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SUMMARY

The appropriate execution of DNA double-strand
break (DSB) repair is critical for genome stability
and tumor avoidance. 53BP1 and BRCA1 directly
influence DSB repair pathway choice by regulating
50 end resection, but how this is achieved remains
uncertain. Here we report that Rif1�/� mice are
severely compromised for 53BP1-dependent class
switch recombination (CSR) and fusion of dysfunc-
tional telomeres. The inappropriate accumulation of
RIF1 at DSBs in S phase is antagonized by BRCA1,
and deletion of Rif1 suppresses toxic nonhomolo-
gous end joining (NHEJ) induced by PARP inhibition
in Brca1-deficient cells. Mechanistically, RIF1 is re-
cruited to DSBs via the N-terminal phospho-SQ/TQ
domain of 53BP1, and DSBs generated by ionizing
radiation or during CSR are hyperresected in the
absence of RIF1. Thus, RIF1 and 53BP1 cooperate
to block DSB resection to promote NHEJ in G1,
which is antagonized by BRCA1 in S phase to
ensure a switch of DSB repair mode to homologous
recombination.

INTRODUCTION

DNA double-strand breaks (DSBs) are highly toxic lesions that

form when both strands of the DNA duplex are disrupted simul-

taneously. DSBs arise following exposures to ionizing radiation

(IR) and spontaneously as a result of problems encountered

during DNA replication that trigger replication fork collapse

(Pfeiffer et al., 2000). However, DSBs can also be programmed

and are essential during meiosis for promoting exchange

between homologous chromosomes to generate genetic diver-

sity and to ensure correct chromosome segregation at meiosis I

(Youds and Boulton, 2011). The repair of programmed DSBs is

also essential for the production of a full immune repertoire
858 Molecular Cell 49, 858–871, March 7, 2013 ª2013 Elsevier Inc.
during V(D)J recombination and class switch recombination

(CSR) (Stavnezer et al., 2008). DSBs also exist at the end of all

linear chromosomes but are normally protected by the telomere

and its binding proteins from erroneous repair (de Lange, 2005).

Failure to correctly repair DSBs or defects in telomere mainte-

nance have been linked to numerous genetic disorders associ-

ated with genome instability, cancer predisposition, accelerated

aging, and immune deficiency (Jackson and Bartek, 2009;

McKinnon, 2009).

To counter the potential deleterious impact of DSBs, cells

have evolved distinct DSB repair pathways, of which nonhomol-

ogous end joining (NHEJ) and homologous recombination (HR)

are the best understood in eukaryotic cells. NHEJ is a DSB

rejoining mechanism that is active throughout the cell cycle but

is preferred in G1. NHEJ ensures that broken DSB ends are

held in close proximity to permit their direct ligation. As NHEJ

operates independently of DNA sequence, it is intrinsically error

prone and can drive chromosome translocations by joining

DSBs from different parts of the genome (Elliott and Jasin,

2002; Lieber, 2010). In contrast, HR is a largely error-free mech-

anism of DSB repair that is primarily active in S and G2 cell cycle

phases, which requires an intact homologous duplex sequence

as a repair template (West, 2003). The initial processing of the

DSB ends is a key determinant of DSB repair pathway choice

and is tightly regulated during the cell cycle (Symington and

Gautier, 2011). In the G1 cell-cycle phase, DSBs are protected

to limit DNA end resection, which favors repair by NHEJ.

However, upon entry into S phase, DSB end protection is

relieved and 50 end resection is activated to produce DSBs

with a 30 single-stranded overhang, which is the preferred sub-

strate for repair by HR (Symington and Gautier, 2011; West,

2003).

53BP1 is a key DNA repair factor that plays a pivotal role in

defining DSB repair pathway choice in G1 and S/G2 cell-cycle

phases (Chapman et al., 2012b). Emerging evidence suggests

that 53BP1’s association with DSBs in G1 promotes NHEJ by

suppressing the inappropriate 50 resection of DSBs (Bothmer

et al., 2010, 2011). As cells enter S phase, the barrier to DSB

resection mediated by 53BP1 is alleviated by the action of

BRCA1, which drives the removal of 53BP1 from DSBs in

mailto:simon.boulton@cancer.org.uk
http://dx.doi.org/10.1016/j.molcel.2013.01.002
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S/G2, thus allowing resection and error-free repair by homolo-

gous recombination (Bunting et al., 2010; Chapman et al.,

2012a). A clear illustration of the antagonistic relationship

between 53BP1 and BRCA1 is seen in mouse models, where

the embryonic lethality, tumor predisposition, and HR defect of

Brca1-deficient mice can be rescued by deleting 53BP1 (Bouw-

man et al., 2010; Bunting et al., 2010; Cao et al., 2009). Based on

these observations, it is believed that the defects associated

with Brca1 deficiency reflect an inability to counteract 53BP1-

dependent toxic NHEJ in S/G2.

In addition to playing a central role in promoting NHEJ in G1,

53BP1 function is also essential for the establishment of a func-

tional immune systemduring CSR and is responsible for the erro-

neous fusion of dysfunctional telomeres (Dimitrova et al., 2008;

Manis et al., 2004; Ward et al., 2004). During CSR, activation-

induced cytidine deaminase (AID) is essential for the production

of DSBs within switch regions located in the immunoglobulin

heavy chain (IgH) locus (Neuberger et al., 2003; Pavri and

Nussenzweig, 2011). The assembly of antibodies of different

class requires that AID-induced DSBs are subject to dele-

tional repair through classical and alternative NHEJ pathways

(Stavnezer et al., 2008; Yan et al., 2007). Loss of 53BP1 confers

the most severe CSR defect of the DNA repair factors implicated

in this process and results in a dramatic decrease in CSR-

dependent antibody classes to levels less than 10% of wild-

type (WT) (Manis et al., 2004; Ward et al., 2004).

The 53BP1 protein comprises homo-oligomerization and

tandemTudor domains that cooperatively mediate its accumula-

tion at DSB sites via interactions with the H4-K20me2 histone

epitope, an extended N terminus containing an abundance of

ATM-target SQ/TQ sites, a glycine-arginine rich (GAR) domain

permitting PRMT-dependent methylation, and C-terminal

BRCT domains that likely mediate phospho-protein interactions

(Chapman et al., 2012b). While the GAR and BRCT domains are

largely dispensable for 53BP1’s role in DNA repair, the Tudor,

oligomerization, and N-terminal SQ/TQ phospho-site domains

are essential for 53BP1-dependent inhibition of DSB hyperre-

section of DSBs induced during CSR and V(D)J recombination

(Bothmer et al., 2011; Difilippantonio et al., 2008). Importantly,

the same 53BP1 domains have been implicated in driving toxic

NHEJ in Brca1-deficient cells and for promoting fusion of

dysfunctional telomeres (Bothmer et al., 2011; Rai et al., 2010).

Of these domains, the function of the N-terminal SQ/TQ phos-

pho-site domain remains the least well understood.

