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Abstract 21 

Genomic prediction utilizes SNP chip data to predict animal genetic merit. It has the 22 

advantage of potentially capturing the effects of the majority of loci that contribute to 23 

genetic variation in a trait, even when the effects of the individual loci are very small. 24 

To implement genomic prediction, marker effects are estimated with a training set 25 
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including individuals with marker genotypes and trait phenotypes; subsequently 26 

genomic estimated breeding values (GEBV) for any genotyped individual in the 27 

population can be calculated using the estimated marker effects. In this study we 28 

aimed to: i) evaluate the potential of genomic prediction to predict GEBV for 29 

nematode resistance traits and body weight in sheep, within and across populations; 30 

ii) evaluate the accuracy of these predictions through within-population cross-31 

validation; and iii) explore the impact of population structure on the accuracy of 32 

prediction. Four datasets comprising 752 lambs from a Scottish Blackface population, 33 

2,371 from a Sarda x Lacaune backcross population, 1,000 from a Martinik Black-34 

Belly x Romane backcross population, and 64 from a British Texel population were 35 

used in this study. Traits available for the analysis were faecal egg count for 36 

Nematodirus and Strongyles and body weight at different ages or as average effect, 37 

depending on the population. Moreover, immunoglobulin A was also available for the 38 

Scottish Blackface population. Results show that GEBV had moderate to good 39 

within-population predictive accuracy, whereas across-population predictions had 40 

accuracies close to zero. This can be explained by our finding that in most cases the 41 

accuracy estimates were mostly due to additive genetic relatedness between 42 

animals, rather than linkage disequilibrium (LD) between SNP and QTL. Our results, 43 

therefore, suggest that genomic prediction for nematode resistance and body weight 44 

may be of value in closely related animals, but that with the current SNP chip 45 

genomic predictions are unlikely to work across breeds. 46 

47 

Keywords: genomic prediction, population structure, nematode resistance, body 48 

weight, sheep 49 

50 
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Implications 51 

Genomic prediction utilizes SNP chip data to predict animal genetic merit. Using data 52 

from several populations, our results suggest that genomic prediction may be of 53 

value for nematode resistance and body weight in closely related animals, but with 54 

current technologies it is unlikely to work across populations. Genetic relatedness 55 

between animals and population structure affect these estimates and need to be 56 

taken into consideration before considering implementation. 57 

 58 

Introduction  59 

Traditional genetic improvement has relied on the use of phenotypes together with 60 

the knowledge of the pedigree of each animal to estimate its breeding value. This 61 

has led to genetic gains in most farmed species; especially with ‘easy-to-measure’ 62 

production traits. However, the efficiency decreases when traits are difficult to 63 

measure, have a low heritability, or cannot be quickly, inexpensively and correctly 64 

measured. An example is nematode resistance, assessed using indicator traits such 65 

as faecal egg count (FEC), which is critically important for the sheep industry.  66 

To overcome this issue, there has long been an interest in using simply inherited 67 

genetic markers to increase the rate of genetic gain (Dekkers and Hospital, 2002). 68 

However, for many quantitative traits, such as production and health traits, a large 69 

number of loci appear to affect the trait, with each of them individually explaining only 70 

a limited proportion of the total genetic variance (Hayes and Goddard, 2001, Sanna 71 

et al., 2008, Kemper et al., 2011). Genomic selection (GS) has the advantage of 72 

potentially capturing the effects of the majority of loci that contribute to genetic 73 

variation, even when the effects of the individual loci are very small (Hayes et al., 74 

2009a). With GS, first marker effects are estimated with a training set (TS) which 75 
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includes individuals with marker genotypes and trait phenotypes; genomic estimated 76 

breeding values (GEBV) of any genotyped individual in the population can then be 77 

calculated using the estimated marker effects (Habier et al., 2007). The resulting 78 

GEBV, therefore, exploit associations between markers and QTL through linkage 79 

disequilibrium (LD) and linkage, along with the capture of pedigree relationships 80 

between animals (Habier et al., 2007).  81 

Accessing sufficient animals to both train and validate GEBV remains challenging in 82 

practice, and cross-validation with individuals from the same population is often used 83 

to assess the accuracy of the GEBV (Habier et al., 2007). However, validation 84 

studies can be also performed using separate phenotyped and genotyped 85 

populations (Hayes et al., 2009a, Luan et al., 2009, Su et al., 2010), with an accuracy 86 

which depends on the genetic relationship of the validation set to the TS (Habier et 87 

al., 2007, Habier et al., 2010). This is possible because markers used in the 88 

statistical models to estimate marker effects also capture additive genetic 89 

relationships between individuals (Cockerham, 1969, Ritland, 1996), therefore, even 90 

if markers are not in LD with QTL, the accuracy of GEBV will still be non-zero. 91 

