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Learning natural locomotion behaviors for
humanoid robots using human bias
Chuanyu Yang1, Kai Yuan2, Shuai Heng3, Taku Komura4, and Zhibin Li5

Abstract—This paper presents a new learning framework that
leverages the knowledge from imitation learning, deep rein-
forcement learning, and control theories to achieve human-style
locomotion that is natural, dynamic, and robust for humanoids.
We proposed novel approaches to introduce human bias, i.e. mo-
tion capture data and a special Multi-Expert network structure.
We used the Multi-Expert network structure to smoothly blend
behavioral features, and used the augmented reward design for
the task and imitation rewards. Our reward design is compos-
able, tunable, and explainable by using fundamental concepts
from conventional humanoid control. We rigorously validated
and benchmarked the learning framework which consistently
produced robust locomotion behaviors in various test scenarios.
Further, we demonstrated the capability of learning robust and
versatile policies in the presence of disturbances, such as terrain
irregularities and external pushes.

Index Terms—Deep Learning in Robotics and Automation, Hu-
manoid and Bipedal Locomotion, Learning from Demonstration

I. INTRODUCTION

HOW can one advance the autonomous capabilities of
legged robots by leveraging and incorporating 50 years

of research on legged locomotion [1] [2] into a new paradigm?
This paper proposes a Deep Reinforcement Learning (DRL)
Framework that is able to incorporate both prior research
knowledge in legged locomotion and human reference motions
for training the robotic gait. We investigate to what extent
human inductive bias can and should be incorporated into a
learning framework to aid the exploration while not limiting
the discovered motion, and generating realistic motions. Hu-
man bias is mainly induced by incorporating imitation data,
and designing a DRL framework that emphasizes on generat-
ing realistic, implementable, and energy-efficient motions.

Design choices reflecting human inductive bias for versatile
motion on the real robot can be roughly categorised by
the choices influencing (a) the training results, and (b) the
behavior during run-time. During training, one can influence
the behavior and success of the learning in the reward design,
providing reference motions, designing appropriate training
procedures, and selecting the appropriate network structure.
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Fig. 1: Natural human-like symmetric walking pattern gen-
erated by the learning framework. The blue and green bar
represents left, right foot contact phases respectively.

For run-time, the designer needs to guarantee that the trained
agent produces realistic and feasible motions that can be
implemented on the real system while also keeping the reality
gap between simulation and the real robot as small as possible.
Here, we aim to provide novel technical approaches that lead
to the success of both training and deployment of learned
policies on simulated robots.

The key question we want to investigate is: how can we
induce more human bias for more realistic and better motion?
We have studied three novel approaches in the framework
design where bias can be introduced: 1.) initialization and
termination of the state, 2.) selection of a task appropriate net-
work structure, 3.) augmented reward design: task completion
and imitation of reference motions.

The contribution of this paper are summarized as follows:
• Novel approaches to introduce human bias in the framework

generating human-like, realistic motions through imitation
learning;

• A multi-expert network structure with smooth blending
properties for humanoid bipedal locomotion;

• Integration and design of control system and the reinforce-
ment learning framework for better replication of the results.
In the following, related research involving leveraging hu-

man knowledge in machine learning are briefly reviewed in
Section II. Background information of the robot platform,
simulation environment and control framework is presented
in Section III. Next, the details involved in the framework
design is expanded on in Section IV. The training results are
demonstrated and analyzed in Section V. Finally, the work is
concluded in Section VI.
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II. RELATED WORK

Commonly, reinforcement learning attempts to automate
the learning process to avoid over-using human engineering
and thus preventing human bias by allowing the agent to
infer the reward by itself [3]. While over-engineering and
shaping the reward leave possibility of reward exploitation
[4], carefully introducing human knowledge in DRL, such as
specially designed network structures, can yield better results
compared to baseline vanilla fully-connected neural networks
[5]. Incorporating human prior knowledge into learning based
methods is also known to increase the data efficiency [6]. To
generate realistic motions, we review two main methods, i.e.
imitating reference motions and network structure choice, in
the following sections.

