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Abstract 

In their Covert Repair Hypothesis, Postma and Kolk (1993) suggest that people who 

stutter make greater numbers of phonological encoding errors, which are detected 

during the monitoring of inner speech and repaired, with stuttering-like disfluencies 

as a consequence.  Here, we report an experiment that documents the frequency 

with which such errors are made. Thirty-two people who stutter (PWS) and thirty-two 

normally-fluent controls, matched for age, gender and education, recited 

tonguetwisters and self-reported any errors they perceived themselves to have 

made. In 50% of trials the tonguetwisters were recited silently and errors reported 

were those detected in inner speech.  Compared to controls, PWS produced 

significantly more word-onset and word-order errors. Crucially, this difference was 

found in inner as well as in overt speech.  Comparison of experimenter ratings and 

participants' own self-ratings of their overt speech revealed similar levels of accuracy 

across the two groups, ruling out a suggestion that PWS were simply more sensitive 

to the errors they made.  However, the frequency of participants' inner-speech errors 

was not correlated to their SSI4 scores, nor to two other measures of stuttering 

severity.  Our findings support Postma and Kolk's contention that, when speech rate 

is held constant, PWS make, and therefore detect, more errors of phonological 

encoding.  They do not, however, support the hypothesis that stuttering-like 

disfluencies in everyday speech stem from covert repairs of errors of phonological 

encoding. 
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1 Introduction  

1.1 Language production in people who stutter 

The ICD9  (World Health Organization, 1977, p. 202), defined stuttering as 

“disorders in the rhythm of speech in which the individual knows precisely what he 

wishes to say but at the time is unable to say because of an involuntary repetition, 

prolongation, or cessation of a sound”. Although this definition has been superseded, 

it reflects a continuing belief amongst many professionals who specialize in stuttering 

that people who stutter (PWS) do not have difficulty formulating in their minds (in 

inner speech) the words they want to say, but encounter difficulty when they attempt 

to express those words out loud. On face value, this would appear a reasonable 

assumption, as PWS do not generally report experiencing any difficulties formulating 

what they want to say.  However, there is a substantial body of experimental evidence 

suggesting that PWS take longer to encode their utterances, and it seems likely that 

their language encoding abilities may indeed be overstretched by the time-pressures 

inherent in many everyday speaking situations. Less clear, however, is whether the 

inner speech formulated by PWS is qualitatively different from that of people who do 

not stutter (PNS).  

In the present paper, we report an experiment designed to investigate the inner 

speech of PWS, determining whether they make more encoding errors than PNS.  To 

clarify how this question arises and why it is relevant to an understanding of 

stuttering, we begin with an overview of evidence of language production impairment 

in PWS, and an outline of three psycholinguistic hypotheses that propose differing 

accounts of how such impairment may result in the disfluencies characteristic of 

stuttering.   

1.2 Evidence of language encoding impairment in PWS 
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Many studies that have compared the spontaneous utterances of children who 

stutter (CWS) and age-matched controls have found evidence consistent with an 

interpretation of delayed/disordered phonological development or weaker encoding 

abilities in CWS  (see Nippold, 1990; Nippold, 2001 for reviews). However, because 

spontaneous speech reflects the combined contributions of a variety of (linguistic and 

motor) factors, and because people who stutter have a tendency to avoid using sounds 

and words that they have experienced difficulty with in the past, it has been difficult 

to pinpoint exactly what it is that gives rise to such performance differences. In a 

similar way, the finding that PWS are often slower than age-matched controls at 

picture naming tasks (e.g. Bernstein Ratner, Newman, & Strekas, 2009; Newman & 

Bernstein Ratner, 2007), may reflect either slower lexical access or slower motor 

responses.  

A number of studies have also shown that stuttering events appear to be 

linguistically determined. For example, stuttering is more likely to occur on more 

complex grammatical structures (Kadihanifi & Howell, 1992; Logan & Conture, 

1997; Melnick & Conture, 2000; Ratner & Sih, 1987; Yaruss, 1999); on lower-

frequency words (Anderson, 2007; Hubbard & Prins, 1994; Newman & Bernstein 

Ratner, 2007; Palen & Peterson, 1982); in association with (non-systematic) errors of 

phonological encoding (Yaruss & Conture, 1996); and on wrongly articulated word-

initial consonant clusters (Wolk, Blomgren, & Smith, 2000). But since articulatory 

complexity tends to co-vary with these linguistic factors, the causal picture has 

remained unclear.   

Somewhat more reliable evidence of slow or impaired language encoding in 

PWS comes from a series of priming and phoneme-monitoring studies, outlined 

below, all of which control for any possible influence of articulatory factors on 

response latencies through the use of repeated-measures paradigms in which the 

motor responses required of participants remain identical across all conditions. 
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Two sentence-structure priming studies have produced evidence of slow 

syntactic encoding. In these studies, children (Anderson & Conture, 2004) and adults 

(Tsiamtsiouris & Cairns, 2009)  described action pictures immediately after listening 

to utterances containing syntactic structures that were either similar or different to 

those required for their own utterances. In both studies, speech-onset latencies of 

participants who stutter were longer in the absence of priming but the difference 

between the two groups reduced significantly when syntactically similar primes were 

used, suggesting that syntactic encoding is slower and perhaps less robust in PWS.  

Priming studies investigating lexical access have produced less clear results. 

In one study, Pellowski and Conture  (2005) found that when young CWS and age-

matched controls performed a picture-naming task in which semantically related or 

unrelated words were auditorily presented just prior to picture presentation, mean 

speech-onset latencies of controls were shortened by semantic primes, whereas those 

of CWS increased. However, in a further study, comparing the effects of different 

types of lexical/semantic primes, Hartfield and Conture (2006)  found that, in CWS, 

primes functionally related to target words interfered significantly less than those that 

were physically related.  Hartfield and Conture (2006) concluded that these results, 

taken together, suggest that preschool CWS differ from controls in the speed and 

nature of lexical retrieval. Using a similar picture-naming paradigm, Hennessey Nang 

and Beilby (2008) compared the effects on adults who stutter (AWS) and age-matched 

controls of a variety of semantic and phonological primes, but failed to find any 

differences between the two participant groups: In both, semantically related primes 

resulted in longer naming-onset latencies. Nevertheless, Hennessey et al. (2008) 

suggested that group differences with respect to lexical-semantic encoding may exist, 

but only become apparent under conditions of high cognitive load  (cf. Bosshardt, 

Ballmer, & De Nil, 2002; Weber-Fox, Spencer, Spruill III, & Smith, 2004). 

 With respect to phonology, although the phoneme priming studies that have 

been carried out have consistently found PWS‟ responses to be slower compared to 
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controls‟ responses, the actual priming effects have been mixed. Melnick, Conture and 

Ohde (2003) found that both CWS and age-matched controls similarly exhibited 

shorter picture naming latencies when phonologically-related (CV) primes were 

played prior to picture presentation, suggesting that the two groups‟ phonological 

encoding abilities were comparable. However, more recently, Byrd, Conture, and 

Ohde (2007) found that, at six years of age, CWS continued to be responsive only to 

holistic primes, whereas six-year-old controls were responsive to segmental primes, 

suggesting that CWS are slower to adopt the use of segmental phonology, and instead 

continue to code words holistically. In AWS, The results of the phonological 

manipulation of the Hennessey et al. (2008) study mirrored those of Melnick et al. 

(2003). However, an (implicit) priming study by Wijnen and Boers (1994) found that 

AWS only benefited from primes containing both the initial consonant and vowel of 

the target word, whereas controls also benefitted from primes containing just the 

initial consonant, suggesting that AWS may have more difficulty encoding stress-

bearing phonemes, although Burger and Wijnen‟s (1999) larger-scale rerun of same 

paradigm failed to reproduce these findings.   

