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Abstract. Estimated breeding values for the selection of more profitable sheep for the sheep meat and wool industries are
currently based on pedigree and phenotypic records. With the advent of a medium-density DNA marker array, which
genotypes ~50 000 ovine single nucleotide polymorphisms, a third source of information has become available. The aim of
this paper was to determine whether this genomic information can be used to predict estimated breeding values for wool and
meat traits. The effects of all single nucleotide polymorphism markers in a multi-breed sheep reference population of 7180
individuals with phenotypic records were estimated to derive prediction equations for genomic estimated breeding values
(GEBV) for greasy fleece weight, fibre diameter, staple strength, breech wrinkle score, weight at ultrasound scanning,
scanned eye muscle depth and scanned fat depth. Five hundred and forty industry sires with very accurate Australian sheep
breeding values were used as a validation population and the accuracies of GEBV were assessed according to correlations
between GEBV and Australian sheep breeding values . The accuracies of GEBV ranged from 0.15 to 0.79 for wool traits in
Merino sheep and from –0.07 to 0.57 for meat traits in all breeds studied.Merino industry sires tended to havemore accurate
GEBV than terminal and maternal breeds because the reference population consisted mainly of Merino haplotypes. The
lower accuracy for terminal and maternal breeds suggests that the density of genetic markers used was not high enough for
accurate across-breed prediction ofmarker effects. Our results indicate that an increase in the size of the reference population
will increase the accuracy of GEBV.

Additional keywords: genomic selection, single nucleotide polymorphism.

Introduction

Genetic improvement of meat and wool sheep has focussed on
traits that are economically important and relatively easy to
measure. This has been effective because some important wool
traits are highly heritable and are measurable in both sexes (van
der Werf 2009). However, measurement of some traits that
contribute towards profitability is expensive or difficult, for
example, measurement of slaughter traits in meat breeds and
fertility traits in wool sheep. The use of genomic data in the form
of single nucleotide polymorphisms (SNP) has been proposed as
a way to increase the accuracy of selection of such traits and,
therefore, their genetic improvement. The advantage of genomic
information is that it enables selection for traits for which
phenotypes are not available at the time of selection, namely
the selection of juveniles for wool, slaughter or fertility traits.

Genomic prediction methods rely on strong associations
between SNP and the quantitative trait loci (QTL) that affect
the traits of interest (Meuwissen et al. 2001). Genomic prediction
can potentially capture all of the genetic variation in a trait if
the genetic marker map is dense enough. Two main genomic
prediction methods are currently used. One is an adaptation of

best linear unbiased prediction, in which a genomic relationship
matrix is used in place of a pedigree-derived relationship matrix.
Thismethod is referred to asGBLUP (NejatiJavaremi et al. 1997;
Villanueva et al. 2005; Hayes et al. 2009c). GBLUP assumes
a normal distribution for SNP effects, which is equivalent to
assuming there is a very large number of mutations with very
small effects. Other methods for predicting GEBV involve
different assumptions: (1) that there are some SNP with a
moderate-to-large effect and many SNP with very small effects
(BayesA) and (2) that some of the SNP are not associated with
mutations affecting the trait and thus have no effect at all
(BayesB and BayesSSVS; Meuwissen et al. 2001; Verbyla
et al. 2009; Pong-Wong and Hadjipavlou 2010). These two
groups of methods have similar accuracies (correlations
between genomic breeding values and traditional breeding
values) for most traits (Hayes et al. 2009a; VanRaden et al.
2009) and it has been shown by simulation that this equivalency
occurs when many QTL affect a trait (Daetwyler et al. 2010).

If the accuracy of genomic estimated breeding values (GEBV)
were as high as the square root of the heritability of a trait,which is
equivalent to the accuracy of a phenotypic record, genetic gain
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could be increased by up to 40% in sheep breeding programs
(vanderWerf 2009). The economic impact of genomic prediction
of sheep traits depends on whether the increased profitability
from the extra genetic gain outweighs the cost of genotyping.
Modelling has shown that the net present value of meat sheep
production could increase by 25% over the next 25 years if
genomic prediction was used to increase the rate of genetic
progress by 40% (Banks and van der Werf 2009).