A. Leveraging demonstrations

By incorporating human inductive bias such as reference
motions from human expert demonstrations, the quality of the
resulting motions can be improved. Learning from demonstra-
tion is a technique that extracts information from the reference
motion generated by expert demonstrations to guide an agent.
Notable examples include Behavior cloning (BC) [7], Inverse
Reinforcement Learning (IRL) [8], and Generative Adversarial
Imitation Learning (GAIL) [9]. BC minimizes the difference
between the student and expert behavior in a supervised
learning fashion. IRL predicts a reward function such that RL
can reproduce the demonstrated motion. GAIL learns a dis-
criminator to measure the similarity between demonstrations
and behaviors generated by the policy.

Directly leveraging demonstrations in the reinforcement
learning paradigm can be achieved through the use of a
tracking reward [10]. This method involves designing a reward
dedicated to measuring the similarity between the robot state
and the demonstration dataset. The tracking reward will then
be combined with the task reward.

B. Leveraging human knowledge in network design

Introducing human preferences by designing special net-
work structures has shown to improve the overall performance
and learning speed of the agent in multiple benchmarking
simulation environments [5].

Residual policy learning methods involves hand-designing a
base policy, and learning a residual policy that augments upon
the base policy to adapt to external disturbance [11]. Many
specially designed network structures fall into this category.
For locomotion, a base periodic trajectory is hand designed
to generate periodic gaits, and a residual neural network is
added upon to regulate the output of the base policy [12].
Additionally, this type of residual networks are not only used
to construct policies, but also to augment simulators for more
realistic dynamics [13].

Mixture of Experts (MoE) is a supervised learning architec-
ture composed of of many separate experts, each of which is
specialized for a subdomain of the task. A gating mechanism is
responsible for selecting the required expert for a given input.
Special neural network architectures inspired by MoE, such as

Phase-Functioned Neural Networks (PFNN) [14] and Mode-
Adaptive Neural Networks (MANN) [15], have been proposed
to generate smooth locomotion behaviors for animation of
humanoid and quadrupedal characters

Additionally, a bio-inspired approach uses the Central pat-
tern generator (CPG), a neural oscillator, to model the func-
tionality neural circuits within the spinal cord of verterbretes
for rythmic movements. CPG is commonly used to construct
the bio-inspired control policy for the locomotion of legged
robots due to their ability to produce coordinated rhythmic and
periodic gaits [16].

III. LEARNING SETUP FOR LOCOMOTION

In this section, we describe the specifications of the robot
platform and the simulation environment, and detail the control
structure and the human demonstration data.

A. Control Structure
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Fig. 2: The control diagram: the neural network is built using
Tensorflow [17]; the simulation is built using PyBullet [18].

The control framework contains two layers. The high-level
control loop consists of a DRL agent that operates at 25Hz,
while the low-level control loop consists of a PD controller
that operates at 500Hz. The neural network generates desired
joint angles for the low-level PD controllers that produce joint
torques (c.f. Fig. 2).

B. Robot platform

The algorithm is simulated in an environment with the
Valkyrie robot platform. Valkyrie has a total of 26 DOF, for
which only the 15 lower body joints are actuated in this paper:
3 waist joints (roll, pitch, yaw), and two 6 DoF leg joints (hip
roll, hip pitch, hip yaw, knee pitch, ankle pitch, ankle roll).

1) Action space: The outputs of the policy are the 15 target
joint angles for the lower body joints of Valkyrie robot. The
target joint angles are sent to the PD controller to be translated
into torque for the joint motor. Low level joint position control
was chosen over torque control as this has been shown to
achieve better performance [19].

2) State space: The policy only receives egocentric propri-
oceptive features as state observations. The state is adjusted to
align with the gravity vector in relative coordinates, and is in-
variant to the yaw orientation of the pelvis in the world frame,
and thus not affected by any steering in yaw orientation. The
state space is chosen as in [20] and consists of joint angles and
velocities, end-effector-to-pelvis vector, pelvis linear velocity
and angular velocity, pelvis orientation relative to the gravity
vector, Center of Mass (CoM) velocity, CoM-to-pelvis vector,
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Fig. 3: The 1D Sawtooth phase is projected onto a 2D unit-
cycle for a smooth transition between each cycles.

and ground contact force. The observation is filtered using a
low-pass Butterworth filter.

An additional time input is added to the state to provide a
time reference. Providing only reference motion for imitation
learning without time will introduce temporal ambiguity, since
the agent will not be able to infer the temporal relations of the
reference motions. Time information is provided as normalized
phase input that increments from 0 to 1 and resets after a
certain time period [10]. This phase function, however, has
an abrupt discrete jump from 1 to 0 that may cause non-
smoothness in the learning behavior in the neural network. To
mitigate this problem, we generate smoothness by projecting
the 1D phase onto a 2D unit-cycle (Fig. 3).