Despite the mixed results from phonological priming studies, two well 

controlled phoneme-monitoring studies (Sasisekaran & De Nil, 2006; Sasisekaran, De 

Nil, Smyth, & Johnson, 2006) found that, compared to PNS, PWS are significantly 

slower to identify phonemes in words formulated in their inner speech.  Importantly, 

there were no differences between the two groups‟ performances with respect to 

auditory monitoring (of pure tones); picture naming; simple motor responses; or 

identifying phonemes when listening to tape recordings of the same words. These 

findings thus strongly suggest that AWS‟ slower responses on the phoneme 

monitoring task stemmed from impaired phonological encoding and not from any 

general monitoring impairment or slow motor responses.   

Finally, compared to normally fluent speakers, both CWS (Anderson, 

Wagovich, & Hall, 2006; Hakim & Ratner, 2004) and AWS (Ludlow, Siren, & Zikira, 
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1997) have been found to be poorer at non-word repetition, although the extent to 

which poor performance on non-word repetition tasks may stem from impairment of 

phonological encoding remains somewhat unclear. 

1.3 Language encoding impairment as a potential cause of stuttering 

Although it remains unclear whether the language production abilities of PWS 

are qualitatively any different to those of PNS, the findings cited above generally 

suggest that, compared to PNS, PWS take longer to formulate their utterances and that 

this slowness may stem from slow phonological, lexical and/or syntactic, encoding.  

This conclusion is of particular interest insofar as it provides preliminary support for 

two psycholinguistic hypotheses: The Covert Repair Hypothesis (Kolk & Postma, 

1997; Postma & Kolk, 1993), and the EXPLAN hypothesis  (Howell & Au-Yeung, 

2002), both of which posit a causal relationship between slow language encoding and 

stuttering.  

According to the Covert Repair Hypothesis (CRH), slow language encoding 

increases the numbers of phonological encoding errors in speakers‟ speech plans. This 

is explained in terms of Dell‟s (1986)  computer simulation of language production. In 

Dell‟s model, the activations of units (phrases, words and phonemes) gradually 

increase until they exceed those of any competing units. When overt speech is 

initiated, the units that happen to be most highly activated at that point of time are 

selected. Thus, the earlier the initiation of motor execution relative to the speed of 

encoding, the greater the chances that competing units will be selected in error. 

The CRH attributes Stuttering-Like Disfluencies (SLDs) to covert repairs of 

language encoding errors.  The notion of a covert repair is predicated on the idea that 

speech plans are frequently prepared in advance of their overt articulation and stored 

in an articulatory buffer for anything up to a few seconds before being articulated. 

During this time, the speaker can inspect these plans through an internal monitoring 

loop (roughly equivalent to inner speech) and cancel and reformulate them if 

necessary (e.g., Levelt, 1983; Levelt, 1989). If an error is perceived in this way and 
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the speech plan is cancelled before the onset of overt articulation, a silent pause or 

“block” may ensue while the plan is reformulated. However, errors occurring later in 

the plan may not be noticed immediately. Thus situations may occur where overt 

articulation of the first phonemes, syllables or words of a plan may have already 

begun before the error is detected. In such cases, the speaker stops, retraces to a 

suitable point and starts again, the result being that, although the error itself is not 

articulated, the phoneme(s) or word(s) immediately preceding it will be repeated at 

least once and perhaps several times, depending on how many reformulations of the 

plan are needed before the correction is achieved. Repetition of continuants may occur 

without breaks in between, producing symptoms of prolongation rather than 

repetition. In this way, the CRH accounts for the three main types of stuttering-like 

disfluency: repetitions, prolongations and blocks.   

Because covert repairs of syntactic and lexical errors are more likely to be 

associated with larger retraces (Nooteboom, 1980), Postma and Kolk (1993) proposed 

that the part-word repetitions characteristic of persistent developmental stuttering 

most likely stem from repairs of errors of phonological encoding. However, they did 

not rule out the possibility that covert syntactic or lexical error repairs may also result 

in the production of SLDs. Furthermore, as phonological encoding is effectively the 

end of the line with respect to production of the speech plan, slow syntactic or lexical 

encoding may impact upon the amount of time available for phonological encoding to 

be completed before motor execution begins. Hence, the CRH would predict that 

phonological symptoms are likely to be universally found in PWS, even when the 

primary site of impairment may be further upstream. 
1
 

                                                           

1
 A study  by Melnick and Conture (2000) that investigated possible links between syntactic encoding 

difficulty and phonological errors failed to find any such relationship, although  it did find that, 

compared to CWS with age-appropriate phonology, CWS with concomitant phonological disorder 

were more likely to be disfluent when uttering syntactically complex sentences. 
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As the above review of the CRH indicates, this theory rests on two basic 

tenets: (1) the speech plans of PWS contain abnormally high numbers of 

phonological-encoding errors; and (2) the covert repair of such errors accounts for the 

characteristically high numbers of SLDs in their utterances.  However, since Postma 

and Kolk‟s (1993) formulation of the CRH, no direct evidence has been produced to 

confirm these tenets.  

The lack of evidence of any correlation between phonological encoding errors 

and SLDs has led to the development of two alternative psycholinguistic hypotheses 

of stuttering: the “Vicious Circle Hypothesis” (Vasić & Wijnen, 2005) and EXPLAN  

(Howell & Au-Yeung, 2002). The Vicious Circle Hypothesis retains the CRH‟s basic 

tenet that SLDs arise as the by-products of covert error repair. However, it proposes 

that, rather than making different numbers of inner-speech errors, the difference 

between PWS and normally fluent speakers is that PWS monitor their speech more 

vigilantly for errors and have a lower threshold for instigating repairs. PWS therefore 

perceive, and attempt to “repair”, many minor sub-phonemic irregularities that 

normally-fluent speakers would not be concerned about. A further consequence of 

such hyper-vigilant monitoring is that disfluencies resulting from the error-repair 

process are themselves likely to be identified as errors, triggering further 

(unnecessary) reformulations of the speech-plan and leading to a “vicious circle”.  

The EXPLAN hypothesis also attempts to account for researchers‟ repeated 

failure to find firm evidence of abnormally high numbers of phonological encoding 

errors in the speech plans of PWS. However, according to EXPLAN, although SLDs 

arise as a direct result of slow language encoding, the majority are not the result of 

covert error repair. Rather, they occur at moments when the rate of speech planning 

has fallen below the rate of execution and the speaker has effectively run out of 

speech plan to articulate. At such moments, speakers tend to repeatedly execute 

whatever speech plan is already available to them until more becomes available for 

execution. Repetitions and prolongations (of phonemes, syllables and/or whole 
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words) thus constitute an operantly-conditioned strategy (Howell & Sackin, 2001) 

that reduces silent pauses and thus help speakers maintain their conversation turns 

while completing the formulation of their utterances (cf. Blackmer & Mitton's 1991, 

autonomous restart mechanism). According to EXPLAN, the key factor that 

differentiates persistent stutterers from normally fluent speakers is that, when the rate 

of planning falls behind the rate of execution, whereas normally-fluent speakers 

habitually adopt a “stalling strategy” whereby they only repeat whole words that have 

already been formulated, persistent stutterers habitually adopt a maladaptive 

“advancing strategy” whereby they utter (and repeat) the incomplete fragment of the 

word currently being formulated. Unlike the stalling strategy, the advancing strategy 

leads to blocking and part-word repetitions and consequently a breakdown of rhythm.  

