 (mod h2),

which together with (4.9) gives the desired result.

We consider the commutative diagram of the connecting morphisms (3.8) in the slice filtrations:

ZX (q)[2q − r]
∂′q

//

νqX (φ)

��

ZX (q + 1)[2q + 3− r]

νq+1
X (φ)

��⊕
|J |=q ZX (q)[2q − l(J)]

∂q
//
⊕
|J |=q+1 ZX (q + 1)[2q + 3− l(J)]

From the first claim of Lemma 4.11 it follows that the left vertical map is the canonical em-
bedding corresponding to J = I. Now we find that

∂I,J = νq+1
X (φ)J ◦ ∂′q, (4.10)

where νq+1
X (φ)J is determined in the second claim of Lemma 4.11. The class ∂′q sits in

Hom(ZX (q)[2q − r],ZX (q + 1)[2q + 3 − r]) = H3,1(ZX ). If A splits, then the latter group is
zero by Lemma 4.8 and therefore (4.10) implies that ∂I,J = 0.

If A does not split, then by Lemma 4.8 the class ∂′q must be of the form

∂′q = cq · δ, cq ∈ Z/n.

The arrow ∂′q which is q-th connecting morphism (3.8) in the slice filtration of
M(SB(A))(q)[2q − r] is equal to ∂′(q)[2q − r] where ∂′ is the 0-th connecting morphism for the
slice filtration of M(SB(A)). Both morphisms ∂′q and ∂′ define the same element c · δ ∈ H3,1(ZX )
which shows that in fact cq = c is independent of q.

Lemma 4.12 ([S]). c ∈ Z/n is non-zero if A is not split.

Proof. We exploit the slice spectral sequence (3.7) for M(SB(A)) and weight j = 1 which has the
E2 term of the following form:

1 0 Z

d2 ''

0 0

0 0 F ∗ 0 Z/n

q/p 0 1 2 3

The connecting morphism ∂′ = c · δ is responsible for the second differential d2. If c = 0, then
the spectral sequence degenerates implying that the extension of scalars map

CH1(SB(A))→ CH1(Pn−1) = Z

to a splitting field of A is an isomorphism. The Picard-Brauer exact sequence shows that this can
not happen unless A is split (see [S84], Theorem 10.12 for a more general result).
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Putting together (4.10), the second claim of Lemma 4.11 and Lemma 4.12 we obtain the desired
description of the differential.

We would like to use the slice spectral sequence to compute motivic cohomology of GL1(A) for
small weights. In order to do so we need to know the corresponding motivic cohomology groups of
X . These have been computed by Merkurjev and Suslin [MS] for the Čech simplicial scheme for any
Rost variety Xθ. We apply the results of [MS] when θ = (χ, a) = χ ∪ (a) ∈ nBr(F ) = H2

et(F, µn),
χ ∈ H1

et(F,Z/n) = Hom(Gal(F sep/F ),Z/n), a ∈ H1
et(F, µn) = F ∗/(F ∗)n. In what follows we

assume that A is non-trivial a cyclic algebra (χ, a)
We follow [MS] in using the notation

H∗,∗(X )≥0 :=
⊕

p−q−1≥0

Hp,q(X ),

H∗,∗(X )≤0 :=
⊕

p−q−1≤0

Hp,q(X )

and
Kθ
j (F ) = coker(

⊕
E

KM
j (E)→ KM

j (F ))

where KM
j is the Milnor K-theory functor and the direct sum is taken over all finite extensions

E/F that split A. For example we have

Kθ
0(F ) = Z/nZ

Kθ
1(F ) = F ∗/Nrd(A∗).

(for the second statement see [GS], Proposition 2.6.4 and Exercise 2.8).
There is a natural Kθ

∗(F )-module structure on H∗,∗(X )≥0 ([MS], Proposition 1.2). The Propo-
sition below is a reformulation of [MS], Theorem 1.15 in the case (Xθ, n, l) = (SB(A), 2, n).

Proposition 4.13. We have a canonical isomorphism

H∗,∗(X )≤0 = H∗,∗(F )≤0

and a direct sum decomposition

H∗,∗(X )≥0 =
⊕
i,k≥0

Kθ
i (F ) · γk δ ⊕

⊕
i,k≥0

Kθ
i (F ) · γk+1

where δ ∈ H3,1(X ), γ ∈ H2n+2,n(X ) are defined in [MS], 1.6. The bidegree of Kθ
i (F ) · γk δ is

(i+ 2k(n+ 1) + 3, i+ kn+ 1) and the bidegree of Kθ
i (F ) · γk+1 is (i+ 2(k+ 1)(n+ 1), i+ (k+ 1)n).