Many specialised breeds are currently used in the Australian
sheep industry. Merino sheep are used to produce wool, terminal
breeds such as the Polled Dorset and Whiteface Suffolk are
favoured by meat producers and maternal breeds such as the
Border Leicester and Coopworth are kept for their mothering and
reproductive abilities. Although this strategy is useful from an
industry standpoint, it complicates genomic prediction because
linkage disequilibrium (LD) patterns may not persist across
breeds. With multi-breed data, and at current SNP densities, a
particular marker allele may not be consistently associated with
the same QTL allele in all breeds, making accurate prediction
across breeds difficult (DeRoos et al. 2008). If the phase between
SNP and QTL is not consistent between sheep breeds, a large
number of phenotype and genotype records would be needed
for a particular breed to enable accurate predictions to be made
for that breed (De Roos et al. 2009; Hayes et al. 2009b; Ibanz-
Escriche et al. 2009).

The objective of this study was to evaluate the accuracies of
GEBVformeat andwool traits using a large reference population.
Two genomic prediction methods were used: GBLUP and
BayesA, to investigate their respective genomic prediction
accuracy.

Materials and methods

Phenotypic data
The reference population data consisted ofmulti-breed sheepdata
from theSheepCooperativeResearchCentre informationnucleus
flock (INF) and the Sheep Genomics Falkiner Memorial Field
Station flock (FMFS) with both phenotypic and genotypic
records.

The INF animals were located at eight sites across Australia
and the FMFS animals were raised in Deniliquin, New South
Wales. Various breeds were represented in both datasets
(Table 1). The dams had a strong Merino background in both
datasets, whereas the sires were either frommaternal, terminal or
Merino breeds. While the Merino sheep were mostly purebred,
the remaining breeds were mainly represented by their crosses
with Merino ewes. Therefore, a significant proportion of the
reference population was crossbred with few purebred
individuals from terminal and maternal breeds.

The following traits were evaluated: yearling greasy fleece
weight (GFW), yearling fibre diameter (FD), yearling staple
strength (SS), early breech wrinkle score (EBRWR), late
breech wrinkle score (LBRWR), weight at ultrasound scanning
(SC_WT), scanned eye muscle depth (SEMD) and scanned fat
depth (SFAT). Whereas GFW is a measure of wool growth, FD,
the average thickness of individual wool fibres, and SS, the
minimum force per density unit required to rupture a staple,
arewoolquality traits.Breechwrinkle score (BRWR)wasdefined
as the degree of skin wrinkling at the tail set and down the hind
legs and was scored on a scale of 1–5, in which 5 is very wrinkly.
As high BRWR increases the incidence of flystrike, selective
breeding for lower BRWR may reduce flystrike (James 2006).
Although most Australian lamb producers are paid according to
carcass weight, there is interest in increasing the relative sizes of
quality cuts of meat, such as the eye muscle, and in improving
carcass leanness by reducing subcutaneous fat depth. Table 2
shows reference population sizes, means, standard deviations
(s.d.) and heritabilities for each trait in both resource flocks.
Summary statistics were sufficiently similar to justify pooling the
INF and FMFS data. Extreme values for fixed effects and traits
were removed if they were >4 s.d. from the means for the INF or
FMFS.

Genotypic data
All animals were genotyped using the Illumina 50K ovine SNP
chip (Illumina Inc., SanDiego, CA,USA),which reacts to 54 977
SNP. The following quality control measures were applied to the
SNPdata: SNPwere removed if theyhad a call rate of<95%, aGC

Table 1. Number of progeny by breed of sire (SBreed) and dam (DBreed) for the Cooperative Research Centre information
nucleus flock (before backslash) and the Sheep Genomics Falkiner Research Station flock (after backslash)

BL, Border Leicester; EF, East Friesian; MER, Merino; PD, Polled Dorset; WS, White Suffolk