Because evidence that the speech plans of PWS include more errors is crucial 

in distinguishing between the above theoretical accounts of stuttering, it is somewhat 

surprising that, to date, there has only been one directly relevant study published  

(Postma & Kolk, 1992). In this study, participants were instructed to repeat a series of 

CV and VC strings aloud, both with and without auditory masking, and to press a 

button each time they noticed themselves making an error. It was presumed that under 

conditions of auditory masking, participants would have had little choice but to rely 

on internal monitoring of the speech plan for error detection (although the possibility 

remains that some errors may have been detected through monitoring of kinesthetic or 

other forms of feedback). Although the PWS group reported a numerically higher 

proportion of phonemic errors than the controls, the difference was not statistically 

significant. However, the PWS group recited the strings more slowly, which may have 

enabled them to avoid errors which would have been manifest at a faster speech rate.  

Moreover, participants were not required to describe the errors that corresponded to 

button presses; effectively, the experimenter had to guess what errors had been 

perceived. 

1.4 The current study 
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The current study was designed to examine whether the speech plans of PWS 

contain abnormally high numbers of errors of phonological encoding (the first tenet of 

the CRH).
2
 In the study we used a modified version of a tonguetwister paradigm, 

originally developed by Oppenheim and Dell  (2008)
 
 to investigate the effects of 

phoneme similarity on errors in inner speech. Participants recited tonguetwisters both 

overtly and in inner speech, and immediately reported any errors they perceived 

themselves making in either condition.  Visual prompts were used to control speech 

rate, avoiding the possibility that participants would slow down to avoid making 

errors.  In common with Postma and Kolk (1992), half of the participants were PWS, 

and half of all tonguetwisters were recited under conditions of auditory masking. 

Because of the possibility that PWS differ from PNS with respect to 

monitoring vigilance (e.g. Lickley, Hartsuiker, Corley, Russell, & Nelson, 2005; 

Sherrard, 1975; Vasić & Wijnen, 2005), their overt recitations were also transcribed 

and coded by the experimenter. Thus for each group, the number of overt errors 

reported by participants could be compared to the number detected by the 

experimenter.   

In the present experiment, we counted both onset errors and “word-order 

errors” (including word anticipations, perseverations and exchanges). This allowed us 

to investigate not only whether PWS have impaired phonological encoding, in line 

with Postma and Kolk‟s (1993) original proposal, but also whether they have more 

difficulty producing sequences of words in the required order. We also took forward 

digitspan measurements for all participants, in order to control for differences in 

                                                           

2
 Fluency measures collected from participants also enabled us to conduct a (post-hoc) analysis, which 

constituted a preliminary test of the second tenet of the CRH: that stuttering-like disfluencies stem 

primarily from covert repairs of such errors. Details of this post-hoc analysis are provided in 

Section 4.2 of the Discussion.  
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participants‟ abilities to remember the tonguetwisters and to remember (and thus 

accurately self-report) their errors.  

2 Method 

2.1 Participants 

Thirty-two people who stutter (eight male) and thirty-two controls (nine male) 

matched for age and education took part in the experiment. Participants were recruited 

through the University of Edinburgh student employment service and experimental 

subject-pool. Participants who stutter were additionally recruited through stuttering 

self-help groups, and some controls were recruited through an internet employment 

website.  All participants were native speakers of English.  PWS had a mean age of 38 

(range 18 to 71); for PNS, the mean was 39 (range 18 to 68).  Mean education level 

(on a scale where 1 corresponds to General Certificate of Secondary Education 

(GCSE) or equivalent, and 5 indicates a postgraduate degree) was 3.00 for PWS and 

2.97 for PNS. Twelve participants from each of the groups were university students; 

four of the PWS and five of the PNS group were retired. There was a marginal 

difference between the two groups in forward digit span: mean digit span for PWS 

was 6.6, and for PNS, 7.2 (t 62 = 1.67; p =.061).  

All participants completed Section 3a of the Overall Assessment of the 

Speaker‟s Experience of Stuttering  (OASES; Yaruss & Quesal, 2006), in which 

respondents rate their current difficulty in communicating verbally on a five-point 

scale in each of 10 commonly occurring situations.  These include, for example, 

talking with another person one to one, initiating conversations, speaking to strangers, 

and continuing to speak regardless of how your listener responds to you. Mean scores 

for the OASES section 3a (communication difficulty) were: PWS = 27.6; Controls = 

19.7 (t (62) = 4.62 p <.001).  In addition to these ten OASES 3a questions relating to 

general communication difficulty, participants additionally provided ratings of 

“fluency difficulty” in the same ten situations. Specifically, for each situation, they 
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were asked to rate how difficult it is to speak fluently, without stuttering and without 

avoiding words. Mean scores for fluency difficulty ratings were: PWS = 31.9; 

Controls = 18.0 (t (62) = 8.65 p <.001) 

For all participants who stutter, full SSI4 (Riley, 2009) stuttering severity 

measures were derived from video recordings of samples of their spontaneous 

conversation and reading out loud. Mean SSI4 score was 20.7; range 8 to 36. Control 

participants only completed the reading portion of the above assessment.  Mean 

number of SLDs per hundred syllables on the reading task was: PWS 6.08 range 1.3 

to 24; PNS 0.43 range 0 to 1.85; (t (62) = 4.15 p <.001). 

Apart from stuttering, participants reported no speech, language, hearing or 

visual impairments that were likely to influence their results.  

2.2 Materials  

 The experimental materials were identical to those used by Corley 

Brocklehurst, and Moat (in press), Experiment 1. They consisted of four-word 

tonguetwister sequences. The onsets of each tonguetwister sequence followed an 

„ABBA‟ pattern to induce onset-phoneme substitution errors, e.g. pink bid bit pick. 

Sequences were generated automatically from a database of CVC(C) words with 

CELEX frequencies greater than 1 per million (Baayen, Piepenbrock, & Gulikers, 

1995).  Pronunciations were checked for ambiguity using the British English Example 

Pronunciation dictionary (BEEP: Robinson, 1997) and also by hand.   

To enable additional analyses of phonemic and lexical influences on speech 

errors, we created four variants of each tonguetwister sequence, and divided these 

between four lists, each list containing 48 tonguetwisters (See Appendix 1). Each 

participant recited tonguetwisters from just one of these lists (i.e. each participant 

recited 48 tonguetwisters). The details of these phonemic and lexical manipulations 
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are, however, not relevant to the current paper and are not described here.
 3

 Important 

for the analyses that are included in the current paper, is simply that every 

tonguetwister sequence was recited an equal number of times under identical 

conditions by (an equal number of) participants from both groups.  

  Within each list, half of the tonguetwisters were assigned to the auditory 

masking condition. Because auditory masking was blocked, four versions of each list 

were drawn up such that, in the experiment as a whole, all tonguetwisters appeared 

equally in masked and unmasked, and masking-first and masking-last conditions. 

Finally, two versions of each of the resultant 16 lists were created. In both versions, 

half of the tonguetwisters were marked for overt recitation and the other half for silent 

(inner-speech) recitation. Those that were marked for overt recitation in one version 

were marked for silent (inner speech) recitation in the other. This resulted in 32 lists 

of experimental items in a fully counterbalanced design.  

 Auditory masking was achieved using computer-generated pink noise, 

delivered through a set of Panasonic RP-HT225 stereo headphones. Participants‟ overt 

recitations of the tonguetwisters were captured on a Zoom H2 digital recorder and 

analyzed using Praat software  (Boersma & Weenink, 2009). 

2.3 Procedure.  

The procedure was closely modeled on that of Oppenheim and Dell (2008) 

and Corley et al. (in press) with the exception that participants typed, rather than 

verbally reported, the details of any errors they perceived themselves to have made.  

This change was made to ensure that the ability to self-report errors would not be 

affected by stuttering. 

