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Abstract 

Genome-wide association studies have led to a significant progress in identification of genomic 
loci affecting coronary artery disease (CAD) risk. However, revealing the causal genes responsible 
for the observed associations is challenging. In the present study, we aimed to prioritize CAD-relevant 
genes based on cumulative evidence from the published studies and our own study of colocalization 
between eQTLs and loci associated with CAD using SMR/HEIDI approach. Prior knowledge of 
candidate genes was extracted from both experimental and in silico studies, employing different 
prioritization algorithms. Our review systematized information for a total of 51 CAD-associated loci. 
We pinpointed 37 genes in 36 loci.  For 27 genes we infer they are causal for CAD, and for 10 further 
genes we judge them most likely causal. Colocalization analysis showed that for 18 out of these loci, 
association with CAD can be explained by changes in gene expression in one or more CAD-relevant 
tissues. Furthermore, for 8 out of 36 loci, existing evidence suggested additional CAD-associated 
genes. For the remaining 15 loci, we concluded that evidence for gene prioritization remains 
inconsistent, insufficient, or absent. Our results provide deeper insights into the genetic etiology of 
CAD and demonstrate knowledge gaps where further research is warranted. 

Key words: coronary artery disease, gene, prioritization, gene expression, eQTL, colocalization, 
genome-wide association study  
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Introduction 

Coronary artery disease (CAD) is the most prevalent cardiovascular disease, the major cause of 
mortality and morbidity in both developed and developing countries1. This pathology is the 
manifestation of atherosclerosis in the coronary arteries. CAD can lead to a variety of complications, 
including chest pain, myocardial infarction (MI), arrhythmias and heart failure2. The etiology of CAD 
is multifactorial and involves a genetic predisposition as well as dietary and other lifestyle risk 
factors3. The genetic component to CAD has long been recognized. The Framingham Study 
demonstrated that positive family history is a strong risk factor for incident CAD4-6. According to 
Swedish and Danish twin studies, the narrow-sense heritability of fatal CAD is about 40-60%7,8. 
Today, it is widely accepted that much of the genetic component arises from the effect of many 
common alleles associated with modest increases in CAD risk3,9. Genome-wide association studies 
demonstrated that the common variation accounts for 40-50% of heritability of MI/CAD10,11. 

Genetic studies of CAD started from family-based linkage studies discovering monogenic 
drivers of CAD and small candidate-gene studies which often provided controversial results. 
Development of high-throughput genotyping technologies and new statistical methods opened the era 
of genome-wide association studies (GWAS)12,13. MI was among the very first traits studied with use 
of genome-wide association strategy already in 200214. Currently, more than 160 loci have been 
identified robustly associated with this condition9,15. The progress in this field has been fostered by 
establishing large international consortia, such as the Coronary ARtery DIsease Genome-wide 
Replication and Meta-analysis (CARDIoGRAM) Consortium, the Coronary Artery Disease (C4D) 
Genetics Consortium, and the Myocardial Infarction Genetics (MIGen) Consortium, as well as 
emergence of large biobanks containing genetic and clinical information, such as UK Biobank, and 
the development of haplotype reference panels for genotype imputation. In parallel, whole-exome 
and whole-genome sequencing studies revealed a set of CAD- and MI-promoting low-frequency 
variants16-20.  

While we see major advances in unraveling genetic architecture of CAD, challenges remain in 
the annotation of causal genes at identified loci9. The largest proportion (90%) of SNP-based 
heritability of MI/CAD is explained by variants located in gene non-coding and intergenic regions, 
and only 10% resides within the gene coding regions11. Furthermore, many CAD-associated loci 
contain several genes. Thus, elucidating the gene responsible for the revealed association can be an 
arduous task. Filling the knowledge gaps on CAD-relevant genes is important for understanding 
biological mechanisms underlying this disease and translating GWAS results into novel treatment 
strategies. 

Post-GWAS research, which aims at transition from GWAS signals to biological 
understanding, in particular identification of specific genes and pathways, involves both experimental 
and in silico studies21. The latter are less expensive and enable to narrow down the spectrum of 
candidate genes for subsequent experimental validation. A range of  computational tools and 
approaches for in silico gene prioritization are currently available, including those based on data on 
the co-regulation of gene expression and reconstituted gene sets (DEPICT)22, potential relationships 
between the genes based on published scientific literature (GRAIL)23, functional annotation data from 
the Mouse Genome Database24, and others. An important tool for interpreting GWAS findings is the 
expression quantitative trait loci (eQTL) analysis25. Linking eQTL data with GWAS results can 
explain some of the associations by the presence of regulatory polymorphisms that influence the 
disease through altering gene expression in certain tissues. However, variants causative for the disease 
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and changes in gene expression can simply be in linkage disequilibrium with each other, so 
identification of a joint SNP is on its own insufficient. This issue can be addressed using 
colocalization methods26-29. A method recently proposed by Zhu et al.27 involves summary data-based 
Mendelian randomization (SMR) analysis, which provides evidence for pleiotropy or causation with 
respect to the analyzed traits (e.g., disease and gene expression level), and heterogeneity in dependent 
instruments (HEIDI) test, which distinguishes pleiotropy/causation from linkage disequilibrium 
(LD).  

In the present study, we pursued two objectives. First, we applied SMR/HEIDI approach to 
prioritize the genes at loci identified by two large genome-wide association meta-analyses30,31. 
Second, we performed an extensive literature search to find the genes within these loci linked to CAD 
in experimental studies or prioritized based on bioinformatics strategies. Our aim was to summarize 
and systematize this information and determine 1) the genes that can be considered causal/the most 
likely causal for CAD and 2) the loci for which CAD-associated genes remain unclear. 

Methods 

Selection of CAD-associated loci 

We selected 51 loci robustly associated with CAD for which performing SMR/HEIDI analysis 
in our study was feasible. An algorithm we used to select the 51 loci is depicted in Supplementary 
Figure S1. Loci were selected from two large mixed-ancestry genome-wide association meta-
analyses: the study by Nikpay et al.30 (60,801 CAD cases and 123,504 controls) and the study by 
Howson et al.31 (88,192 CAD cases and 162,544 controls). The meta-analysis by Howson et al.31 
included the CARDIoGRAMplusC4D study (63,746 CAD cases and 130,681 controls), and the meta-
analysis by Nikpay et al.30 contained a subset of CARDIoGRAMplusC4D study participants (34,997 
CAD cases and 49,512 controls). Thus, the samples analyzed in Nikpay et al.30 and Howson et al.31 
studies contained 84,509 shared individuals. The study by Howson et al.31 was based on the 
CardioMetabochip32 lacking complete genomic coverage. The meta-analysis by Nikpay et al.30 
comprised subjects genotyped with genome-wide SNP arrays and involved 1000 Genomes-based 
imputation. Howson et al. study31 was therefore nearly 1.4 times larger in size, while Nikpay et al. 
study30 had much higher SNP coverage (9.4 million imputed variants in Nikpay et al. study30 vs. 
79,070 SNPs available for the meta-analysis in Howson et al. study31). In total, we extracted 61 loci 
from Howson et al. study31 and 35 loci from Nikpay et al. study30 associated with CAD at a statistical 
significance threshold of P < 5.0e-08. 

SMR/HEIDI tests depend on the LD structure of the reference sample, so deriving summary 
statistics from mixed-ancestry cohorts is not appropriate. In our study, we focused on European 
ancestry individuals. We required the selected CAD-associated loci to reach at least suggestive level 
of statistical significance in the European ancestry datasets (that meant that at least one SNP in the 
region within ±250 kb around the lead SNP derived from the mixed-ancestry meta-analyses had to be 
associated with CAD at P < 5.0e-07 in Europeans, Supplementary Figure S1). To check the loci 
selected from Howson et al. study31, we used summary statistics from Howson et al. meta-analysis 
that involved European-ancestry studies (N = 221,568). Since Nikpay et al.30 did not report GWAS 
results for European cohorts, for loci collected from that meta-analysis we used summary statistics 
from the previously published CARDIoGRAM study (Schunkert et al.33, 22,233 CAD cases and 
64,762 controls of European descent; nearly 2.3 million imputed genotypes). Applying this criterion 
limited the number of selected loci to 50 in Howson et al. study31 and to 17 in Nikpay et al. study30, 
respectively (Supplementary Tables S1a and S1b). 
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Finally, we matched the loci derived from both datasets. The loci were considered similar if the 
distance between the lead SNPs associated with CAD in Europeans was less than 250 kb (see 
Supplementary Figure S1). All 17 loci selected from Nikpay et al.30/CARDIoGRAM33 studies 
partially overlapped with those derived from Howson et al. study31, and 16 of them were considered 
similar. Partially overlapping loci represented by lead SNPs rs3103349 (derived from Howson et al. 
study31) and rs10455872 (derived from CARDIoGRAM study33) did not meet our similarity criterion 
since the distance between SNPs rs3103349 and rs10455872 was 269 kb. Both loci were therefore 
included in the analysis. Thus, we selected a total of 51 loci (±250 kb from lead SNPs associated with 
CAD in the European datasets, Supplementary Figure S1). The list of these loci is given in 
Supplementary Table S1c. 

Summary statistics for CAD were obtained from the following resources: (1) the 
CARDIoGRAMplusC4D Consortium website (http://www.cardiogramplusc4d.org/; for data from 
Nikpay et al.30 and the CARDIoGRAM33 studies); (2)  the PhenoScanner database 
(http://www.phenoscanner.medschl.cam.ac.uk; for data from Howson et al. study31; now these data 
are available in the GRASP repository34, https://grasp.nhlbi.nih.gov/FullResults.aspx). Data were 
downloaded in September 2017. 

