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ABSTRACT 1 

Emerging evidence suggests that obesity impacts brain physiology at multiple levels. Here we 2 

aimed to clarify the relationship between obesity and brain structure using structural MRI 3 

(n=6420) and genetic data (n=3907) from the ENIGMA Major Depressive Disorder (MDD) 4 

working group. Obesity (BMI>30) was significantly associated with cortical and subcortical 5 

abnormalities in both mass-univariate and multivariate pattern recognition analyses 6 

independent of MDD diagnosis. The most pronounced effects were found for associations 7 

between obesity and lower temporo-frontal cortical thickness (maximum Cohen´s d (left 8 

fusiform gyrus)= -0.33). The observed regional distribution and effect size of cortical 9 

thickness reductions in obesity revealed considerable similarities with corresponding patterns 10 

of lower cortical thickness in previously published studies of neuropsychiatric disorders. A 11 

higher polygenic risk score for obesity significantly correlated with lower occipital surface 12 

area. In addition, a significant age-by-obesity interaction on cortical thickness emerged driven 13 

by lower thickness in older participants. Our findings suggest a neurobiological interaction 14 

between obesity and brain structure under physiological and pathological brain conditions. 15 

 16 

 17 

 18 
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Introduction 19 

With an estimated worldwide prevalence of 13% among the adult population and up to 38% 20 

in western societies1, obesity is one of the greatest concerns to public health.2 The role of 21 

obesity as a preventable cardiovascular risk factor is well known, but research has only 22 

recently started to explore the neurobiological underpinnings of obesity.  23 

On a systemic level, neuroimaging research has identified structural3–5 and functional6–8 24 

alterations in obese participants - one of the most consistent findings is decreased gray matter 25 

volume in obesity.3,4,9,10 A recent UK Biobank study including data from n=9652 participants 26 

supplemented this notion by showing an inverse association between BMI and global gray 27 

matter volume.11 Further large-scale evidence for associations between body weight and brain 28 

structure comes from a recent meta-analysis of voxel-based morphometry studies including 29 

data from n=5882 subjects that pointed to consistent associations between BMI and lower 30 

gray matter volume in the medial prefrontal cortex, the bilateral cerebellum, and the left 31 

temporal pole.12 However, even though these well-powered studies provide robust evidence 32 

for an association between BMI and brain structure in general, the current understanding of 33 

the relationship between obesity and brain structure is considerably limited for several 34 

reasons. 35 

First, the distribution and effect size of brain structural abnormalities in obesity remains 36 

unclear. Several smaller structural neuroimaging studies suggest that obesity might primarily 37 

relate to gray matter reductions in brain areas involved in reward processing and impulse 38 

regulation such as the orbitofrontal cortex and the striatum.9,13,14 Even so, other reports 39 

question the hypothesis of regional specific gray matter decrease in obesity by pointing to 40 

widespread associations throughout the brain with diverging effects of obesity on subcortical 41 

brain structure.4,10 Since prior studies either exhibited limited power to detect subtle effects in 42 

small samples or employed hypothesis-driven region of interest approaches, the distribution 43 

or regional specificity of obesity related brain structural abnormalities remains uncertain. 44 
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Large-scale studies are needed that investigate associations with obesity throughout the entire 45 

brain by differentiating effects on subcortical volume and cortical thickness and surface area. 46 

Furthermore, while the statistical significance of obesity-related brain structural abnormalities 47 

is well documented, the effect sizes and hence the potential relevance of brain structural 48 

alterations in obesity remains unknown. We aimed to address this issue by directly comparing 49 

profiles of obesity related brain structural alterations with findings from neuropsychiatric 50 

disorders. In addition we aimed to complement group level analyses, by employing 51 

individual-level based pattern classification as a further proxy for the robustness of 52 

neuroimaging findings.15  Second, previous neuroimaging findings in obesity are largely 53 

based on studies in healthy participants. Yet, obesity has frequently been associated with 54 

neuropsychiatric disorders16,17 and more specifically previous research has pointed to a 55 

bidirectional association between obesity and major depression.18 Furthermore, preliminary 56 

neuroimaging studies have reported overlapping brain structural abnormalities in obesity and 57 

major depression.9,12,19 It thus appears relevant to investigate if obesity related brain structural 58 

abnormalities might similarly be present under physiological and pathological brain 59 

conditions. Against this backdrop, the present study aimed to provide a well-powered and 60 

comprehensive investigation of the relationship between obesity and brain structural 61 

abnormalities in healthy participants and depressive patients. A third major issue concerns the 62 

relationship between brain structural abnormalities in obesity and ageing. Interestingly, while 63 

obesity and gray matter volume are frequently reported to be inversely related in adult 64 

samples, the few studies of obesity related brain structural abnormalities in children and 65 

adolescents have diverging results.13,20,21 Thus, it is valuable to investigate whether brain 66 

structural impairment in obesity is already detectable in children and adolescents and if brain 67 

structural abnormalities in obesity might vary as a function of age. In addition, there may be a 68 

genetic contribution to brain structural abnormalities in obesity, given the high heritability of 69 