However, animals more closely related to those included in the TS are expected to 92 

obtain more reliable predictions (Habier et al., 2007, Legarra et al., 2008, Sonesson 93 

and Meuwissen, 2009).  94 

At present, the accuracy of GEBV has been evaluated in experiments involving 95 

several livestock species, such as dairy (Harris et al., 2008, Hayes et al., 2009b) and 96 

beef (Saatchi et al., 2011) cattle populations, chicken (González-Recio et al., 2009), 97 

and sheep (Daetwyler et al., 2010b, Daetwyler et al., 2012a, Daetwyler et al., 2012b, 98 

Duchemin et al., 2012). Apart from the study of Kemper et al. (2011), the use of high 99 

density genomic information to select for nematode resistance in sheep has received 100 
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less attention. Therefore, the aims of this study were to: i) evaluate the potential of 101 

GS to predict GEBV for nematode resistance traits, as well as body weight, both 102 

within and across populations; ii) evaluate the accuracy of these predictions through 103 

within-population cross-validation; and iii) explore the impact of population structure 104 

within population, by decomposing the accuracy of genomic prediction into 105 

component parts. 106 

 107 

Material and methods 108 

Four datasets comprising 752 lambs from a Scottish Blackface (SBF) population, 109 

2,371 ewes from a Sarda x Lacaune (SAR) backcross population, 1,000 lambs from 110 

a Martinik Black-Belly x Romane (MBR) backcross population, and 64 lambs from a 111 

British Texel (BT) population were used in this study. As shown in the principal 112 

components plot of the SNP chip markers reported in Supplementary Figure S1, the 113 

four populations are genetically distant. Genomic predictions were conducted firstly 114 

within population, using the SBF data. This was because of the availability of both 115 

pedigree and SNP marker data, along with several traits, allowing us to potentially 116 

explore a variety of trait architectures as well as contributions of LD and linkage to 117 

genomic predictions. Secondly, an evaluation of across-population prediction was 118 

conducted using all four populations, albeit with limited phenotypes common across 119 

datasets. 120 

Phenotype data 121 

SBF data: The SBF lambs were bred over a period of three years (2001-2003), with 122 

traits measured including lamb weights (16 and 24 weeks, and average animal effect 123 

from a repeatability model excluding pedigree) and faecal egg counts (FEC) for 124 

Nematodirus and Strongyles collected at 16, 20 and 24 weeks of age, and their 125 
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average animal effects as well as plasma IgA (on 737 out of the 752 lambs). The 126 

population comprised F2 and double backcross lambs from two originally different 127 

lines, bred from 10 sires (half-sib family size = 11-146). More details on the data 128 

structure and the phenotypes are given in Riggio et al. (2013). Fecal samples were 129 

collected from the rectum of each lamb at the time of weighing and used for FEC 130 

assays, using the modified McMaster technique as described by Gordon and 131 

Whitlock (1939) and Bairden (1991). The activity of plasma IgA against a somatic 132 

extract of third-stage larvae from Teladorsagia was measured by indirect ELISA, as 133 

described by Strain et al. (2002), using blood samples collected at 24 weeks of age. 134 

The relative IgA activity was calculated according to the formula suggested by Sinski 135 

et al. (1995). The average animal effects were estimated by fitting a repeatability 136 

model to trait values across the different time points, and then standardized to a 137 

mean of 0 and a standard deviation of 1. FEC and IgA measurements were all right-138 

skewed. Therefore, prior to analysis, FEC measurements were log-transformed by 139 

ln(FEC+x), where x is a constant used to avoid the zero values, whereas IgA 140 

measurements were cube-root transformed. 141 

Other populations: Phenotypes available on BT lambs were for FEC at 20 weeks for 142 

Strongyles and Nematodirus, and body weight at 24 weeks. A detailed description of 143 

the data was given in Matika et al. (2011). The phenotype available for the two 144 

remaining populations (SAR and MBR) was the “average animal effect” for 145 

Strongyles FEC. A detail description of the animals in the MBR population was given 146 

in Sallé et al. (2012), and for the SAR population in Sechi et al. (2009).  147 

Genotype data 148 

All animals from the four populations were genotyped using the 50k SNP chip. The 149 

SNP genotypes data were subjected to quality control (QC) measures, specific for 150 
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each population (see Supplementary Material S1). After QC, 42,841 SNPs were 151 

available for the SBF and BT populations, 44,859 for the SAR, and 42,469 for the 152 