Rif1 was first identified in budding yeast where it negatively

regulates telomere length homeostasis via interaction with the

C-terminal domain of Rap1 (Hardy et al., 1992; Marcand et al.,

1997; Wotton and Shore, 1997). Although there is no clear

evidence that the telomere role is conserved in higher eukary-

otes, Rif1 has been implicated in a wide variety of other cellular

processes, including the intra-S phase checkpoint, timing of

replication origin firing, and replication of heterochromatin

(Buonomo et al., 2009; Cornacchia et al., 2012; Silverman

et al., 2004; Yamazaki et al., 2012). Moreover, Rif1 gene disrup-

tion in mice is lethal, yielding developmental defects in early

embryogenesis (Buonomo et al., 2009). Based on analysis of

conditional knockout Rif1�/� cells, it was proposed that the

embryonic developmental defects likely reflect important roles
M

during S phase. Indeed, RIF1 is recruited to a subset of stalled

replication forks in a manner dependent on both ATR and

53BP1, and in its absence, cells accumulate DNA damage

during S phase (Buonomo et al., 2009).

Here, we report that Rif1-deficient mice are viable in a CD1

genetic background, yet are immune-compromised due to

CSR defects comparable in severity to that observed in 53BP1

null mice. RIF1 is also essential for 53BP1-mediated fusion of

dysfunctional telomeres and drives toxic NHEJ in Brca1-

deficient cells. We further demonstrate that RIF1 functions in

the same genetic pathway as 53BP1 and show that the ATM-

dependent phosphorylation of 53BP1 promotes 53BP1-RIF1

interactions, recruiting RIF1 to DSB sites. Finally, we find RIF1

suppresses 50 end resection at DSBs induced by IR and upon

CSR. Thus, our findings uncover a key DSB repair role for RIF1

in 53BP1-dependent NHEJ, which has important ramifications

for understanding DSB pathway choice and BRCA1’s tumor-

suppressive functions.

RESULTS

Generation of RIF1-Deficient Mice
RIF1 is the only damage response factor whose recruitment to

DSBs strictly depends on 53BP1 (Silverman et al., 2004).

However, the function of RIF1 downstream of its recruitment to

DSBs by 53BP1 remains unexplored. To investigate the function

of RIF1,wegeneratedRif1mutantmice fromaGenetrap ESC line

(XT278) that harbors an integration event in intron 7 of the Rif1

gene that removes more than 90% of the RIF1 protein-coding

sequence (Figure S1A). Consistent with previous findings (Buo-

nomo et al., 2009), the Rif1XT278 mutation resulted in embryonic

lethality in inbred 129/Ola and outbredMF1mouse strains (Table

S1); E7.5 Rif1XT278/XT278 homozygous embryos (now referred

to as Rif1�/�) exhibited significant developmental retardation

(Figure S1B) and produced no live Rif1�/� offspring (Table S1).

Rif1�/� E13.5 embryos with developmental features indistin-

guishable from WT embryos were observed when the Rif1XT278

allele was crossed into the outbred CD1 strain. Moreover,

MEFs derived from Rif1�/� embryos were viable in culture and

expressed no detectable RIF1 protein (Figures S1C and S1D).

Strikingly, CD1 Rif1�/� progeny were also viable, yet only sub-

Mendelian numbers of male offspring were observed, indicating

that RIF1 deficiency confers female-specific lethality in this

background (Table S1). The viability of male Rif1�/� progeny

presented an opportunity to study the impact of RIF1 deficiency

in mice.

Surprisingly, viable Rif1�/� males grow to adulthood, are

fertile, and do not exhibit any obvious behavioral or develop-

mental abnormalities. However, the health of some of theRif1�/�

animals deteriorated rapidly as a result of infections of the

commensal bacteria Staphylococcous xylosus. Such infections

have been reported to affect immune-compromised mice (Go-

zalo et al., 2010), raising the possibility that RIF1 deficiencymight

manifest in a suboptimal immune response. The propensity of

male Rif1�/� mice to succumb to infection, coupled to the fact

that 53BP1-deficient mice are immune-compromised due to

a severe defect in CSR (Manis et al., 2004; Ward et al., 2004),

prompted us to examine the immune status of Rif1�/� mice.
olecular Cell 49, 858–871, March 7, 2013 ª2013 Elsevier Inc. 859
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Normal Lymphocyte Development in Rif1–/– Mice
To explore the status of the immune system of Rif1�/� mice,

bone marrow B cell populations of Rif1�/� mice and WT litter-

mates were examined. Notably, no major differences in B cell

precursors (pro- and pre-B cells), immature, or mature B cells

were evident between WT and Rif1�/� mice (Figure S2A). Similar

analyses of splenocytes revealed no detectable abnormalities in

the proportion of B and T cells (Figure S2B), with no significant

differences in the percentage of follicular B cells (B220+

CD21�CD23+) or marginal zone B cells (B220+CD21+CD23low;

Figure S2C). Furthermore, no substantial differences were

observed in the percentage of immature splenic B cells on the

basis of IgM and IgD expression (Figure S2C). Similarly, analyses

of T cell populations both in thymus and spleen showed similar

proportions of CD4+ and CD8+ cells in WT and Rif1�/�mice (Fig-

ure S2D). Hence, lymphocyte development appears largely

normal in Rif1�/� mice.

RIF1 Is Essential for Class Switch Recombination
in Mice
Next we investigated the status of CSR in Rif1�/� mice by

comparing the levels of serum immunoglobulins (Igs) to those

of WT animals. As shown in Figure 1A, while no differences

were detected in the levels of IgM, the concentrations of IgA

and all IgG isotypes were reduced in Rif1�/� mice, suggesting

a possible contribution of RIF1 to CSR. To examine whether

such IgG/IgA reductions arise from intrinsic CSR defects, B cells

isolated fromRif1�/� andWTmicewere stimulatedwith lipopoly-

saccharide (LPS) or anti-mouse CD40 in the presence or

absence interleukin 4 (IL-4). CSR proficiency was then assessed

by analysis of both cell surface Ig expression and Ig secretion

following stimulation (Figures 1B–1D). As indicated, Rif1�/�

cultures exhibited �90% reductions in the proportion of IgG

positive B cells when compared toWT (Figures 1B and 1C). Simi-

larly,Rif1�/�B cells were also severely defective in their capacity

to secrete IgG, as judged by ELISA (Figure 1D). Importantly,

proliferation rates and apoptotic and cell-cycle indices were

found to be comparable between WT and Rif1�/� lymphocytes

upon stimulation (Figures 1E, S2E, and S3A). Consistent with

a recent report (Cornacchia et al., 2012), replication fork rates

and interorigin distances were also comparable between WT

and Rif1�/� cells (Figure S3B).

To further analyze the role of RIF1 in CSR in vivo, Rif1�/� mice

and WT littermates were immunized with the antigen NP-KLH.

NP-specific Igs were measured in the serum of these animals

over time (Figure 1F). Importantly, while WT and RIF1-deficient

mice showed similar levels of NP-specific IgM, Rif1�/� mice

exhibited a severe reduction in the NP-specific IgGs (Figure 1F).

To our knowledge the phenotype of Rif1�/� mice is comparable

in severity only to the CSR defect previously reported for

53BP1 deficiency (Manis et al., 2004; Ward et al., 2004). Thus,

our data reveal that, like 53BP1, RIF1 is essential for productive

CSR in mice.