obesity in general22 and the involvement of multiple BMI related genetic variants in brain 70 
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physiology.23 Thus, the question of a potential genetic contribution to brain structural 71 

abnormalities in obesity arises. To address this, we combined individual polygenic risk 72 

profiles with imaging data to investigate obesity and BMI related brain structural 73 

abnormalities.24,25  74 

 75 

Methods 76 

Participants 77 

We studied BMI and neuroimaging data in a combined sample of 6420 participants (mean 78 

age=42.91, SD=15.26; 56.95% female; mean BMI=25.97, SD=4.97) including healthy 79 

controls (HC: n=3519) and major depressive disorder patients (MDD: n=2901) from 28 sites 80 

contributing to the ENIGMA MDD working group.19,26 The sample included n=1223 obese 81 

participants (BMI>30) as well as n=2917 normal weight participants (BMI 18.5-25) 82 

(Supplementary Results, Supplementary Figure 1, Supplementary Figure 2, 83 

Supplementary Figure 3, Supplementary Table 1, Supplementary Table 2). All 84 

participating sites obtained approval from local institutional review boards and ethics 85 

committees; all study participants provided written informed consent.  86 

 87 

Structural MRI Methods 88 

T1-weighted high-resolution anatomical brain images were acquired for all participants and 89 

preprocessed locally using FreeSurfer segmentation. Quality control was carried out at each 90 

site according to protocols from the ENIGMA consortium. Segmentation quality was assessed 91 

by visual inspection and statistically evaluated for outliers with a standardized protocol 92 

provided by the ENIGMA consortium (http://enigma.ini.usc.edu/protocols/imaging-93 

protocols). Details of the imaging procedures for each cohort may be found in the 94 

supplementary material (Supplementary Table 3). All structural images were preprocessed 95 

using the subcortical and cortical parcellation stream of FreeSurfer with the default 96 
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parameters.27 As we aimed to provide a comprehensive overview of obesity related brain 97 

structural alterations that would allow for comparison with previous ENIGMA studies, all 98 

available imaging measures were included for the presented analyses: global measures 99 

included total intracranial volume, total left and right cortical surface area, and average left 100 

and right cortical thickness. Regional measures included subcortical volumetric measures (8 101 

left and 8 right), surface area (34 left and 34 right) and thickness measures (34 left and 34 102 

right) for all cortical regions based on the Desikan–Killiany atlas.28 The presented 103 

morphometric data allowed us to simultaneously investigate both subcortical and cortical 104 

abnormalities and furthermore enabled us to examine thickness and surface area separately 105 

which have been shown to be driven by distinct genetic mechanisms and to exhibit different 106 

developmental trajectories.29,30 107 

 108 

Genetic Methods 109 

Genetic data was available for 3907 individuals from 9 contributing sites. Genotyping of these 110 

subjects was performed at each contributing site using published protocols (Supplementary 111 

Table 4). Polygenic risk scores (PRS) were generated using sets of SNPs selected based on P-112 

value thresholds at p= [0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0] from the base GWAS 113 

data. The R program 'PRSice'31 - which uses PLINK-1.932 in the background for linkage 114 

disequilibrium pruning - was used for this analysis step. Standardized PRS values based on z-115 

transformation were used for all analyses (Supplementary Methods). 116 

 117 

Statistical analyses 118 

All univariate imaging analyses were carried out using linear models in R, separately for each 119 

of the 157 available FreeSurfer derived imaging measures as a dependent variable. Age, sex, 120 

MDD diagnosis and site were included as covariates in all models. For analyses of subcortical 121 

volumes and surface area measures, ICV was also included as covariate. For all univariate 122 
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imaging analyses, FDR correction for 157 tests was conducted using the Benjamini Hochberg 123 

procedure with a false discovery rate of q<0.05. 124 

To investigate associations between brain structure and obesity, two main models were 125 

applied by including a dichotomous predictor based on a BMI threshold (obese subjects 126 

(BMI>30) vs. normal weight subjects (BMI 18.5-25) (Model A)) and furthermore by 127 

including BMI as a continuous predictor (Model B).  128 

Effect size estimates (Cohen´s d) were calculated based on t-values and sample sizes33 from 129 

the regression model including the dichotomous BMI group (obesity vs. normal weight) 130 

predictor (Model A) thus following a similar methodology compared to previous studies on 131 

psychiatric disorders from the ENIGMA consortium.19,26 To investigate potential similarities 132 

between brain structural alterations in obesity and common neuropsychiatric disorders, we 133 

carried out correlational analyses between effect size estimates (Cohen´s d) of thickness 134 

alterations in all cortical regions in obesity with effect size estimates reported in previous 135 

ENIGMA studies on MDD19 and bipolar disorder34. 136 

To further test our hypothesis of brain structural alterations in obesity, we complemented the 137 

applied mass-univariate testing approach by conducting pattern recognition analyses to 138 

investigate multivariate patterns of brain structural differences between obese and normal 139 

weight subjects. To this end, a machine learning pipeline consisting of several preprocessing 140 

steps including imputation of missing values, dimensionality reduction by principal 141 

component analysis and random undersampling and a support vector machine was trained on 142 

all available 157 FreeSurfer derived imaging measures to individually classify participants as 143 

either obese or normal-weight using pooled multisite nested cross validation employing the 144 