Prior to beginning the experiment, participants underwent a computer-led 

tutorial and practice session, which included full instructions concerning the inner 

                                                           

3
 For a full explanation of the phonemic and lexical manipulations see Corley, Brocklehurst, and Moat 

(in press). 
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speech and overt speech procedures. In all conditions, participants were instructed to 

place highest priority on speaking in time to the (visual) metronome, not to worry 

about making mistakes, and simply to skip words they felt likely to stutter on.  For the 

inner-speech recitations, to prevent them from attempting to mouth sequences silently, 

participants were instructed not to move their mouths or any muscles associated with 

speech and, if possible, to keep their mouths completely closed.   

At the beginning of each masked block, participants were instructed to adjust 

the headphones to ensure that the loudness of the pink noise prevented them from 

hearing the sound of their own voice. It was emphasized that participants should 

speak the overt tonguetwisters as quietly as possible throughout the masked block. 

The experimenter observed participants throughout the experiment and reminded 

them, where necessary, to adhere to the above instructions.   

Tonguetwister sequences were presented in a random order on a 17" computer 

monitor. For each sequence, participants underwent a familiarization phase followed 

by a performance phase. In the familiarization phase, the tonguetwister sequence 

appeared in the centre of the screen, above an icon prompting participants to speak 

overtly (a mouth). After three seconds, a series of four dashes appeared (one every 

second) below the tonguetwister, acting as a visual metronome for the repetition of the 

words in the sequence. In the masked condition, pink noise began as the first dash 

appeared, and lasted until the last of the four dashes disappeared. The dashes and 

mouth icon were then replaced by a single dot, which remained onscreen for an 

additional second before the mouth icon reappeared and the dash sequence started 

again. The dash sequence was repeated so that participants repeated each sequence 

aloud four times before the performance phase began. During familiarization, 

participants were not aware whether repetition of the sequence during the subsequent 

performance phase would be silent or out loud.  

As soon as familiarization ended for each tonguetwister, it was moved to the 

top of the screen and the required speech modality (silent or overt) was indicated 
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centre-screen by means of the mouth icon (as used in familiarization) or a face icon 

representing silent repetition. At the same time the words “press ENTER to continue" 

appeared below the icon. Pressing ENTER caused all text to disappear from the 

screen, leaving only the mouth or face icon visible. After 200 ms, a sequence of 

dashes appeared in the centre of the screen at a rate of one new dash every 500 ms, 

acting as a visual metronome for the (overt or silent) repetition of the four words of 

the tonguetwister sequence.
4
 In the blocks with auditory masking, pink noise started 

to play over the participant's headphones as the first dash appeared. 500 ms after the 

appearance of the fourth dash, the dashes disappeared, the pink noise (if any) ended, 

and the tonguetwister sequence reappeared at the top of the screen, together with an 

instruction to “type any errors and then press ENTER to continue” at the bottom. If 

they perceived themselves to have made an error during a particular recitation, 

participants were instructed to type, as fully as possible, what they had actually said, 

for example “rag lap rash rap” (when they should have said “rag lap lash rap”; the /r/ 

in rash being an anticipation of the /r/ in rap). They were instructed to type one or 

more question-marks in the relevant places if they could not remember what they had 

said for a word or „X‟s if they had completely omitted all or part of a word. Once 

errors, if any, had been reported, pressing ENTER started the next four-dash sequence. 

Each performance phase included four repetitions of the four dashes, before the 

familiarization phase for the next word sequence began.  

In addition to participants' self-reports of their inner and overt speech errors, 

the experimenter independently identified and transcribed errors in the overt speech 

condition (this was done online and then double-checked from recordings). 

Recordings from a random sample of five PWS and five PNS were transcribed a 

                                                           

4
 This 500ms/word speech-rate has previously been found by Oppenheim and Dell (2008) to result in 

the production of  a significant number of errors without leading to excessive co-articulation, blending, 

or elision of consonants. 
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second time by the experimenter prior to analysis to enable intra-rater reliability to be 

calculated.  

2.4 Coding 

Errors were coded into three categories: (1) onset errors; (2) word-order errors; 

and (3) other/ambiguous errors. Errors were only ascribed to the onset error or word-

order error categories if they were not in any way ambiguous. Thus, for example, the 

onset error category only included instances where a „B‟ word onset (i.e. the onset of 

words 2 or 3) was substituted by a (contextual or non-contextual) phoneme but the 

coda remained unchanged. Instances where the onset error resulted in production of 

one of the „A‟ words (e.g. „dock dock notch dodge‟ instead of „dock knock notch 

dodge‟) were excluded, although such instances were rare because, in all but a few 

tonguetwisters, the codas of each of the four words differed. 

Since the majority of errors occurred on words 2 and 3 (the „B‟ words), counts 

of onset errors only included these words. This ensured that onset-exchange errors 

were only counted once. Counts of word-order errors included all four word positions, 

where one of the four words in the tonguetwister was either uttered twice, or 

exchanged positions with one of the other four words. Instances where the position 

change could potentially be accounted for as a result of a word omission (e.g. „rag lap 

rack xxxx‟ instead of „rag lap lash rack‟) and instances where the order-error could 

potentially have been a coda exchange (e.g. „rag lash lap rack‟ instead of „rag lap lash 

rack‟) were excluded from the counts. In cases where an error was followed by an 

overt self-repair, only the original error was coded for analysis. 

2.5 Analyses.  

Analyses were carried out using logistic mixed-effects regression modeling  

(Breslow & Clayton, 1993; DebRoy & Bates, 2004) using the lme4 package (Bates & 

Maechler, 2009) in R (R Development Core R Development Core Team, 2009). This 

approach allowed us to investigate the independent contributions of a variety of 
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“predictor” variables (both naturally occurring and experimentally manipulated) to the 

(log) likelihood of making (a) phoneme-substitution errors, and (b) word-order errors.  

These two likelihoods thus constituted the two dependent variables.  

For each dependent variable of interest we generated a base model which 

included an intercept, and random by-participant and by-item intercept variation. 

Because t-tests revealed a marginal difference between the two groups‟ mean 

digitspan scores, digitspan was controlled for by including it first (as a covariate) in 

all analyses. We then proceeded to add predictors stepwise to each model under 

consideration. Predictors representing both main effects and relevant interactions were 

added in reverse order of theoretical importance; with covariates first and those of 

most relevance to the analysis being added last. Selection of models was based on two 

criteria. First, using χ
2
 tests to compare model likelihood ratios, we assessed whether 

the fit of the model to the data was improved (as indicated by a significant decrease in 

the model likelihood ratio) by the addition of each predictor. With the exception of 

digitspan, predictors were retained only if the current (best) model was improved. 

Second, where two or more predictors each significantly improved the current model, 

we selected the model which had the smallest log-likelihood. Once predictors and 

their interactions had been exhaustively explored, the resulting model represented the 

„best fit‟ to the data, being a model which could not be improved by the addition of 

further predictors. 

Each model includes coefficients representing the intercept and any effects of 

predictors. Where models were selected, the Wald statistic, calculated from each 

estimated coefficient and its standard error, was used to determine whether the 

coefficients differed significantly from zero (see Agresti, 2002). 

3 Results 

In total, participants recited 12,288 four-word tonguetwisters (48 

tonguetwisters, each repeated four times by 64 participants) and self-reported a total 
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of 2201 errors of any type, of which 1230 were in overt speech and 971 in inner 

speech. Three sets of statistical analyses are reported which, together, address the 

question of whether or not the speech plans of PWS contain more errors of 

phonological encoding (the first tenet of the CRH). The first set of analyses reveals 

the factors that accounted for the distributions of participants‟ self-reported (internal 

and overt) errors. The second focuses on overt errors, and compares the numbers of 

participants‟ self-reports of their onset and word-order errors to those coded by the 

experimenter, to establish whether the groups differ with respect to the likelihood of 

detecting and reporting their own errors. The third focuses on the accuracy with 

which individual overt errors were reported by participants, i.e. the extent to which 

participants‟ self-reports exactly matched the experimenter‟s transcriptions from 

recordings.  