SBreed DBreed
MER PD WS BL · MER Total

MER 1305\2077 0\1 0\2 0\0 1305\2080
PD 459\44 0\19 0\32 387\153 846\248
PD · WS 0\61 0\46 0\29 0\205 0\341
BL 790\95 0\31 0\24 0\155 790\305
BL · EF 0\43 0\19 0\19 0\106 0\187
WS 307\39 0\13 0\19 280\109 587\180
Texel 64\0 0\0 0\0 62\0 126\0
Booroola 59\0 0\0 0\0 0\0 59\0
Suffolk 53\0 0\0 0\0 34\0 87\0
Corriedale 4\0 0\0 0\0 0\0 4\0
Coopworth 2\44 0\18 0\15 0\85 2\162
Southdown 1\0 0\0 0\0 0\0 1\0
Total 3044\2403 0\147 0\140 763\813 3807\3541
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score (proportion of guanine-cytosine pairs) of <0.6, a minor
allele frequency of <0.01, a SNP heterozygosity of >3 s.d. from
the mean (mean heterozygosity, 0.374; s.d., 0.129), were out of
Hardy–Weinberg equilibrium (a P-value cut-off of 1�15), had no
genome location or were in >0.99 LD with another SNP on the
chip. After these measures were applied, 48 640 SNP were used.
Data for genotyped animals were removed if their genotype call
ratewas<0.9, this reduced the number of genotyped animals from
3863 to3807.Missinggenotypeswere imputedusing fastPHASE
(Scheet and Stephens 2006).

Validation population
The prediction equations were tested using a validation
population. Genomic prediction accuracy was evaluated as the
statistical correlation between GEBV and Australian sheep
breeding values (ASBV). This means that the theoretical
maximum for the accuracy is the accuracy of the ASBV. One
can transform accuracies based on statistical correlation alone
by dividing them by the accuracy of the ASBV (Verbyla et al.
2009), which will make the theoretical maximum of this new

accuracy measure one. Unless otherwise stated, we report and
discuss the accuracy based on the statistical correlation of GEBV
and ASBV.

Validation rams needed to have ASBV with accuracy greater
than 0.5 and 540 rams distributed across several breeds satisfied
these criteria. ASBV for these industry rams were calculated
without using the phenotypic data from the INF flock.
Information about ASBV definitions can be found at the
following website maintained by Australian Wool Innovation
Ltd and Meat and Livestock Australia (AWI and MLA 2010).
Table 3 lists the number of animals available and their average
ASBV accuracies for each trait. One hundred and twelve of
the validation sires had progeny in the INF. Sires in the INF
were chosen to maximise the connectedness with the Australian
sheep flock by sampling artificial insemination sires from as
many studs as possible. The validation rams also originated in
the general Australian sheep population, thus the relationship
between the reference and validation population is expected to
be moderate.

Accuracies were calculated within breeds: within the Merino
breed, accuracies were calculated for maternal (mainly Border

Table 2. Phenotypic data, number of records (N-ref) and heritabilities h2 with standard error (s.e.) for eight traits for the
reference population of the Sheep Cooperative Research Centre information nucleus flock (INF) and the Sheep Genomics

Falkiner Research Station flock (FMFS)
EBRWR,early breechwrinkle score; FD,fibre diameter;GFW,greasyfleeceweight; LBRWR, late breechwrinkle score; SC_WT,

weight at ultrasound scanning; SEMD, scanned eye muscle depth; SFAT, scanned fat depth; SS, staple strength

Trait INF FMFS N-ref h2 ± s.e.
Mean s.d. n Mean s.d. n

GFW 3.5 0.94 1800 3.1 0.95 1541 3341 0.55 ± 0.10A

FD 17.3 1.73 1304 23.6 6.04 1528 2831 0.75 ± 0.06A

SS 33.4 11.1 927 34.1 8.3 1544 2471 0.43 ± 0.07A

EBRWR 2.1 1.2 3791 1.2 0.5 3309 7100 0.34 ± 0.07A

LBRWR 2.5 1.0 1275 1.3 0.5 1530 2805 –

SC_WT 42.2 8.5 3644 38.6 7.2 3537 7180 0.27 ± 0.04B

SEMD 25.6 4.6 3643 21.0 3.7 3523 7166 0.23 ± 0.03B

SFAT 2.9 1.3 3642 2.5 0.9 3521 7163 0.22 ± 0.03B

AS. Hatcher, NSW Department of Primary Industries, unpublished results based on CRC INF data.
BMortimer et al. (2010). Based on CRC INF data.