Rif1 Promotes NHEJ of Dysfunctional Telomeres
The similarity of the CSR defect in RIF1- and 53BP1-deficient

mice raised the possibility that RIF1 may also function in other

53BP1-dependent processes. In a pathological context, 53BP1
860 Molecular Cell 49, 858–871, March 7, 2013 ª2013 Elsevier Inc.
promotes NHEJ between distally positioned telomeres following

deprotection by shelterin component disruption (Dimitrova et al.,

2008). To determine if RIF1 also facilitates 53BP1-dependent

NHEJ events at dysfunctional telomeres, we overexpressed

the dominant-negative TRF2DBDM allele of the shelterin compo-

nent TRF2, which results in telomere deprotection and chromo-

some end-to-end fusions by NHEJ (Smogorzewska et al., 2002;

van Steensel et al., 1998). Metaphases were prepared from WT,

Rif1�/�, and 53Bp1�/� MEFs induced to express TRF2DBDM or

TRF2 transgenes (Figure 2A) and scored for chromosome end-

to-end fusions. In WT cells, overexpression of TRF2DBDM, but

not TRF2, induced the fusion of 35% of all chromosome ends

analyzed (Figures 2B and 2C). Consistent with previous reports,

53BP1 deficiency resulted in a dramatic suppression of end-to-

end fusion events at telomeres induced by TRF2DBDM expression

(Figures 2B and 2C) (Dimitrova et al., 2008; Rai et al., 2010).

Remarkably, RIF1 deficiency also suppressed chromosome

joining events, limiting end-to-end fusion to less than 8%of chro-

mosome ends (compared to 35% seen in WT cells and 5% seen

in 53Bp1�/� cells; Figures 2B and 2C). These data further

suggest that RIF1 functions in 53BP1-dependent NHEJ events.

BRCA1 Antagonizes RIF1-Dependent NHEJ during
S Phase
BRCA1 is believed to antagonize 53BP1-dependent end joining

in S phase to promote repair by HR (Bouwman et al., 2010;

Bunting et al., 2010, 2012). In agreement with these findings,

human 53BP1 and BRCA1 are found to occupy associated yet

mutually exclusive chromatin subcompartments at DSB sites,

with 53BP1 exclusion from such sites occurring in a BRCA1-

dependent manner during S phase (Chapman et al., 2012a). To

assess if a similar relationship exists between RIF1 and BRCA1,

HeLa cells treated with control and Brca1 short-interfering RNA

(siRNA) were subjected to pulse-labeling with the nucleotide

analog EdU immediately before IR, to enable accurate cell-cycle

positioning of cells counterstained for RIF1. In addition, Cyclin A

counterstaining enabled the discrimination of G1 (EdU-negative)

from G2 cell-cycle phases (EdU-negative, Cyclin A-positive).

Using this approach we found that in control-depleted cells,

RIF1 IR-induced foci (IRIF) are significantly reduced in intensity

during S phase when compared to cells in G1 or G2 cell-cycle

phases (Figures 3A and 3B). In contrast, the downregulation of

RIF1 IRIF in S phase cells was compromised uponBRCA1 deple-

tion, as evident from the intensity of RIF1 IRIF in G1 and S phase

cells, which were not significantly different (Figures 3A and 3B).

Moreover, the intensity of S and G2 phase RIF1 IRIF were signif-

icantly increased in BRCA1-depleted cells when compared with

control cells (Figure 3B), and similar results were obtained with

a second Brca1 siRNA (Figure S4A). These data indicate RIF1

IRIF are specifically suppressed during S and G2 cell-cycle

phases in a BRCA1-dependent manner.

Next, we used lentiviruses to introduce control or two different

Brca1 shRNA expression constructs into MEFs to examine the

effect of RIF1 loss on the cellular phenotypes associated with

BRCA1 deficiency. Both Brca1 shRNAs effectively depleted

BRCA1 protein in MEFs of all genotypes (Figure 3B). As ex-

pected, the expression of either Brca1 shRNA strongly reduced

proliferation rates in WT cells relative to control knockdowns.
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Figure 1. Defective CSR in RIF1-Deficient Mice
(A) Quantification of immunoglobulins in the serum of Rif1+/+ and Rif1�/� mice.

(B–D) Flow cytometry staining (B) and quantifications of surface expression (C) and secreted (D) IgG1 and IgG2b in Rif1+/+ and Rif1�/� B cells stimulated with LPS

or anti-mouse CD40 in the presence or absence of IL-4.

(E) B cells were labeled with CTV and cultured for 3 days with anti-mouse CD40 and IL-4 (black line). Grey profile, unstimulated control. Numbers of cell divisions

are depicted on the top of the graphs.

(F) Rif1+/+ and Rif1�/� mice were immunized with NP-KLH, and NP-specific IgM (left) and IgG (middle) were measured in mice serum at different time points after

immunization. Anti-NP-specific antibodies are shown for Rif1+/+ and Rif1�/� mice at 21 days after immunization (right). Error bars are ± SEM. See also Figures

S1–S3 and Table S1.
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In contrast, RIF1 or 53BP1 deficiency significantly improved the

proliferation of cells expressing each Brca1 shRNA to similar

extents (Figure S4B).

BRCA1-deficient cells are hypersensitive to poly(ADP-ribose)

polymerase (PARP) inhibitors (PARPi), which trigger the forma-

tion of replication-associated DNA damage that requires HR for

its resolution (Bryant et al., 2005; Farmer et al., 2005; Helleday,
M

2011). 53BP1 loss has been shown to suppress both sponta-

neous and PARPi-induced radial chromosome formation

in BRCA1-deficient cells (Bunting et al., 2010). To determine if

RIF1 also influences the levels of spontaneous and PARPi-

induced genomic instability in BRCA1-depleted cells, we ana-

lyzed radial chromosomes in metaphase spreads. Radial chro-

mosomes were undetectable in WT untreated control-depleted
olecular Cell 49, 858–871, March 7, 2013 ª2013 Elsevier Inc. 861
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Figure 2. A Requirement for RIF1 in the

NHEJ of Dysfunctional Telomeres

(A) Western blot showing comparable expression

of indicated Trf2 transgenes between MEF lines of

the indicated genotype.

(B) Metaphases were analyzed for telomere end-

to-end fusions in cells of indicated genotype, 96 hr

following retroviral transduction of the indicated

TRF2 expression constructs. Right panels show

enlargement of corresponding left panel. Telo-

meric fluorescence in situ hybridization (FISH),

red; 4,6-diamidino-2-phenylindole (DAPI), gray.

(C) Quantification of chromosome fusions.

n = 3,000, 2,000, and 3,000 chromosomes scored

per genotype, over two independent experi-

ments. ***p < 0 .0001 (one-way ANOVA). Error bars

are ± SEM.
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cells (Figure 3D). In contrast,Brca1 shRNA induced the formation

of spontaneous radial chromosomes in WT cells, which were

greatly enhanced by treatment with the PARP inhibitor Olaparib

(Figure 3D). Strikingly, RIF1 deficiency exerted a statistically

significant suppression of this phenotype, averting the formation

of both spontaneous and Olaparib-induced radial chromosomes

in Brca1-depleted cells to levels similar to that observed in

53BP1-deficent cells (Figure 3D). Thus, like 53BP1, RIF1 contrib-

utes to the toxic NHEJ events that drive genome instability in

BRCA1-deficient cells.