C. Human motion Collection

The reference features from motion capture data originate
from a human of different morphology than the robot. The
human motion data is preprocessed before being used as
reference for imitation learning. Since the human foot is
narrower than the robot’s, the reference hip yaw and hip roll
angles are set to 0 to avoid the robot tripping on its own feet.
Due to its limited influence on the gait, the torso roll and torso
yaw are also set to 0.

D. Reinforcement Learning

The goal of reinforcement learning is to find an optimal
policy that maximizes the discounted return. The discounted
return is used as an evaluation of performance and is deter-
mined by summing the exponentially discounted reward,

Rt =

T−t∑
l=0

γlrt+l, (1)

where T is the total number of samples in an episode and γ
is the discount factor.

1) Choosing the Discount Factor: Alternatively to tuning
the discount factor γ, the half-life of discounted future rewards
can be used as a reference [21], [20]. For locomotion, a time
horizon of one foot step with a duration around 0.5s is enough
to plan a stepping strategy. At a frequency of 25Hz this equates
to 13 time steps. We choose the discount value in a way that
the half-life of the future reward occurs at 0.5s, meaning that
the accumulated discount factor becomes 0.5 at 13 time step
γ13 = 0.5, hence γ ≈ 0.95.

2) Policy Optimization: In this paper, we chose to use
Proximal policy optimization (PPO) [22]. PPO is an on-policy
DRL algorithm that tackles the problem of convergence by
constraining the update step size through the use of clipped
surrogate objective.

LCLIP = Et [min(rt(πθ)At, clip(rt(πθ), 1− ε, 1 + ε)At)]

rt(πθ) =
πθ(at|st)
πθold(at|st)

, LPPO = −LCLIP.

(2)
LCLIP is the objective function that PPO maximizes. The term
clip(rt(πθ), 1− ε, 1 + ε) clips the probability ratio, discourag-
ing large policy changes. Furthermore, the clipped objective
clip(rt(πθ), 1 − ε, 1 + ε)At) is compared to the unclipped
objective rt(πθ)At, and the lower bound is chosen. The
advantage At will be computed using generalized advantage
estimator (GAE) [23].

3) Bounding the Action Space: Bounding the action space
is important as the real robot systems have actuation limits.
Using hyperbolic squashing functions tanh for bounding the
action space have been shown to be disadvantageous due to
saturation close to the boundary [24].

Instead of providing a hard constraint on the boundary of
the network, we propose to implement a soft constraint by
designing a bounding loss. Penalty is applied when the output
of the neural network µ exceeds the lower ∆low and upper
∆up boundary, allowing the network to operate with outputs
near the limit without saturation.

Lbound =


0, ∆low ≤ µ ≤ ∆up

0.5(µ−∆up)2, ∆up < µ

0.5(∆low − µ)2, µ < ∆low

. (3)

The loss function L used for back-propagation is the sum
of LPPO and Lbound:

L = LPPO + Lbound. (4)

IV. FRAMEWORK DESIGN

The major contribution of this paper will be discussed
thoroughly here: the approaches of introducing human bias,
e.g. reference motions and specialized network design, into
the learning framework through imitation reward design.

A. Reward design

Reward design is an important aspect in reinforcement
learning as it governs the behavior of the agent. Our reward
consists of a task term and imitation term similar to that pre-
sented in [10]. The task term provides the guidance necessary
for the agent to achieve the locomotion objective, while the
imitation term biases the behaviour towards a human-preferred
walking pattern.

Due to their bounded nature within the range of [0, 1],
Radial Basis Function kernels are preferred for shaping the
reward [25], [20], [21] and will be used in the following:

K(x̂, x, α) = e−α(x̂−x)
2

, (5)

where x is the current state, and x̂ is the desired value for that
state. The hyperparameter α controls the width of the kernel.
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TABLE I: Detailed description of imitation reward terms.
The imitation reward terms are used to measure the distance
between the generated and the reference motions.

Imitation reward terms
Joint position K(θ̂i, θi, αi) (i represents joint index)

Ground contact

{
1, matches desired foot contact
0, does not match desired foot contact.

The correct choice of α largely impacts learning as it guides
the gradient of the reward and thus gives crucial signals for
correct credit assignment of the DRL algorithm.