SMR/HEIDI analysis 

SMR/HEIDI approach27 was used to prioritize the genes within CAD-associated loci based on 
eQTL data. SMR/HEIDI compares patterns of SNP-trait associations in the loci between two GWAS 
(in our case, GWAS for CAD and GWAS for gene expression). The analysis includes several steps 
of SNP filtration. To pass the filtering, SNP must have the following properties: (1) being located in 
the studied locus; (2) present in both GWAS for CAD and in the analysis of expression quantitative 
trait loci (cis-eQTL results); (3) having MAF ≥ 0.03 in both datasets; (4) having squared Z-test value 
≥ 10 in CAD GWAS. Those SNPs that meet criteria (1), (2), (3), (4) and have the lowest P-value for 
the association with CAD are used as instrumental variable to investigate relationships between the 
studied traits (hereinafter we define them as “top SNPs”).  

SMR/HEIDI reveals the genes whose expression level may be affected by the same causal SNP 
that is associated with the studied condition. However, it is not able to identify this causal SNP. It can 
be either the top SNP or any other polymorphism in strong LD with this top SNP. Due to incomplete 
overlap between SNPs studied in different works, the top SNP does not necessarily represent a lead 
SNP within the locus that is associated with CAD or gene expression level at the highest level of 
statistical significance. 

SMR/HEIDI tests were performed for a total of 51 loci (±250 kb from lead SNPs associated 
with CAD in the European datasets, Supplementary Figure S1). GWAS summary statistics for CAD 
were derived from Howson et al. European-ancestry meta-analysis31 (N = 221,568). Summary 
statistics for eQTLs were obtained from three resources: GTEx version 7 database35 
(https://gtexportal.org), CEDAR project29 (http://cedar-web.giga.ulg.ac.be/), and Westra Blood 
eQTL study36 (http://cnsgenomics.com/software/smr/#eQTLsummarydata). In total, we used data for 
12 tissues and cell types: coronary and tibial artery, aorta, liver, and skeletal muscle (from the GTEx), 
whole blood (from the GTEx and Westra Blood eQTL), and circulating CD4+ T lymphocytes, CD8+ 
T lymphocytes, CD19+ B lymphocytes, CD14+ monocytes, CD15+ granulocytes, and platelets (from 
CEDAR). We selected coronary and tibial artery, aorta, liver, and skeletal muscle tissue for the 
analysis because these tissues were suggested as genetically causal for CAD37. Whole blood and 
peripheral blood mononuclear cells/platelets were selected since atherosclerotic plaques are in direct 
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contact with blood flow. Mononuclear cells  infiltrate the plaques, mediate inflammatory response 
and participate in atherosclerosis development and progression and also trigger the thrombotic 
complications38,39. Platelets adhere to the damaged arteries and form mural thrombi40. These cells 
contribute to atherosclerotic inflammation by releasing a number of immune-related molecules and 
facilitating inflammatory cells recruitment41.  

We considered that expression of a certain gene may be influenced by the same functional 
polymorphism as that altering the CAD risk in case SMR test FDR was < 0.05 and the P-value in the 
HEIDI test was ≥ 0.001. The tests were performed only if the number of SNPs eligible for the analysis 
was ≥ 3. Maximal number of SNPs in the analysis was twenty. Other technical details of our 
SMR/HEIDI implementation are given in Supplemental Methods. 

SMR/HEIDI analysis was performed using the GWAS-MAP platform42. GWAS-MAP 
platform integrates an embedded software for SMR/HEIDI analysis27, theta metric-based approach 
proposed by Momozawa et al.29, LD Score regression43, and two-sample Mendelian randomization 
analysis (MR-Base package44). It also integrates a database containing GWAS summary statistics for 
eQTLs from GTEx35, CEDAR29, and Westra Blood eQTL study36 and summary-level GWAS results 
for 123 metabolomics traits, 2,453 complex traits from the UK Biobank45, and 10 traits related to 
coronary artery disease and associated conditions. Further details on the platform are given in 
Supplemental methods. 

Extraction of data on CAD-related genes from the previous studies 

Our pipeline of extracting data on the genes potentially related to CAD from the previous 
studies is provided in Supplementary Figure S2. 

We performed a literature search in Pubmed, Google Scholar, and the Online Mendelian 
Inheritance in Man database (OMIM, https://www.omim.org/) in order to find the genes for which 
evidence from “wet” (in vivo, in vitro) experimental studies suggests their role in CAD. Only those 
genes were checked that are located in the 51 studied loci (±250 kb from lead SNPs listed in 
Supplementary Table S1c) according to the NCBI Gene database 
(https://www.ncbi.nlm.nih.gov/gene). For each gene that we considered to be potentially functionally 
related to CAD, we made a brief literature review. 

We also extracted data on the prioritized genes from four previously published in silico 
studies46-49. A brief summary of approaches used in that studies is provided in Supplemental methods. 
Three studies (by Brænne et al.46, Lempiäinen et al.47, and van der Harst et al.48) prioritized potentially 
causal CAD-associated SNPs and linked them with the candidate genes. In two of these studies46,47, 
the genes were scored (higher score assigned to the gene corresponded to stronger evidence for its 
implication in CAD based on the prioritization pipeline used), and potentially causal SNP-gene 
annotations with the scores were listed in Supplementary data provided with these articles. In the 
study by van der Harst et al.48, no scores were assigned to the genes, but the genes were specifically 
highlighted for which converging evidence of a potential functional SNP-gene mechanism was 
observed. We used the following protocol to extract data from the studies46-48: first, we obtained 
information on chromosome positions of each prioritized SNP from the NCBI SNP database 
(https://www.ncbi.nlm.nih.gov/snp/); second, we checked whether these SNPs are located in the 51 
studied loci, and if yes, we attributed the gene prioritized with these SNPs to those loci that contained 
these prioritized SNPs.  

The fourth in silico study by Svishcheva et al.49 applied methods of gene-based association 
analysis using two large datasets (the UK Biobank data and Myocardial Infarction Genetics and 
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CARDIoGRAM Exome meta-analysis). We checked whether CAD-associated genes revealed in that 
study are located in 51 loci selected for our analysis. If yes, we attributed them to the corresponding 
loci. 

In order to systematize information from all studies, we made a table containing data on 51 loci, 
including rs-identifier and chromosomal position of the lead SNP, the gene nearest to the lead SNP 
(according to the NCBI SNP database), the genes revealed in SMR/HEIDI analysis, the genes 
prioritized in previous studies (with the scores where applicable) and candidate genes found in 
literature resources. Based on cumulative evidence from multiple sources, we concluded, which genes 
can be considered causal/the most likely causal for CAD, for which loci the role of additional genes 
can be proposed, and for which loci no conclusion can be made, or evidence is absent. 

It should be noted that in our study, we did not investigate whether the analyzed loci contain 
single or multiple association signals. Thus, when choosing SNPs from the studies by Brænne et al.46, 
Lempiäinen et al.47, and van der Harst et al.48, we did not make any restrictions on the LD between 
SNP prioritized in that works and the lead GWAS SNPs. Similarly, we did not limit the top SNPs in 
the SMR/HEIDI analysis (the instrumental variable used for investigating relationships between CAD 
and gene expression) only to those which are in LD with the lead SNPs. However, we analyzed LD 
between all SNPs linked to genes at each locus using LDlink online tool 
(https://analysistools.nci.nih.gov/LDlink/; data were obtained for European-ancestry populations) or 
PLINK 1.9 software (https://www.cog-genomics.org/plink2/, based on 1000 Genomes phase 3 
version 5 data for European ancestry individuals with MAF ≥ 0.03 filtration). Cases where multiple 
signals were strongly suspected were discussed separately. 

Results 

SMR/HEIDI analysis  

We found 83 probes (related to 73 protein-coding genes, 2 pseudogenes, 7 noncoding RNAs,  
and one uncharacterized probe HS.443185; listed in Table 1), whose expression levels in CAD-
relevant tissues and cells (coronary and tibial artery, aorta, liver, skeletal muscle37, blood, circulating 
lymphocytes, monocytes, granulocytes, and platelets) are associated with the same causal variants 
that account for the association between 32 out of 51 studied loci and CAD with FDRSMR < 0.05 and 
PHEIDI ≥ 0.001. Full results of SMR/HEIDI analysis are presented in Supplementary Table S2. As far 
as we are aware, 29 of these genes – PSMA5 (locus #2), DDX59-AS1 (locus #5), USP39 and GNLY 
(locus #10), FAM117B (locus #12), NME9 and ESYT3 (locus #13), RP1-257A7.4 and RP1-257A7.5 
(locus #18), RP1-283K11.3 and RP3-323P13.2 (locus #20), IFIT1 and IFIT5 (locus #32), TMEM180 
and ARL3 (locus #33), MAP3K11, CTSW, and FIBP (locus #34), RP11-563P16.1 (locus #35), RP3-
462E2.3 (locus #36), ERP29 (locus #37), OASL and COQ5 (locus #38), MORF4L1 (locus #43), 
PKD1L3, DHX38, and DHODH (locus #45), C19ORF52 (locus #49), and EDEM2 (locus #50) – have 
never been previously proposed as candidate genes for CAD. 