Impaired DSB Repair in Rif1-Deficient Cells
To examine a potential role for RIF1 in IR-induced DSB repair,

WT and Rif1�/� MEFs were harvested at multiple time points

following IR treatment and imaged for 53BP1 and the DSB

marker gH2AX by indirect immunofluorescence. In both WT

and Rif1�/� cells, gH2AX was apparent as early as 3 min

following IR and appeared indistinguishable at earlier time points

and up to 8 hr following IR (Figure 4A and data not shown). By

24 hr following IR, the majority of gH2AX foci had been resolved

in WT cells; however, multiple gH2AX foci persisted in Rif1�/�

cells at this time point (Figures 4A and 4B). Persistent 53BP1

IRIF were also observed in Rif1�/� cells, with foci appearing sig-

nificantly reduced in intensity at all time points when compared

to WT cells imaged under identical conditions (Figure 4A). It is

notable that the defect in gH2AX resolution in Rif1�/� cells is

similar to that reported in 53BP1-deficient MEFs (Noon et al.,

2010; Ward et al., 2006).

To examine the DSB repair defect in more detail, spontaneous

and IR-induced gH2AX IRIF were scored in WT and Rif1�/� cells

incubated in the presence and absence of an ATM inhibitor

(ATMi) (Figure 4B). Strikingly, WT cells subjected to lower IR

doses (2.5 Gy) exhibited gH2AX IRIF levels onlymarginally higher

than control cells, while Rif1�/� cells showed levels equivalent to

WT cells pretreated with ATMi (Figure 4B). Similar correlations in
862 Molecular Cell 49, 858–871, March 7, 2013 ª2013 Elsevier Inc.
gH2AX IRIF levels between Rif1�/� and

ATMi-treated WT cells were also evident

at 5 Gy IR doses (Figure 4B). Moreover,

ATMi treatments had minimal impact

on gH2AX resolution at lower IR doses
in Rif1�/� cells, suggesting an epistatic relationship between

ATM and RIF1 during DSB repair. However, ATMi synergized

with Rif1 deficiency at higher doses, indicating that ATM likely

contributes to additional repair functions that aremore important

in RIF1 deficient cells with higher levels of DNA damage.

We next assessed the relative IR sensitivities of WT, Rif1�/�,
53Bp1�/�, and Rif1�/�53Bp1�/� double-knockout MEFs in

colony survival assays. Consistent with siRNA-knockdown

experiments in human cells (Silverman et al., 2004), Rif1�/�

MEFs were IR hypersensitive (Figures 4C and S5A), yet this

was significantly enhanced relative to that of 53Bp1�/� MEFs

(Figure 4C). However, the IR sensitivity Rif1�/�53Bp1�/� MEFs

was not dissimilar from Rif1�/� cells (Figure 4C), indicating that

although 53BP1 and RIF1 likely function in the same pathway

during DSB repair, RIF1 may have additional roles in DNA

damage responses, consistent with previous observations

(Buonomo et al., 2009; Xu et al., 2010).

Impaired NHEJ in Rif1-Depleted Cells
To directly assess if RIF1 functions to promote 53BP1-depen-

dent DSB repair by NHEJ, we employed an established DSB

reporter assay in HEK293 cells that measures NHEJ-mediated

repair between two tandem I-SceI sites (Bennardo et al., 2008).

As expected, siRNA-mediated 53BP1 depletion resulted in

a defect in NHEJ-mediated repair (Figures 4D andS5B). Remark-

ably, RIF1 downregulation with three different RIF1 siRNAs

yielded very similar NHEJ defects to 53BP1-depleted cells (Fig-

ure 4D).Moreover, codepletion of 53BP1 andRIF1 did not further

enhance NHEJ defects over single knockdowns (Figure 4D),

strongly suggesting 53BP1 and RIF1 cooperate during NHEJ.

RIF1 Recruitment to DSB Sites Requires N-Terminal
53BP1 Phospho-Domain
53BP1 contains closely opposed homo-oligomerization and

tandem Tudor domains that are both required for its interaction
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Figure 3. RIF1 Deficiency Suppresses Proliferation and Genome Instability Defects in BRCA1-Depleted Cells

(A) HeLa cells were treated with the indicated siRNA for 48 hr. Cells were then pulse-labeled with EdU (5 min, 40 mM) immediately before irradiation (5 Gy). One

hour following IR, cells were fixed and permeabilized before fluorescent labeling of EdU and counterstaining with indicated antisera. Representative projection

images of whole-nuclei 0.5 mm confocal z series are presented.

(B) Enlarged S phase images of RIF1 IRIF from (A) and automated quantification of the intensity of RIF1 IRIF in HeLa cells subjected to control or BRCA1-targeting

siRNA. n > 140 cells per condition; ***p < 0.0001, ns1 p = 0.514, ns2 p = 0.1172, ns3 p = 0.1390, Mann-Whitney test.

(C) Western blot shows comparable BRCA1-depletion efficiency between MEF lines selected for expression of indicated shRNA constructs. C, control shRNA

vector; 1, Brca1 shRNA vector 1; 2, Brca1 shRNA vector 2.

(D) Radial chromosomes were scored in metaphases prepared fromWT, Rif1�/�, and 53Bp1�/� cell lines expressing the indicated shRNA following 16 hr control

or olaparib (1 mM) treatments. n = 50 metaphase per condition. Error bars are ± SEM. See also Figure S4.
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Figure 4. A Role for RIF1 in the Cellular Responses to DSBs

(A) WT and Rif1�/� MEFs were untreated (CNTL) or harvested at indicated times following g-irradiation before immunostaining with the indicated antisera. Zoom

panels correspond to indicated cells in left panels.

(B) gH2AX IRIF were scored in cells of indicated genotype 24 hr following mock treatment or IR at the indicated doses. Where indicated, cells were either mock

treated (DMSO) or incubated with ATMi (KU55933, 10 mM) from 30min before irradiation until harvesting. Mean number of gH2AX IRIF per cell is plotted ± SEM. n

> 200 cells/condition over two independent experiments.

(C) The survival of MEFs of indicated genotype following control or g-irradiation treatments was assessed by colony survival assay. n = 3 ± SEM.

(D) Measurement of NHEJ proficiency in HEK239 EJ5 cells subjected to the indicated siRNAs. n = 3 ± SEM unpaired two-tailed t test. See also Figure S5.
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with nucleosomes at DSB sites (Botuyan et al., 2006; Huyen

et al., 2004; Zgheib et al., 2009). However, the contribution of

these domains, its extended N terminus, and C-terminal BRCT

motifs in promoting RIF1 recruitment are not known. To investi-

gate the 53BP1 domain requirements for RIF1 IRIF, we created

multiple stably transduced 53Bp1�/� MEF lines, each express-

ing one of a series of 53BP1 mutants (Figures 5A, 5B, and 5D).

53Bp1�/� MEFs reconstituted with full-length or BRCT-deleted

53BP1 protein fully restored RIF1 IRIF, while a 53BP1 mutant

protein N-terminally truncated adjacent to its oligomerization

motif (53BP1DN) or a mutant lacking both the N terminus and

BRCT domains (53BP1DNDC) could not, despite each readily

forming 53BP1 IRIF (Figures 5C and 5F).