Table 3. Mean accuracy of Australian sheep breeding values in validation rams per trait inMerino (MER),Merino superfine (MER-SF),Merino fine
(MER-F),Merinostrong (MER-S),maternalbreedBorderLeicester (BL), terminalbreed (TERM), terminalPolledDorset (TERM-PD), terminalWhite

Suffolk (TERM-WS) and number of validation sires available for each breed or Merino wool type
BRWR, breechwrinkle score; FD,fibre diameter; GFW, greasyfleeceweight; SC_WT,weight at ultrasound scanning; SEMD, scanned eyemuscle depth; SFAT,

scanned fat depth; SS, staple strength

Trait MER MER-SF MER-F MER-S BL TERM TERM-PD TERM-WS

Number 187 19 96 70 57 218 108 99
Yearling GFW 0.91 0.91 0.92 0.91 – – – –

Adult GFW 0.87 0.91 0.87 0.87 – – – –

Yearling FD 0.95 0.94 0.95 0.94 – – – –

Adult FD 0.92 0.94 0.92 0.91 – – – –

Yearling SS 0.84 0.83 0.84 0.83 – – – –

BRWR 0.79 0.73 0.83 0.74 – – – –

SC_WT 0.91 0.89 0.91 0.93 0.91 0.93 0.94 0.93
SEMD 0.83 0.75 0.82 0.86 0.89 0.92 0.94 0.93
SFAT 0.79 0.73 0.78 0.82 0.90 0.91 0.93 0.91
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Leicester and some Coopworth) and terminal breeds (Polled
Dorset and White Suffolk) and for superfine-, fine- and strong-
wool Merino types. The Merino wool types are a subset of the
Merino rams based on FD.

Statistical models
The following fixed effects were fitted in all trait models: sire
breed, dam breed (Merino or Border Leicester · Merino for the
INF and proportion of Merino, Border Leicester, Polled Dorset
and White Suffolk for the FMFS), sex, birth type, rearing type,
contemporary group (birth year · site ·management group) and
age-at-trait recording. In the FMFS, full dam information was
unavailable for one of the lambings and dam breed proportions
were inferred from maternal haplotypes using the program
structure (Pritchard et al. 2000). In addition, SC_WT was
fitted in the analysis of SEMD and SFAT.

For GBLUP, the following model involving a realised
relationship matrix based on markers was fitted to the
phenotypes using ASReml (Gilmour et al. 2000):

y ¼ Xbþ Zgþ e

where y is a vector of phenotypic records, X is an design matrix
relating the fixed effects (as described above) to the animal, b is a
vector of fixed effects,Z is a designmatrix relating animal effects
to phenotypes, g is a vector of additive genetic effects and e is the
vector of residuals. The following distributions were assumed:
g ~N (0, s2

gG) and e ~N (0, Is2
e). G was calculated as in (Hayes

et al. 2009c).
The model for BayesA was similar to that used for GBLUP

but instead of calculating a relationship based on markers, each
marker was fitted individually in vector v and Z connected
records and SNP effects:

y ¼ Xbþ ZvþWuþ e

where a polygenic effect was fitted with designmatrixW relating
polygenic effects to records and the vector of additive polygenic
effects, u. Each SNP had its own variance, vi ~N (0, s2

vi
) and

polygenic effects distributed as u ~N (0, s2
uA), where A is the

pedigree-derived relationship matrix. Pedigree was traced back
up to five generations, including dam pedigree at some INF sites.
The prior for s2

vi
was an inverse Chi-square distribution (degrees

of freedom, 4.012) (Meuwissen et al. 2001). For each trait, 10
parallel runs, each with a Markov Chain Monte Carlo chain
of 50 000 iterations and a burn-in of 10 000 iterations, were

conducted. The results of the 10 chains were averaged to
calculate GEBV.

Results and discussion

The accuracy of GEBV for wool traits was only evaluated
for Merino sheep because there were a limited number of
observations for the other breed types and the ASBV accuracy
for wool traits of maternal and terminal validation rams was
low or zero in some cases. In Merino sheep, the correlations
between yearling GEBV and yearling ASBV for wool traits
ranged from 0.23 to 0.79 for GBLUP and from 0.15 to 0.74
for BayesA (Table 4). Both GFW and FD had accuracies in
excess of 0.70. However, the accuracy for SS was less than 0.70,
which may be partly explained by two factors: the number of SS
records was low and SS has a lower heritability than either
GFW or FD (Table 2). These accuracy trends were similar
to those for the correlation between yearling GEBV and adult
ASBV (Table 5), which, to some extent, is expected as genetic
correlations between yearling and adult wool traits are generally
>0.60 (Huisman and Brown 2009). However, it is noteworthy
because accurate prediction of adult wool ASBV from yearling
GEBV facilitates accurate selection of young rams for the adult
GFW and FD of their progeny. The accuracy within wool types
was generally somewhat lower and more variable than the
accuracy for all Merino sheep combined. The between-Merino
wool type variation in accuracy was likely increased by some
wool types having only a few validation rams available. For
example, there were only 19 superfine Merino rams available for
validation. The lower correlations between wool types compared
with those for the full Merino dataset likely also reflects the fact
that some of the SNP predict between-strain differences.