For 8 loci (marked by rs4129267, rs10919065, rs12801636, rs3184504, rs441, rs7178051, 
rs12052058, and rs867186 and numbered as #3, #4, #34, #36, #37, #43, #49, and #50, respectively, 
in Supplementary Table S1c), the genes were revealed using two or three instrumental variables (“top 
SNPs”) that were in low or medium LD with each other (Supplementary Table S3a). One or two of 
the top SNPs in each group were the same as the lead SNP marking the locus or one tightly linked 
with it (r2 = 0.99 in European-ancestry populations according to LDlink). The remaining top SNP in 
each group was in weak LD with the lead SNP, and association of 5 of them with CAD did not reach 
a genome-wide level of statistical significance in the dataset used for our SMR/HEIDI analysis 



8 
 

(European-ancestry meta-analysis from Howson et al. study31; locus #4, rs10800418: P = 2.42e-07; 
locus #34, rs644740: P = 7.44e-06; locus #37, rs653178: P = 1.21e-07; locus #49, rs17616661: P = 
1.51e-05; locus #50, rs1415771: P = 4.70e-06; Supplementary Table S3a). We checked the 
association of these SNPs with CAD in the meta-analysis of CARDIoGRAMplusC4D and UK 
Biobank data48 (122,733 cases and  424,528 controls). All these SNPs were either genome-wide 
significant in this dataset or very close to a genome-wide significance level (rs10800418: P = 8.82e-
11, rs644740: P = 1.12e-08,  rs653178: P = 1.13e-23,  rs17616661: P = 5.96e-08, rs1415771: P = 
9.91e-11). Thus, we speculate that the genes NME7, FIBP and CTSW, SH2B3, KANK2, and EDEM2 
identified using these polymorphisms may not be false positive findings. Nevertheless, the gene 
SH2B3 (locus #37, top SNP rs653178) likely came from the locus #36 partially overlapping with the 
locus #37. In the locus #36, SMR/HEIDI analysis suggested the gene SH2B3 using the top SNP 
rs3184504, which is in high LD (r2 = 0.95) with rs653178. SNP rs3184504 is the lead SNP in the 
locus #36 and is associated with СAD with P = 3.71e-09 in the European-ancestry meta-analysis from 
Howson et al. study31 and with P =  1.03e-25 in the CARDIoGRAMplusC4D/UK Biobank meta-
analysis48. 

The gene IL6R (locus #3 marked by rs4129267) was indicated in analyses of both semi-
independent top SNPs, rs4845625 and rs4129267 (r2 = 0.46 in European-ancestry populations 
according to LDlink). These polymorphisms represent lead SNPs in all-ancestry and European-
ancestry meta-analyses reported by Howson et al.31, respectively, and are associated with CAD with 
P-value less than 5e-10 (Supplementary Table S1a). This suggests at least two independent 
association signals, both of which modulate IL6R expression. 

In the locus #25 marked by rs11204085, the top SNP rs1569209 used to identify the gene LPL 
was in weak LD with the lead SNP (Supplementary Table S2a; rs11204085-rs1569209 r2 = 0.10 in 
European-ancestry populations). Rs1569209 was associated with CAD with P = 2.29e-06 in the 
European-ancestry meta-analysis from Howson et al. study31, however, it reached a genome-wide 
significant level in the meta-analysis of CARDIoGRAMplusC4D and UK Biobank data48 (P = 1.81e-
09). We therefore do not consider the gene LPL found using this polymorphism as a false positive 
result. Moreover, the role LPL in CAD was supported by experimental and in silico studies 
(Supplementary Table S4). 

Cumulative evidence on CAD-associated genes from different studies 

The list of genes proposed to be causal for CAD according to different lines of evidence is given 
in Table 1. Literature overview for each gene suggested by experimental studies is provided in the 
extended version of this table – Supplementary Table S4. 

Well-known CAD genes. We analyzed published data and found 18 genes in 18 loci, whose 
role in CAD and CAD-related processes was strongly supported by experimental studies and/or has 
already been known before publication of GWAS for CAD. These genes are PLPP3 (also known as 
PAP2B or PPAP2B, locus #1), SORT1 (locus #2), IL6R (locus #3), APOB (locus #8), ABCG8/ABCG5 
(locus #9), GUCY1A3 (locus #15), PHACTR1 (locus #18), TCF21 (locus #20), LPA (also known as 
APOA, overlapping loci #21 and #22), LPL (locus #25), TRIB1 (locus #26), CDKN2B-AS1 (CDKN2B 
antisense RNA also known as ANRIL, locus #27), CXCL12 (locus #31), LIPA (locus #32), PDGFD 
(locus #35), ADAMTS7 (locus #43), and LDLR (locus #49). The products of these genes are involved 
in lipid metabolism, inflammation, nitric oxide signaling, cell proliferation and apoptosis, vascular 
remodeling, and regulation of expression of other CAD-relevant genes. 
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For 9 out of 18 genes (IL6R, GUCY1A3, PHACTR1, TCF21, LPA, LPL, LIPA, PDGFD, 
ADAMTS7; 10 loci, LPA corresponds to the loci #21 and #22) we also obtained consistent evidence 
from SMR/HEIDI analysis, indicating that the effects of CAD-associated functional polymorphisms 
located in the loci containing these genes may be mediated by gene expression. However, data on the 
expression of ABCG8 was available only for liver, and we therefore avoid making any conclusions 
on eQTL effects for this gene. For the remaining well-known CAD genes (PLPP3, SORT1, APOB, 
ABCG5, TRIB1, CDKN2B-AS1, CXCL12, and LDLR), our analysis did not support that their 
expression levels are affected by the same functional variants that are associated with CAD. Several 
hypotheses can be put forward to explain these results. First, mechanisms other than expression 
changes may underlie the association between these genes and CAD (i.e., the presence of missense 
polymorphisms altering the properties of the encoded proteins). Second, CAD-relevant expression 
changes can occur in tissues/cells, or developmental stages other than those included in our analysis. 
Third, the absence of statistically significant results in the colocalization analysis does not allow to 
rule out expression-mediated effects. Genes influencing the trait through expression could be missed 
due to statistical power limitations/strict statistical significance threshold set in the analyses or due to 
limitations specific to the input dataset (e.g., incomplete data or possible errors). Besides this, per-
SNP sample sizes were not available in the Westra eQTL dataset36, and we estimated the eQTL effect 
sizes from Z-statistics without taking into account per-SNP sample size differences, which could lead 
to the additional variation in the effect size estimates27. Finally, in case of multiple association signals, 
the HEIDI test may erroneously reject the null hypothesis and disregard the results on the genes whose 
expression is actually related to the disease. In an extreme scenario where the two causal variants 
(e.g., affecting CAD and gene expression) are in perfect LD, pleiotropy and linkage disequilibrium 
are indistinguishable by any statistical test27. Thus, it is possible that our colocalization analysis could 
miss some CAD-relevant genes. 

Fifteen out of 18 well-known CAD genes (all except ABCG5, TRIB1 and CXCL12) were also 
prioritized in at least one of the four previously published in silico studies46-49. Thus, only for three 
genes evidence for their role in CAD came only from experimental works. It is noteworthy that among 
the remaining well-known CAD genes identified in both experimental and in silico (our and/or other) 
studies, only the genes PLPP3, APOB, GUCY1A3, and LPL were proposed as single candidates. For 
ABCG8/ABCG5, bioinformatic studies prioritized only ABCG8, while literature data support CAD-
related effects of both (products of these genes have closely related function: they form heterodimer 
that limits intestinal absorption and facilitates biliary secretion of cholesterol)50,51. For other loci, 
bioinformatic studies prioritized from 2 to 7 genes (median = 5). We presented all these genes in 
Table 1 and Supplementary Table S4 regardless of scores given to them in studies46,47, LD between 
a lead SNP marking a locus and SNPs that were used to prioritize these genes in studies46-48 (data on 
LD are given in Supplementary Table S3b), and  LD between lead SNPs and “top SNPs” from 
SMR/HEIDI analysis (data on LD are given in Supplementary Table S2a).  

We suppose that many of the multiple genes that were simultaneously prioritized in the same 
loci are not specific for CAD. For instance, the genes IFIT1 and IFIT5 encoding interferon-induced 
antiviral RNA-binding proteins, which were revealed in SMR/HEIDI along with LIPA (locus #32), 
may be not causal for CAD. It is possible that the locus #32 contains a regulatory polymorphism (or 
polymorphisms in very strong LD), which alters the expression of both LIPA and IFIT1/IFIT5. Its 
causal effect on CAD can be explained by modulation of LIPA expression, while effects on 
IFIT1/IFIT5 expression seem to be pleiotropy.  
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However, filtering out all of these “unspecific” genes may be too strict approach. It is not 
necessary that a single causal gene explains association between a locus and CAD. In fact, each locus 
can contain more than one independent association signal, and each association signal can realize its 
effect via more than one causal gene (as well as each causal gene can be affected by more than one 
functional CAD-associated polymorphism). In our opinion, loci for which multiple studies prioritized 
the same additional genes deserve special attention. The examples are locus #2, locus #49 and 
overlapping loci #21 and #22 (Table 1, Supplementary Table S4). We suppose that besides 
undoubtedly causal genes LDLR and LPA, relevance for CAD is likely for the genes SLC22A3, 
SLC22A2, SLC22A1 (encoding organic cation transporters), PLG (encoding plasminogen involved in 
hemostasis), SMARCA4 (encoding a protein involved in vascular calcification52), and CARM1 
(encoding methyltransferase involved in the control of stress-induced lipid metabolism53). In the locus 
#2, almost all in silico and gene expression studies prioritized CELSR2 and PSRC1 along with the 
SORT1 gene. Moreover, PSRC1 was shown to protect against atherosclerosis and enhance the 
stability of atherosclerotic plaques in Apoe-/- mice by modulating cholesterol transportation and 
inflammation54. Thus, CELSR2 and PSRC1 in the locus #2 might be also involved in CAD 
development.  

