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Abstract

Part of speech (POS) tags are foremost among the features con-
ventionally used to predict intonational phrase-breaks for text
to speech (TTS) conversion. The construction of such systems
therefore presupposes the availability of a POS tagger for the
relevant language, or of a corpus manually tagged with POS.
However, such tools and resources are not available in the ma-
jority of the world’s languages, and manually labelling text with
POS tags is an expensive and time-consuming process. We
therefore propose the use of continuous-valued features that
summarise the distributional characteristics of word types as
surrogates for POS features. Importantly, such features are ob-
tained in an unsupervised manner from an untagged text corpus.
We present results on the phrase-break prediction task, where
use of the features closes the gap in performance between a
baseline system (using only basic punctuation-related features)
and a topline system (incorporating a state-of-the-art POS tag-
ger).

Index Terms: phrase-break prediction, part of speech tagging,
unsupervised learning, Vector Space Model, Latent Semantic
Analysis

1. Overview

Conventional data-driven text-to-speech (TTS) conversion sys-
tems bridge the gap between text and speech by using an inter-
mediate representation that will here be called a linguistic speci-
fication. This specification is typically given in terms of linguis-
tic features such as phonemes, syllables, intonational phrases,
shallow syntactic information, and so on. A set of classifiers
is typically used in a cascade to derive the specification from
text input. The features on which this paper will focus are part
of speech (POS) and intonational phrase-breaks (PBs). POS,
or syntactic category, is useful in predicting acoustic values in
its own right; it also typically provides input to other classifiers
downstream in the TTS ‘cascade’, such as a PB predictor. Cor-
rect phrasing in turn is important for predicting acoustics, and
can also be used to feed other predictors (of e.g. pitch accents).

This conventional methodology can be problematic for sev-
eral reasons. Not least, the training of classifiers assumes the
availability of hand-labelled training data in large quantities.
Manual annotation is expensive and time-consuming, and might
therefore prohibit the training from data of classifiers in lan-
guages where the necessary resources are not already available.

The unsupervised induction of word-classes from text is an
important problem, both from an engineering and a scientific
point of view, and research has been motivated variously by
pragmatism [1] and a desire to model aspects of human acquisi-
tion of syntactic category [2]. The method we use in the present
work is based closely on the Vector Space Model (VSM) ap-
proach used in [3]. Briefly, in [3], members of a discrete set
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(words) are mapped to points in a continuous space defined by
the rows of a word co-occurrence matrix; transformations are
applied to this space so that characteristics of words’ distribu-
tional behaviour are captured in a few dimensions of the trans-
formed space. Finally in [3], the transformed space is quantised
once more, resulting in another discrete set (induced POS-like
categories).

In the work presented here, we produce a transformed space
as in [3], but do not partition the space directly into a manually
specified number of clusters. Rather, we use the coordinates that
specify words’ locations in the space as continuous-valued fea-
tures that are in-put into the next module in our front-end cas-
cade — in this case, a PB predictor. We perform supervised pre-
diction of PBs using classification trees; as predictor features,
however, we use the VSM features that have been acquired in
an unsupervised fashion. We leave it up to the tree-inducer to
partition the discovered space in a way that best serves the pur-
pose of the PB predictor. Thus we do not need to determine a
suitable number of POS-like classes. By delaying a hard de-
cision about number of categories in our cascade system, we
avoid making premature decisions about where the boundaries
of the relevant classes are. We note that this approach has things
in common with sequential Multitask Learning [4].

Besides the decision about the number of classes to induce,
another problem commonly presented by methods designed to
induce POS-like categories is evaluation: mapping discovered
clusters to gold-standard ones is problematic both in implemen-
tation (there are various ways to compute the overlap of discov-
ered and reference classes) and conception (how can we be sure
that what we take as the ‘gold standard’ ought to be considered
as such?). This problem is overcome in the present work by
treating the discovery procedure as a module in a bigger sys-
tem. The word-feature finding method we use is unsupervised,
but the end goal of the task adopted here (PB prediction) is —
in the current set-up — supervised. This allows computation of
measures such as precision and recall on the supervised task in
the usual way. We note that [5] uses a similar methodology, test-
ing the effectiveness of discovered word classes on a number of
language processing tasks.