MBR. Out of these SNPs, 38,991 were in common among the four populations and 153 

therefore used for further analyses.  154 

Assessment of GEBV predictive value 155 

SBF data: For the analysis within population, validation sets were obtained by 156 

masking the phenotype (i.e., setting the phenotype as “unknown”) for a defined 157 

number of individuals from the TS. The individuals whose phenotype was masked 158 

were selected in two different ways. The first way was through random selection: five 159 

non-overlapping cross-validation sets were created by randomly selecting 150 (152 160 

for the fifth subset) lambs at a time, masking each phenotype only once. The second 161 

way was to select individuals belonging to specific families, to test the extent to which 162 

results differed depending on how related families were to the remaining families 163 

forming the TS.  164 

Data were first analysed without fitting any polygenic or genomic effect, to correct for 165 

fixed effects. The following model was fitted: 166 

ijlmnnmljiijlmn eDBAGLKSy    167 

where, ijlmny  is the phenotype of the nth individual, Si is the effect of the sex (male and 168 

female), Kj is the effect of the year of birth (2001 to 2003), Ll is the effect of the litter 169 

size (single or multiple), Gm is the effect of management group (two levels, 170 

corresponding to those born in the first 2 weeks of the lambing season and those 171 

born subsequently), An is the effect of age of dam (1 to 4 years), DB is a covariate 172 

effect of day of birth and β its regression coefficient, and eijlmn is the residual error.  173 
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The resulting adjusted phenotypes or residuals (y*) were then analysed using the 174 

ASReml package (Gilmour et al., 2009), fitting the model: 175 

eZgy  * , 176 

where y* is a vector of the adjusted phenotypic records, Z is a design matrix, g is a 177 

vector of random additive genomic effects distributed as N(0,σg
2G), σg

2 is the additive 178 

genetic variance, G is the genomic relationship matrix, and e is the vector of 179 

residuals. The G matrix was constructed using the method of VanRaden (2008). The 180 

genetic variance/covariance matrix and GEBV (i.e., ĝ ) of the SBF lambs in the TS 181 

were estimated by utilizing both phenotype and genotype information. The predicted 182 

genomic breeding values (PGEBV), i.e. GEBV calculated without phenotypic 183 

information on the individual, were estimated fitting the model described above but 184 

masking the phenotypes of each subset in turn. Thus, in addition to its GEBV, after 185 

analysing each randomisation, every individual had a PGEBV obtained from marker 186 

data alone from random masking of phenotypes, with a similarly obtained PGEBV 187 

following masking of families.  188 

Across populations: Two combined datasets were used for across population 189 

predictions, with SBF, SAR and MBR making the first set (4,123 individuals) and SBF 190 

and BT making the other (816 lambs). In the former data, two populations were used 191 

as TS to predict the third one (i.e., SAR and MBR to predict SBF; SBF and SAR to 192 

predict MBR; and SBF and MBR to predict SAR). Moreover, to test for the impact of 193 

cross-family links on GEBV, two analyses were conducted in which a few half-sib 194 

family members were allocated to the TS and used as a connection with the rest of 195 

the half-sib family members in the validation set. In these analyses, either one or 10 196 
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lambs from each half-sib family from the SBF data were randomly chosen to be in the 197 

TS. 198 

Accuracy and predictive values of PGEBV 199 

Genomic prediction accuracies were calculated for each validation set (both within 200 

and across populations). Firstly, the Pearson correlations of PGEBV with the 201 

adjusted phenotypes ( ygr ˆˆ ) were calculated and the accuracy ( ggr ˆ ) for each validation 202 

set was estimated by dividing ygr ˆˆ  by the the square root of the heritability of each trait 203 

for that specific validation set: 204 

2

ˆˆ

y

yg

h

r
Accuracy   (Legarra et al., 2008). 205 

The accuracy for each trait was then obtained by averaging the estimates across 206 

validation groups.  207 

The sampling properties of the prediction accuracies were explored by repeating the 208 

overall within-SBF cross-validation analysis, described above, 10 times and 209 

calculating the accuracy separately for each replicate. For each replicate, a new 210 

randomisation was performed so that the individuals comprising each of the groups 211 

were different. The standard error of the accuracy was then estimated as the 212 

empirical standard deviation of the 10 accuracy values. This exercise was performed 213 

for the average animal effect for Strongyles FEC, as an example trait. 214 

Two further sets of analyses were performed using SBF data, alone. Firstly, we 215 

calculated the correlation between GEBV and PGEBV. This case represents a 216 

situation where progeny’s performance is predicted from markers before the 217 

availability of phenotypes. Secondly, the cross validation prediction accuracy analysis 218 
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was also performed using pedigree-based EBVs, rather than genomic EBVs. This 219 

addresses the question of how, in this population, the accuracy of genomic 220 

predictions compares to the accuracy of pedigree-based predictions. 221 

Exploring contribution of population structure in the Scottish Blackface data 222 