PHOTON framework  (https://photon-ai.com; Supplementary Methods).  145 
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Furthermore, potential interaction effects of body weight and age, sex and MDD diagnosis 146 

were carried out as exploratory analyses. In addition, associations between polygenic risk for 147 

obesity and brain structure were assessed through univariate models as outlined above. 148 

 149 

Results 150 

Obesity and brain structure 151 

Linear regression models including either obesity as dichotomous predictor (Model A) or 152 

BMI as continuous predictor (Model B) of brain structure yielded highly consistent results 153 

(Supplementary Table 5, Supplementary Table 6, Supplementary Figure 4). Obesity was 154 

associated with lower cortical thickness, with most pronounced and consistent associations 155 

between obesity and lower cortical thickness in regions of the temporal and frontal lobe 156 

(Table 1 and Figure 1). Analyses of regionally specific cortical surface area alterations in 157 

obesity revealed both significantly lower and higher surface area in obese subjects. 158 

Subcortical volumes were found to be significantly increased in obese subjects - with most 159 

pronounced volume increases in the amygdala, the thalamus and the nucleus accumbens 160 

(Table 1). 161 

To rule out bias due to antidepressant medication intake in the MDD group, analyses were 162 

repeated by including current intake of antidepressant medication as additional nuisance 163 

regressor. Regional specificity of cortical thickness findings was assessed by conducting 164 

additional analyses accounting for mean cortical thickness. Highly similar results were 165 

observed in analyses controlling for the presence of antidepressant medication and in analyses 166 

adjusted for mean cortical thickness (Supplementary Table 7, Supplementary Table 8). 167 

Highly consistent results were observed in confirmatory analyses testing for quadratic effects 168 

of BMI, in analyses accounting for quadratic effects of age, in analyses stratified by 169 

diagnostic group and in analyses assessing the effect of weight group by including normal-170 
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weight, overweight and obesity as categorial predictor (Supplementary Results and 171 

Supplementary Tables 9, 10, 11, 12, 13). Additional analyses in a subsample indicated that 172 

the observed obesity related brain structural abnormalities were not significantly biased by 173 

head movement (Supplementary Results and Supplementary Table 14). 174 

Highly similar regional effect sizes for the association between obesity and brain structural 175 

abnormalities in the left and right hemisphere could be observed in the present study 176 

(Supplementary Results), while descriptively larger effects were observed for the 177 

association between obesity and lower cortical thickness in the left compared to right cortical 178 

hemisphere.  179 

 180 

 181 

Comparison of obesity related brain structural abnormalities with previous findings in 182 

neuropsychiatric disorders 183 

Correlational analyses of effect size estimates for thickness of each cortical region of interest 184 

indicated similarities in the distribution or pattern of cortical thickness reductions across 185 

cortical regions between obesity and MDD (r=0.452) and obesity and bipolar disorder 186 

(r=0.513) (Figure 2). An additional sensitivity analysis revealed that by contrast to the 187 

observed similarities between cortical thickness in obesity and affective disorders,  effect 188 

sizes for obesity and previously published effect sizes for autism spectrum disorder did not 189 

show a similar degree of overlap (ASD)35 (r= .149) (Supplementary Results). 190 

 191 

Multivariate pattern recognition analyses 192 

Multivariate pattern classification analyses further confirmed the relationship between obesity 193 

and brain structure by yielding highly significant single-subject differentiation between obese 194 

(BMI>30, n=1223) and normal-weight subjects (BMI 18.5-25, n=2,917) with a balanced 195 
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accuracy rate of 68.7% (BAC=0.687, StD=0.019, p<0.001; sensitivity=0.695; 196 

specificity=0.678; F1score=0.565; ROC-AUC=0.687). 197 

To rule out bias due to differing age, sex and MDD diagnosis distributions in obese versus 198 

normal weight subjects, pattern recognition analyses were repeated in samples of obese and 199 

normal weight subjects that were balanced for age, sex and MDD diagnosis using the 200 

pairmatch function in R (nobese=1223; nnormal weight=1223). Similar results were observed when 201 

analyses were performed in samples of obese and normal weight subjects that were balanced 202 

for age, sex and MDD diagnosis (nobese=1223; nnormal weight=1223; BAC=0.641, StD=0.014, 203 

p<0.001; sensitivity=0.666; specificity=0.617; F1score=0.650; ROC-AUC=0.641).  204 

In addition, to demonstrate replicability across differing cohorts and scanning sites, we 205 

performed pattern recognition analyses by employing leave-one-site-out cross-validation. For 206 

this analysis step, only sites with a minimum of 50 subjects per group were included, to avoid 207 

bias due to lenient test sample sizes (nobese=960; nnormal weight=1616; k=5 sites). Analyses 208 

employing leave-one-site-out-cross-validation including all sites with a minimum n>50 in 209 

each group yielded a lower but still highly significant accuracy rate (nobese=960; nnormal 210 

weight=1616, k=5 sites; BAC=0.595, StD=0.018, p<0.001; sensitivity=0.714; specificity=0.476; 211 