   For each of these analyses, data are presented separately for onset errors and 

for word-order errors. 

3.1 Self reports (inner and overt speech combined) 

In addition to random by-participant and by-item variation and digitspan, we 

included predictors of auditory masking (the presence or absence of pink noise while 

speaking); group membership (PWS or PNS); stuttering-like disfluencies per 100 

syllables when reading aloud; self-ratings of difficulty speaking fluently; overtness 

(whether or not participants were speaking aloud); the overtness by group interaction; 

and the two overtness by disfluency interactions. 

3.1.1 Onset errors 

Out of a total of 281 self-reported onset errors, 160 were overt and 121 were in 

inner speech.  Table 1 gives a breakdown of errors by experimental condition. 

The best-fit model of self-reported onset errors included effects of digitspan, 

group and overtness (improvement due to adding overtness: χ
2
 (1) = 13.87, p <.001). 
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No other predictors or their interactions significantly improved the model (all χ
2
 (1) ≤ 

2.65, p ≥ .103.   

Table 2 gives the coefficients of the model, and the probabilities that they 

differ from zero. After controlling for digitspan, compared to PNS, PWS were 2.37 

(i.e. e
0.86

) times more likely to report errors. Independent of group or digit span, 

participants were approximately 1.4 (i.e. e
0.36

)
 
times more likely to report errors in the 

overt condition. 

3.1.2 Word-order errors 

  Out of a total of 218 self-reported word-order errors, 126 were overt and 92 

were in inner speech.  Table 1 gives a breakdown of word-order errors by 

experimental condition. 

Insert table 1 here 

 

In addition to the effects of digitspan, group, and overtness found for onset 

errors, there was an additional effect of masking (improvement due to adding 

masking: χ
2
 (1) = 9.63, p =.002).   As with onset errors, there were no significant 

interactions. No other predictors or interactions significantly improved the model (χ
2
 

(1) ≤ 2.76, p ≥.097). The model coefficients are given in Table 2, and show a similar 

pattern to that observed for onset errors: Compared to PNS, PWS were 3.05 (i.e. e
1.11

) 

times more likely to report errors.  Independent of group, masking or digit span, 

participants were more likely to report errors in the overt condition.  Across both 

participant groups, masking caused an increase in the numbers of self-reported word-

order errors, marginally less so with respect to errors in overt speech.  

 

Insert table 2 here 

  

3.2 Overt speech: Self reports vs. Experimenter reports 
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The group differences reported in sections 3.1.1 and 3.1.2 do not, in 

themselves, imply that the PWS group actually made more errors. It is also possible 

that PWS group members were simply better at detecting and self-reporting the errors 

they made, as suggested by the Vicious Circle Hypothesis (Vasić & Wijnen, 2005).  

To rule out this interpretation, we compared participants‟ self-reports of errors to the 

errors coded by the experimenter in all cases when speech was overt.  

First, an intra-rater reliability check was carried out to ensure the 

experimenter‟s ratings were consistent across the two participant groups. Kappa 

values, based on re-transcriptions by the experimenter of recordings from a random 

sample of five PWS and five PNS (i.e. 15% of participants) were 0.81 for onset errors 

and 0.87 for word-order errors, indicating a high degree of consistency.  

In addition to random by-participant and by-item intercept variation, the 

(mixed effects) regression models for these analyses included a third random variable 

with 65 levels, one for each of the individuals who identified errors: 64 participants, 

plus the experimenter. This variable thus controlled for differences in individuals‟ 

propensities to report errors. In addition to the fixed predictors discussed above, we 

also included a rater-type predictor, with 2 levels (self-rating or experimenter-rating).  

The main interactions of interest were: group by rater-type (to clarify whether 

compared to PNS, PWS self-report a greater proportion of their overt errors); masking 

by rater-type (to clarify whether the proportion of errors self-reported by participants 

decreases when masking prevents them monitoring their own overt speech); and the 

three-way, group by rater-type by masking interaction (to clarify whether the extent of 

that decrease is different for PWS compared to PNS.) 

3.2.1 Onset errors 

The best fitting model of onset errors included the effects of group previously 

reported, showing that more errors were reported from the PWS group. This model 

also included an effect of rater (χ
2
 (1) = 7.80, p =.005), indicating that, overall, the 

experimenter reported approximately 1.55 (e
0.44

) times as many onset errors as did the 
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participants (coefficients are given in Table 2). Importantly, there were no interaction 

effects (for all interactions χ
2
 (1)  0. 20, p ≥.652). This implies that there was a 

consistent tendency across the two participant groups for participants to report fewer 

errors than coded by the experimenter. 

3.2.2 Word-order errors 

For word-order errors, the model including effects of digitspan and group was 

(marginally) improved by the addition of rater (χ
2
 (1) =3.75, p =.053), indicating that, 

overall, the experimenter reported approximately 1.31 (e
0.27

) times as many word-

order errors as did the participants (coefficients are given in Table 2). Again, none of 

the interaction effects further improved the model (all χ
2
 (1)  0.52, p ≥.471).  

3.3 Accuracy of self reporting 

Although the above comparisons (together) show that both PWS and PNS 

were around 0.7 times as likely to report errors as was the experimenter, they do not 

provide information on accuracy: There were, for example, some instances when a 

participant reported having made a different error from the one that was coded by the 

experimenter. We therefore recoded all instances of errors that had been identified by 

the experimenter and marked each one as a ‘match’ if it was identical to the 

participant‟s self-report, or a ‘mismatch’ if it differed or was not reported by the 

participant. We also counted false alarms (i.e., instances where the participant self-

reported an error which the experimenter coded as correct) but since there were only 

eight of these in total, they were not considered further.  

We then performed a final pair of analyses on the likelihood of self-reporting 

an error that the experimenter had identified.  Once again, separate analyses were 

conducted for onset errors and word-order errors.  Numbers of  matches and 

mismatches are shown in Table 3, and model coefficients are shown in Table 4. 

 

Insert tables 3 and 4 approximately here 
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3.3.1 Likelihood of accurately identifying an error - Onset errors  

After controlling for digitspan, the best fitting model included only total errors 

(the total number of experimenter-coded errors, of any type, in the tonguetwister) as a 

predictor, implying that, irrespective of which group participants belonged to, their 

reports of errors were less likely to identically match those of the experimenter on 

tonguetwisters that contained more overall errors. The model was not significantly 

improved by the addition of masking (χ
2
 = 2.67, p = .102), and, most importantly, the 

model was not improved by adding group membership as a predictor (χ
2
 = 0.04, p = 

.837) or any of the interaction terms that include group membership (all χ
2
 ≤ 2.17, p ≥ 

.140). This implies that, across experimental conditions, the two groups did not differ 

with respect to the likelihood that they would accurately report errors. 

3.3.2 Likelihood of accurately identifying an error – Word-order errors  

After controlling for digitspan, none of the predictors tested improved the fit 

of the model above that of the base model including an intercept (all χ
2
 (1) ≤ 1.56, p 

≥.211). The intercept was not reliably different from zero, reflecting the fact that 

overall the likelihood of participant-coded errors matching experimenter-coded errors 

did not significantly differ from around 50%.  