To explore the contribution of population structure to the accuracies of the genomic 223 

predictions, several analyses were performed. Firstly, to determine the effectiveness 224 

of the G matrix in capturing additive genetic effects relative to the A matrix, we 225 

analysed the SBF data fitting both the G matrix and the pedigree-based numerator 226 

relationship matrix A using the following model: 227 

*y Zv Zg e    , 228 

where the effects are as defined above, with v being an additional vector of additive 229 

polygenic effects normally distributed as N(0,Aa
2), with A being the numerator 230 

relationship matrix. 231 

Secondly, the contribution of population and genome structure to genomic prediction 232 

accuracies of the SBF population was assessed by fitting chromosome-specific G 233 

matrices. Following the methodology of Daetwyler et al. (2012a), 26 chromosome 234 

specific G matrices were calculated, using only the SNPs on each chromosome. 235 

Each chromosome was then fitted instead of the overall G matrix. To measure the 236 

proportion of the total genetic variance explained by each chromosome, we also 237 

carried out an analysis fitting each chromosome and the G matrix consisting of all 238 

SNPs minus those in that specific chromosome (which corresponds to fitting all 239 

chromosomes simultaneously). The following model was then fitted: 240 

eZgZgy restchr  * , 241 
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where gch and grest are the vectors of additive genomic effects unique to the 242 

chromosome under investigation and to all remaining chromosomes, respectively. 243 

The terms gch, grest and e were assumed to be normally distributed: N(0,Gchgch
2) and 244 

N(0,Grestgrest
2), respectively. Here, Gch is the genomic matrix for one chromosome 245 

and Grest is the genomic matrix estimated from the rest of the genome excluding the 246 

unique fitted chromosome markers. 247 

Insight into the components contributing to the accuracy can be gained by regressing 248 

the difference in phenotypic variance explained by individually vs. simultaneously 249 

fitted chromosomal G matrices on chromosome length (Yang et al., 2011, Daetwyler 250 

et al., 2012a). This was given by this equation: 251 

  eLbb ccsepc  10

22   252 

where  
2

sepc  is variance explained by each chromosome analysed individually and 253 

2

c  the variance when the chromosome are analysed jointly, with b0 being the 254 

intercept which represents the component due to relatedness amongst animals 255 

rather than tagged QTL, and b1 the slope that relates genetic variance to 256 

chromosome length (Lc), i.e. tagged QTL. We calculated the proportion of the 257 

genetic variance explained by the population structure (i.e. additive genetic 258 

relatedness as opposed to QTL tagged by the SNP chip) by dividing b0d (intercept of 259 

the difference) with the intercept from regressing the variance explained by 260 

individually fitted chromosomes on chromosome length (b0i). 261 

 262 

Results 263 

Accuracy and predictive values of PGEBV 264 
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SBF data: Correlations between PGEBV and adjusted phenotypes, with 265 

corresponding accuracies for each trait, for the cross-validation groups in the SBF 266 

population are reported in Table 1, together with the accuracies estimated using 267 

pedigree-based EBV. Correlations varied between groups, ranging from marginally 268 

negative (-0.027 in group 1 for Nematodirus FEC at 16 weeks) to positive and 269 

moderate (0.382 in group 5 for IgA). Moderate accuracies  ĝgr  were observed, 270 

generally between 0.42 and 0.68, with the exception of the accuracy for Nematodirus 271 

FEC at 16 weeks (0.10), this being the trait with the lowest heritability. Accuracies 272 

using pedigree-based EBV ranged from 0.27 to 0.52, and were slightly lower than the 273 

genomic EBV accuracies for 9 of the 12 traits. The empirical standard error of the 274 

accuracy for Strongyles FEC average animal effect, estimated as the standard 275 

deviation of the accuracies across the 10 replicated cross validation, was 0.04. 276 

Correlations between GEBV and PGEBV (Table 2), representing the relationship 277 

between genomic EBVs predicted with and without individual data were all strong 278 

and positive. The average value across all traits was 0.76.  279 

Lower correlation estimates between phenotype and PGEBV were obtained when all 280 

members in one sire family were predicted from the remaining sire families in the 281 

SBF data (Table 3). However, differences were observed in relationship connectivity 282 

between families. For example, nematode resistance indicator trait results (i.e., both 283 

IgA and FEC) showed that the families which were more closely related to the 284 

remaining families in the TS were those with more accurate PGEBV. In particular, the 285 

half-sib family sired by ram 22 (i.e., Fam22), which is the most highly related to the 286 

remaining TS families (data not shown) showed the highest correlations. However, 287 

different results were found for body weight, suggesting that not only relatedness is 288 
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important but other factors (such as trait heritability or markers in LD with mutations 289 

affecting the trait) may play a part. 290 

Across populations: The correlations between PGEBV and adjusted phenotype for 291 

the Strongyles average animal effect were -0.054, -0.030 and 0.005 for SBF vs. 292 

(MBR plus SAR), MBR vs. (SBF plus SAR) and SAR vs. (SBF plus MBR) datasets, 293 

respectively. The correlations between PGEBV and adjusted phenotypes for the BT 294 

data vs. SBF were -0.012, -0.010 and 0.067 for Strongyles and Nematodirus FEC at 295 