The experimental set-up used in the work presented here
is designed to serve as a testing-ground for wider use of these
techniques in HMM-based speech synthesis. Our aim is to use
these features directly in acoustic model context clustering. We
use a classification task in the present work for ease of eval-
uation: credible evaluation of the acoustic models that would
result from application of these features to acoustic model clus-
tering can only be carried out through subjective listening tests.
This makes the gradual testing and refinement of the features
prohibitively expensive and time-consuming. Our assumption
is that features found useful for the PB prediction task will also
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be useful for the acoustic model clustering task.

2. Previous Work on PB Prediction

The availability of a part of speech (POS) tagger is a cen-
tral requirement in the majority of work on PB prediction.
Many different machine learning techniques have been applied
to this task; for example, decision trees have been used [6],
n-gram models [7], finite-state transducers [8], and memory-
based learning [9]. The input to whatever classifier is used,
however, has consistently included POS tags as features of cen-
tral importance. Previous work therefore suggests that reduc-
ing the set of surface-forms to a smaller set of symbols on
knowledge-based, distributional grounds (i.e. via POS tagging)
is a necessary first step for PB prediction. This motivates the
present work, where we examine the induction of features that
can stand in as ‘surrogates’ for POS tags in this task.

Note that various researchers have shown that a pre-defined
set of tags (such as the Penn Treebank tag-set) is often not op-
timal for the PB prediction task. For example, mapping the full
Penn Treebank set to a smaller, coarser set gives improved per-
formance in [7] (where the mapping is manually specified) and
in [10] (where is it learned through an optimisation procedure).
Conversely, producing a finer set of classes for certain words is
tried both in [11] (successfully) and in [9] (with less success). In
both cases, systems using surface forms of words are compared
with systems using POS tags and a ‘mixed mapping’, where
POS tags are used except for some small groups of words (e.g.
function words) where surface forms are used. It can be seen,
then, that a knowledge-based POS tag-set provides a good — but
not optimal — set of word classes for PB prediction. This sug-
gests the potential for unsupervised induction of classes for this
task to improve on the use of generic knowledge-based classes.

3. Unsupervised Word-Type Features
3.1. Previous Work on POS Induction

The procedure for word-feature discovery that forms the basis
of our system is taken from the first of the three POS induction
methods described in [3] (where it is called ‘induction based
on word type only’). The idea that motivates this model is that
a word type can be characterised distributionally: in terms of
the words with which it co-occurs in a body of text. Therefore,
a context vector is assembled for each of the m word types in
a large body of text; the number n of words with which co-
occurrence is to be tallied (which we will call feature words)
is determined, in the range [1,m]. [3] uses the Brown corpus,
giving 47,025 word types (m) and sets n at 250. An m by 2n
co-occurrence matrix, C, is assembled such that C;; records a
count of the number of times the 3" word type occurs with the
4" feature word as its left-hand neighbour, and C';; 1, records
a count of the number of times the same (i*") word type has the
same (j'") feature word as its right-hand neighbour. The raw
co-occurrence matrix is then decomposed by a Singular Value
Decomposition:

c=UDV"” )

The diagonal elements of D are conventionally sorted in
descending order of magnitude: taking the first r columns of U
and D and the first 7 rows of VT gives matrices whose prod-
uct is the best rank r approximation of C'. We will denote the
matrix derived from U by taking its first 7 columns as U, an
m by r matrix whose rows are vectors summarising the interac-
tions of the m word types of the corpus with their neighbours.
[3] uses a value of 50 for r. The discrete symbols of word types
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from the corpus data are thus converted into continuous values
giving the coordinates of points in a r-dimensional space. In the
last stage of the method, the space is re-discretised, by means
of clustering the points representing word-types into a prespec-
ified number of clusters according to cosine similarity between
vectors.