The reward r = w1rimitation +w2rtask consists of an imitation
term rimitation and a task term rtask weighted by the weights
w1, w2. The imitation term encourages the robot to follow
the human demonstration, while the task term encourages the
robot to satisfy the task specific objective:

1) Imitation reward: The imitation reward consists of a
joint position tracking rjoint pos and foot ground contact track-
ing rcontact (c.f., Table I):

rimitation =rjoint pos + rcontact. (6)

The joint position reward rjoint pos is calculated at phase φ by
measuring the difference between the measured joint angle qφ
and the target joint angle reference q̂φ. Furthermore, the foot
contact has to match the contact configuration in the motion
reference, represented by the support phase in the human
motion data.

2) Task reward: The task reward is the sum of multiple
reward terms. Each individual reward term reflects different
physical aspects of the system:

rtask =rpose + rCOM pos + rCOM vel + ryaw vel

+ rcontact + rfail + rtorque.
(7)

The task reward for the locomotion objective is constructed
using the designed principle presented in [20]. The paper
presents a reward design principle for bipedal balancing tasks.
By setting the target COM velocity in the x axis to positive
0.5m/s, the reward for balancing can be repurposed for
locomotion objectives. For further details of the reward design,
please refer to [20].

B. Network design

Human locomotion is inherently periodic, and is therefore
reasonable to incorporate structures and elements that are
periodic in nature into the network design. In this work, we
investigate the periodic characteristics of PFNN (Fig. 4a) and
MANN (Fig. 4b) and their effects on locomotion tasks.

Considering the unique gating mechanism in MANN and
PFNN, the state input of PFNN and MANN differs from
FCNN. For PFNN, the phase input is isolated from the other
state and is fed into a phase function. For MANN, the input
Sg for the gating network consists of the phase, joint positions
and joint velocities. The expert networks for both PFNN and
MANN have access to all state features except from the phase.
For FCNN, all available states including the re-parameterized
phase are sent into the network.

Unlike most networks where network parameters θ stay
fixed during runtime, the parameters of a PFNN are function

  

α0 α1

α2α3

Θ
Expert 1 Expert 2

Expert 3Expert 4

(a)                 Phase Functioned Neural Network

AS

ϕ

Expert 1 Expert 2

Expert 3Expert 4

(b)                 Mode Adaptive Neural Network

AS

α0 α1

α2α3

S g

Gating network

Fig. 4: The detailed structure of PFNN and MANN. Both have
a gating mechanism that generates the blending weights αi,
which are used to blend the expert networks to construct the
prediction network.

values that change depending on the phase variable φ. Within
PFNN exists multiple individual sub-networks which we refer
to as expert networks, each of which specializes in a particular
task. The expert networks are not directly accessed, instead
they are blended to reconstruct a separate network which we
will refer as prediction network.

The parameters of the prediction network are computed
during runtime by performing a weighted sum operation to
blend the parameters of the expert networks:

θprediction =

i∑
n

αiθ
i
expert, (8)

where αi are the blending weights generated by a phase func-
tion Θ(φ). For MANN, the phase function Θ(φ) is replaced
with a separate gating network G(Sg) to generate the blending
weights αi. For a detailed explanation of PFNN and MANN,
please refer to [14], [15] respectively.

C. Sample collection

In locomotion tasks, not all states are reversible. Due to
the existence of gravity, the robot is naturally inclined to fall
towards the ground. The distribution of the samples will thus
be biased towards samples in which the robot is struggling on
the ground to get up. Those samples are not necessarily good
for the network to learn to achieve the desired locomotion
tasks. We thus augment the sample distribution in favor of
samples that are relevant to the tasks by changing both the
initialization and termination of the episode in certain states:

1) Initializing starting state: A disadvantage of fixed state
initialization lies in the required time for the agent to learn
to encounter high value states. Furthermore, the collected
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samples will suffer from a lack of diversity since it will be
dominated by states close to the fixed initialization. The fol-
lowing approaches have been proposed to leviate this problem:
• Initialize from demonstration: In cases when demonstrations

are available, it is common to initialize the agent with a state
sampled from demonstration trajectory [10]. In the absence
of demonstration states, hand-designed reference states can
also be added [21].

• Initialize from history samples: Alternative to initializing
from external demonstrations, selected, past samples as
initialization states is applied [26].