The 53BP1 N terminus contains 28 S/TQ motifs, which are

known to be phosphorylated by the DSB-responsive kinase
864 Molecular Cell 49, 858–871, March 7, 2013 ª2013 Elsevier Inc.
ATM following IR. To determine if the ATM phospho-sites in the

N terminus of 53BP1 are important for RIF1 IRIF, we reconsti-

tuted 53Bp1�/� MEFs with a smaller N-terminal truncation

mutant (53BP1619+), a 53BP1 mutant comprising alanine substi-

tutions of the 20 most N-terminal S/TQ motifs (53BP120AQ); and

a similar mutant but with the five most N-terminal S/TQ motifs

spanning the PTIP phospho-interaction motif (Ser25) left intact

(53BP115AQ; Figures 5A and 5D) (Munoz et al., 2007). Notably,

53Bp1�/� MEFs reconstituted with 53BP1619+ recruited residual

RIF1 protein into some IRIF, yet thesewere substantially reduced

in number and intensity (Figures 5E and 5F). Strikingly, 53Bp1�/�

MEFs reconstituted with either 53BP120AQ or 53BP115AQ

mutants failed to recruit RIF1 into IRIF (Figures 5E and 5F).

The requirement for 53BP1 S/TQ phosphorylation in pro-

moting RIF1 recruitment to DSBs prompted us to test the
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Figure 5. RIF1 Recruitment to DNA Damage Sites Requires Phosphorylation of the of 53BP1 S/TQ Domain

(A) Schematic of 53BP1 mutants generated to examine the requirements for RIF1 IRIF. Numbers indicate N- and C-terminal 53BP1 residues for each truncation

mutant. Lines indicate relative positions of S/T residues in each S/TQ motif and whether they were either alanine-substituted (red) or left intact (blue) in each

respective mutant.

(B) Western blot demonstrating comparable expression of hemagglutinin (HA)-tagged 53BP1 mutants analyzed in (C) upon lentivirus-mediated reconstitution in

53Bp1�/� cells.

(C) The ability of the indicated 53BP1 mutant to support RIF1 IRIF was examined by indirect immunofluorescence in irradiated cells 1 hr following IR.

(D) Western blot of the indicated 53BP1mutants reconstituted in 53Bp1�/� cells and analyzed in (E) to examine the function of the 53BP1 N terminus and its S/TQ

ATM consensus phosphorylation in promoting RIF1 IRIF.

(E) Similar to (C) but with the indicated 53BP1 mutants reconstituted in 53Bp1�/� cells. Arrowheads indicate colocalizing foci.

(F) Quantification of RIF1 and 53BP1 IRIF with the indicated 53BP1 mutants reconstituted in 53Bp1�/� cells. n = 2, >140 cells scored per condition ± SEM.
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reliance of RIF1 IRIF on ATM kinase activity. Indeed, ATMi treat-

ment severely compromised induction of RIF1 IRIF while

inducing a modest increase in 53BP1 IRIF (Figures 6A and 6B).

Consistent with previous findings (Buonomo et al., 2009), RIF1

foci apparent in both untreated and ATMi-treated irradiated cells
M

(Figure 6B) were found to be associated with heterochromatin

and not DSBs (Figure S6A).

Next, we sought to determine if phosphorylation of 53BP1 by

ATM promoted interaction with RIF1. To this end we immuno-

purified FLAG-HA-53BP1 and its FLAG-HA-53BP120AQ mutant
olecular Cell 49, 858–871, March 7, 2013 ª2013 Elsevier Inc. 865
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Figure 6. ATM-Dependent Phosphorylation of 53BP1 Promotes RIF1 Interaction

(A) Irradiated WT MEFs pretreated with DMSO or ATMi were fixed and immunostained for gH2AX and either RIF1 or 53BP1.

(B) Quantification of 53BP1 and RIF1 IRIF in cells prepared as in (A). n > 4 ± SD, >126 cells scored per condition.

(C) Immunoblots of whole-cell lysates prepared from 53Bp1�/�MEFs complemented with the indicated constructs as in Figure 5 1 hr following mock or 10 Gy IR.

(D) Flag-HA-53BP1 proteins were purified with Flag-M2 beads (Sigma) from lysates in (C) under stringent conditions. Bead complexes were subsequently

incubated in nuclear extracts (HNE) before 53BP1-associated proteins were recovered by peptide elution. B/O = beads-only control.

(E) Immunoblots of whole-cell lysates of 53Bp1�/� MEFs complemented with WT 53BP1, 1 hr following mock or 15 Gy IR treatments in the presence/absence

of ATMi.

(F) As in (D), but with FLAG-HA-53BP1 purified from lysates indicated in (E). See also Figure S6.
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counterpart from reconstituted 53BP1�/� cells before or after IR

treatment (Figures 6C and 6D). 53BP1 proteins were then incu-

bated in untreated nuclear extracts and examined for the ability

to bind RIF1. Strikingly, a robust interaction was only observed

between RIF1 and 53BP1 purified from IR-treated cells (Fig-

ure 6D). In contrast, the 53BP120AQ mutations compromised

RIF1 interaction (Figure 6D) and ATM inhibition also abolished

IR-induced interactions between RIF1 and WT 53BP1 (Figures

6E and 6F). Thus, ATM-dependent phosphorylation of 53BP1

is crucial for interaction with and recruitment of RIF1 to DSB sites

following DNA damage.

RIF1 Inhibits DSB Resection at IR-Induced DSBs
53BP1 performs a critical role in DSB repair pathway choice by

limiting the resection of DSBs induced by IR and during CSR
866 Molecular Cell 49, 858–871, March 7, 2013 ª2013 Elsevier Inc.
and V(D)J recombination (Bothmer et al., 2010, 2011; Difilippan-

tonio et al., 2008). Given our findings that 53BP1 and RIF1 are

both required for NHEJ, we investigated whether RIF1 is also

required to prevent 50-end resection. To this end, we exploited

the fact that RPA-ssDNA complexes, resulting from DSB resec-

tion, trigger ATR activation (Nam and Cortez, 2011). Further-

more, levels of RPA-ssDNA on 50-recessed DNA substrates

correlate with the degree of Chk1 phosphorylation on Ser345

(pChk1) by ATR (MacDougall et al., 2007). We therefore

reasoned that derepression of DSB resection in Rif1�/� cells

might result in enhanced pChk1. Indeed, Rif1�/�MEFs exhibited

significantly elevated levels of pChk1 at all time points examined

following IR when compared toWT cells, while cell-cycle profiles

and phosphorylation kinetics of the ATM substrate Chk2

appeared comparable in WT and Rif1�/� MEFs (Figures 7A
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and S7A). Moreover, IR-induced pChk1 was also enhanced in

53Bp1�/� MEFs (Figure 7B), consistent with its established

role in inhibiting resection. Importantly, the enhanced IR-induced

pChk1 levels in 53Bp1�/� MEFs was rescued to WT levels by

full-length 53BP1, whereas 53Bp1�/� MEFs reconstituted with

53BP1DN or 53BP120AQ, which are defective for RIF1 IRIF,

failed to suppress enhanced pChk1 levels in 53Bp1�/� cells

(Figure 7C). Thus, 53BP1, its N-terminal phospho-SQ/TQ

sites, and RIF1 itself all contribute to the suppression of DSB

resection.