Other interesting examples of multiple candidate genes in a locus are the genes of long 
noncoding RNA (lncRNA) prioritized in experimental or in silico studies (loci #18, #20, #27, and 
#35). LncRNA CDKN2B-AS1 (ANRIL; locus #27) regulates the expression of CDKN2A/B and other 
genes and has well-known effects on atherosclerosis55-57. We suppose that lncRNA RP3-323P13.2 
(also known as TARID; locus #20) indicated by our SMR/HEIDI analysis can in the same way be 
relevant for CAD via the regulation of expression of CAD-associated gene TCF21. In the study by 
Arab et al.58, TARID was shown to activate TCF21 expression via interaction with TCF21 promoter 
as well as with the regulator of DNA demethylation GADD45A. In the loci #18 and #35, SMR/HEIDI 
analysis suggested lncRNAs RP1-257A7.4 and RP1-257A7.5 (the first is antisense to PHACTR1 and 
the gene encoding the second one is located near PHACTR1) and RP11-563P16.1 (its gene is located 
12 kb from PDGFD). However, we did not find any evidence in published studies that these lncRNAs 
can regulate PHACTR1 and PDGFD transcription and therefore do not consider them as a likely 
causal CAD genes. 

Other causal/the most likely causal CAD genes. We found additional 37 genes in 27 loci, 
whose role in CAD and CAD-related processes can be proposed based on evidence from published 
“wet” experimental studies (Table 1, Supplementary Table S4). We considered this evidence not 
strong enough to prioritize any of these genes convincingly based on experimental data alone. 
However, adding data from in silico studies allowed us to pinpoint 9 causal and 10 most likely causal 
CAD genes in 8 and 10 loci, respectively. 

The genes that we consider as definitely causal for CAD are MRAS (locus #13), EDNRA (also 
known as ETA, locus #14), JCAD (also known as KIAA1462, locus #29), SCARB1 (locus #39), FLT1 
(also known as VEGFR1, locus #40), COL4A2/COL4A1 (locus #41), FURIN (locus #44), and 
PECAM1 (locus #48). The genes that we define as “the most likely causal” are ATP1B1 (locus #4), 
ZC3HC1 (also known as NIPA, locus #23), TBXAS1 (locus #24), CYP17A1 (locus #33), SH2B3 (also 
known as LNK, locus #36), HNF1A (locus #38), HHIPL1 (locus #42), HP (locus #45), PROCR (locus 
#50), and KCNE2 (also known as MIRP1, locus #51). Of those, MRAS, JCAD, FURIN, PECAM1, 
ATP1B1, SH2B3, HP, and KCNE2 were found in our SMR/HEIDI analysis, supporting expression-
related effects on CAD.  
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Only for three loci (#14, #29 and #40) the genes EDNRA, JCAD, and FLT1 were proposed as 
single possible candidates in all studies. For other loci, from 2 to 14 genes were proposed as 
potentially causal (median = 4). The largest number of genes was suggested for the locus #50 (n = 
14), and almost all of these genes were prioritized based on the same putative functional SNP 
rs867186 as that prioritized with the most likely causal gene PROCR (Table 1, Supplementary Tables 
S3a and S3b). Thus, we cannot explain such diversity by the presence of multiple association signals 
in this locus and consider additional genes as likely unspecific results. 

Among the remaining loci with multiple proposed candidates, in our opinion, special attention 
should be paid to the loci #23, #36, and #44. In the locus #23, we found the strongest evidence for 
the gene ZC3HC1 (Supplementary Table S4). ZC3HC1 contains a functional missense polymorphism 
rs1155692459, which is the lead SNP tagging this locus. However, our SMR/HEIDI analysis revealed 
that either rs11556924 or other SNP in LD with rs11556924 is simultaneously associated with CAD 
and the KLHDC10 gene expression in blood (Supplementary Table S2). The product of KLHDC10 is 
involved in oxidative stress-induced cell death and inflammation60,61. Since all these processes are 
playing role in atherosclerosis62-64, we suppose that changes in KLHDC10 expression can be an 
additional factor explaining association between locus #23 and CAD. In the locus #36, lead SNP 
rs3184504 is a missense polymorphism in the SH2B3 gene. Interestingly, rs3184504 was also a “top 
SNP” for SH2B3 in our SMR/HEIDI analysis that indicated this gene (Supplementary Table S2). This 
may mean that either effect of rs3184504 on CAD is realized not/not only via altering the SH2B3 
protein properties (for example, it can influence SH2B3 transcription or mediate RNA decay), or the 
locus #36 contains two functional CAD-associated SNPs in LD with each other – a missense SNP 
rs3184504 and another SNP affecting SH2B3 expression. Besides SH2B3 suggested by many studies, 
three lines of evidence support the role of ATXN2 (Table 1, Supplementary Table S4), including the 
results of the study on ataxin-2 knock-out mice (such animals displayed different pathological 
changes such as obesity and increased serum cholesterol level65). Thus, we do not exclude causality 
for ATXN2. Finally, in the locus #44, all in silico studies prioritized both FURIN and FES genes. Our 
SMR/HEIDI analysis found association between CAD and FURIN expression changes in blood, and 
between CAD and FES expression changes in blood and CD14+ and CD19+ cells. Notably, Liu et 
al.66 have recently applied colocalization methods on the transcriptome dataset generated using 
human coronary artery smooth muscle cell lines collected from donor hearts. They observed 
colocalization between CAD and gene expression association signals in this locus only for FES (the 
genes found in that study for other loci were TCF21, SIPA1, PDGFRA, and SMAD3, with the first 
two also supported by our SMR/HEIDI results and the last two coming from loci not analyzed in this 
study). Nevertheless, in the present study, we prioritized FURIN since only for this gene experimental 
data support CAD-related role of its protein product (Supplementary Table S4).  

Loci with inconclusive evidence. For the 15 remaining loci, we could not suggest any causal 
gene due to inconsistency in the results of different studies or insufficient data for gene prioritization.  

For the loci #7 and #30, no candidate genes were found, and for the loci #16, #17, and #19, 
evidence was not enough to make any conclusion. In the loci #5, #6, #10-12, #28, #34, #37, #46, and 
#47, the studies suggested multiple genes (from 2 to 10, median = 4). We failed to prioritize any and 
presented all of them in Table 1 and Supplementary Table S4 without inferences of causality. It is 
worth pointing out that in the locus #47, we could not choose between three strong candidates PEMT, 
SREBF1, and MIR33B, all of which can be – based on experimental studies – judged as relevant for 
CAD. Besides this, we want to point out the locus #28, for which experimental studies 
(Supplementary Table S4) and the gene-based analysis49 proposed the candidate genes ABO and 
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ADAMTS13. Our SMR/HEIDI analysis supported the role of ABO. For the locus #10, experimental 
evidence suggested the genes GGCX and VAMP8, which were prioritized in almost all in silico studies 
along with VAMP5 and some other candidates. Whether one or more of these genes are causal for 
CAD remains in question. 

Discussion 

Genome-wide association studies offer great opportunities for exploring genetic architecture of 
complex traits due to their whole-genome scale and hypothesis-free design. However, annotation of 
GWAS results is usually not straightforward and requires extensive in silico research and 
experimental follow-up. In the present study, we aimed to pinpoint the genes that account for 
associations between 51 genomic loci and CAD. We also aimed to reveal the loci for which evidence 
on CAD-associated genes remains insufficient or controversial. We collected and systematized data 
from published studies and complemented their results with the results of our bioinformatics analysis 
of colocalization between GWAS signals and eQTLs using SMR/HEIDI approach27. Our results, 
information from other works and overall conclusions are summarized in Table 1; even more detailed 
summary with a literature review of experimental findings is presented in Supplementary Table S4. 
Overview of all findings is provided in Figure 1. 

Using merely in silico techniques and previous literature, we conclude that for 36 out of 51 
(71%) CAD-associated loci, the causal/most likely causal genes have been identified. For 18 genes 
in 18 loci, we found that very strong previous experimental evidence supports their relevance for 
CAD and defined them as “well-known CAD genes”. This role for 15 of them is also supported by 
bioinformatics studies46-49. Our SMR/HEIDI analysis confirmed the role of 9 of these 18 genes (IL6R, 
GUCY1A3, PHACTR1, TCF21, LPA, LPL, LIPA, PDGFD, ADAMTS7), indicating that the same 
causal SNPs are associated with CAD and gene expression changes in CAD-relevant tissues. 
Furthermore, we made causal inferences for 19 genes in 18 other loci based on cumulative evidence 
from in silico and experimental works. Eight of them (JCAD, FURIN, PECAM1, ATP1B1, SH2B3, 
HHIPL1, HP, and KCNE2) were found in our SMR/HEIDI analysis, supporting expression-mediated 
mechanisms underlying CAD-loci associations. 