• Learning separate initialization policy: A separate reset
policy can be trained in parallel to the task policy. This
method is necessary for learning in real world where instant
reset is impossible [27].
2) Early termination: During early termination, the rollout

is terminated when the robot reaches a terminal state. The
terminal state can be either a successful goal state or an
irreversible fail state. Early termination diversifies the sample
distribution by increasing the reset frequency. For scenarios
with irreversible fails states, termination and resetting the
rollout prevents the samples from being dominated by fail
states during the early learning stage:
• Termination with physical criteria: A common way to de-

termine a irrecoverable fail state is to use a physical criteria
from the environment, i.e. pelvis height and undesirable
body contact for locomotion tasks [10].

• Termination with Critic value: A low critic value can be
used as a makeshift criteria to determine a fail state [27] as
fail states tend to have low reward, which would then be
reflected in the learned critic value.

• Early termination due to time constraint: Even in cases
where there are no irreversible fail state, it might be useful
to terminate the episode after a prolonged period for more
frequent reset to diversify the samples [28].
Reference state initialization can be combined with early

termination to augment the sample distribution in a way that
increases sample diversity. In our work, we initialized the robot
using joint references from human motion capture data. The
termination condition is triggered when the pelvis height is
beneath 0.5m and when the upper body contacts with the
ground. The episode will be also be terminated and reset after
a prolonged period exceeding the time constraint of 30s.

V. RESULTS

We first present the learning results compared to the
achieved cumulative, undiscounted reward, and then quanti-
tatively and qualitatively show the effect of imitation learning
and the choice of the network structure in a comprehensive
performance analysis based on three criteria: stability, robust-
ness, and energy consumption.

A. Learning and Comparison Setup

All agents are trained on a commercial Intel i9 CPU
equipped with a Nvidia 2080Ti GPU. For comparison pur-
poses, each policy is trained for 400 iterations with 4096 steps

  

(a)

(b)

Fig. 5: Learning curve for 4 different network setups averaged
over 5 trials.

for each iteration using either a FCNN, PFNN, or MANN
network structure and converges after 48 hours. Each network
consists of two hidden layers, the multi-expert networks use 4
experts with 128 × 128 neurons. MANN has an extra gating
network with 32×32 neurons. To guarantee that the behaviors
and performances originate from the network structure and is
not constrained by the amount of neurons available, we trained
with larger amounts of neurons.

At each iteration the cumulative reward is obtained by
executing the deterministic policy on the current state. The
reward for including imitation is calculated by r = 0.5 ·
rimitation + 0.5 · rtask; and r = 0.0 · rimitation + 1.0 · rtask if no
imitation is used (c.f. Section IV-A). At a maximum reward
of 1 in a single timestep, the highest achievable cumulative
reward for a complete episode is 750 at 750 time steps (30s).

Fig. 5 depicts the learning curves for different network
structures averaged over 5 trials. With imitation reward pro-
vided, MANN obtains the highest reward followed by PFNN
in close margins. Without imitation, the FCNN with 128
neurons (FCNN 128× 128) has the highest reward.

B. Analysis of the Influence of Imitation Learning

The agent is able to learn a successful policy both with and
without imitation reward. The task reward itself is sufficient to
generate a locomotion behavior. However, the most significant
difference arises in the gait pattern. By including the imitation
reward, the agent is able to learn a symmetric gait that resem-
bles the human walking motion data from which it learns.
Without imitation learning the agent learns an asymmetric
leaping gait with one leg constantly in the front and the other
at the back (c.f. Fig. 7b).
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Fig. 6: Learning curve of the task reward component. The addition of the imitation reward allows the agent to achieve the task
objective much better, reflected by the higher task reward value.

  

(a) (b)

Fig. 7: Locomotion behavior of MANN (a) with and (b) without imitation. The blending weights fluctuate over a gait cycle,
indicating that the primitive networks are activated differently during different gait phases, demonstrating specialization within
the multi-expert structure. (a) a human-like gait pattern with symmetrically distributed left, right foot contact periods. (b) an
un-human like gait pattern with asymmetric foot contact period.

TABLE II: Maximum reward during each episode. MANN
with imitation achieves the highest task reward.