F1score=0.523; ROC-AUC=0.595). 212 

Supplementary analyses confirmed the predictive relevance of brain regions associated with 213 

obesity in the univariate analyses but also revealed that optimal classifier performance was 214 

obtained in analyses including the maximum of available brain structural features (see 215 

Supplementary Results). 216 

 217 

Moderating role of MDD diagnosis, age and sex 218 
 219 
To investigate if associations between BMI and brain structure would significantly differ 220 

between MDD and HC participants, interaction effects of BMI x MDD diagnosis were 221 
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assessed based on linear models in analogy to Model B thus comparing slopes of BMI x MRI 222 

measure between MDD and HC subjects. No FDR corrected significant interaction effect of 223 

BMI and MDD diagnosis was detected (Supplementary Table 15). 224 

Similarly, a moderating role of sex was investigated by assessing BMI x sex interaction 225 

effects. We observed FDR corrected significant interaction effects of sex and BMI on cortical 226 

thickness, subcortical volumes and surface area.  The most consistent finding was a 227 

significantly enhanced BMI related cortical thinning in male compared to female subjects 228 

(Supplementary Table 16). 229 

To investigate a potential moderating role of age on brain structural alterations observed in 230 

obesity, linear models building on Model A were fitted by also including the obesity x age 231 

interaction term. FDR corrected significant interaction effects of obesity and age were 232 

observed on cortical thickness of the left rostral middle frontal gyrus, the left lateral 233 

orbitofrontal gyrus, the left pars orbitalis and triangularis of the inferior frontal gyrus driven 234 

by significantly enhanced age-related thickness decrease in obese compared to normal weight 235 

subjects. Further significant obesity x age interaction effects were observed for right 236 

hippocampal and left thalamic volume as well as for surface area of the right precuneus 237 

(Supplementary Table 17). Moreover, to investigate if brain structural associations with 238 

BMI could be detected in adolescents, regression analyses were repeated in the subgroup of 239 

participants with an age<21 (n=520). Due to the limited prevalence of obesity in the 240 

adolescent subgroup (n=51), only models including BMI as continuous predictor were 241 

conducted in the adolescent subgroup. Additional subgroup analyses of associations between 242 

BMI and brain structure in adolescent participants exclusively revealed an FDR-corrected 243 

significant positive association between BMI and volume of the right amygdala (B=7.34, 244 

StdE=1.72, t=4.26, p=0.00002, p(FDR)=0.0038, n=503) (Supplementary Table 18), while no 245 

further association reached FDR corrected significance in this subsample.  246 
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 247 

Polygenic risk for obesity and brain structure 248 
 249 
All calculated PRS scores significantly predicted BMI with proportions of explained variance 250 

(R2) ranging from 1.2% to 1.8% (n=3907, all p <0.00001; Supplementary Table 19, 251 

Supplementary Table 20). To assess the influence of polygenic risk for obesity on brain 252 

structure, linear models were fitted a) by including the PRS based on information from all 253 

available SNPs as predictor (p-value threshold=1.0) and b) by employing the polygenic score 254 

that explained most variance in BMI as predictor (p-value threshold=0.2). 255 

We observed an FDR corrected significant negative association between PRS(p1.0) and cortical 256 

surface area of the left lateral occipital cortex (B=-45.92, StdE=12.56, t=-3.66, p=0.00026, 257 

p(FDR)=0.041, n=3526) (Supplementary Table 21). Analyses including the PRS(p.02) as 258 

predictor yielded a highly similar pattern of results with the most pronounced association 259 

between polygenic risk and surface area of the left lateral occipital surface area, which, 260 

however, did not reach FDR-corrected significance (B=-40.84, StdE=11.52, t=-3.55, 261 

p=0.0004, p(FDR)=0.062,  n=3526) (Supplementary Table 22). In addition, mediation 262 

analyses were performed to test if the association between polygenic risk and BMI was 263 

mediated by left lateral occipital surface area and other brain structures reported previously.24 264 

While we did not observe a significant mediation effect for left lateral occipital surface area, a 265 

significant mediation effect of polygenic risk for obesity on BMI through left lateral 266 

orbitofrontal thickness could be detected (see Supplementary Results). 267 

 268 

Discussion 269 

In the present multi-site study, we found that obesity significantly associated with cortical and 270 

subcortical brain structural abnormalities independent of MDD diagnosis in both univariate 271 

and multivariate analyses. We further demonstrate that the regional distribution and effect size 272 

of the observed lower cortical thickness in obesity shows considerable similarities with 273 
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corresponding patterns of cortical thickness alterations that have been described in mental 274 

disorders. Similarly, the presence of differential age dependent effects on brain structural 275 

measures in obesity - as well as the observed influence of polygenic risk for obesity on brain 276 

structure - offers novel insights of relevance for future experimental research on the etiology 277 

of obesity related brain structural impairment.  278 

The applied multi-site design combined with a comprehensive neuroimaging approach 279 

allowed to differentiate between obesity related abnormalities in cortical thickness, surface 280 

and subcortical volume with unprecedented statistical power and detail. Our findings clarify 281 

that lower fronto-temporal cortical thickness constitutes the most pronounced obesity related 282 

brain structural abnormality across the brain. This finding is supported by prior reports on 283 

temporal and frontal cortical gray matter decrease in obesity.4,9,10,20,24,36  284 