4 Discussion 

The primary aim of the current study was to test the first tenet of the CRH: that 

the speech plans of PWS contain abnormally high numbers of errors of 

phonological encoding. In Section 4.1 we argue that they do.  In Section 4.2 we 

then present the results of a post-hoc analysis, the findings of which appear 

incompatible with the second tenet of the CRH: that stuttering-like disfluencies 

stem primarily from covert repairs of such errors. Although these post-hoc 

findings do not offer direct support for either the EXPLAN or Vicious Circle 

hypotheses, they are potentially compatible with both.  
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4.1 Group differences in speech error rates  

The most important finding from the current experiment is that the PWS group 

self-reported significantly more onset and word-order errors than the control group, 

both in inner as well as in overt speech. Moreover, a significant proportion of the 

variance in the numbers of (both onset and word-order) errors made by participants 

was uniquely attributable to participants‟ group membership. 

To establish whether the higher numbers of errors self-reported by the PWS 

group reflect higher numbers of errors actually made by that group, we investigated 

whether or not the two groups differed with respect to the vigilance with which they 

reported such errors.  Our analyses revealed that, compared to experimenter-ratings, 

both participant groups under-reported their errors to a similar extent.  When we 

investigated the accuracy with which participants reported individual errors, there was 

again no difference to be found between PWS and PNS.  Taken together, these 

analyses show that the proportions of experimenter-coded errors self-reported by each 

group do not differ, a finding in line with previous studies that have compared the 

abilities of PWS and controls to detect phonemic errors in recorded speech (Postma & 

Kolk, 1992; Sasisekaran & De Nil, 2006).   

Support for the assertion that this relationship holds for inner speech can be 

gleaned from the performances of the two groups when reporting their overt errors 

under conditions of auditory masking, where self-reports can be compared to 

experimenter ratings. This is because, under conditions of auditory masking, speakers 

are deprived of auditory feedback and thus forced to rely largely on internal 

monitoring (i.e., monitoring through the “inner loop” ) to detect their overt errors in 

the same way that they monitor for errors in inner speech.  The absence of any 

significant masking by group interactions in the analyses of overt speech can be taken 

as further evidence that the two groups are vigilant to a similar degree when 

monitoring their inner speech. 
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Our findings therefore strongly suggest that the significantly greater number of 

onset-phoneme and word-order errors self-reported by the PWS group in inner speech 

reflects a greater number of (phoneme and word-order) errors actually occurring in 

the speech plans of that group. They thus support the first tenet of the CRH. 

4.2 Covert error repair 

The current experiment was designed to minimize the potential for covert error 

repair activity through instructions to participants to give priority to speaking in time 

to the (visual) metronome rather than to maintaining a high level of accuracy. It was 

therefore anticipated that the error patterns of the two participant groups would not 

reflect error repair activity to any significant extent.  The finding that, within both 

participant groups, significantly more overt than inner-speech errors were self-

reported was fully in line with our expectations in this respect, insofar as it suggests 

that the errors appearing in the original speech plan were not repaired prior to overt 

articulation. 
5
 Nevertheless, if covert error repair does play a significant role in 

causing disfluency in real-life speaking situations, we might have expected the 

participants with the highest scores on the measures of disfluency relating to real-life 

speaking situations to have made the most errors during the tonguetwister experiment.  

This was, however, not reflected in the results of our (mixed effects) regression 

analyses of speech errors.  Whereas group membership (i.e. whether or not a 

participant was diagnosed as a PWS) was retained as a predictor in all of the best-fit 

regression models (indicating that group membership consistently predicted the 

likelihood of a participant making onset and word-order errors), neither fluency-

difficulty self-ratings, nor percentage of SLDs in the reading task, nor any of the 

relevant interactions were retained in any models.  

                                                           

5
 It further suggests that a proportion of participants‟ overt errors were likely to have originated 

downstream from the speech-plan (in processes related to the generation of motor commands). 
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Because PWS are often relatively fluent when reading, it is possible that the 

reading task did not provide an adequate test of the relationship between speech-errors 

and stuttering. It is also possible that predictors relating to disfluency were rejected 

from the regression models because they shared too much variance with other 

predictors already present in the models. To further explore these possibilities, we 

therefore performed three post-hoc analyses using the data from only the PWS group. 

Specifically, we plotted PWS‟ inner and overt onset errors against: (a) their stuttering-

like disfluencies per 100 syllables in the conversation task; (b) stuttering-like 

disfluencies per 100 syllables in the reading task; and (c) their self-ratings of difficulty 

speaking fluently (see Figures 1-3). Only two significant correlations were revealed in 

these plots: PWS‟ stuttering-like disfluencies in conversational speech were correlated 

to their (self-reported) overt onset errors (r=0.44, p=.012), and to experimenter 

reported overt onset errors (r=0.43, p=.015).  Similar patterns were also evident in the 

plots of PWS‟ overt onset errors and their self-ratings of difficulty speaking fluently 

(Figure 3); however two outliers prevented these correlations from reaching 

significance.  

The lack of any correlation between participants‟ inner-speech onset-error 

rates and their disfluency rates suggests that covert repairs of phonological encoding 

errors do not account for anything more than a minor proportion of the instances of 

SLDs in their everyday speech. These findings, therefore, are not compatible with the 

second tenet of the CRH: that stuttering-like disfluencies in PWS are the result of 

covert repairs of large numbers of errors of phonological encoding. If stuttering does 

involve covert error-repair, the errors in question must either be so subtle that 

participants failed to report them, or they must originate downstream from the speech 

plan, and therefore only in inner speech when it accompanies overt articulation (cf. 

Max, Guenther, Gracco, Ghosh, & Wallace, 2004).  

In the current study, it was not feasible to attempt to measure whether or not 

the timing of the PWS group‟s inner-speech tonguetwister recitations was more 
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variable than that of the PNS group. We therefore cannot rule out the possibility that 

stuttering may stem from inappropriate covert repair of small pauses and other 

prosodic markers in PWS‟ speech plans as posited in the Vicious Circle Hypothesis 

(Vasić & Wijnen, 2005; see also Lickley et al., 2005). Neither can we rule out the 

possibility that PWS are hypervigilant towards such cues, although the experimental 

paradigm could potentially be adapted to explore these possibilities. However if, as 

Vasić and Wijnen (2005) propose, stuttering-like disfluencies in PWS are related to 

hyper-vigilance with respect to subtle prosodic cues, an explanation is needed for why 

PWS do not show a corresponding hyper-vigilance with respect to the phonological 

errors that they make in inner and overt speech, and why subtle prosodic cues or 

irregularities would lead to high levels of error-repair activity when gross 

phonological encoding errors apparently do not.  

Our failure to find any correlation between the frequency of inner-speech 

errors and SLDs is compatible with the EXPLAN hypothesis, and it is certainly 

possible that the higher numbers of onset and word-order errors made by PWS were 

simply a side-effect of language encoding impairment but did not in themselves 

contribute to the production of SLDs. In keeping with EXPLAN, it is also possible 

that a proportion of the perseveratory errors made by participants may have resulted 

from an established habit of repeating readily available segments or words in order to 

keep going when experiencing encoding difficulties (cf. Howell & Sackin, 2001). 

However, verification of these possibilities would require further research.  

4.3 The role of working memory 

Because the original intention behind the current experiment was to compare 

error rates of PWS with those of matched controls, differences in participants‟ 

digitspan scores have been treated as a potential confounding variable. The main 

concerns were that participants with shorter digitspans may (a) find it more difficult to 

remember tonguetwisters and therefore make more errors, and (b) have more 

difficulty remembering their errors and therefore tend to under-report (or mis-report) 
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them. Thus in all regression analyses, any variance attributable to differences in 

participants‟ digitspans was first co-varied out by entering digitspan as the first 

predictor.  However, it has been proposed  (e.g. Bajaj, 2007) that impairments of 

(various aspects of) working memory may be directly implicated in stuttering. In light 

of such proposals it is noteworthy that digitspan was itself a significant predictor of 

self-reported error-rates; and, in line with studies that have reported poor non-word 

repetition abilities in PWS (Anderson, et al., 2006; Hakim & Ratner, 2004; Ludlow, et 

al., 1997), our current findings suggest that working-memory limitations may play a 

role in the higher speech-error rates found in PWS. This is perhaps not surprising 

bearing in mind the close association between working memory and phonological 

encoding, (Acheson & MacDonald, 2009a, 2009b).  