Corollary 4.14. In weights 0, 1, 2 we have

Hp,0(X ) =

{
Z, p = 0
0, otherwise
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Hp,1(X ) =


F ∗, p = 1
Z/n · δ, p = 3
0, otherwise

Hp,2(X ) =


Hp,2(F ), p ≤ 2
F ∗/Nrd(A∗) · δ, p = 4
0, otherwise

Proof. First note that Hp,q(X ) = Hp,q(F ) for p ≤ q + 1, this gives H0,0, H1,0, H0,1, H1,1, H2,1,
H0,2, H1,2, H2,2, H3,2.

Let p > q + 1.
Weight 0: H(X )≥0 does not contribute since i + kn + 1, i + (k + 1)n > 0 for all i, k ≥ 0.

(Alternatively we could argue using Lemma 3.7.)
Weight 1: Kθ

i (F ) · γk+1 does not contribute since i+ (k+ 1)n ≥ n > 1. Kθ
i (F ) · γk δ has weight

1 when i = k = 0, thus giving
H3,1(X ) = Kθ

0(F ) · δ.
Weight 2: i+ kn+ 1 = 2 implies (i, k) = (1, 0) thus giving

H4,2(X ) = Kθ
1(F ) · δ = F ∗/Nrd(A∗) · δ

and i+ (k + 1)n = 2 is not possible since n ≥ 3.

Remark 4.15. Recall that in this section we assume that n is an odd prime. If n = 2, then in
addition to cohomology groups in weight two listed in the Corollary there is also

H6,2(X ) = Kθ
0(F ) · γ = Z/2 · γ

which appears when (i, k) = (0, 0) so that i+ (k + 1)n = 2.

Corollary 4.16. Assume that A is a cyclic algebra of prime odd degree n given by the symbol θ.
Motivic cohomology of GL1(A) of weights 1, 2 and 3 are given as:

H̃p,1(GL1(A)) =

{
Z, p = 1
0, otherwise

H̃p,2(GL1(A)) =


F ∗, p = 2
nZ, p = 3
0, otherwise

H̃p,3(GL1(A)) =



H0,2(F ), p = 1
H1,2(F ), p = 2
H2,2(F ), p = 3
Z⊕Nrd(A∗), p = 4
nZ, p = 5
0, otherwise

Here by nZ we mean that the extension of scalars to the splitting field for the corresponding
motivic cohomology group is injective and the image is nZ ⊂ Z.
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Proof. In weight j the spectral sequence has nonzero terms

Ep,q
2 = Hp+q(νqX (M),Z(j))

only for 0 < q ≤ j. Let us consider the weights j = 1, 2, 3. In these weights the spectral sequence
converges to H̃∗,j(GL1(A)) by theorem 4.7(1). The first three slices of the slice filtration are given
by:

ν1X (M) = ZX (1)[1]

ν2X (M) = ZX (2)[3]

ν3X (M) = ZX (3)[4]⊕ ZX (3)[5].

In weight j = 1 the slice spectral sequence consists of one row which contains a unique non-zero
term E0,1

2 = H0,0(X ) = Z, hence we get the isomorphism

H̃1,1(GL1(A)) = Z

and the rest of the reduced cohomology groups of GL1(A) of weight 1 vanish.
In weight j = 2 we have two nonzero rows:

Ep,1
2 = Hp+1,2(ZX (1)[1]) =Hp,1(X )

Ep,2
2 = Hp+2,2(ZX (2)[3]) =Hp−1,0(X )

2 0 Z

d2 ((

0 0

1 0 F ∗ 0 Z/n · δ

0 0 0 0 0

q/p 0 1 2 3

and the differential d2 is multiplication by c which is prime to n by Theorem 4.9. Thus we have

H̃2,2(GL1(A)) = F ∗

H̃3,2(GL1(A)) = nZ

and the rest of the reduced cohomology groups of GL1(A) of weight 2 vanish.
In weight j = 3 we have three nonzero rows:

Ep,1
2 = Hp+1,3(ZX (1)[1]) = Hp,2(X )

Ep,2
2 = Hp+2,3(ZX (2)[3]) = Hp−1,1(X )

Ep,3
2 = Hp+3,3(ZX (3)[4]⊕ ZX (3)[5]) = Hp−1,0(X )⊕Hp−2,0(X ).
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3 0 Z Z
d2

))

0 0

2 0 0 F ∗

d2

))

0 H3,1(X )

1 H0,2(F ) H1,2(F ) H2,2(F ) 0 H4,2(X )

0 0 0 0 0 0

q/p 0 1 2 3 4

By Theorem 4.9 the differential

d2 : Z = H0,0(X )→ H3,1(X ) = Z/n · δ

maps k ∈ Z to 2kc · δ, and since 2c is prime to n, the differential is surjective and its kernel is
nZ ⊂ Z.

Similarly the differential

d2 : F ∗ = H1,1(X )→ H4,2(X ) = F ∗/Nrd(A∗) · δ

maps u ∈ F ∗ to uc · δ. Since (F ∗)n ⊂ Nrd(A∗), and c is prime to n, d2 is surjective with kernel
Nrd(A∗). There are no higher differentials by degree reasons and we get the result.
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