Interestingly, while all significant associations between BMI and cortical thickness were 285 

negative, differing directions of associations occurred with regard to surface area alterations. 286 

This observation appears to match previously reported differential regionally specific positive 287 

and negative associations between cortical thickness and surface area.29,37 A previously 288 

discussed explanation for the inverse relationship between cortical surface and thickness 289 

measures refers to a potential stretching of the cortical surface area along the tangential axis 290 

due to intracortical myelination.37,38 Our finding of larger subcortical volumes in obesity with 291 

strongest effects of greater amygdala, thalamic, nucleus accumbens and hippocampal volume 292 

finds support in prior studies of obese subjects that applied a similar volumetric imaging 293 

approach reporting larger amygdala, thalamus and hippocampal volumes.39,40 In contrast, 294 

previous voxel based morphometry studies reported negative associations between BMI and 295 

gray matter of subcortical structures.10,41 The disparity between volumetric and voxel based 296 

findings has been directly investigated in a recent report by Perlaki et al. suggesting that BMI 297 

associates with higher amygdala and nucleus accumbens volumes derived from FreeSurfer 298 
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segmentations but with lower VBM based GM density in identical structures highlighting the 299 

relevance to distinguish GM density from volume.13  300 

Importantly, we found that cortical thickness reductions in obesity are of similar effect size to 301 

the previously observed thickness reductions in neuropsychiatric disorders. More specifically, 302 

peak effect sizes for lower cortical thickness in obesity (max. Cohen´s d (left fusiform 303 

gyrus)= -.331) exceeded previously reported effect sizes for cortical thinning in MDD patients 304 

(max. Cohen´s d (left medial orbitofrontal cortex)=-.134)19, adult OCD patients (max Cohen´s 305 

d (right inferior parietal cortex)=-0.140)42, findings in specific substance dependence (max 306 

Cohen´s d (right fusiform gyrus)=-0.094)43 and were comparable to thickness deficits in 307 

bipolar disorder (max Cohen´s d (left pars opercularis)=-0.293)34 (Figure 2). Results of our 308 

pattern classification analyses further support the notion of a robust association between 309 

obesity and brain structure by yielding sMRI based single subject classification accuracies of 310 

up to 68.7% in pooled multi-site cross-validation. Of note, this level of accuracy is 311 

comparable to pattern classification results reported for the detection of bipolar patients 312 

versus healthy controls using similar methods (65.2% accuracy for support vector classifiers, 313 

trained on FreeSurfer segmentations using multi-site pooled cross validation).44 Similar to 314 

previous reports of accurate individual brain age prediction based on neuroanatomical 315 

data45,46, our findings highlight the importance to consider multivariate morphometric patterns 316 

related to phenotypes such as age and body-weight in future pattern classification studies. 317 

Importantly, the presence of a multivariate pattern differentiating obese from normal weight 318 

subjects could similarly be demonstrated in analyses controlling for age, sex and MDD 319 

diagnosis and by transfer of the classifier across cohorts using leave-one-site-out-cross 320 

validation in the present work which underlines the robustness and the replicability of obesity 321 

related brain structural abnormalities across sites. In addition, the distribution of obesity 322 

related thickness reductions across all brain regions with most pronounced effects on 323 

temporo-frontal cortical regions revealed considerable similarities with patterns of thickness 324 
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reductions throughout the brain in major depression and bipolar disorder but did not show a 325 

similar degree of overlap with thickness alterations in autism spectrum disorder. In sum, these 326 

findings offer novel insights into shared brain structural abnormalities in obesity and affective 327 

disorders. In light of the known bidirectional association between obesity and affective 328 

disorders such as MDD18, future studies should investigate the potential clinical relevance of 329 

the shared morphometric signature observed here. 330 

Of note, no significant interaction of BMI and MDD diagnosis on brain structure was 331 

observed in the present work and similar obesity related brain structural abnormalities 332 

emerged in separate analyses in the HD and MDD subsamples. We thus conclude that 333 

associations between brain structure and BMI are not significantly altered by the presence of 334 

depression. This is well in line with previous findings reporting similar associations between 335 

BMI and gray matter reductions in MDD patients and healthy subjects alike and no evidence 336 

for interaction effects of body weight and depression on brain structure.9,47  337 

Furthermore, we observed that cortical thickness effects of obesity were significantly 338 

moderated by age. This interaction was driven by enhanced reductions of obesity related 339 

cortical thickness with increasing age. Complementary to this notion, the most pronounced 340 

and significant associations between brain structure and BMI in adolescents were not 341 

observed in cortical regions but rather in the amygdala. Yet, it is important to acknowledge 342 

that BMI was associated with lower cortical thickness in adolescent participants but might 343 

have failed to reach significance due to limited sample size in this analysis (see 344 