To further examine a role for RIF1 in blocking DSB resec-

tion, we also subjected WT, Rif1�/�, 53Bp1�/�, and Rif1�/�

53Bp1�/� MEFs to IR treatment and then analyzed the levels

of RPA phosphorylation, an established marker of DSB resec-

tion (Sartori et al., 2007). Strikingly, RIF1- and 53BP1-deficient

cells exhibited markedly enhanced RPA phosphorylation after

IR treatment when compared to WT cells. Furthermore, RPA

phosphorylation was not further enhanced in Rif1�/�53Bp1�/�

cells when compared to Rif1�/� and 53Bp1�/� knockout cells

(Figure 7D).

RIF1 InhibitsDSBResection atDSBs InducedduringCSR
We reasoned that the observed defects in CSR detected in

Rif1�/� lymphocytes might result from a failure to efficiently

repress the inappropriate nucleolytic processing of DSBs

induced during CSR. Indeed, the failure to switch isotype during

CSR in 53Bp1�/� lymphocytes is associated with increased

nonproductive short-range recombination events within IgH

locus switch (S) regions mediated by repair of aberrantly pro-

cessed DSBs (Bothmer et al., 2010; Reina-San-Martin et al.,

2007). To examine if inappropriate processing of S-regions

might also occur in the absence of RIF1, WT and Rif1�/�

lymphocytes were either untreated or stimulated to class switch

in vitro and then subjected to chromatin immunoprecipitation

(ChIP) for total histone and RPA32. Similar histone ChIP signals

were observed between WT and Rif1�/� lymphocytes at

a control locus (Rpp30) and within (Sm(a)) and proximal (Sm(b))

to the core Sm-region (Figure 7E). In contrast, analysis of

RPA32 ChIPs from WT and Rif1�/� lymphocytes induced to

undergo CSR revealed striking differences in ChIP signals:

Rif1�/� cells exhibited �10-fold increases in RPA32 residency

at both Sm loci when compared to WT, while comparable near

background RPA32 signals were evident at the Rpp30 control

locus in both cell types (Figures 7E and S7B). Importantly, the

induction of RPA32 ChIP signal at IgH loci in RIF1-deficient

lymphocytes was only evident upon B cell stimulation; unstimu-

lated cells exhibited near background signals. These data reveal

that RPA32 accumulates within the IgH switch region in switch-

ing RIF1-deficient cells, indicative of the aberrant resection of

CSR-induced DSBs.

DISCUSSION

RIF1 is one of a few proteins identified to date that requires

53BP1 for its recruitment to DSBs (Silverman et al., 2004). Never-

theless, a role for RIF1 as a potential 53BP1 cofactor has been

largely overlooked, in part due to the reported phenotypic differ-

ences of murinemodels of RIF1 and 53BP1 deficiency: RIF1 was
M

previously reported as essential for embryogenesis (Buonomo

et al., 2009), whereas 53Bp1�/� animals are viable but radiosen-

sitive and immune-deficient (Manis et al., 2004; Ward et al.,

2003, 2004). Moreover, vertebrate RIF1 performs regulatory

roles during DNA replication that are not obviously shared with

53BP1 (Buonomo et al., 2009; Cornacchia et al., 2012; Xu

et al., 2010; Yamazaki et al., 2012), and RIF1 depletion/

disruption was reported to affect gene conversion frequencies

to different extents in different cell types (Buonomo et al.,

2009; Wang et al., 2009), which was also at odds with a role

for RIF1 in promoting 53BP1-dependent NHEJ.

Here we report that Rif1-deficient male mice are viable in

a specific genetic background. Although Rif1�/� male mice are

superficially normal, they succumb to bacterial infections owing

to CSR defects comparable in severity to that previously re-

ported for 53BP1-deficient mice. Indeed, analysis of RIF1-defi-

cient MEFs revealed that RIF1 is essential for 53BP1-dependent

NHEJ. This assertion is based on our observation that, analo-

gous to 53BP1, unconstrained RIF1 activity both drives toxic

repair events in Brca1-deficient cells and mediates the NHEJ

of dysfunctional telomeres. RIF1-deficient cells also exhibit hall-

marks of defective DSB repair including IR sensitivity and de-

layed DSB resolution. Moreover, the fact that 53Bp1�/�Rif1�/�

double-knockout MEFs were found to be no more sensitive to

IR treatment than the Rif1�/� single-knockout MEFs suggests

that RIF1 and 53BP1 function in the same genetic pathway.

The epistatic nature of RIF1, 53BP1, and double siRNA treat-

ments on NHEJ frequency in human cells reinforces this notion.

In this light, it is notable that a role for RIF1 during NHEJwas sug-

gested by previous work in the avian DT40 cells. In this setting,

RIF1 deficiency was accompanied by 2- to 4-fold increases in

gene-targeting frequencies (Xu et al., 2010), a characteristic

often used as a measure of HR proficiency in DT40, and whose

elevation is characteristic of NHEJ mutants including 53BP1-

knockout lines (Nakamura et al., 2006; Yamazoe et al., 2004).

Our analysis also establishes a mechanistic basis for RIF1-

53BP1 cooperation. Specifically, we find that the phosphor-

ylation of 53BP1 by ATM stimulates interaction with RIF1,

facilitating RIF1 targeting to DSBs. Thus, our findings provide

molecular insight to explain the importance of 53BP1 phosphor-

ylation, whose critical role in blocking DSB-resection and

promoting NHEJ during CSR and between uncapped telomeres

was previously unclear (Bothmer et al., 2011; Rai et al., 2010).

Unfortunately, RIF1’s domain architecture offers few clues into

how ATM-dependent phosphorylation of 53BP1 actually facili-

tates RIF1 interactions via phospho- or charge-specific interac-

tions. Nevertheless, as ATM signaling also promotes DSB

resection upon 53BP1 disruption (Bothmer et al., 2010; Bunting

et al., 2010), its direct stimulation of RIF1 recruitment to DSBs

might represent a molecular switch to suppress such activities

when 53BP1 is present at DSB sites.

Recent evidence suggests that 53BP1’s ability to establish an

effective barrier against DSB resection in G1 is intrinsic to its

NHEJ function (Bothmer et al., 2010, 2011; Bunting et al.,

2012; Difilippantonio et al., 2008). We find RIF1 is central to

this process, its deficiency enhancing ATR checkpoint signaling

in response to IR treatments, a feature suggestive of DSB hyper-

resection and mirrored by 53Bp1�/�, Rif1�/� 53Bp1�/�, and
olecular Cell 49, 858–871, March 7, 2013 ª2013 Elsevier Inc. 867
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Figure 7. RIF1 Represses DSB Resection Following IR and at the IgH Locus in Stimulated B Cells

(A and B) Enhanced ATR signaling in RIF1- and 53BP1-deficent cells. Lysates prepared fromWT,Rif1�/�, and 53Bp1�/�MEFs, harvested at indicated time points

following IR, were immunoblotted with indicated antisera.