Neural
Network

w/ Imitation w/o Imitation
Imitation term Task term Task term

FCNN 128× 128 465 596 567
PFNN 549 612 439
MANN 528 652 541
FCNN 512× 512 416 599 463

Introducing the imitation term not only creates a better,
human-like gait pattern, but also improves the overall lo-
comotion task performance of the policy. From Fig. 6 and
Table II we can see that including the imitation term allows
the agent to learn a policy that achieves a higher reward
in the task term, meaning that adding human demonstration
also allows the agent to achieve the locomotion task better.
Amongst all combinations, MANN with imitation achieves the
best performance with respect to the collected reward.

However, introducing an imitation term reduces the per-
formance of the agent in terms of generalization (tasks and
environments that the policy was not trained in), such as
disturbances and walking over uneven terrain (c.f. Table III).
This decline in performance can be explained by the fact that
the agent encounters less distinct states as the imitation reward
encourages the agent to be in states as close as possible to the
reference motion.

C. Comparison Study between Neural Network Structures

The PFNN and MANN network consist of 4 individual ex-
perts with two hidden layers containing 128 neurons, therefore
having 4 times the neurons. For fair comparison, we included
another FCNN with 512 neurons in the hidden layer to even
out the advantage of PFNN and MANN.

FCNN (512× 512) performs poorly on locomotion in both
with and without imitation learning scenarios even though
having the same amount of neurons with PFNN and MANN,
and 4 times the neurons of FCNN (128 × 128). Showing
that the behavior is not limited by the expressiveness of
the network and increasing network size does not guarantee
improvement. This further indicates that the high performance
from MANN and PFNN is a result of the network structure
rather than the increased number of neurons.

From Fig. 5, a difference for all three neural networks in
convergence speed and the converged cumulative reward can
be seen. With imitation learning, MANN and PFNN converges
to a higher reward with faster speed compared to that of
FCNN. Furthermore, it can be seen that PFNN performs poorly
on the locomotion tasks without imitation reference provided.
However, PFNN is able to generate human-like symmetric
periodic gaits without human reference due to its inherent
periodic structure, unlike FCNN and MANN which relies on
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the human demonstration.
We recorded the output of the gating network of MANN

to analyze the specialization of each experts. The blending
weights αi for each expert show a distinctive pattern that
corresponds to the phase cycle of the walking gait (Fig. 7),
which indicates that the MANN has an understanding that
specialization is necessary for different instance in the phase.

Many works have used Genetic Algorithm (GA) to obtain
the parameters for CPG [29], while some others have used
policy search reinforcement learning [30]. However, training
CPG with policy search requires special modification of the
RL framework [30]. Also, due to its internal states, the CPG
neuron is regarded as one type of recurrent neural network
(RNN), thus training CPG with policy search requires Back-
Propagation Through Time (BPTT). Therefore, CPG has not
been included in our comparison study as it requires a different
technique - BPTT - in order to be compatible with standard RL
procedure. In contrast, both PFNN and MANN can be trained
on the same basis using the same back-propagation technique
of regular FCNN.

D. Performance Comparison

In the following, we analyze the performance for using
imitation, and different network structures. The performance
is evaluated based on the robustness, stability, and energy
efficiency of the resulting gait.

1) Robustness: Different test scenarios are used to evaluate
the robustness of the learned locomotion policy:
• Push on pelvis: We applied various amount of forces on the

robot pelvis and observe how much disturbance the robot
can withstand. The robot is able to withstand a impulse up to
550Ns (5500N over 0.1s), c.f., Fig. 8(a). A comprehensive
comparison across all combinations is shown in Table III.
The policies that are trained without the imitation term are
able to resist larger disturbances.

• Blindly traversing uneven terrain: Even though the agent
is trained without external visual input and in a flat envi-
ronment, some of the learned policy are able to generate a
robust locomotion behavior traversing over uneven terrain
without falling (Fig. 8(b)).

• Persistent small disturbance: Lastly, we investigate how the
policy behaves under frequent small disturbances. Random
cubes of various weights are thrown towards the robot with
an initial velocity of 20m/s (Fig. 8(c)). All policies are able
to withstand disturbances induced by the cubes. The robot is
able to withstand heavier cubes with policies trained without
imitation.
2) Stability: To investigate the stability, the Capture Point

(CP) is analyzed with respect to their shortest distance to the
edge of the Support Polygon (SP), which are listed in Table
IV. The larger the distance, the more stable it is as the CP
have a larger margin before shifting out of the SP

3) Energy Consumption: Energy consumption is an impor-
tant aspect to be considered in reality, and hence, we are
interested in whether including imitation reference or changing
network structure influences the energy-efficiency of learned
gaits. We analyze the cost of transport (energy consumed per

  

(a)

(b)

(c)

Fig. 8: Robustness: (a) 550Ns impulse on pelvis; (b) walking
over stairs with variable heights: 2.5cm, 5cm, 10cm, 5cm,
2.5cm; (c) constantly throwing cubes at 20m/s initial velocity.

distance traveled) for each policy, and found no significant
correlation between the cost of transport and the training
setups.