Supplementary Results for power analysis). Regarding a potential explanation for early 345 

detectable amygdala volume increase in obesity, it appears important to consider the 346 

relevance of the amygdala in increased cue triggered learning48 and Pavlovian conditioning to 347 

hedonic food that represents a key mechanism in future weight gain49. Importantly, the 348 

apparent discrepancy in obesity between early detectable subcortical volume increase on the 349 

one hand, and lower thickness with increasing age on the other, raises questions regarding 350 
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potentially differing pathways behind the development of brain structural alterations in 351 

obesity that should be addressed by future experimental research.  352 

The aforementioned notion of differing pathways underlying brain structural abnormalities in 353 

obesity appears to be further supplemented by the imaging genetic findings of the present 354 

study. The regionally pronounced effect of polygenic risk for obesity on lateral occipital 355 

surface area was unexpected. Prior studies have implicated the lateral occipital cortex in 356 

obesity14,50,51, yet BMI was negatively correlated with occipital surface area but failed to 357 

reach significance in the present study (p(FDR)=0.089). Similarly, since no significant 358 

mediation effect of lateral occipital surface area was observed in the association between 359 

polygenic risk and BMI, the functional relevance of this finding remains uncertain. In 360 

contrast, it appears important to note that in the present study left lateral orbitofrontal 361 

thickness mediated the association between polygenic risk and BMI which appears to 362 

replicate similar findings in a previous VBM study.24 The notion that the influence of genetic 363 

risk for obesity on body weight might be mediated through changes in brain physiology is 364 

further supported by reports on high expression of obesity related genes in the central-nervous 365 

system.23,52 Previous reports on associations between food addiction and OFC thickness51 366 

appear to further corroborate a model in which prefrontal brain regions might influence eating 367 

behavior and subsequent weight gain. However, results from these analyses have to be 368 

interpreted with great caution and do not allow for causal interpretations due to the cross-369 

sectional design of the present study. Future studies are needed to directly test this hypothesis 370 

in experimental, longitudinal designs before form conclusions can be drawn. 371 

Furthermore, it appears important to note that a large proportion of variance in obesity related 372 

brain structural abnormalities could not be explained by genetic influence in the present study. 373 

It thus appears crucial to consider that increased body weight itself could contribute to brain 374 

structural abnormalities through mechanisms such as obesity related low-grade inflammation, 375 

kynurenine pathway activation or neuroendocrine dysregulation17,53–55. Another previously 376 
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hypothesized link between obesity and brain structural abnormalities implies brain energy 377 

consumption during childhood and subsequent development of obesity56, and hence points to 378 

educational interventions during childhood as a preventive measure against obesity. 379 

Finally, the rather unexpected finding of a moderating role of sex on BMI related cortical 380 

thickness decrease should be acknowledged. In the present study, male subjects exhibited 381 

significantly lower BMI related cortical thickness compared to female participants. The 382 

potential relevance of this finding is highlighted by a previous PET study reporting 383 

significantly lower metabolic brain age in female compared to male subjects57 and should be 384 

targeted by future research. 385 

The presented analysis has strengths and limitations. Major strengths of the present work are 386 

the large sample size including healthy participants and depressive patients and the inclusion 387 

of imaging and genetic data. In addition, the combination of univariate group-level and 388 

multivariate machine learning techniques further highlighted the relevance of the observed 389 

associations on single-subject level. The most severe limitation of our study is the cross-390 

sectional design that prevents us from drawing causal conclusions. Our interpretations with 391 

regard to the onset and mechanisms behind brain structural abnormalities in obesity need 392 

clarification from longitudinal research before firm conclusions can be drawn. It furthermore 393 

appears important to note that BMI was not accounted for in previous studies on psychiatric 394 

disorders from the ENIGMA consortium. Considering the known association between 395 

affective disorders and obesity, the observed similarities between obesity and affective 396 

disorders observed here might thus partially be explained by higher BMI in the patient 397 

samples of such studies. Moreover, we acknowledge that our study sample is not independent 398 

from patient and control samples of previous ENIGMA studies and therefore overlap in 399 

participants might contribute to the similarities in brain structural findings between obesity 400 

and affective disorders. 401 
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To conclude, the present findings demonstrate similar associations between obesity and brain 402 

structural abnormalities in healthy participants and depressive patients. Cortical thickness 403 

reductions in the temporal and frontal cortex were identified as the most consistent and 404 

pronounced structural neuroimaging findings in adult obesity in the present study. Future 405 

voxel-wise neuroimaging studies capable of providing higher resolution should aim to further 406 

delineate the precise regional distribution of obesity related gray matter decrease. 407 

Results of the present study suggest that the distribution and extent of obesity related brain 408 

structural abnormalities is comparable to findings in neuropsychiatric disorders. This notion 409 

critically underlines the similarities in patterns of impaired brain structural integrity between 410 

obesity and common neuropsychiatric disorders and points to the relevance of altered brain 411 

physiology in obesity that still appears to be drastically underestimated in current research. 412 