4.4 Caveats  

4.4.1 Ecological validity of the study 

A number of studies have found that signs of language impairment only 

become apparent in PWS under conditions of increased cognitive load  (e.g. 

Bosshardt, et al., 2002; Weber-Fox, et al., 2004). In light of these findings, it would 

appear that the current experimental paradigm must have been sufficiently cognitively 

demanding to reveal differences between the two participant groups. Nevertheless, the 

tonguetwister paradigm did not require participants to compose their own utterances 

or to attend to prosodic encoding, and neither did it require them to monitor whether 

they were being understood by their conversation partners or to attend to conversation 

partners‟ responses. It may thus have been less cognitively demanding than many of 

the speaking situations commonly encountered by participants in real life. It thus 

remains possible that language encoding errors may occur substantially more 

frequently in PWS in the cognitively demanding speaking situations encountered in 

their everyday life than they did in the tonguetwister experiment.  

4.4.2 Word omissions 
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Together with the instruction to speak in time to the (visual) metronome, 

participants were also instructed to skip any words they felt likely to stutter on. This 

was to ensure that their overt recitations were uttered fluently and at the correct 

speech rate. We presumed that stuttering only occurs in overt speech, so we did not 

expect this instruction to cause participants to skip words in the silent (inner-speech) 

condition. However, we cannot rule out the possibility that, in the PWS group, a 

proportion of words may have been omitted because they were associated with past 

experiences of stuttering. Had these words not been omitted, the inner-speech error 

rates of participants who stutter may have been even greater.  

4.4.3 The effectiveness of auditory masking 

It is possible that auditory masking may not have completely blocked auditory 

feedback, especially bone-conducted feedback. Moreover, as kinesthetic feedback 

continued to be available to participants in the masked condition, participants may 

have continued to use either or both of these sensory feedback channels to some 

extent for error detection. In future studies, more effective blocking of sensory 

feedback, perhaps through a combination of methods, including auditory masking and 

tissue vibration, may reveal that the accuracy of self-reporting of inner-speech errors 

(i.e. in the absence of auditory or kinesthetic feedback) is somewhat lower than our 

data suggest. Whatever the case, in the present study, the (non-significant) trend 

toward poorer self-reporting of errors under auditory masking conditions was evident 

to a similar extent across both participant groups, so there is no evidence that the two 

groups utilized whatever sensory feedback was available to them to differing degrees. 

Nevertheless, future studies could use more effective feedback-blocking methods to 

control for such possibilities. 

4.4.4 The nature of inner speech  

In the current study we have adopted a Leveltian (1982, 1989) perspective on 

inner speech, equating it with Levelt‟s “inner loop” insofar as it provides a way of 
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inspecting the state of speech-plans held in an articulatory buffer prior to their release 

for motor execution. However, it is possible that inner speech may be derived from 

input from a different source or even a number of sources, depending on which are 

available (see Postma, 2000, for a review). Thus for example, during the overt masked 

conditions of the current experiment, inner speech may have been derived, at least in 

part, from corollary discharge from motor commands. Whatever the case, until the 

sources that contribute to inner speech can be clarified further, some uncertainty will 

remain regarding the extent to which errors perceived in inner speech reflect errors 

that have arisen during formulation of the speech plan rather than during formulation 

of motor commands.  

5 Conclusions 

When constrained to speaking at a fixed speech-rate, adults who stutter make 

more onset and word-order errors than do age-matched, normally-fluent controls. 

Moreover, the majority of these errors have their origin in the speech plan, before the 

onset of articulation. These findings represent important evidence in line with the first 

tenet of the Covert Repair Hypothesis (Postma & Kolk, 1993). 

However, the lack of any correlation between the frequency of participants‟ 

inner-speech errors and the frequency of their disfluencies in real-life speaking 

situations suggests that covert repair of errors of phonological encoding  is unlikely to 

contribute significantly to the manifestation of SLDs in everyday speech. These 

findings are thus incompatible with the second tenet of the Covert Repair Hypothesis.  

In line with the EXPLAN hypothesis, it is possible that the higher numbers of 

onset and word-order errors made by PWS are a side-effect of language encoding 

impairment but do not in themselves contribute to the production of SLDs. However, 

it also remains possible that, in PWS, stuttering-like disfluencies may stem from 

covert repair of timing or prosodic errors, as proposed by Vasić and Wijnen (2005), or 

covert repairs of errors that occur downstream from phonological encoding, during 
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the formulation of motor commands. Further research is needed to explore these 

possibilities.  
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Table 1: Raw numbers of onset and word-order errors coded by participants and by the experimenter 

  Onset errors  Word-order errors 

  Unmasked Masked (Total)  Unmasked Masked (Total) 

Self-reports  

  (inner speech) 

PWS 

PNS 

37 

17 

44 

23 

(81) 

(40) 

 27 

5 

46 

14 

(73) 

(19) 

Self-reports  

  (overt speech) 

PWS 

PNS 

57 

22 

60 

21 

(117) 

(43) 

 36 

20 

50 

20 

(86) 

(40) 

Independent rater 

  (overt speech) 

PWS 

PNS 

77 

32 

88 

37 

(165) 

(69) 

 46 

23 

60 

27 

(106) 

(50) 
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Table 2: Logistic mixed effects analyses of factors influencing the likelihood of occurrence of onset and word-

order errors. Model coefficients and probabilities are given for best-fitting models. All intercepts represent the 

error probabilities for PNS, unmasked conditions. 

Predictor Value Co-

efficient 

Std. 

Error 

p 

(coefficient = 

0) 

Inner vs. overt speech, onset errors   

(Intercept) unmasked, 

PNS 

inner speech 

-4.36 0.61 <.001 *** 

Digitspan +1 -0.16 0.08 .041 * 

Group  PWS 0.86 0.22 <.001 *** 

Overtness overt 0.36 0.12 .004 ** 

 

Inner vs. overt speech, word-order errors  

(Intercept) 

 

unmasked, 

PNS 

Inner speech 

-4.52 0.71 <.001 *** 

Digitspan +1 -0.26 0.10 .006 ** 

Masking masked 0.44 0.14 .002 ** 

Group  PWS 1.11 0.31 <.001 *** 

Overtness overt 0.39 0.14 .006 ** 

 

Overt speech (participants vs. independent rater), 

onset errors  

(Intercept) 

 

unmasked, 

PNS 

self-rated 

-4.15 0.67 <.001 *** 

Digitspan +1 -0.18 0.09 . 036 * 

Rater independent 0.44 0.11 <.001 *** 

Group  PWS 1.05 0.24 <.001 *** 

 

Overt speech (participants vs. independent rater), 

word-order errors 

(Intercept) unmasked, 

PNS 

-4.67 0.88 <.001 *** 



 

37 

 

self-rated 

Digitspan +1 -0.19 0.12 .114 

Rater independent 0.27 0.12 .032 * 

Group  PWS 1.03 0.37 .005 ** 
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Table 3: Accuracy of participants’ coding of onset and word-order errors. Percentages represent the percentage 

of experimenter reports that were also self-reported (in an identical manner) by participants. 