3.2. A Continuous Space Word Model for PB Prediction
We here applied the procedure described in Section 3.1 to the
text of the Wall Street Journal section of the Penn Treebank,
with the exception of the final clustering stage. The text consists
of 1,173,766 tokens and 43,507 types, which gives the value of
m in our experiment. The tokenisation of the corpus was used
as provided (punctuation tokens were retained), but all other in-
formation was discarded (POS tags, sentence boundaries, cap-
italisation). Values of n and r used were the same as those
used in [3], i.e. 250 and 50. A 43,507 by 500 matrix C was
constructed and reduced to the 43,507 by 50 matrix U, as in
Section 3.1.

At this point our procedure diverges from the one outlined
in Section 3.1. The final clustering used by [3] is omitted: we
choose instead to work with the undiscretised space spanned by
the rows of U,. Continuous values from U, were left to be
queried directly during decision-tree building. We did this be-
cause we consider the final rediscretisation stage as the weak
point of the technique outlined in Section 3.1; it was necessary
in [3] as the evaluation presented there is based on the overlap
between induced and reference categories, a type of evaluation
not used here. Working with continuous-valued features has
several advantages (theoretical and practical) over conventional
discrete POS-like sets. For example, it allows us to partition
the space which has been discovered in a way that is optimal
for the supervised task we are tackling. Also, omitting the clus-
tering step avoids assigning word types deterministically to a
single discovered class (which may be undesirable, given the
ambiguity of the token—POS relationship). Although not allow-
ing the disambiguation of specific tokens, distributing the repre-
sentation of words types across several dimensions means that
in theory different dimensions of the space could characterise
a type’s ‘nounness’ and ‘verbness’, without needing to make a
hard decision about which class an ambiguous type belongs to.

[3] does not state explicitly how unseen words are dealt
with at tagging time in its System 1. The simple method we
use here is as follows: a portion of the training corpus (we used
1% of the corpus in the form of consecutive words) is held out
while a list of seen types is compiled from the remainder of
the corpus. Tokens in the held-out set that are not in this list
of ‘seen’ word types are rewritten in the corpus with a spe-
cial symbol for unseen words. Co-occurrence statistics are then
gathered as in Section 3.1. This allows co-occurrence counts to
be collected which characterise the distributional behaviour of
the class of words likely to be unseen. At tagging time, unseen
words are similarly rewritten with the unseen symbol and tag-
ging proceeds by look-up from a lexicon-like list, associating
word-types with their corresponding feature vectors.

4. Experiments

4.1. Data

The data used for the present work was obtained combining data
from the SEC database and its extension, MARSEC [12]. The
corpus consists of material from a variety of speakers and gen-
res, broadcast on BBC radio programmes during the 1980s. A
subset of 39 stories was used, the main exclusions consisting of
material from the Poetry and Dialogue genres.



MARSEC and SEC were automatically merged to obtain
punctuated, plain orthography (although tokenised) text (SEC)
with PB annotation (MARSEC). All tokens were converted to
lower-case, and punctuation marks and PBs were associated
with the token that precedes them as a feature of that token.

There are 34,824 tokens in the subset of the corpus pre-
pared (not counting punctuation marks). 11% of these are from
the ‘overlap’ section (annotated prosodically by both the cor-
pus’s transcribers). We set these aside as our test set; this choice
of test set enables easy replication of our training/test division
and is balanced with respect to speaker and genre (consisting of
whole sentences from across the different stories and genres of
the corpus). 50% of the test set tokens are chosen at random,
and transcriber GOK’s annotations are used for these; tran-
scriber BJW’s annotation is used for the remaining tokens. 10%
of the remaining 89% was set aside as a development set for
system tuning. The points for this development set were picked
randomly from across the non-overlap section of the data (on a
word-by-word basis). This results in a training—development—
test division of 80%—9%—11%.