20 weeks and for body weight at 24 weeks, respectively. In both analyses, the 296 

predictions for genetically distant groups were usually close to zero. However, when 297 

one or 10 lambs from each sire family from the SBF data were randomly chosen and 298 

included in the TS, the correlations between PGEBV and y* were slightly higher, and 299 

always positive with 0.129 and 0.070 for SBF vs. (MBR plus SAR plus 10SBF) and 300 

SBF vs. (MBR plus SAR plus 100SBF), respectively. 301 

Exploring contribution of population and genome structure  302 

The results of the analysis in the SBF data, fitting either the A or G matrix alone, or 303 

both together, are reported in Supplementary Table S1. For some traits the 304 

heritability estimates were either completely explained by the G matrix (i.e., IgA and 305 

Nematodirus FEC at 20 weeks) or the A matrix (Strongyles FEC at 20 weeks and 306 

Nematodirus FEC at 16 weeks) when the analysis was done fitting both G and A 307 

matrices. However, for the other FEC traits (both Strongyles and Nematodirus) there 308 

was a contribution from both matrices. In general there was little discernible pattern 309 

in these results. Moreover, the relative partitioning of genetic variation between the A 310 

and G matrices may be expected to vary as the number and size of families varies, 311 

thus it is difficult to draw general conclusions from these results. 312 
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For the SBF population, heritability estimates were also obtained either fitting only 313 

one chromosome or when simultaneously fitting one chromosome plus the whole G 314 

matrix (results not shown). Although similar trends were observed, the proportions of 315 

genetic variation accounted for when fitting only one chromosome were always 316 

overestimated. However, in both cases it is possible to identify the chromosomes that 317 

explain most of the genetic variation of the traits.  318 

We tested the hypothesis that fitting all Gch (i.e., chromosome-wide genomic 319 

matrices) simultaneously would result in each chromosome explaining a fraction of 320 

the total genetic variance proportional to its length, consistent with the polygenic 321 

assumptions underlying GBLUP. Whilst there was a weak tendency for this to be the 322 

case for most traits (as an example, Figure 1), the majority of the captured genetic 323 

variation appeared to be independent of chromosome length. This can be seen in 324 

Table 4 which reports intercept, slope, and R2 for the three regressions (i.e., by fitting 325 

each chromosome individually, by fitting all chromosomes simultaneously, and the 326 

difference between the two) as well as the proportion of genetic variance explained 327 

by relatedness for all traits considered. These proportions (ranging from 0.39 to 0.98, 328 

with an average of 0.77) suggest that in most cases our accuracy estimates are 329 

mostly due to additive genetic relatedness, rather than LD between SNP and QTL. 330 

The A-matrix-derived heritabilities were compared to accuracies and proportion of 331 

genetic variance explained by relatedness (b0d/b0i) for all nematode resistance 332 

indicator traits (results not shown). Amongst the Strongyles FEC and IgA results 333 

there was little discernible relationship between these variables. The Nematodirus 334 

traits were more variable, however they tended to have lower heritabilities and 335 

relatively large genetic effects (i.e. QTL) had previously been observed on some of 336 
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the smaller chromosomes (see Discussion) suggesting that the polygenic inheritance 337 

assumption was inappropriate for the Nematodirus traits. 338 

 339 

Discussion 340 

One of the objectives of the current study was to understand the dynamics of 341 

applying genomic selection to hard-to-measure traits using field data. We assumed 342 

two scenarios, with the first scenario having young animals selected from markers 343 

before their phenotypes can be measured and secondly, where we break the 344 

assumption that the animals of the TS and the validation sets are from the same 345 

population i.e., we explore situations where the animals vary from being closely 346 

related to unrelated. Therefore, we explored the possibility of using genomic 347 

predictions within and across populations; whilst prediction accuracies within a 348 

population were good, with a small empirical standard error, our results highlighted 349 

the difficulties of prediction using genetically distant individuals.  350 

We also reported prediction accuracies estimated by using both the G and the A 351 

relationship matrix. The accuracies estimated with the G matrix were usually higher 352 

that those with the A matrix, suggesting an advantage in using genomic information 353 

for predictions, even when pedigree knowledge is available. The one case where the 354 

accuracies estimated with the A matrix was substantially better, viz. Nematodirus 355 

FEC at 16 weeks, was for a trait for which heritability estimate was mostly explained 356 

by the A matrix (Supplementary Table S1).  357 

Although several studies on GEBV accuracy/reliability estimated from real data have 358 

been reported in the literature for cattle with GEBV reliabilities ranging from 18 to 359 

78% (Harris et al., 2008, Hayes et al., 2009b, VanRaden et al., 2009), fewer are 360 

reported for sheep. Our GEBV accuracies are similar to others obtained using a 361 
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medium-density markers chip of 15 to 79% for wool traits in Merino sheep (Daetwyler 362 

et al., 2010b), and 7 to 31% for carcass and meat quality traits in multi-breed sheep 363 

data (Daetwyler et al., 2012b). In a study on the Lacaune dairy sheep breed using 364 

different genomic methods, Duchemin et al. (2012) reported accuracies varying from 365 