(legend continued on next page)
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complemented cell lines defective in RIF1 recruitment. Finally,

RIF1’s role in blocking aberrant DSB processing is substantiated

by our findings that abnormally high levels of the ssDNA-binding

RPA32 protein accumulate at IgH S-regions in Rif1�/� B cells

upon stimulation. Significantly, similar IgH-specific differ-

ences in RPA32 signal were recently reported between WT and

53Bp1�/� B cells in ChIP-sequencing experiments (Bunting

et al., 2012; Hakim et al., 2012). Thus our data establish that

cooperative inhibition of DSB resection by 53BP1 and RIF1 is

crucial for NHEJ.

The function of 53BP1 in blocking DSB resection requires its

ability to oligomerize and bind the abundant histone H4

K20me2 epitope (Bothmer et al., 2011). Intriguingly, we found

that 53BP1 IRIF are diminished in intensity in Rif1�/� cells (Fig-

ure 4A). Perhaps cooperative interactions between 53BP1 and

RIF1 act to stabilize a DSB-proximal chromatin state refractory

to access by nucleases and other DNA modifying enzymes,

thereby blocking DSB resection over large distances spanning

DSB ends. While many genetic observations in yeast attribute

resection inhibition largely to the dsDNA end-binding Ku-hetero-

dimer (Ku) (reviewed in Symington and Gautier, 2011), recent

evidence in mice indicates that 53BP1 asserts much more of

a repressive effect on this activity than Ku (Bunting et al.,

2012). Indeed, the fact that 53BP1 binds chromatin (and not

DNA ends) suggests that resection may actually be influenced

at a distance from DNA ends. Thus, establishment of a 53BP1-

RIF1-mediated chromatin barrier in the vicinity of DSBs may

ensure DSB end integrity is preserved, favoring NHEJ, and pre-

venting deleterious repair events. In addition to posing a barrier

to DSB resection, 53BP1 has also been attributed an ability to

increase the subnuclear mobility of dysfunction telomeres, an

activity proposed to increase the contact frequency of distally

position DSB ends and thus their ligation (Dimitrova et al.,

2008). Considering our observed role for Rif1 in promoting

telomere end-fusions, it will be intriguing to see if RIF1 also

contributes to this process.

Genetic observations in mice (Bothmer et al., 2011; Bunting

et al., 2010) led to the proposal that 53BP1 binding to chromatid

breaks in BRCA1-deficient cells interferes with HR by blocking

resection at the break site, which is required for HR-dependent

repair. To counteract an inhibitory activity toward DSB resection

in S phase, it was suggested that BRCA1 may act to displace

NHEJ factors from replication-associated DSBs, but evidence

to support this model was lacking (Bunting et al., 2010). We

recently showed that while 53BP1 forms foci at DSBs in G1

and S cell-cycle phases, it is excluded from the core of foci in

an S phase and BRCA1-dependent manner (Chapman et al.,

2012a). We proposed that the timely removal of 53BP1 from

the core of the focus in S phase relieves the barrier to DSB resec-

tion, allowing HR dependent repair to proceed. Intriguingly, we
(C) 53Bp1�/� MEF lines reconstituted with indicated WT and mutant 53BP1 p

phosphorylation events as in (A) and (B).

(D) Lysates prepared from WT, Rif1�/�, 53Bp1�/�, and Rif1�/�53Bp1�/� MEFs h

(E) Aberrant processing of the IgH locus in Rif1�/� cells. Schematic of IgH Sm reg

control non-IgH locus (Rpp30) was also examined. Resting B cells or those stim

(control), histone H2A.X, and RPA32 monoclonal antisera. Following background

followed by the maximum value in each data set. Mean signals, two independen

M

now show that BRCA1 is also responsible for the downregulation

of RIF1 IRIF in both S and G2 cell-cycle phases, suggesting that

while this likely contributes to a switch from NHEJ to HR repair

modes during S phase, BRCA1 may also prevent excessive

RIF1/53BP1-depedent NHEJ in G2 in a similarmanner. Certainly,

an improved understanding of how 53BP1 and RIF1 cooperate

within their DSB-associated chromatin environment to inhibit

resection may be key to elucidating BRCA1’s molecular role in

counteracting such activities and defining the mechanisms of

DSB repair pathway choice. We anticipate future studies inves-

tigating RIF1’s regulatory roles in other nuclear contexts may

provide vital clues to understand how it facilitates productive

recombination events in lymphocytes and toxic repair events

that drive tumorigenesis.

EXPERIMENTAL PROCEDURES

Lymphocyte Methods and In Vitro CSR

B cells were purified by negative selection from single-cell suspensions from

spleen using magnetic separation B cell isolation kit (Miltenyi Biotec) accord-

ing to manufacturer’s instructions. Purified cells (purity > 95%) were cultured

for 3–6 days at 106 cells/ml in RPMI supplemented with 10% FCS and LPS

(10 mg/ml, Sigma), IL-4 (10 ng/ml, R&D), and/or anti-mouse CD40 antibody

(5 mg/ml; FGK45, Enzo Life Sciences). For proliferation analyses B cells were

labeled with 5 mM Cell Trace Violet (Molecular Probes) in PBS for 15 min at

37�C before culture. For details of antibodies, ELISA, and flow cytometric

methods, see Supplemental Information.

Cell Culture, Transfection, and shRNA

E13.5 MEFs prepared and SV40 LargeT-immortalized by standard procedures

were used in all experiments unless otherwise indicated. HeLa and HEK293

cells were transfected with vector or siRNA using XtremeGene-HP (Roche)

and siRNA-MAX (Invitrogen) reagents, respectively, according to manufac-

turers’ instructions. NHEJ reporter assays in HEK293-EJ5 cells were per-

formed as previously described (Bennardo et al., 2008), with minor modifica-

tions (see Supplemental Information). Brca1-targeting shRNA oligos 1 (target

seq: CCAAGAAGAGGATAGTATAAT) and 2 (target seq: GTGCTTCCACACCC

TACTTAC) were cloned into pLKO.1-Puro plasmid (Addgene plasmid 10878),

and these or a control (empty vector) were used to generate lentivirus to deliver

shRNA. Viral supernatants were prepared as described (http://www.addgene.

org/plko), and frozen viruswas used to transduceMEFs in two sequential infec-

tions 12 hr apart, before selection in 2–3 mg/ml puromycin. Shelterin disruption

was achieved by retroviral transduction of pLPC-Myc-TRF2 and pLPC-Myc-

TRF2DBDM constructs as previously described (van Steensel et al., 1998).