4.2. CART

We use CART [13] as the classification method in this work.
We expect the use of CART to yield respectable predictors for
this work as its suitability for the task has been established pre-
viously (Section 2). This choice is also motivated by similar-
ities between classification trees and the regression-type trees
commonly used for acoustic model clustering in HMM-based
speech synthesis systems. We here use the classification task —
with its manageable-sized corpora and standardised evaluation
criteria — as a testing ground for developing feature-extraction
methods that can be generalised to other tasks (the acoustic
clustering task among them). The following procedure was
used to build trees for all experiments: classification trees were
fully grown using the Gini diversity index as impurity measure
and then pruned using minimal cost-complexity pruning; the
complexity parameter used was determined by 10-fold cross-
validation [13]."

4.3. Features Extracted and Systems Built

All Systems The feature to be predicted for each word by all
systems was the level of PB associated with it. All three break
types in the original annotation (major break, minor break, dis-
fluent pause) were mapped to a single symbol for ‘break’, B,
and words with none of these associated were given a symbol
for ‘no break’, NB.

B: Baseline System All systems built had access to features
relating to punctuation and tokens’ position in utterance. For
each token in the corpus, the following 5 basic features were
used:
e The identity of the word’s punctuation symbol;
e The number of words {since, until} a word with a strong
punctuation mark (i.e. excluding quotes);
e The number of words {since, till} the beginning/end of
the utterance;
Baseline system B was built with access to only these features.

G: Baseline System with Guessed POS Full POS tagging
can be approximated deterministically by compiling a list of
the closed set of function words (or possibly, several sub-lists
giving distinctions such as pronoun, modal verb, etc.), and to
tag these words by look-up in the list(s), tagging all out-of-
list words as content words. We tried such an approach in the

ICART implementation used here: R package rpart [14].

2159

present work, using 9 lists of different types of function words
modelled as closely on those distributed with [15] as differences
in tokenisation allow.

The tags obtained in this way for a token and its right-hand
neighbour are included as features of that token. The CART al-
gorithm searches all binary partitions of this small tag-set, and
thus the simple content—function distinction is modelled implic-
itly. System G was constructed using these features in addition
to the basic features.

T: Topline System with Full POS System T is our topline,
and besides the basic features of System B, incorporates fea-
tures obtained from a high-quality POS tagger that had already
been trained on approximately 300,000 words of manually-
tagged data from the Wall Street Journal [16]. Collapsing some
fine distinctions made by the full Penn Treebank tag-set has pre-
viously been found to give improvements on this task [7, 10].
Early trials on the development set showed that the 23-tag sys-
tem of [7] (grouping verbs, nouns, adjectives and adverbs into
single classes) gives improved results also in the present set-up.
‘We therefore use this 23-tag set for all of the POS features in the
current work. For each token, the tag of that token is included
as a feature as well as the tag of its right-hand neighbour. Con-
trary to the results with decision trees in e.g. [6], early trials on
the development set suggested that a wider tag window does not
improve results, and so a 2-word window was used in all of the
current experiments (in effect, tags either side of a juncture are
used to predict break type at that juncture).

U: System Using Unsupervised Word Features System U is
our experimental system, and besides the basic features of Sys-
tem B, incorporates features obtained from the untagged text of
the WSJ text as described in Section 3.2. As with System T, the
obtained features of a token and its right-hand neighbour were
associated with that token as features; in the case of System U,
however, these features amounted to 100 continuous features
(50 for current and following words) rather than 2 POS tags.

5. Results
Results of evaluation of the systems on development and test
sets are given in Table 1, together with sizes of trees build (in
number of leaf nodes). Plots of the top parts of trees for systems
T and U are shown in Figure 1.

Baseline system B achieves an F measure on breaks in the
test-set of 69.3%. The ‘guessed POS’ (GPOS) features that
were incorporated into system G increased this to 75.8%, al-
though performance of this system is less stable across test and
development sets than that of any other system; on the develop-
ment set, the increase in performance between B and G is much
less (F scores of 69.2% and 70.9% respectively).