We could not make causal inference for 15 (29%) loci. We found out that for 5 loci, evidence 
for CAD-associated genes remains insufficient or absent. For the remaining 10 loci, we observed a 
considerable inconsistency in the results obtained using different approaches and/or could not choose 
from multiple genes for which strength of evidence supporting their role was similar. Thus, we 
conclude that for these 15 loci, it would be beneficial to conduct additional studies clarifying the 
causal gene. 

It should be noted that our and other studies suggested more than one candidate gene per locus 
for 37 out of 51 (73%) analyzed loci (including 12 loci with well-known CAD genes). There may be 
several explanations for such multiplicity. First of all, in silico methods may produce unspecific 
results. For instance, colocalization between gene expression and CAD association signals does not 
prove causality – this method only provides possible candidate genes whose transcription is affected 
by the same SNP that influences the risk of CAD, and the results of different colocalization methods 
may have a low concordance with each other67. In bioinformatics studies of Brænne et al.46 and 
Lempiäinen et al.47 that used different prioritization algorithms and in silico methods, the 
“nonspecificity” issue was addressed by providing scores to the revealed genes. Nevertheless, as can 
be seen from Table 1, a high score in one study does not necessarily correlate with a high score in 
another. We estimated a correlation between the scores assigned to the genes prioritized in both 
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Brænne et al.46 and Lempiäinen et al.47 studies (only the genes attributed to 51 loci studied in our 
work were included in the analysis). The Spearman’s correlation coefficient was ρ = 0.204. When we 
considered only the genes in these loci prioritized with the same SNP (or with SNPs in high LD with 
each other, r2 ≥ 0.8), the Spearman’s correlation coefficient was ρ = 0.290. 

Second, in our study, “a CAD-associated locus” was defined as a physical distance of ±250 kb 
around the lead SNP (showing the strongest association in GWAS), and we did not focus on 
independent association signals. In the case of multiple neighboring SNPs independently associated 
with the disease, each one can realize its effect via its own causal gene. Besides this, theoretically, 
one functional SNP (e.g., regulatory) can affect more than one disease-relevant gene. Thus, it is not 
surprising that out colocalization analysis and analyses performed in other studies often suggested 
many genes per locus. Here we presented all information on CAD-associated genes suggested by our 
SMR/HEIDI tests and thoroughly extracted from different studies irrespective of scores given to these 
genes (if any) and LD between SNPs, through which the genes were prioritized, and the lead GWAS 
SNPs (data on LD can be found in Tables S2 and S3). Furthermore, our study emphasized the loci 
where multiple causal genes are likely (e.g. TCF21 and RP3-323P13.2 in locus #20; ZC3HC and 
KLHDC10 in locus #23, SH2B3 and ATXN2 in locus #36 etc., see Table 1). In our opinion, such loci 
should receive special attention in subsequent research.  

Our study has strengths and limitations. A principal strength of our study is a systematic and 
comprehensive approach to data extraction and reporting. Each locus was analyzed individually 
taking into accordance all available information. However, we acknowledge that manual annotation 
may lead to some degree of subjectivity in making decisions, and we therefore made as much data as 
possible available for independent scrutiny. Another limitation is that we analyzed only 51 CAD-
associated loci discovered until 2017 and for which we were able to perform a SMR/HEIDI analysis, 
while more than 160 CAD loci are known to date9,15. Expanding our analyses to include all of them 
would be beneficial, although for some recently discovered loci there may still be too few literature 
data on candidate genes to draw a conclusion on their relevance for CAD in the context of our work. 
Next, our study had limitations related to the use of colocalization analysis, which, on the one hand, 
may miss some important CAD-associated genes due to limited power/incomplete data/multiple 
association signals in regions with complex LD structure (the last being an inherent problem of the 
HEIDI test), and, on the other hand, may suggest genes which are actually not related to CAD. In 
particular, it should be noted that for some loci the number of SNPs in the HEIDI test was quite small 
(Supplementary Table S2a), which could lead to limited power to detect heterogeneity and increase 
the probability that the expression of identified genes is associated with functional variants other than 
those affecting CAD. Finally, we did not provide deep insights into the mechanisms linking genomic 
variations in the studied loci with alterations in gene functions. Nevertheless, we showed that for 17 
causal/most likely causal genes, this mechanism may be related to changes in gene expression in 
CAD-relevant tissues. 

Considering issues related to the consistency between the results of colocalization methods67 
and concerns that the HEIDI test might be too conservative27, we applied alternative colocalization 
methods using a theta metric-based approach suggested by Momozawa et al.29 and the 
LocusCompare68 web tool (http://locuscompare.com/). The theta metric-based analysis assesses the 
similarity between association patterns and provides an alternative to the HEIDI test. We used the 
same sources of GWAS summary statistics as in the SMR/HEIDI test and applied the threshold of |θ| 
> 0.7 and the number of SNPs > 3. The theta-metric based analysis proposed 39 genes related to 19 
loci (Supplementary Table S5), of which 32 genes were also identified in our SMR/HEIDI analysis, 
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while 9 genes (A4GNT, AS3MT, IREB2, MAT2A, SH3PXD2A, SLC3A1, SORT1, SRR, WDR12) were 
not. Of the 9 genes listed above, AS3MT (locus #33), MAT2A (locus #10), SORT1 (locus #2), SRR 
(locus #46), and WDR12 (locus #12) were also proposed by some previous studies (Table 1, 
Supplementary Table S4), and the genes A4GNT (locus #13), IREB2 (locus #43) , SH3PXD2A (locus 
#33), and SLC3A1 (locus #9), to the best of our knowledge, have never been suggested for CAD 
before. It is worth noting that for these novel genes, evidence for expression-mediated effects was 
found only for one tissue per each gene. Next, we used the LocusCompare web framework with the 
Howson et al.31 CAD GWAS and CAD-relevant tissues37 from the GTEx version 7 eQTL dataset. 
Using the recommended threshold for probability of > 0.01, we identified 24 genes related to 16 loci 
(Supplementary Table S6), including 23 genes overlapping with our SMR/HEIDI results, and the 
gene HHIPL1 reported in other works (Supplementary Table S4). HHIPL1 passed the FDR threshold 
in our SMR test for two tissues (Supplementary Table S2b) but was omitted from the HEIDI test due 
to the insufficient number of SNPs in the analysis. Overall, having compared the new results with the 
evidence summarized using SMR/HEIDI and published studies, we conclude that the results of theta 
metric-based and LocusCompare analyses do not change the decisions on the prioritized genes made 
in the present study. 

Despite limitations, our study contributes to a better understanding of the genetic underpinnings 
of CAD by supporting the results of previous annotation efforts, resolving some uncertainty issues 
by consolidating data from different sources, and outlining new research directions by suggesting 
novel CAD candidate genes. In addition, our study pinpoints the loci for which causal genes remain 
unknown and evidence is still ambiguous or inconclusive, highlighting the need for further research 
to address these knowledge gaps.  

Conclusion 

In the present study, we prioritized the genes responsible for the association of 51 loci with 
CAD based on cumulative evidence from experimental and in silico studies, including our 
SMR/HEIDI analysis of colocalization between eQTL and GWAS signals. We identified causal/most 
likely causal gene for 36 (71%) loci. For 10 loci, we concluded that evidence for gene prioritization 
is inconsistent. For 5 loci, data remain insufficient or absent. We envisage that data collected and 
summarized here will provide useful guidance for future studies.  

Data availability 
Data obtained in the analyses are provided in Supplementary Tables related to this article. 
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Figure 1. Summary of findings for 51 CAD-associated loci. 

Matching loci numbers with chromosomal positions and lead SNPs can be found in Table 1 and 
Supplementary Table S1c. Prioritized genes are listed in Table 1 and Supplementary Table S4. 
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Table 1. Genes in 51 CAD-associated loci (±250 kb around the lead SNP) proposed to be causal according to different lines of evidence.  

Alternative gene names or non-coding RNA names are given in parenthesis after official gene symbols. Literature overview for each candidate gene found in 
literature sources is provided in Supplementary Table S4. In the studies46-49, possible candidate genes were linked to the prioritized CAD-associated SNPs (data on 
those SNPs located in the 51 studied loci can be found in Supplementary Table S3b). Arrows near gene names indicate that these genes have been linked to the same 
prioritized SNP in the locus or to SNPs in high LD with each other (r2 ≥ 0.8; Supplementary Table S3c). If there are two or more groups of such genes in the locus, 
single arrow indicates the genes linked to one SNP, double, triple, and quadruple arrows – genes linked to other SNPs (e.g., in locus 43). We also marked with arrows 
the genes found in SMR/HEIDI analysis if the top SNP (instrumental variable used for investigating relationships between gene expression and CAD) was the same or 
in high LD (r2 ≥ 0.8; Supplementary Table S3d) with SNPs prioritized in other studies. 

 Lead SNP¥ Chr: position* Nearest† 
known gene 

Genes prioritized by 
SMR/HEIDI‡ 

Candidate genes from 
literature** 

Genes prioritized previously based on 
bioinformatics approaches46-48 and found in 
gene-based association analysis49 

Conclusion 

1 rs17114036 1: 56 962 821 PLPP3 
(PAP2B, 
PPAP2B) 

-  PLPP3 (PAP2B, 
PPAP2B) 

 

Lempiäinen et al.47, score range 2-54 
 PLPP3 (PAP2B) (total score = 10) 
Svishcheva et al.49 
 PLPP3 (PAP2B) (two datasets) 

PLPP3 (PAP2B) is 
the causal gene. 