0.4 to 0.6, according to the traits (i.e. milk yield, fat content, and somatic cell scores), 366 

with minor differences among genomic approaches. These authors also showed that 367 

the inclusion of molecular information, as compared with traditional schemes, 368 

increased accuracies of EBV of young males at birth from 18 up to 25%, according to 369 

the trait (Duchemin et al., 2012). However, it has to be considered that the accuracy 370 

of the GEBV depends on the size of the population and on the heritability of the trait. 371 

For low heritability traits, a very large number of records will be required in the TS to 372 

subsequently achieve high accuracies of GEBV in unphenotyped animals. If we 373 

consider our SBF population, where the effective population size (Ne) is ~500 (Kijas 374 

et al., 2012), then according to the formula suggested by Daetwyler et al. (2010a) to 375 

achieve an accuracy of 0.6, we would need ~ 30,000 individuals for a trait with very 376 

low heritability (e.g., Nematodirus FEC at 16 weeks), and ~ 5,000 for a trait with 377 

moderate heritability (e.g., IgA). 378 

The current study explored the contributions of LD and relatedness to the accuracies 379 

of genomic predictions. The heritability estimates obtained either fitting only one 380 

chromosome or when simultaneously fitting one chromosome plus the whole G 381 

matrix showed that nematode resistance in sheep is a complex trait with 382 

contributions from many regions in the genome affecting these traits. However, with 383 

the exception of Nematodirus FEC at 16 weeks (Supplementary Figure S2; Riggio et 384 

al., 2013), the results favour a polygenic mode of inheritance, which is largely 385 

captured by additive relationships between animals. This is illustrated by the results 386 
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when a chromosome at a time was fitted, that overestimated the proportion of genetic 387 

variance explained as opposed to when one chromosome and the G matrix were 388 

simultaneously fitted. As highlighted by Daetwyler et al. (2012a), if the only 389 

contribution of the SNP to the accuracy of genomic prediction was through LD with 390 

QTL, and assuming a polygenic model, then a G matrix constructed from only the 391 

SNP on one chromosome should capture genetic variation in proportion to its length, 392 

assuming that there is no population stratification. However, this was not the case in 393 

our study. It was therefore clear that a large proportion of the accuracy of genomic 394 

prediction in the SBF population, at the current SNP density, is due to population 395 

structure, i.e. relatedness between animals. In other words, only a small proportion of 396 

the accuracy was due to LD between SNP and QTL. 397 

This proposition was tested formally using the regression approach suggested by 398 

Yang et al. (2011). The intercept (b0d) of the difference between the variance for each 399 

chromosome when analysed individually or simultaneously was highly significant for 400 

all traits (P<0.0001), with the exception of body weight at 24 weeks (P=0.09). On the 401 

other hand, the slope (b1d) of the difference was significant only for some of the traits. 402 

These values show the importance of the relatedness in our SBF population, 403 

suggesting that most of our accuracy is probably captured by additive relatedness. 404 

The ratio b0d/b0i is a measure of the proportion of genetic variance explained by such 405 

relatedness (Yang et al., 2011), and with the exception of NFEC16, this measure was 406 

high (0.59-0.98) and therefore accounted for most of the variation in our SBF GEBV 407 

predictions. Of interest is the observation that accuracy and the component due to 408 

relatedness were largely independent of the A-matrix-derived heritability estimates 409 

(results not shown). 410 
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The impact of relatedness has been previously studied, and differences in accuracies 411 

have been ascribed to the number of relatives in the TS and the degree of additive-412 

genetic relationships with training individuals (Habier et al., 2010). Legarra et al. 413 

(2008) analysed accuracies of GEBV for individuals either related or unrelated to the 414 

TS in a mouse population, concluding that markers were able to recover family 415 

information to some extent. Our choice of predicting all members of a single sire 416 

family from the remaining sire families in the SBF data was designed to reduce the 417 

upward biases of accuracies resulting from within-family prediction when half-sib 418 

families are randomly split between TS and validation sets. In this case we showed 419 

that the closer the individuals in the validation set are to the TS, the higher the 420 

accuracy. This is probably due in part to the fact that genomic predictions across 421 

closely related individuals capture linkage effects, whereas those across distantly 422 

related animals require LD between SNP and QTL. However, it should be noted that 423 

although we used distinct sire families with the SBF data, these families were in most 424 

part, also closely related. 425 

We also estimated the accuracy achieved when predicting breeding values across 426 

populations. These across-population accuracies were very low, sometimes even 427 

negative. These low estimates may be explained by extension from our previous 428 

results. Firstly, much of the accuracy in the SBF dataset was due to additive genetic 429 

relationships between animals, as captured by the marker IBS relationships. This will 430 

not be possible in distant populations. Secondly, the component of accuracy due to 431 