The definition of an appropriate reference set for EBRWR and
LBRWR data was difficult because age at recording had differed
between the INF and FMFS (INF EBRWR = 35 days, FMFS
EBRWR=243days, INFLBRWR=360 days, FMFSLBRWR=
534 days). Therefore, six different ways of combining the data
were investigated and evaluated using GBLUP (Table 6). In two
scenarios, INFEBRWRandLBRWRalonewere evaluatedand in
four scenarios, all possible combinations were analysed. The
main conclusions were as follows. First, LBRWR observations
were more predictive of adult BRWR ASBV (higher accuracies
were achievedwith fewer records forLBRWRthan forEBRWR).
Second, when accuracies based on the LBRWR of the INF alone
(0.40) were compared with those for combinations of INF
LBRWR with either FMFS EBRWR (0.48) or FMFS LBRWR

Table 4. Accuracies (correlations between yearling genomic estimated breeding values and yearling Australian sheep
breeding values) for wool traits in Merino sheep according to the GBLUP and BayesA methods

FD,fibre diameter; GFW, greasyfleeceweight;MER,Merino;MER-F,Merinofine;MER-SF,Merino superfine;MER-S,Merino
strong; n, number of validation sires; N-ref, size of the reference population; SS, staple strength

Breed n GFW FD SS
GBLUP BayesA GBLUP BayesA GBLUP BayesA

MER 187 0.73 0.70 0.79 0.74 0.23 0.15
MER-SF 19 0.65 0.58 0.65 0.51 –0.01 0.06
MER-F 96 0.63 0.64 0.57 0.47 0.43 0.34
MER-S 69 0.51 0.40 0.49 0.23 0.18 0.20
N-ref – 3341 3341 2831 2831 2471 2471
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(0.45), it was evident that combining INF and FMFS data
increases genomic prediction accuracy because it increases the
number of observations. This trend was also observed for other
traits (results not shown). BayesA analysis of BRWR was
performed only for the combination scenario yielding the
highest accuracy in Table 6 and the results are shown in Table 5.

The analysis of meat traits resulted in accuracies lower than
those for wool traits. Accuracies ranged from –0.08 to 0.50 with
GBLUPand from–0.04 to 0.57withBayesA (Table 7). The lower
accuracy of meat traits compared with that of wool traits may be
related to heritability, which was typically lower for meat traits
(Table 2). Transformed accuracies for themeat traits are shown in
Table 8 and are higher than statistical correlations, reflecting the
fact that ASBV of validation rams had an accuracy of less than

one. Overall, Merino sheep achieved higher accuracies than
maternal and terminal breeds. This is likely a reflection of the
high proportion of Merino haplotypes in the two reference
flocks. For SEMD and SFAT, the GEBV accuracy achieved
with GBLUP ranged from 0.21 to 0.50. Further increases in
accuracy are expected when more of the INF animals are
genotyped and the size of the reference population increases.
Uncharacteristically low accuracies were observed for the
SC_WT of terminal breeds and further study is needed to
investigate the causes for this. In contrast, GEBV accuracies
for the Merino breed were similar across the three meat traits.

Comparison of results from the GBLUP and BayesAmethods
showed that GBLUP tended to give a slightly higher accuracy
than BayesA for most traits. One reason for the small difference

Table 5. Accuracies (correlations of yearling genomic estimated breeding values and adult Australian sheep breeding values) for wool
traits in Merino sheep with GBLUP and BayesA

BRWR, breech wrinkle score; E-FMFS, early Falkiner Research Station flock BRWR observations; FD, fibre diameter; GFW, greasy fleece
weight; L-INF, late information nucleus BRWRobservations;MER,Merino;MER-F,Merino fine;MER-SF,Merino superfine;MER-S,Merino

strong; n, number of validation sires; N-ref, size of the reference population

Breed n GFW FD BRWR(L-INF+E-FMFS)
GBLUP BayesA GBLUP BayesA GBLUP BayesA

MER 187 0.71 0.68 0.79 0.77 0.48 0.47
MER-SF 19 0.55 0.47 0.44 0.42 0.27 0.32
MER-F 96 0.61 0.62 0.61 0.55 0.33 0.30
MER-S 69 0.51 0.38 0.43 0.26 0.48 0.48
N-ref – 3341 3341 2831 2831 4584 4584