2 rs602633 1: 109 821 511  PSRC1  PSRC1 ← 
 CELSR2 ← 
 PSMA5 ← 

 SORT1 
 PSRC1 
 CELSR2 

Brænne et al.46, score range 1-11 
 CELSR2 (total score = 5) ← 
 SORT1 (total score = 4) ← 
 PSRC1 (total score = 4) ← 
 MYBPHL (total score = 2)  
Lempiäinen et al.47, score range 2-54 
 CELSR2 (total score = 10) ← 
van der Harst et al.48 
 SORT1¶ ← 
 CELSR2 ← 
 PSRC1 ← 
 SARS ← 
 ATXN7L2 ← 
Svishcheva et al.49 
 CELSR2 (two datasets) 

SORT1 is the causal 
gene. 

PSRC1 and 
CELSR2 might also 
be involved. 

3 rs4129267 1: 154 426 264  IL6R  IL6R ←, ← ←  IL6R 
 

Brænne et al.46, score range 1-11 
 IL6R (total score = 5) ← 
 UBAP2L (total score = 2) ← 
 ATP8B2 (total score = 2) ← 
 CHTOP (total score = 1) ← 
Lempiäinen et al.47, score range 2-54 
 IL6R (total score = 10) ←, ← ← 

IL6R is the causal 
gene. 

4 rs10919065 1: 169 093 557 ATP1B1  ATP1B1 ← ← 
 NME7 ←, ← ← 

 ATP1B1 Brænne et al.46, score range 1-11 
 ATP1B1 (total score = 4) ← 

ATP1B1 is the most 
likely causal gene.  
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 NME7 (total score = 2) ← 
 CCDC181 (total score = 1) ← 

5 rs6700559 1: 200 646 073 DDX59-AS1   DDX59-AS1  
(RP11-92G12.3) ← 

 DDX59 ← 
 CAMSAP2 

(CAMSAP1L1) ← 

- Brænne et al.46, score range 1-11 
 KIF14 (total score = 4) ← 
 CAMSAP2 (total score = 2) ← 
 DDX59 (total score = 2) ← 
van der Harst et al.48 
 CAMSAP2¶ ← 
 DDX59 ← 

Evidence is 
inconsistent. 

6 rs2820315 1: 201 872 264 LMOD1  IPO9 ← 
 LMOD1 ← 

 LMOD1 Brænne et al.46, score range 1-11 
 IPO9 (total score = 4) ← 
 LMOD1 (total score = 2) ← 
 SHISA4 (total score = 1) ← 
Lempiäinen et al.47, score range 2-54 
 IPO9 (total score = 10) ← 

Evidence is 
inconsistent. 
LMOD1 and IPO9 
can be involved.  
  
 

7 rs16986953 2: 19 942 473 LINC00954 - - - No evidence. 
8 rs515135 2: 21 286 057 APOB -  APOB 

 
Lempiäinen et al.47, score range 2-54 
 APOB (total score = 32) 
Svishcheva et al.49 
 APOB (one dataset) 

APOB is the causal 
gene. 
 

9 rs6544713 2: 44 073 881 ABCG8 -  ABCG8 
 ABCG5 

Lempiäinen et al.47, score range 2-54 
 ABCG8 (total score = 34) 
Svishcheva et al.49 
 ABCG8 (two datasets) 

ABCG8/ABCG5 are 
the causal genes. 
 

10 rs1561198 2: 85 809 989 VAMP8  GGCX ← 
 VAMP5 ← 
 VAMP8 ← 
 USP39 ← 
 GNLY ← 
 

 GGCX 
 VAMP8 

Brænne et al.46, score range 1-11 
 GGCX (total score = 5) ← 
 VAMP5 (total score = 5) ← 
 VAMP8 (total score = 5) ← 
Lempiäinen et al.47, score range 2-54 
 VAMP8 (total score = 42) ← 
Svishcheva et al.49 
 MAT2A (one dataset) 
 GGCX (one dataset) 
 VAMP5 (one dataset) 

Evidence is 
inconsistent. 

11 rs2252641 2: 145 801 461 TEX41 -  ZEB2 Lempiäinen et al.47, score range 2-54 
 TEX41 (total score = 2) 

Evidence is 
inconsistent. 

12 rs2351524 2: 203 880 992 NBEAL1  ICA1L ← 
 CARF ← 
 NBEAL1 ← 
 FAM117B ← 

 WDR12 Brænne et al.46, score range 1-11 
 NBEAL1 (total score = 4) ← 
 WDR12 (total score = 4) ← 
 CARF (total score = 3) ← 
 ALS2CR8 (total score = 2) ← 
 ICA1L (total score = 1) ← 

Evidence is 
inconsistent. 
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Lempiäinen et al.47, score range 2-54 
 ICA1L (total score = 10) ← 
Svishcheva et al.49 
 NBEAL1 (two datasets) 
 WDR12 (two datasets) 

13 rs2306374 3: 138 119 952 MRAS  MRAS ← 
 NME9 ← 
 ESYT3 ← 
 

 MRAS Brænne et al.46, score range 1-11 
 MRAS (total score = 5) ← 
 CEP70 (total score = 2) ← 
Lempiäinen et al.47, score range 2-54 
 MRAS (total score = 34) ← 
Svishcheva et al.49 
 MRAS (one dataset) 

MRAS is the causal 
gene. 
 

14 rs1429141 4: 148 288 067 MIR548G -  EDNRA (ETA) Lempiäinen et al.47, score range 2-54 
 EDNRA (ETA) (total score = 34) 
Svishcheva et al.49 
 EDNRA (ETA) (one dataset) 

EDNRA is the 
causal gene. 

15 rs7692387 4: 156 635 309 GUCY1A1  GUCY1A3 ←  GUCY1A3  Lempiäinen et al.47, score range 2-54 
 GUCY1A3 (total score = 42) ← 

GUCY1A3 is the 
causal gene. 

16 rs273909 5: 131 667 353 SLC22A4 
MIR3936HG 

- - Lempiäinen et al.47, score range 2-54 
 SLC22A5 (total score = 10) 

Insufficient 
evidence. 

17 rs246600 5: 142 516 897 ARHGAP26 - - van der Harst et al.48 
 HMHB1 

Insufficient 
evidence. 

18 rs7751826 6: 12 900 977 PHACTR1  RP1-257A7.5 ← 
 RP1-257A7.4 ← 
 PHACTR1 ← 

 PHACTR1 Lempiäinen et al.47, score range 2-54 
 PHACTR1 (total score = 2) ←, ← ← 
van der Harst et al.48 
 EDN1¶ ← ← 
 TBC1D7 ← ← 
 PHACTR1 ← ← 
 GFOD1 ← ← 
Svishcheva et al.49 
 PHACTR1 (two datasets) 

PHACTR1 is the 
causal gene. 

19 rs10947789 6: 39 174 922 KCNK5 - - Lempiäinen et al.47, score range 2-54 
 KCNK5 (total score = 2) 

Insufficient 
evidence. 

20 rs2327429 6: 134 209 837 TARID  TCF21 ← 
 RP3-323P13.2 ← 
 RP1-283K11.3 ← 

 TCF21 Lempiäinen et al.47, score range 2-54 
 TCF21 (total score = 10) ← 

TCF21 is the causal 
gene. 

RP3-323P13.2 
might also be 
involved. 

21 rs3103349# 6: 160 740 721 SLC22A3  LPA  LPA (APOA) Brænne et al.46, score range 1-11 
 SLC22A3 (total score = 5) ← ← 
 AL591069.5 (total score = 1) ← ← 
Lempiäinen et al.47, score range 2-54 

LPA is the causal 
gene.  
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 LPA (total score = 54) 
 LPAL2 pseudogene (total score = 10) ← ← 
 IGF2R (total score = 2) 
 SLC22A2 (total score = 2) 
 SLC22A3 (total score = 2) 
Svishcheva et al.49 
 LPA (two datasets) 
 SLC22A1 (two datasets) 
 SLC22A2 (two datasets) 
 SLC22A3 (two datasets) 
 IGF2R (one dataset) 

SLC22A3, 
SLC22A2, 
SLC22A1 might 
also be involved. 

22 rs10455872# 6: 161 010 118 LPA  LPA ← ←  LPA (APOA) Brænne et al.46, score range 1-11 
 PLG (total score = 6) ←  
 SLC22A3 (total score = 5) ← ← 
 LPAL2 pseudogene (total score = 4) ← 
 AL591069.5 (total score = 1) ← ← 
Lempiäinen et al.47, score range 2-54 
 LPA (total score = 54) 
 PLG (total score = 46) ← 
 LPAL2 pseudogene (total score = 10) ← ← 
 SLC22A3 (total score = 2) 
Svishcheva et al.49 
 SLC22A3 (two datasets) 
 LPA (two datasets) 
 PLG (two datasets) 

LPA is the causal 
gene.  

PLG and SLC22A3 
might also be 
involved. 

23 rs11556924 7: 129 663 496 ZC3HC1 
(NIPA) 

 KLHDC10 ←  KLHDC10 
 ZC3HC1 (NIPA) 

Brænne et al.46, score range 1-11 
 ZC3HC1 (NIPA) (total score = 4) ← 
Lempiäinen et al.47, score range 2-54 
 ZC3HC1 (NIPA) (total score = 22) ← 
van der Harst et al.48 
 ZC3HC1¶ ← 
 NRF1 ← 
 KLF14 ← 
Svishcheva et al.49 
 ZC3HC1 (one dataset) 

ZC3HC1 (NIPA) is 
the most likely 
causal gene. 