LD between SNP and QTL is also likely to be low in distant breeds, as the linkage 432 

phase between SNP and QTL will differ randomly in different breeds. The more 433 

distant the relationship between individuals, the shorter the genomic distance over 434 

which phase will be consistent. This outcome is reinforced by the finding that the 435 
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accuracy achieved for across-population prediction was somewhat higher when a 436 

small number of animals from the population to be predicted were included in the TS.  437 

It has been suggested that the use of a different method (i.e., BayesSSVS; Verbyla 438 

et al., 2009) could increase across-breed prediction, as it assigns SNP to either a 439 

distribution with very small variance (i.e. near 0) or one with a larger variance in the 440 

prediction model, unlike GBLUP which assumes that all SNP effects are sampled 441 

from distributions with the same variance (Daetwyler et al., 2012a). However, this 442 

suggestion pre-supposes that the same gene variants are segregating in different 443 

populations, and that the SNP density is sufficient for there to be consistent LD 444 

between marker and QTL in (some of) the different populations. It has been 445 

suggested that the number of SNP needed to predict unrelated individuals is equal to 446 

10NeL, where L is the length of the genome in Morgans (Meuwissen, 2009). In the 447 

SBF population, with Ne of ~500 (Kijas et al., 2012) and L of approximately 27 448 

Morgans, predictions for unrelated individuals would require at least 135,000 SNP. 449 

This marker density may be achievable with the forthcoming high density sheep SNP 450 

chip. 451 

In summary, we have applied genomic prediction techniques to nematode resistance 452 

and body weight data and found GEBV which, at first sight, appeared to have 453 

moderate to good within-population predictive accuracy, despite a relatively limited 454 

training set. However, much of the accuracy achieved appears to be a result of the 455 

markers capturing additive genetic relationships between animals in the population. 456 

This is reinforced by the observations that (i) the accuracy tends to drop when 457 

predictions are across more distantly related animals in the same population, (ii) 458 

across-population predictions have accuracies close to zero and (iii) some across-459 

population accuracy can be recovered by including a small number of animals from 460 
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the target population in the training set. These results suggest that genomic 461 

prediction for nematode resistance and body weight may be of value in closely 462 

related animals, but with the current SNP chip genomic predictions are unlikely to 463 

work across breeds.  464 
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Table 1 Correlations between predicted genomic estimated breeding values and 586 

adjusted phenotypes and accuracies* for the random cross-validation groups both 587 

using the genomic relationship matrix and the pedigree-based relationship matrix in 588 

the Scottish Blackface population 589 

 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

5 

Genomic-

based 

accuracy 

Pedigree-

based 

accuracy 

IgA 0.151 0.174 0.314 0.359 0.382 0.532 0.513 

SFEC16 0.192 0.074 0.089 0.245 0.174 0.487 0.516 

SFEC20 0.141 0.099 0.216 0.150 0.091 0.432 0.401 

SFEC24 0.138 0.068 0.186 0.172 0.110 0.442 0.476 

NFEC16 -0.027 0.059 0.071 0.034 -0.006 0.099 0.342 

NFEC20 0.210 0.292 0.193 0.324 0.220 0.598 0.488 

NFEC24 0.212 0.182 0.155 0.178 0.130 0.503 0.408 

W16W 0.206 0.127 0.231 0.232 0.234 0.516 0.336 

W24W 0.169 0.073 0.165 0.109 0.046 0.417 0.292 

SFEC_av 0.319 0.179 0.254 0.303 0.175 0.540 0.442 

NFEC_av 0.208 0.317 0.192 0.282 0.234 0.481 0.357 

WW_av 0.149 0.147 0.195 0.136 0.057 0.684 0.270 

IgA: Immunoglobulin-A; SFEC16, SFEC20, and SFEC24: faecal egg count at 16, 20 and 24 weeks for 590 

Strongyles; NFEC16, NFEC20, NFEC24: faecal egg count at 16, 20 and 24 weeks for Nematodirus; 591 

W16W and W24W: body weight at 16 and 24 weeks; SFEC_av, NFEC_av, WW_av: average animal 592 

effect for Strongyles and Nematodirus faecal egg count and for body weight 593 

*accuracy here is the average of the accuracies across validation sets, estimated as the correlation for 594 

each validation set divided by the square root of its heritability 595 

 596 

 597 
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Table 2 Correlations between genomic estimated breeding values and predicted 598 

estimated genomic breeding values for the random cross-validation groups in the 599 