Topline System T gains an F measure on breaks in the test-
set of 79.8%, thus representing a reasonable level of perfor-
mance (cf. F measures of 74.4%, 78.3%, and 81.6% in [9, 7, 10]
respectively on MARSEC data®). Examination of the binary
partitions of the tag-set that are chosen for this tree suggests
one reason why GPOS features provide a smaller improvement
in performance than POS features: in the case of both splits in
the upper portion of the tree for system T shown in Figure 1, the
partition separates different classes of content words, and dis-
tinction between content word classes is obviously not enabled
by the GPOS features.

The system using unsupervised word features, System U,
gains an F measure on breaks in the test-set of 77.7%, thus clos-

Zpossible differences of data division and preparation mean this
comparison needs to be made with caution.



Table 1: Precision (P), Recall (R) and F measure (F) for Breaks (B) and
non-breaks (NB) on Development and Test Sets; and Tree Size (# Leaf Nodes)

D Development Set Test Set Size
B:P B:R B:F NB:P NB:R NB:F | B:P B:R B:F NB:P NB:R NB:F

B 94.0 547 69.2 884 99.0 93.4 952 545 693 874 99.1 92.9 25

G 85.0 60.8 709 89.6 96.9 93.1 873 669 758 903 97.0 93.5 75

T 81.5 749 78.1 93.0 95.1 94.0 853 749 79.8 924 96.0 94.1 39

U 83.5 71.1 76.8 92.1 96.0 94.0 83.0 73.0 777 918 95.3 93.5 177

# words until strong punc. < 0.5

(Next word's POS = <END>, CD, J, N, POS) [ ) ]

No Yes

[...]

[. . .] (Cun'cm word's VSM dim. 6 >= l).]‘)SMﬁé]

Yes No

[chl word's VSM dim. 2 < -0‘()3564682) [- . -]

Yes No

(chl word's VSM dim. 1 < ().55556(»I] [_ . _]

Yes No

[...]

L] Lo

Figure 1: Top portions of trees built for System T (Basic and
Brill tagger features) and U (Basic and Unsupervised VSM fea-
tures); nodes querying basic features are coloured yellow, those
querying supervised POS features are coloured pink, and those
querying unsupervised VSM features are coloured green.

ing most of the gap in performance between baseline system B
and topline system T, and giving superior performance to sys-
tem G. Note the generally similar topology of the top portions
of the trees induced for systems T and U shown in Figure 1:
T’s question about the POS of the current word is mirrored in
tree U by a question about dimension 6 of the current word’s
VSM features. Similarly, the following question about the POS
of the following word in tree T is mirrored by 2 questions about
dimensions 1 and 2 of the next word’s VSM features in tree U.
The final 2 questions in the tree fragments shown are identical.

6. Conclusions
Most of the performance improvement between our base-
line and topline systems B and T, gained by incorporating
knowledge-rich resources into the system via a state-of-the-art
POS tagger, can alternatively be achieved by adding features ex-
tracted from plain text in an unsupervised manner, exemplified
by our system U. Use of the unsupervised features also enables
system U to outperform G, where full part of speech tagging
is approximated by the use of manually constructed word lists.
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Encouragingly, not only do the features extracted in an unsuper-
vised manner of system U give a quantitatively similar increase
in performance over system B compared with the knowledge-
based features of system T, but they appear to be used in a qual-
itatively comparable way (the similarity of the trees’ structures
is mentioned in Section 5). It seems, however, that the fea-
tures differ enough that there is some complementarity between
them: experiments which cannot be outlined here in greater
depth due to space restrictions show that combining a tagger’s
features with the unsupervised ones leads to improvements over
using either set of features in isolation, something not achieved
by directly combining the features from 2 conventional taggers,
where performance degrades. These results encourage us to
think that TTS front ends could be constructed with much less
supervision than is commonly the case at present, with little or
no degradation of state-of-the-art performance.
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