KLHDC10 might 
also be involved. 

24 rs10237377 7: 139 757 136 PARP12 -  TBXAS1 Brænne et al.46, score range 1-11 
 TBXAS1 (total score = 5) 
Lempiäinen et al.47, score range 2-54 
 PARP12 (total score = 10) ← 
 TBXAS1 (total score = 10) ← 

TBXAS1 is the most 
likely causal gene. 
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25 rs11204085 8: 19 940 796  SLC18A1  LPL  LPL 
  

Brænne et al.46, score range 1-11 
 LPL (total score = 8) ← 
Lempiäinen et al.47, score range 2-54 
 LPL (total score = 42) ← 
Svishcheva et al.49 
 LPL (one dataset) 

LPL is the causal 
gene. 
 
 

26 rs2954032 8: 126 493 392 TRIB1 -  TRIB1 - TRIB1 is the causal 
gene. 

27 rs3218020 9: 21 997 872 CDKN2B-
AS1 
(ANRIL) 

-  CDKN2B-AS1 
(ANRIL) 

Brænne et al.46, score range 1-11 
 CDKN2B (total score = 8) ←, ← ← 
 CDKN2A (total score = 5) ← 
Lempiäinen et al.47, score range 2-54 
 CDKN2B (total score = 9) ← 
 CDKN2B-AS1 (total score = 2) ← ← 
van der Harst et al.48 
 CDKN2B¶ ← ← ← 
 MTAP← ← ← 
Svishcheva et al.49 
 CDKN2B (two datasets) 
 CDKN2A (two datasets) 
 MTAP (one dataset) 

CDKN2B-AS1 is 
the causal gene, 
which regulates 
CDKN2B and 
CDKN2A 
expression. 

28 rs579459 9: 136 154 168 ABO  SURF1 ← 
 ABO ← 

 ABO 
 ADAMTS13 
 

Lempiäinen et al.47, score range 2-54 
 DDX31 (total score = 8) ← 
 SURF1 (total score = 8) ← 
 SURF6 (total score = 8) ← 
Svishcheva et al.49 
 ABO (one dataset) 
 ADAMTS13 (one dataset) 

Evidence is 
inconsistent. 

29 rs2505083 10: 30 335 122 JCAD 
(KIAA1462) 

 JCAD (KIAA1462) 
← 

 JCAD (KIAA1462) Brænne et al.46, score range 1-11 
 JCAD (KIAA1462) (total score = 6) ← 
Lempiäinen et al.47, score range 2-54 
 JCAD (KIAA1462) (total score = 6) ← 
Svishcheva et al.49 
 JCAD (KIAA1462) (one dataset) 

JCAD is the causal 
gene. 
 

30 rs10793513 10: 44 494 546 LINC00841 -  - - No evidence. 
31 rs523297 10: 44 756 557 CXCL12 -  CXCL12 - CXCL12 is the 

causal gene. 
32 rs2246833 10: 91 005 854 LIPA  LIPA ← 

 IFIT1 ← 
 IFIT5 ← 

 LIPA Brænne et al.46, score range 1-11 
 LIPA (total score = 9) ← 
Lempiäinen et al.47, score range 2-54 
 LIPA (total score = 46) ← 
Svishcheva et al.49 

LIPA is the causal 
gene. 
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 LIPA (one dataset) 
33 rs11191447 10: 104 652 

323 
BORCS7-
ASMT 
AS3MT 

 TMEM180 
(MFSD13A) ← 

 ARL3 ← 
 NT5C2 ← 
 MARCKSL1P1 

pseudogene ← 

 CYP17A1 
 

Brænne et al.46, score range 1-11 
 NT5C2 (total score = 5) ← 
 CNNM2 (total score = 4) ← 
Lempiäinen et al.47, score range 2-54 
 CYP17A1 (total score = 34) ← 
Svishcheva et al.49 
 CYP17A1 (one dataset) 
 CNNM2 (one dataset) 
 AS3MT (one dataset) 

CYP17A1 is the 
most likely causal 
gene. 
 
 

34 rs12801636 11: 65 391 317 PCNX3  SIPA1 ← 
 MAP3K11 ← 
 CTSW ← ← 
 FIBP ← ← 

 RELA 
 

Brænne et al.46, score range 1-11 
 RELA (total score = 6) ← 
 SIPA1 (total score = 4) ← 
 OVOL1 (total score = 2) ← 
 PCNXL3 (total score = 1) ← 
Lempiäinen et al.47, score range 2-54 
 RELA (total score = 40) ← 
van der Harst et al.48 
 EHBP1L1¶ ← 

Evidence is 
inconsistent. 

35 rs974819 11: 103 660 
567 

MIR4693  PDGFD ← 
 RP11-563P16.1 ← 

 PDGFD van der Harst et al.48 
 PDGFD¶ ← 

PDGFD is the 
causal gene. 

36 rs3184504§ 12: 111 884 
608 

SH2B3 
(LNK) 

 SH2B3 ← ← 
 TMEM116 ← 
 ALDH2 ←  
 MAPKAPK5 ←  
 RP3-462E2.3 ←  

 SH2B3 (LNK) 
 ATXN2 

Brænne et al.46, score range 1-11 
 SH2B3 (total score = 5) ← ← 
 ATXN2 (total score = 4) ← ← 
 FLJ21127 (total score = 1) ← ← 
Lempiäinen et al.47, score range 2-54 
 SH2B3 (total score = 14) ← ← 
Svishcheva et al.49 
 ATXN2 (two datasets) 
 SH2B3 (one dataset) 

SH2B3 is the most 
likely causal gene.  

ATXN2 might also 
be involved. 

37 rs441§ 12: 112 228 
849 

ALDH2  TMEM116 ← 
 ERP29 ← 
 SH2B3 
 ALDH2 ← 
 MAPKAPK5 ← 

 ATXN2  
 ALDH2  
 MAPKAPK5 

Brænne et al.46, score range 1-11 
 ALDH2 (total score = 6) ← 
 SH2B3 (total score = 5) ← 
 TMEM116 (total score = 4) ← 
 BRAP (total score = 4) ← 
 MAPKAPK5 (total score = 4) ← 
 HECTD4 (total score = 2) ← 
 C12ORF30 (total score = 2) ← 
Svishcheva et al.49 
 ATXN2 (two datasets) 
 TMEM116 (one dataset) 
 NAA25 (one dataset) 

Evidence is 
inconsistent. 
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38 rs2258287 12: 121 454 
313 

C12ORF43  OASL ← 
 C12ORF43 ← 
 COQ5 

 HNF1A  Brænne et al.46, score range 1-11 
 HNF1A (total score = 4) ← ← 
Lempiäinen et al.47, score range 2-54 
C12ORF43 (total score = 8) ← ← 

HNF1A is the most 
likely causal gene. 

39 rs11057830 12: 125 307 
053 

SCARB1 -  SCARB1 Brænne et al.46, score range 1-11 
 SCARB1 (total score = 6) ← 
Lempiäinen et al.47, score range 2-54 
 SCARB1 (total score = 34) ← 
 DHX37 (total score = 2) 
Svishcheva et al.49 
 SCARB1 (one dataset) 

SCARB1 is the 
causal gene. 
 

40 rs9319428 13: 28 973 621 FLT1 
(VEGFR1) 

-  FLT1 (VEGFR1)  Lempiäinen et al.47, score range 2-54 
 FLT1 (total score = 34) 

FLT1 is the causal 
gene. 

41 rs9515203 13: 111 049 
623 

COL4A2 -  COL4A2, COL4A1 Brænne et al.46, score range 1-11 
 IRS2 (total score = 4) 
Lempiäinen et al.47, score 2-54 
 ANKRD10 (total score = 8) ← 
 COL4A1 (total score = 2) ← ← 
 COL4A2 (total score = 2) ←, ← ← 
Svishcheva et al.49 
 COL4A2 (two datasets) 
 COL4A1 (one dataset) 

COL4A2 and 
COL4A1 are the 
causal genes. 
 
 

42 rs2895811 14: 100 133 
942 

HHIPL1   HHIPL1 
 

Brænne et al.46, score range 1-11 
 YY1 (total score = 6) ← 
 EML1 (total score = 2) 
Lempiäinen et al.47, score 2-54 
 HHIPL1 (total score = 6) ← 

HHIPL1 is the most 
likely causal gene. 

43 rs7178051 15: 79 118 296  ADAMTS7  ADAMTS7 ←  
 CTSH ← 
 RP11-160C18.2 

pseudogene ← 
 MORF4L1 ← 

 ADAMTS7 
  

Brænne et al.46, score range 1-11 
 ADAMTS7 (total score = 7) ← ←, ← ← ← 
 WDR61 (total score = 2) ← ← 
Lempiäinen et al.47, score range 2-54 
 ADAMTS7 (total score = 38) ← ← ← 
 CTSH (total score = 8) 
van der Harst et al.48 
 ADAMTS7 ← ← ← ← 
 RASGRF1 ← ← ← ← 
Svishcheva et al.49 
 ADAMTS7 (two datasets) 

ADAMTS7 is the 
causal gene.  
 

44 rs17514846 15: 91 416 550 FURIN  FURIN ← 
 FES ← 
 MAN2A2 ← 

 FURIN Brænne et al.46, score range 1-11 
 FURIN (total score = 8) ← 
 FES (total score = 7) ← 
 MAN2A2 (total score = 3) ← 

FURIN is the causal 
gene.  