 

 

 Matches 

(%) 

Mismatches 

(%) 

Missed 

(%) 

Total errors False-alarms  

Onset errors       

masked PWS 

PNS 

46 (52) 

18 (49) 

21 (24) 

7 (19) 

21 (24) 

12 (32) 

88 

37 

3 

5 

unmasked PWS 

PNS 

46 (60) 

19 (59) 

7 ( 9) 

5 (16) 

24 (31) 

8 (25) 

77 

32 

0 

0 

Word-order errors      

masked PWS 

PNS 

32 (53) 

16 (59) 

22 (37) 

8 (30) 

 

6 (10) 

3 (11) 

60 

46 

0 

0 

unmasked PWS 

PNS 

24 (52) 

14 (61) 

10 (22) 

6 (26) 

12 (26) 

 3 (13) 

27 

23  

0 

0 
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Table 4: Logistic mixed effects analyses of factors influencing the likelihood of participants accurately identifying 

onset and word-order errors. Model coefficients and probabilities are given for best-fitting models. All intercepts 

represent the error probabilities for PNS, unmasked conditions. 

Predictor Value Coefficient Std. Error p 

(coefficient = 0) 

likelihood of accurately identifying an error (onset errors) 

(Intercept) 

 

unmasked, PNS 

inner speech 1.86 0.86 

 

.030 * 

digitspan +1 -0.11 0.11 .330 

Total errors in 

tongue-twister 

 

+1 

 

-0.21 

 

0.08 

 

.006 ** 

 

likelihood of accurately identifying an error (word-order errors) 

(Intercept) 

 

unmasked, PNS 

inner speech 

0..23 

0.19 

 

.223 
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Figure 1: Scatterplots showing, for each participant who stutters, total number of onset errors (x axis) plotted against stuttering-like disfluencies per 100 syllables, as measured from the conversational 

speech task (y axis). From left to right, the three plots show raw numbers of onset errors in (1) inner speech; (2) overt speech (self-reports); and (3) overt speech (experimenter ratings). 
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Figure 2: Scatterplots showing, for each participant who stutters, total number of onset errors (x axis) plotted against stuttering-like disfluencies per 100 syllables, as measured from the reading task (y 

axis). From left to right, the three plots show raw numbers of onset errors in (1) inner speech; (2) overt speech (self-reports); and (3) overt speech (experimenter ratings). 
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Figure 3: Scatterplots showing, for each PWS, total number of onset errors (x axis) plotted against self ratings of difficulty speaking fluently in ten commonly occurring speaking situation (y axis).From left to right, 

the three plots show raw numbers of onset errors in (1) inner speech; (2) overt speech (self-reports); and (3) overt speech (experimenter ratings). The unbroken regression line depicts the relationship between the 

two variables when two outliers (marked with ○) are excluded. 
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Appendix A 

Materials for Experiment  
List 1 

 
List 2 

 
List 3  

 
List 4 

fan van vat fad   man van vat mad 
 

fan van valve fad   man van valve mad 
pole coast cope poke   soul coast cope soak 

 
pole coast comb poke   soul coast comb soak 

till kid kin tinge   bill kid kin binge 
 

till kid kiln tinge   bill kid kiln binge 
seep heath heel scene   keep heath heel keen 

 
seep heath heave scene   keep heath heave keen 

rig link limb rip   dig link limb dip 
 

rig link limp rip   dig link limp dip 
pat cap catch pad   bat cap catch bad 

 
pat cap cab pad   bat cap cab bad 

busk puff puck bunk   musk puff puck monk 
 

busk puff pub bunk   musk puff pub monk 
cob golf gone cot   yob golf gone yacht 

 
cob golf goth cot   yob golf goth yacht 

finch ship shin fill   pinch ship shin pill 
 

finch ship shift fill   pinch ship shift pill 
meal bead beak mean   weal bead beak wean 

 
meal bead beach mean   weal bead beach wean 

dove gulf gull dump   love gulf gull lump 
 

dove gulf gut dump   love gulf gut lump 
wail range rake waist   tale range rake taste 

 
wail range race waist   tale range race taste 

pink bid bit pick   kink bid bit kick 
 

pink bid bib pick   kink bid bib kick 
come tut tub cuff   hum tut tub huff 

 
come tut tuck cuff   hum tut tuck huff 

conk toss top cog   honk toss top hog 
 

conk toss tongs cog   honk toss tongs hog 
reap leap leach reef   beep leap leach beef 

 
reap leap leash reef   beep leap leash beef 

dock tod tot dodge   lock tod tot lodge 
 

dock tod Tom dodge   lock tod Tom lodge 
peck ketch keg pet   beck ketch keg bet 

 
peck ketch kelp pet   beck ketch kelp bet 

gust cusp cut gum   rust cusp cut rum 
 

gust cusp cup gum   rust cusp cup rum 
face vein vale feign   race vein vale cane 

 
face vein vague feign   race vein vague cane 

pang tank tack patch   hang tank tack hatch 
 

pang tank tap patch   hang tank tap hatch 
hunk thump thug hump   junk thump thug jump 

 
hunk thump thud hump   junk thump thud jump 

rot watt wad rob   not watt wad knob 
 

rot watt was rob   not watt was knob 
tape pain pale take   nape pain pale knave 

 
tape pain paid take   nape pain paid knave 

tut done duck tug   mutt done duck mug 
 

tut done dove tug   mutt done dove mug 
dock knock knot dodge   lock knock knot lodge 

 
dock knock notch dodge   lock knock notch lodge 

sill tick tip sick   chill tick tip chick 
 

sill tick tint sick   chill tick tint chick 
deck wreck wren dead   tech wreck wren ted 

 
deck wreck realm dead   tech wreck realm ted 

run duck dub rum   son duck dub some 
 

run duck dud rum   son duck dud some 
wench wreck red well   bench wreck red bell 

 
wench wreck rev well   bench wreck rev bell 

kale gauge gape cake   shale gauge gape shake 
 

kale gauge gait cake   shale gauge gait shake 
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 bag dad dash back   sag dad dash sack 
 

bag dad damp back   sag dad damp sack 
mull buff buck much   dull buff buck Dutch 

 
mull buff bulge much   dull buff bulge Dutch 

roam lone lope role   dome lone lope dole 
 

roam lone loaf role   dome lone loaf dole 
wade range reign wait   maid range reign mate 

 
wade range wraith wait   maid range wraith mate 

sit zing zip sick   knit zing zip nick 
 

sit zing zinc sick   knit zing zinc nick 
puff buff bunch punk 

 
huff buff bunch hunk 

 
puff buff bulge punk   huff buff bulge hunk 

rip width witch rim 
 

hip width witch hymn 
 

rip width wish rim   hip width wish hymn 
dock toss tot dosh 

 
wok toss tot wash 

 
dock toss top dosh   wok toss top wash 

delve wreck ref dead 
 

shelve wreck ref shed 
 

delve wreck realm dead   shelve wreck realm shed 
wreck wet west wren 

 
peck wet west pen 

 
wreck wet wedge wren   peck wet wedge pen 

fame safe sail fade 
 

maim safe sail maid 
 

fame safe sage fade   maim safe sage maid 
bell peg pet beck 

 
knell peg pet neck 

 
bell peg pep beck   knell peg pep neck 

pad tank tack patch 
 

mad tank tack match 
 

pad tank tab patch   mad tank tab match 
teem seep seek teach 

 
beam seep seek beach 

 
teem seep siege teach   beam seep siege beach 

hub thump thug hush 
 

rub thump thug rush 
 

hub thump thud hush   rub thump thud rush 
jug chuck chump just 

 
lug chuck chump must 

 
jug chuck chub just   lug chuck chub must 

rot loft lock rob 
 

not loft lock knob 
 

rot loft loll rob   not loft loll knob 