While neuropsychiatric disorders such as major depression are widely considered to be 413 

disorders of the brain, obesity is primarily considered as a cardiovascular risk factor in 414 

research and clinical practice. As the brain structural correlates of obesity exceed those of 415 

common neuropsychiatric disorders such as MDD - in terms of affected regions and effect 416 

size per region - the findings presented here should urge clinicians and scientists to devote 417 

increased attention to neurobiological characteristics of obesity. The association of obesity 418 

with altered brain structural integrity in the present study indicates the need for a paradigm 419 

shift in obesity prevention and research.  420 
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Table 1: FDR corrected significant results for group differences between obese and normal weight subjects as assessed using separate linear regression models with a 
dichotomous group predictor (obesity vs. normal weight). Results are displayed for global measures, cortical thickness and surface area as well as for subcortical volumes and 
sorted by p-value within each domain. All results are adjusted for age, sex, MDD diagnosis and site. Regional surface and subcortical results are adjusted for total intracranial 
volume. Abbreviations: Estimate. Regression estimate; StdError. Standard error; T. t-value; p. uncorrected p-value; FDR adjusted p. FDR adjusted p-value; N Obese. number of 
obese subjects included in analysis; N NW. number of normal weight subjects included in analysis 

 

Label Estimate StdError T p 
FDR 

adjusted p Cohen´s d N Obese N NW 

Global measures 
Left hemispheral average thickness -0.021 0.003 -6.23 5.18E-10 <.0001 -0.214 1200 2865 
Right hemispheral average thickness -0.020 0.003 -5.89 4.18E-09 <.0001 -0.203 1200 2865 
Total Intracranial Volume -21634.000 5603.000 -3.86 1.10E-04 0.0005 -0.135 1168 2755 
Total right hemispheral surface area -708.380 258.090 -2.74 6.08E-03 0.0165 -0.095 1189 2872 
Total left hemispheral surface area -654.300 256.890 -2.55 1.09E-02 0.0281 -0.088 1189 2872 

Cortical thickness 
Left fusiform gyrus -0.051 0.005 -9.59 2.00E-16 <.0001 -0.331 1195 2849 
Right fusiform gyrus -0.050 0.005 -9.42 2.00E-16 <.0001 -0.325 1193 2849 
Right superior temporal gyrus -0.041 0.006 -7.17 9.09E-13 <.0001 -0.251 1161 2745 
Left superior temporal gyrus -0.040 0.006 -6.88 7.04E-12 <.0001 -0.243 1138 2684 
Left inferior temporal gyrus -0.040 0.006 -6.62 4.17E-11 <.0001 -0.231 1165 2823 
Left middle temporal gyrus -0.039 0.006 -6.46 1.18E-10 <.0001 -0.227 1149 2748 
Right middle temporal gyrus -0.036 0.006 -6.06 1.49E-09 <.0001 -0.210 1184 2815 
Right pars opercularis -0.033 0.006 -5.96 2.70E-09 <.0001 -0.206 1189 2835 
Right posterior cingulate cortex -0.033 0.006 -5.96 2.71E-09 <.0001 -0.205 1196 2859 
Right inferior temporal gyrus -0.036 0.006 -5.88 4.54E-09 <.0001 -0.204 1175 2838 
Left precentral gyrus -0.030 0.005 -5.85 5.27E-09 <.0001 -0.202 1192 2837 
Right precentral gyrus -0.030 0.005 -5.76 9.13E-09 <.0001 -0.199 1188 2844 
Right superior frontal gyrus -0.030 0.005 -5.76 8.93E-09 <.0001 -0.199 1189 2859 
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Left transverse temporal gyrus -0.042 0.008 -5.29 1.26E-07 <.0001 -0.182 1195 2853 
Left insula -0.030 0.006 -5.17 2.41E-07 <.0001 -0.179 1188 2811 
Left posterior cingulate cortex -0.030 0.006 -5.16 2.56E-07 <.0001 -0.178 1196 2857 
Right medial orbitofrontal cortex -0.031 0.006 -5.12 3.18E-07 <.0001 -0.177 1183 2831 
Left banks of the superior temporal sulcus -0.031 0.006 -4.88 1.08E-06 <.0001 -0.172 1139 2708 
Left caudal middle frontal gyrus -0.026 0.005 -4.89 1.04E-06 <.0001 -0.169 1196 2840 
Right banks of the superior temporal sulcus -0.030 0.006 -4.63 3.81E-06 <.0001 -0.161 1178 2796 
Left entorhinal cortex -0.061 0.013 -4.5 6.86E-06 <.0001 -0.158 1164 2725 
Left paracentral lobule -0.024 0.005 -4.46 8.55E-06 <.0001 -0.154 1195 2857 
Right parahippocampal gyrus -0.044 0.010 -4.46 8.50E-06 <.0001 -0.154 1192 2850 
Left temporal pole -0.059 0.014 -4.38 1.20E-05 0.0001 -0.151 1187 2851 
Left superior frontal gyrus -0.023 0.005 -4.35 1.36E-05 0.0001 -0.150 1194 2851 
Left supramarginal gyrus -0.021 0.005 -4.15 3.45E-05 0.0002 -0.145 1173 2767 
Right precuneus -0.019 0.005 -4.13 3.75E-05 0.0002 -0.142 1195 2848 
Left pars opercularis -0.021 0.005 -4.03 5.58E-05 0.0003 -0.139 1194 2845 
Right paracentral lobule -0.022 0.005 -3.94 8.38E-05 0.0004 -0.136 1196 2857 
Right caudal middle frontal gyrus -0.020 0.005 -3.73 2.00E-04 0.0008 -0.129 1194 2845 
Left isthmus cingulate cortex -0.026 0.007 -3.7 2.20E-04 0.0009 -0.128 1195 2852 
Right lateral orbitofrontal cortex -0.022 0.006 -3.68 2.40E-04 0.0009 -0.127 1195 2858 
Left precuneus -0.017 0.005 -3.66 2.60E-04 0.0010 -0.126 1189 2851 
Right temporal pole -0.050 0.014 -3.58 3.40E-04 0.0012 -0.124 1191 2850 
Left lateral orbitofrontal cortex -0.021 0.006 -3.56 3.70E-04 0.0013 -0.123 1188 2851 
Right rostral middle frontal gyrus -0.017 0.005 -3.53 4.10E-04 0.0014 -0.122 1192 2849 
Left inferior parietal cortex -0.017 0.005 -3.5 4.80E-04 0.0016 -0.121 1180 2831 
Right insula -0.022 0.006 -3.46 5.40E-04 0.0018 -0.120 1182 2777 
Right pars triangularis -0.020 0.006 -3.39 7.20E-04 0.0023 -0.117 1187 2838 
Right isthmus cingulate cortex -0.022 0.007 -3.18 1.50E-03 0.0045 -0.110 1196 2854 
Right supramarginal gyrus -0.016 0.005 -3.18 1.50E-03 0.0045 -0.111 1178 2780 
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Left parahippocampal gyrus -0.035 0.011 -3.08 2.08E-03 0.0060 -0.106 1190 2850 
Right transverse temporal gyrus -0.025 0.008 -3.05 2.30E-03 0.0066 -0.105 1190 2849 
Left rostral middle frontal gyrus -0.014 0.005 -2.8 5.10E-03 0.0140 -0.097 1197 2848 
Left rostral anterior cingulate cortex -0.023 0.009 -2.74 6.20E-03 0.0165 -0.095 1189 2835 
Left medial orbitofrontal cortex -0.015 0.006 -2.51 1.22E-02 0.0309 -0.087 1182 2818 
Left frontal pole -0.028 0.011 -2.49 1.28E-02 0.0313 -0.086 1199 2863 
Right pars orbitalis -0.020 0.008 -2.5 1.26E-02 0.0313 -0.086 1198 2848 
Left superior parietal cortex -0.010 0.004 -2.44 1.50E-02 0.0350 -0.084 1187 2831 
Left pars orbitalis -0.019 0.008 -2.31 2.11E-02 0.0473 -0.080 1194 2854 