FES might also be 
involved. 
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Lempiäinen et al.47, score range 2-54 
 FURIN (total score = 10) ← 
 FES (total score = 10) ← 
Svishcheva et al.49 
 FURIN (two datasets) 
 FES (one dataset) 

 

45 rs1050362 16: 72 130 815 DHX38  HP ← 
 DHX38 ← 
 DHODH ← 
 PKD1L3 ← 

 HP 
 

Svishcheva et al.49 
 HPR (one dataset) 
 

HP is the most 
likely causal gene. 

46 rs170041 17: 2 170 216 SMG6 -  SMG6 
 SRR 
 

Lempiäinen et al.47, score range 2-54 
 SRR (total score = 8) 
Svishcheva et al.49 
 SMG6 (two datasets) 

Evidence is 
inconsistent. 

47 rs12936587 17: 17 543 722 RAI1  SREBF1  
(SREBP1) ← 

 PEMT ← 

 PEMT  
 SREBF1 (SREBP1) 
 MIR33B (hsa-mir-33b) 

Lempiäinen et al.47, score range 2-54 
 SREBF1 (total score = 40) ← 
 PEMT (total score = 40) ← 

Evidence is 
inconsistent. 
PEMT, SREBF1, 
and MIR33B can be 
involved. 

48 rs2070783 17: 62 406 971 PECAM1  PECAM1 ←  PECAM1 Brænne et al.46, score range 1-11 
 PECAM1 (total score = 4) ← 
 POLG2 (total score = 3) ← 

PECAM1 is the 
causal gene. 
 
 

49 rs12052058 19: 11 159 525 SMARCA4  SMARCA4 ← 
 CARM1 ← 
 C19ORF52 ← 
 KANK2 

 LDLR 
 SMARCA4 
 CARM1 
 

Brænne et al.46, score range 1-11 
 KANK2 (total score = 5) ← ← 
 SMARCA4 (total score = 4) ← 
 ANKRD25 (total score = 2) ← ← 
Lempiäinen et al.47, score range 2-54 
 LDLR (total score = 35) ← 
 CARM1 (total score = 40) ←, ← ← ← 
 SMARCA4 (total score = 40) ←, ← ← ← 
 C19ORF38 (total score = 10) ← ← ← 
Svishcheva et al.49 
 LDLR (two datasets) 
 SMARCA4 (one dataset) 

LDLR is the causal 
gene.  

SMARCA4 and 
CARM1 might also 
be involved. 

50 rs867186 20: 33 764 554 PROCR, 
MMP24-
AS1-EDEM2 

 TRPC4AP ← 
 EIF6 ← 
 ITGB4BP ← 
 EDEM2 ← ← 
 HS.443185 ← ← 

 PROCR (EPCR) 
  

Brænne et al.46, score range 1-11 
 PROCR (total score = 8) ← 
 MYH7B (total score = 5) ← 
 TRPC4AP (total score = 3) ← 
 EIF6 (total score = 3) ← 
 RBL1 (total score = 3) ← 
 ROMO1 (total score = 2) ← 

PROCR is the most 
likely causal gene. 



28 
 

 ITGB4BP (total score = 2) ← 
 FLJ25841 (total score = 1) ← 
 MT1P3 (total score = 1) ← 
van der Harst et al.48  
 PROCR¶ ← 
 TRPC4AP¶ ←  
 GGT7 ← 
 EDEM2 ← 
 NCOA6 ← 
 HMGB3P1 ← 

51 rs9982601 21: 35 599 128 LINC00310  MRPS6 
 KCNE2 

 KCNE2 (MIRP1) 
 

Lempiäinen et al.47, score range 2-54 
 SON (total score = 8) 
van der Harst et al.48 
 MRPS6¶ ← 
 SLC5A3¶ ← 

KCNE2 is the most 
likely causal gene. 

CAD, coronary artery disease; GWAS, genome-wide association study; IDL, intermediate-density lipoprotein; LD, linkage disequilibrium; LDL, low-density lipoprotein; LDLR, LDL 
receptor; LDL-C, low-density lipoprotein cholesterol; MMP, matrix metalloproteinase; ROS, reactive oxygen species; SMC, smooth muscle cell; VLDL, very-low-density lipoprotein; 
vWF, von Willebrand factor; vSMC, vascular smooth muscle cell. 

¥ Loci for the analysis in our study were defined as regions within ±250 kb around these lead SNPs (see Supplementary Table S1c) 
* Chromosome: position of the lead SNP on the chromosome according to GRCh37.p13 
†Nearest gene according to the NCBI dbSNP database (https://www.ncbi.nlm.nih.gov/snp/) 
‡ Information on whether increased gene expression in CAD-relevant tissue is associated with the increased or decreased CAD risk is given in Supplementary Table S2a 
**Brief literature review for each gene is given in Supplementary Table S3. Candidate genes with the most compelling evidence for their role in CAD according to literature data are 
shown in bold. 
¶ Converging evidence of a potential functional SNP-gene mechanism (demonstrated in the study by van der Harst et al.48). 
#, § These pairs of loci are overlapping and contain partially the same genes. Since the distance between the lead SNPs rs3103349–rs10455872 and rs3184504–rs441 was > 250 kb (269,4 
kb and 344,2 kb, respectively), SMR/HEIDI analysis was performed for each locus (±250 kb around the lead SNP) separately. The genes prioritized based on literature data and revealed 
in the gene-based association analysis49, if located in two loci in the pair, were attributed to both. Similarly, if the CAD-associated SNPs prioritized in the studies by Brænne et al.46, 
Lempiäinen et al.47, and van der Harst et al.48 were located in two loci in the pair, we attributed the genes linked with these SNPs to both loci. 
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Supplementary data legends 1 

Supplementary Methods 2 

Supplementary figure legends 3 

Supplementary Figure S1. A scheme depicting selection of CAD-associated loci for SMR/HEIDI 4 
analysis. 5 
Supplementary Figure S2. A pipeline of extracting data from the previous studies on the genes 6 
potentially associated with CAD. 7 
 8 

Supplementary table legends 9 

Supplementary Table S1. CAD-associated loci selected for SMR/HEIDI analysis. 10 
Supplementary Table S1a. Fifty loci selected from Howson et al. study (all ancestry). 11 
Supplementary Table S1b. Seventeen loci selected from Nikpay et al. study. 12 
Supplementary Table S1c. Final set of CAD-associated loci selected for SMR/HEIDI analysis. 13 

 14 
Supplementary Table S2. Results of SMR/HEIDI analysis. Searching for pleiotropic effects of 15 
loci on CAD and gene expression. 16 

Supplementary Table S2a. Results of SMR/HEIDI analysis. Searching for pleiotropic effects of 17 
the loci on CAD and gene expression. Associations that passed both SMR and HEIDI analyses 18 
(FDRSMR < 0.05 and PHEIDI ≥ 0.001). 19 
Supplementary Table S2b. Results of SMR/HEIDI analysis. Searching for pleiotropic effects of 20 
the loci on CAD and gene expression. All associations. 21 

 22 
Supplementary Table S3. Data on SNPs (located in 51 CAD-associated loci) which were linked to 23 
the prioritized genes. 24 

Supplementary Table S3a. Linkage disequilibrium between top SNPs in SMR/HEIDI analysis 25 
(in loci where more than one top SNP were analyzed). 26 
Supplementary Table S3b. Data on SNPs (located in the 51 studied loci) and the genes 27 
prioritized in the studies by Brænne et al., Lempiäinen et al., and van der Harst et al. 28 
Supplementary Table S3c. Linkage disequilibrium between SNPs prioritized in the studies by 29 
Brænne et al., Lempiäinen et al., and van der Harst et al. 30 
Supplementary Table S3d. Linkage disequilibrium between top SNPs in our SMR/HEIDI 31 
analysis and SNPs prioritized in the studies by Brænne et al., Lempiäinen et al., and van der 32 
Harst et al. 33 
 34 

Supplementary Table S4. Genes in 51 CAD-associated loci (±250 kb around the lead SNP) 35 
proposed to be causal according to different lines of evidence. 36 
 37 
Supplementary Table S5. Results of SMR & theta metric-based analysis. Searching for pleiotropic 38 
effects of the loci on CAD and gene expression. 39 



30 
 

Supplementary Table S5a. Results of SMR & theta metric-based analysis. Associations that 1 
passed both SMR and theta metric-based analyses (FDRSMR < 0.05 and |theta| ≥ 0.7; number of 2 
SNPs in the theta metric-based analysis > 3). 3 
Supplementary Table S5b. Results of SMR & theta metric-based analysis. Searching for 4 
pleiotropic effects of the loci on CAD and gene expression. All associations. 5 

 6 
Supplementary Table S6. Results of colocalization analysis using the LocusCompare web tool. 7 
Searching for pleiotropic effects of the loci on CAD and gene expression. 8 

Supplementary Table S6a. Results of colocalization analysis using the LocusCompare web 9 
tool. Loci with CAD GWAS lead SNP P-value < 5e-8 and eQTL lead SNP P-value < 1e-6. 10 
Associations with colocalization probability > 0.01. 11 
Supplementary Table S6b. Results of colocalization analysis using the LocusCompare web 12 
tool. Searching for pleiotropic effects of the loci on CAD and gene expression. Loci with CAD 13 
GWAS lead SNP P-value < 5e-8 and eQTL lead SNP P-value < 1e-6. All associations. 14 