Table 6. Accuracy of GBLUP from different combinations of breech wrinkle score (BRWR) data
E, early BRWR observations; FMFS, Sheep Genomics Falkiner Research Station flock; INF, information nucleus flock; L, late BRWR observations; MER,
Merino; MER-F, Merino fine; MER-S, Merino strong; MER-SF, Merino superfine; n, number of validation sires; N-ref, size of the reference population

Breed n BRWR
E-INF E-INF + E-FMFS E-INF + L-FMFS L-INF L-INF + E-FMFS L-INF + L-FMFS

MER 123 0.32 0.41 0.39 0.40 0.48 0.45
MER-SF 10 0.40 0.48 0.47 0.27 0.27 0.32
MER-F 69 0.24 0.28 0.26 0.24 0.33 0.28
MER-S 39 0.28 0.42 0.40 0.37 0.48 0.45
N-ref – 3791 7100 5317 1275 4584 2801

Table 7. Accuracies for meat traits in Merino, maternal and terminal breeds with GBLUP and BayesA
BL,maternal breedBorderLeicester;MER,Merino;MER-F,Merinofine;MER-SF,Merino superfine;MER-S,Merino strong;n, number
of validation sires; N-ref, size of the reference population; SC_WT, weight at ultrasound scanning; SEMD, scanned eye muscle depth;

SFAT, scanned fat depth; TERM, terminal breed; TERM-PD, terminal Polled Dorset; TERM-WS, terminal White Suffolk

Breed n SC_WT SEMD SFAT
GBLUP BayesA GBLUP BayesA GBLUP BayesA

MER 164 0.49 0.57 0.49 0.39 0.45 0.42
MER-SF 15 0.41 0.55 –0.08 0.12 0.21 –0.04
MER-F 80 0.27 0.48 0.44 0.46 0.49 0.48
MER-S 66 0.22 0.14 0.43 0.30 0.27 0.39
BL 56 0.36 0.24 0.21 0.42 0.12 0.20
TERM 218 0.07 –0.04 0.43 0.19 0.28 0.10
TERM-PD 108 0.17 0.08 0.5 0.34 0.21 0.06
TERM-WS 99 –0.04 –0.07 0.27 0.11 0.27 0.05
N-ref – 7180 7180 7166 7166 7163 7163
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between the methods may be because a polygenic effect was
fitted with BayesA but not with GBLUP. Realised accuracies
matched analytical expectations well (Goddard 2009; Daetwyler
et al. 2010). Furthermore, BayesA did not identify many SNP
with moderate allele substitution effects. The largest effect was
seen in SC_WT (0.1 s.d. units) and there also seem to be a small
group of intermediate SNP effects present in this trait which could
partially explain why BayesA performed slightly better in
Merino sheep SC_WT. However, overall the SNP effects were
very small, which indicates that the traits are controlled by a very
large number of QTL. In such genetic architectures, GBLUP and
Bayesian models will result in similar accuracies, as pointed out
earlier.

The general difference in accuracy between the Merino
and the terminal breeds indicates that the current SNP marker
density is not sufficient for marker effects to be transferable
across breeds. This is probably because SNP alleles are not
consistently associated with the same QTL alleles in different
breeds.Twostrategies could beused to achievehigher accuracies.
First, the number of genotyped animals from each breed in the
reference population could be increased to enable accurate
estimation of marker effects for that breed alone. Second, the
marker density of the genotyping platform could be increased to
increase the level of LD in the marker set. This strategy is used
with other species to increase GEBV accuracy. However, in the
short term, increases in accuracy for terminal andmaternal breeds
will likely have to be derived via an increase in the size of the
reference populations, because a denser than 50K SNP chip or
re-sequence data is currently not available in sheep.

Conclusions

Moderate-to-high GEBV accuracies were achieved when the
reference set for estimating marker effects was sufficiently
large. Merino sheep tended to have higher accuracies than
terminal and maternal breeds because the reference population
had a strong Merino background. Given the low numbers of
reference animals for the terminal breeds, GEBV accuracies for
SEMD and SFAT are encouraging. The current SNP marker
density is not high enough to enable prediction of marker effects
across breeds. GEBV accuracy was increased by combining the
INF and FMFS datasets and further increases in sample size
would improve GEBV accuracy.
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