Scottish Blackface population 600 

 
Group1 Group2 Group3 Group4 Group5 average 

IgA 0.674 0.731 0.784 0.699 0.773 0.732 

SFEC16 0.737 0.606 0.699 0.729 0.764 0.707 

SFEC20 0.841 0.764 0.850 0.788 0.846 0.818 

SFEC24 0.825 0.804 0.815 0.826 0.794 0.813 

NFEC16 0.774 0.750 0.700 0.690 0.710 0.725 

NFEC20 0.709 0.863 0.823 0.867 0.767 0.806 

NFEC24 0.842 0.783 0.816 0.880 0.847 0.834 

W16W 0.627 0.676 0.719 0.794 0.713 0.706 

W24W 0.666 0.667 0.743 0.799 0.632 0.702 

SFEC_av 0.811 0.697 0.777 0.769 0.795 0.770 

NFEC_av 0.764 0.765 0.765 0.798 0.735 0.765 

WW_av 0.661 0.779 0.828 0.830 0.750 0.770 

IgA: Immunoglobulin-A; SFEC16, SFEC20, and SFEC24: faecal egg count at 16, 20 and 24 weeks for 601 

Strongyles; NFEC16, NFEC20, NFEC24: faecal egg count at 16, 20 and 24 weeks for Nematodirus; 602 

W16W and W24W: body weight at 16 and 24 weeks; SFEC_av, NFEC_av, WW_av: average animal 603 

effect for Strongyles and Nematodirus faecal egg count and for body weight 604 

 605 

 606 
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Table 3 Correlations between predicted genomic estimated breeding values and 607 

adjusted phenotypes for families in the Scottish Blackface population 608 

 
Fam022 Fam058 Fam085 Fam161 

IgA 0.324 0.087 0.174 0.119 

SFEC16 0.198 0.023 0.179 0.055 

NFEC16 0.108 -0.055 0.036 0.018 

W16W -0.072 0.162 0.291 0.124 

IgA: Immunoglobulin-A; SFEC16, NFEC16, and W16W: Strongyles and Nematodirus faecal egg count 609 

and body weight at 16 weeks 610 

 611 
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Table 4 Intercept, slope (i.e., proportion of phenotypic variance/Mb), and R2 for the three regressions (i.e., by fitting each 612 

chromosome individually, by fitting all chromosomes simultaneously, and the difference between the two) as well as the proportion 613 

of genetic variance explained by relatedness (b0d/b0i) for all traits considered 614 

 Chromosome fitted individually Chromosome fitted simultaneously                      Difference             _ 
b0d/b0i 

 R2 Intercept Slope R2 Intercept Slope R2 Intercept Slope 

IgA 0.26 0.058*** 0.00025** 0.06 0.001 0.00010 0.34 0.056*** 0.00015*** 0.98 

SFEC16 0.10 0.029** 0.00014 0.08 0.005 0.00011 0.02 0.024*** 0.00003 0.84 

SFEC20 0.10 0.041*** 0.00009 0.00 0.012* -0.00002 0.25 0.029*** 0.00010** 0.71 

SFEC24 0.06 0.039*** 0.00006 0.02 0.008 0.00004 0.03 0.031*** 0.00003 0.80 

NFEC16 0.00 0.025** -0.00002 0.00 0.015 -0.00002 0.00 0.010*** 0.00000 0.39 

NFEC20 0.44 0.063*** 0.00020** 0.04 0.005 0.00005 0.56 0.058*** 0.00015*** 0.92 

NFEC24 0.06 0.047*** 0.00008 0.01 0.016* -0.00003 0.28 0.032*** 0.00011** 0.67 

W16W 0.28 0.037*** 0.00022** 0.00 0.009 -0.00001 0.46 0.028*** 0.00024*** 0.76 

W24W 0.41 0.022*** 0.00018*** 0.00 0.009 -0.00001 0.28 0.013 0.00020** 0.59 

SFECav 0.07 0.068*** 0.00012 0.00 0.013 0.00001 0.17 0.056*** 0.00011* 0.82 

NFECav 0.07 0.079*** 0.00015 0.02 0.011 0.00007 0.11 0.068*** 0.00008 0.86 

WWav 0.11 0.017** 0.00010 0.10 0.003 0.00008 0.01 0.015*** 0.00002 0.85 

 615 
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IgA: Immunoglobulin-A; SFEC16, SFEC20, and SFEC24: faecal egg count at 16, 20 and 24 weeks for Strongyles; NFEC16, NFEC20, NFEC24: faecal egg 616 

count at 16, 20 and 24 weeks for Nematodirus; W16W and W24W: body weight at 16 and 24 weeks; SFEC_av, NFEC_av, WW_av: average animal effect for 617 

Strongyles and Nematodirus faecal egg count and for body weight 618 

*P < 0.05; **P < 0.01; ***P < 0.001  619 
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Figure 1 Proportion of phenotypic variance explained per chromosome for 620 

Immunoglobulin-A (scattered points) and fitted regression (line). Chromosome fitted 621 

individually (top regression) or simultaneously (bottom regression). Middle regression 622 

results from plotting the difference between top and bottom regression. 623 
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