Immunoprecipitation and Protein Interaction

Flag-HA-53BP1 protein was immunopurified on Flag-M2 agarose (Sigma),

from whole-cell lysates prepared as previously described (Chapman and

Jackson, 2008): washed in lysis buffer 3 2, in TSE-150 (see ChIP in Supple-

mental Information) 3 1, and in TSE-500 3 1 before equilibration in Dignam’s

buffer D (20 mM HEPES [pH 7.4], 20% glycerol, 0.1 M KCl, 1 mM EDTA,

0.1 mM EGTA, 1 mM DTT, protease inhibitors). Beads were then incubated

in HeLa nuclear extracts (CilBiotech.be) for >1 hr before multiple washes in

Buffer D. Immunocomplexes were eluted with triple-Flag peptide. For detailed

ChIP methods, see Supplemental Information.
roteins (see also Figures 5A–5D) were examined for IR-induced checkpoint

arvested 3 hr following IR were immunoblotted with indicated antisera.

ion shows relative positions of qPCR amplicons used in ChIP experiments. A

ulated with LPS and IL-4 (72 hr) were subjected to ChIP experiments with IgG

subtraction of IgG signals, values were normalized to the DNA input signals,

t experiments ± SEM. See also Figure S7.
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SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, two tables, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.molcel.2013.01.002.
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Noon, A.T., Shibata, A., Rief, N., Löbrich, M., Stewart, G.S., Jeggo, P.A., and

Goodarzi, A.A. (2010). 53BP1-dependent robust localized KAP-1 phosphory-

lation is essential for heterochromatic DNA double-strand break repair. Nat.

Cell Biol. 12, 177–184.

Pavri, R., and Nussenzweig, M.C. (2011). AID targeting in antibody diversity.

Adv. Immunol. 110, 1–26.

Pfeiffer, P., Goedecke, W., and Obe, G. (2000). Mechanisms of DNA double-

strand break repair and their potential to induce chromosomal aberrations.

Mutagenesis 15, 289–302.

Rai, R., Zheng, H., He, H., Luo, Y., Multani, A., Carpenter, P.B., and Chang, S.

(2010). The function of classical and alternative non-homologous end-joining

pathways in the fusion of dysfunctional telomeres. EMBO J. 29, 2598–2610.

Reina-San-Martin, B., Chen, J., Nussenzweig, A., and Nussenzweig, M.C.

(2007). Enhanced intra-switch region recombination during immunoglobulin

class switch recombination in 53BP1-/- B cells. Eur. J. Immunol. 37, 235–239.

Sartori, A.A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., Baer, R.,

Lukas, J., and Jackson, S.P. (2007). HumanCtIP promotes DNA end resection.

Nature 450, 509–514.

Silverman, J., Takai, H., Buonomo, S.B., Eisenhaber, F., and de Lange, T.

(2004). Human Rif1, ortholog of a yeast telomeric protein, is regulated by

ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev. 18,

2108–2119.

Smogorzewska, A., Karlseder, J., Holtgreve-Grez, H., Jauch, A., and de

Lange, T. (2002). DNA ligase IV-dependent NHEJ of deprotected mammalian

telomeres in G1 and G2. Curr. Biol. 12, 1635–1644.

Stavnezer, J., Guikema, J.E., and Schrader, C.E. (2008). Mechanism and regu-

lation of class switch recombination. Annu. Rev. Immunol. 26, 261–292.

Symington, L.S., and Gautier, J. (2011). Double-strand break end resection

and repair pathway choice. Annu. Rev. Genet. 45, 247–271.

van Steensel, B., Smogorzewska, A., and de Lange, T. (1998). TRF2 protects

human telomeres from end-to-end fusions. Cell 92, 401–413.
M

Wang, H., Zhao, A., Chen, L., Zhong, X., Liao, J., Gao, M., Cai, M., Lee, D.H., Li,

J., Chowdhury, D., et al. (2009). Human RIF1 encodes an anti-apoptotic factor

required for DNA repair. Carcinogenesis 30, 1314–1319.

Ward, I.M., Minn, K., van Deursen, J., and Chen, J. (2003). p53 Binding protein

53BP1 is required for DNA damage responses and tumor suppression in mice.

Mol. Cell. Biol. 23, 2556–2563.

Ward, I.M., Reina-San-Martin, B., Olaru, A., Minn, K., Tamada, K., Lau, J.S.,

Cascalho, M., Chen, L., Nussenzweig, A., Livak, F., et al. (2004). 53BP1 is

required for class switch recombination. J. Cell Biol. 165, 459–464.

Ward, I., Kim, J.E., Minn, K., Chini, C.C., Mer, G., and Chen, J. (2006). The

tandem BRCT domain of 53BP1 is not required for its repair function. J. Biol.

Chem. 281, 38472–38477.

West, S.C. (2003). Molecular views of recombination proteins and their control.

Nat. Rev. Mol. Cell Biol. 4, 435–445.

Wotton, D., and Shore, D. (1997). A novel Rap1p-interacting factor, Rif2p,

cooperates with Rif1p to regulate telomere length in Saccharomyces cerevi-

siae. Genes Dev. 11, 748–760.

Xu, D., Muniandy, P., Leo, E., Yin, J., Thangavel, S., Shen, X., Ii, M., Agama, K.,

Guo, R., Fox, D., 3rd., et al. (2010). Rif1 provides a new DNA-binding interface

for the Bloom syndrome complex to maintain normal replication. EMBO J. 29,

3140–3155.

Yamazaki, S., Ishii, A., Kanoh, Y., Oda, M., Nishito, Y., and Masai, H. (2012).

Rif1 regulates the replication timing domains on the human genome. EMBO

J. 31, 3667–3677.

Yamazoe, M., Sonoda, E., Hochegger, H., and Takeda, S. (2004). Reverse

genetic studies of the DNA damage response in the chicken B lymphocyte

line DT40. DNA Repair (Amst.) 3, 1175–1185.

Yan, C.T., Boboila, C., Souza, E.K., Franco, S., Hickernell, T.R., Murphy, M.,

Gumaste, S., Geyer, M., Zarrin, A.A., Manis, J.P., et al. (2007). IgH class

switching and translocations use a robust non-classical end-joining pathway.

Nature 449, 478–482.

Youds, J.L., and Boulton, S.J. (2011). The choice in meiosis - defining the

factors that influence crossover or non-crossover formation. J. Cell Sci. 124,

501–513.

Zgheib, O., Pataky, K., Brugger, J., and Halazonetis, T.D. (2009). An oligomer-

ized 53BP1 tudor domain suffices for recognition of DNA double-strand

breaks. Mol. Cell. Biol. 29, 1050–1058.
olecular Cell 49, 858–871, March 7, 2013 ª2013 Elsevier Inc. 871


	RIF1 Is Essential for 53BP1-Dependent Nonhomologous End Joining and Suppression of DNA Double-Strand Break Resection
	Introduction
	Results
	Generation of RIF1-Deficient Mice
	Normal Lymphocyte Development in Rif1−/− Mice
	RIF1 Is Essential for Class Switch Recombination in Mice
	Rif1 Promotes NHEJ of Dysfunctional Telomeres
	BRCA1 Antagonizes RIF1-Dependent NHEJ during S Phase
	Impaired DSB Repair in Rif1-Deficient Cells
	Impaired NHEJ in Rif1-Depleted Cells
	RIF1 Recruitment to DSB Sites Requires N-Terminal 53BP1 Phospho-Domain
	RIF1 Inhibits DSB Resection at IR-Induced DSBs
	RIF1 Inhibits DSB Resection at DSBs Induced during CSR

	Discussion
	Experimental Procedures
	Lymphocyte Methods and In Vitro CSR
	Cell Culture, Transfection, and shRNA
	Immunoprecipitation and Protein Interaction

	Supplemental Information
	Acknowledgments
	References