Cortical surface area 
Left isthmus cingulate cortex 25.900 5.492 4.72 2.50E-06 <.0001 0.167 1134 2700 
Right isthmus cingulate cortex 21.160 5.097 4.15 3.37E-05 0.0002 0.147 1137 2706 
Left transverse temporal gyrus 10.183 2.603 3.91 9.32E-05 0.0004 0.138 1141 2708 
Right rostral middle frontal gyrus -71.936 22.908 -3.14 1.70E-03 0.0050 -0.111 1135 2698 
Right paracentral lobule 21.589 7.403 2.92 3.57E-03 0.0100 0.104 1117 2688 
Left inferior temporal gyrus -40.910 15.209 -2.69 7.18E-03 0.0188 -0.096 1099 2673 
Right inferior temporal gyrus -35.140 14.136 -2.49 1.30E-02 0.0313 -0.089 1115 2684 
Left paracentral lobule 16.023 6.589 2.43 1.51E-02 0.0350 0.087 1099 2658 
Left lingual gyrus -32.434 13.793 -2.35 1.88E-02 0.0428 -0.083 1128 2692 

Subcortical volume 
Right amygdala 41.656 6.984 5.96 2.68E-09 <.0001 0.211 1129 2702 
Left thalamus 108.695 26.117 4.16 3.23E-05 0.0002 0.147 1138 2691 
Right thalamus 80.814 22.216 3.64 2.80E-04 0.0010 0.129 1134 2680 
Left amygdala 22.444 6.474 3.47 5.30E-04 0.0018 0.123 1127 2694 
Left nucleus accumbens 11.724 3.541 3.31 9.40E-04 0.0030 0.118 1110 2660 
Right hippocampus 33.557 13.810 2.43 1.52E-02 0.0350 0.086 1136 2709 
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Figure 1: Figure displaying effect sizes for the association between obesity and cortical thickness on left hemispheral thickness. Colorbar displays effect size estimates (Cohen´s 
d) for differences in cortical thickness between obese versus normal weight subjects; Bar diagram depicts effect sizes for all cortical regions sorted by lobe 
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Figure 2: Effect size estimates (Cohen´s d) for differences in cortical thickness between obese versus normal weight subjects in direct comparison with previously published effect 
size estimates for cortical thickness results in major depression (MDD) and bipolar disorder (BD). a) Plot depicting the positive correlation between effect size estimates for 
thickness results in all cortical regions mapped to the respective lobe between obesity and MDD (r=0.452) and b) between obesity and BD (r=0.513). c) bar diagram displaying 
effect size estimates for cortical thickness results separately for all cortical regions. 
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