4) Physics simulation setting: The pybullet physics engine
uses sequential impact solver to calculate the contact dynamics
[18]. We set joint angle, velocity, and torque limits in the
physics simulation the same as the real Valkyrie robot, so as
to enforce the policy to learn motions that does not violate
the physical constraints. Table V compares the peak torques
and velocities from different policies. The ankle joint velocity
occasionally exceeds the limit of 11.00 rad/s due to the large
ground impacts.

VI. CONCLUSION

In this work, we present key novel design approaches
of a Deep Reinforcement Learning (DRL) Framework, and
demonstrate that DRL is able to learn a robust, human-like
walking policies that are reactive and robust against external
disturbances. In particular, the diversity of behaviors and
the variety of gait patterns exhibited during different test
scenarios are all learned and emerged naturally, instead of
being explicitly programmed as in the traditional approaches.

The comprehensive analysis on the influence of different
network structures and imitation of human demonstrations
shows that every structure has its advantage: if designed prop-
erly using the framework in this paper, FCNN provides a good
baseline that is able to generalize well and withstand large
disturbances due to the intentionally designed training. If no
reference for imitation learning is available, PFNN is able to
generate periodic, symmetric gaits due to its inherent periodic
structure. If a reference is available, MANN using imitation
learning is able to accomplish the best task performance.
For all network structures, introducing human demonstration
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TABLE III: Performance analysis for imitation learning and different network structures.

Disturbance type with Imitation without Imitation
FCNN MANN PFNN FCNN 512 FCNN MANN PFNN FCNN 512

Impulse in [Ns] 280 280 300 290 470 420 400 550
Can blindly walk over stairs 3 3 7 7 3 3 7 3
Thrown cube weight in [kg] 5 4 6 7 10 7 7 11

TABLE IV: Performance analysis for imitation learning and different network structures.

with Imitation without Imitation
FCNN MANN PFNN FCNN 512 FCNN MANN PFNN FCNN 512

Performance metric mean std mean std mean std mean std mean std mean std mean std mean std
Distance CP to SP 0.141 0.083 0.154 0.099 0.193 0.131 0.147 0.089 0.182 0.104 0.233 0.106 0.248 0.156 0.250 0.116
Cost of Transport [W/m] 301 142 258 153 278 130 281 146 259 168 309 155 261 128 405 268

TABLE V: Peak torques and velocities of leg joints. Torso joints are omitted due to their limited influence on walking.

Peak joint torque [N ] Peak joint velocity [rad/s]
Hip
roll

Hip
pitch

Hip
yaw

Knee
pitch

Ankle
Pitch

Ankle
Roll

Hip
roll

Hip
pitch

Hip
yaw

Knee
pitch

Ankle
Pitch

Ankle
Roll

Joint limit 350 350 190 350 205 205 6.11 6.11 5.89 11.00 11.00 11.00

FCNN 512 343 350 190 350 205 205 2.99 6.11 3.09 9.58 12.20 11.96
FCNN 234 350 158 350 205 205 2.40 4.69 2.75 6.61 7.01 11.00
PFNN 243 350 141 350 205 205 2.64 6.11 3.92 6.27 11.93 11.14
MANN 278 350 131 350 205 205 1.97 5.47 4.83 8.41 9.08 11.37

proves to be beneficial for locomotion tasks, which is reflected
by the increased value of the task objective.

Though we have applied realistic joint torque and velocity
constraints in the simulation, the learned control policy will
have difficulty to be directly transferred on a real system due
to the discrepancies between simulation and the real world,
such as variations in mass distribution, friction, and contact
dynamics etc. For future work, we plan to conduct research
on the topic of simulation to reality policy transfer by bridging
the gap between simulated dynamics and real world physics,
in order to implement the learned policies on a real robot.
Furthermore, we will also continue research on MANN for
multi-task scenarios to fully exploit the potential of the multi-
expert network structures.
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