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In this paper, we address the general multi-period production/inventory problem with non-

stationary stochastic demand and supplier lead time under service-level constraints. A re-

plenishment cycle policy is modeled. We propose two hybrid algorithms that blend Con-

straint Programming and Local Search for computing near-optimal policy parameters. Both

the algorithms rely on a coordinate descent Local Search strategy, what differs is the way this

strategy interacts with the Constraint Programming solver. These two heuristics are, firstly,

compared for small instances against an existing optimal solution method. Secondly, they

are tested and compared with each other in terms of solution quality and run time on a set

of larger instances that are intractable for the exact approach. Our numerical experiments

show the effectiveness of our methods.

Key words: inventory control; demand uncertainty; supplier lead-time uncertainty; constraint-

based local search; heuristics.

History: submitted in February 2010.

1. Introduction

Inventory theory provides methods for managing and controlling inventories under different

constraints and environments. An interesting class of production/inventory control prob-

lems is the one that considers the single-location, single-product case under non-stationary

stochastic demand and service level constraints. Such a problem has been widely studied

because of its key role in practice [18, 35, 3].

Different inventory control policies can be adopted for the above mentioned problem. For

a discussion of inventory control policies see [35]. One of the possible policies that can be
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adopted is the replenishment cycle policy, (R, S). A detailed discussion on the characteristics

of (R,S) can be found in [13]. In this policy an order is placed every R periods to raise the

inventory level to the order-up-to-level S. This provides an effective means of dampening

planning instability (deviations in planned orders, also known as nervousness [14, 21]) and

coping with demand uncertainty. As pointed out by Silver et al. ([35], pp. 236–237), (R,S)

is particularly appealing when items are ordered from the same supplier or require resource

sharing. In these cases all items in a coordinated group can be given the same replenishment

period. Periodic review also allows a reasonable prediction of the level of the workload on

the staff involved, and is particularly suitable for advanced planning environments and risk

management [37]. For these reasons, as stated by Silver et al. [35], (R, S) is a popular

inventory policy.

Under the non-stationary demand assumption this policy takes the form (Rn,Sn), where

Rn denotes the length of the nth replenishment cycle, and Sn the order-up-to-level value for

the nth replenishment. It should be noted that this inventory control policy yields at most

2N policy parameters fixed at the beginning of an N -period planning horizon, therefore it

is particularly easy to be implemented.

Due to its combinatorial nature, the computation of optimal (Rn,Sn) policy parameters,

even in the absence of stochastic lead time, presents a difficult problem to solve to optimality.

An early work in this area, by Bookbinder and Tan [10], proposes a two-step heuristic method.

Tarim and Kingsman [40, 41] and Tempelmeier [44] propose a mathematical programming

approach to compute policy parameters. Tarim and Smith [43] give a computationally

efficient Constraint Programming formulation. An exact formulation of the policy and a

solution method are presented in Rossi et al. [32].

All the above mentioned research assumes either zero or a fixed (deterministic) supplier

lead time (i.e., replenishment lead time). However, the lead time uncertainty, in various

industries an inherent part of the business environment, is having a detrimental effect on

inventory systems. For this reason, there is a vast inventory control literature analyzing the

impact of supplier lead time uncertainty on the ordering policy (Whybark and Williams [45],

Speh and Wagenheim [36], Nevison and Burstein [25]). A comprehensive work on stochastic

supplier lead time in continuous-time inventory systems is presented in Zipkin [46]. Kaplan

[23] characterizes the optimal policy for a dynamic inventory problem, where the lead time

is a discrete random variable with known distribution and the demands in successive periods

are assumed to form a stationary stochastic process. Since tracking all the outstanding

2

Page 5 of 41 First Look

IJOC



orders through the use of Dynamic Programming requires a large multi-dimensional state

vector, Kaplan assumes that orders do not cross in time and supplier lead time probabilities

are independent of the size/number of outstanding orders (for details on order-crossover, see

Hayya et al. [20]). The assumption that orders do not cross in time is valid for systems

where supplier’s production system has a single-server queue structure operating under a

FIFO policy. Nevertheless, there are settings in which this assumption is not valid and

orders do cross in time. This has been recently investigated in Hayya et al. [19], Riezebos

[30], Bashyam and Fu [6]. In a recent work, Babäı et al. [4] analyze a dynamic re-order point

control policy for a single-stage, single-item inventory system with non-stationary demand

and lead time uncertainty. We argue that incorporating both a non-stationary stochastic

demand and a stochastic supplier lead time in an optimization model that computes (Rn,Sn)

policy parameters — without assuming that orders do not cross in time — is a relevant and

novel contribution. To the best of our knowledge, the only existing work that addresses

the computation of optimal (Rn,Sn) policy parameters under these assumptions is the one

proposed in Rossi et al. [33]. Nevertheless, the approach proposed in [33] is only able to

solve, in reasonable time, instances comprising a limited number of periods and a stochastic

lead time that ranges over a small finite support.

In order to address this efficiency issue, in this paper we propose two heuristic techniques

for computing (Rn,Sn) policy parameters under stochastic supplier lead time. We build on

the work of Eppen and Martin [15], and by following a similar scenario-based approach (see

also Birge and Louveaux [8]), we develop two constraint-based local search methods, based

on a coordinate descent strategy, for finding near-optimal (Rn,Sn) policy parameters under

non-stationary stochastic demand and supplier lead time (for a complete discussion on local

search strategies in the literature refer to Focacci et al. [16], Nocedal and Wright [26]).

In the first part of this paper, we develop a technique that is analogous to a classical

strategy of blending constraints with local search procedures (Backer et al. [5], Pesant and

Gendreau [27]). In this approach, the local search engine is used to “guide” the search,

while Constraint Programming is used to explore promising neighborhoods. In order to

implement this strategy, we exploited Tarim and Smith’s model [43] within a coordinate

descent local search approach. In the second part of this work, we adopt an alternative

strategy for integrating Constraint Programming and Local Search. In this strategy, Local

Search techniques are introduced within a constructive global search algorithm (Cesta et

al. [11]). In order to do so, we realized a deterministic equivalent modeling of the chance-
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constraints (Charnes and Cooper [12]) enforcing the required service level, by employing a

scenario based approach, and once more a coordinate descent heuristic for propagating these

constraints. In this second strategy, cost-based filtering (Focacci et al. [17]) is employed to

speed up the search. The results obtained with these two heuristic approaches are compared,

for small instances, with the optimal solution produced by the approach presented in Rossi

et al. [33].

Experimental results show that the approach proposed in Section 6 typically performs

better than the one discussed in Section 5 in terms of solution quality. Nevertheless, the

approach in Section 5 scales better and is faster than the approach in Section 6 in solving

larger instances. Both the approaches run faster than the complete approach presented in

Rossi et al. [33], which is able to solve only very small instances.

The paper is organized as follows. In Section 2, we introduce the problem and the assump-

tions adopted throughout the paper. In Section 3, we provide a Stochastic Programming

formulation of the problem. In Section 4, we discuss a deterministic equivalent non-linear

formulation of the Stochastic Programming model. In Section 5, we introduce a first heuristic

solution method for the non-linear model discussed in Section 4. A second heuristic strategy

is discussed in Section 6. Computational results are presented in Section 7. Summary and

Conclusions are presented in Section 8.

2. Problem Definition

We discuss the general multi-period production/inventory control problem with non-stationary

stochastic demand and lead time.

We consider a finite planning horizon of N periods and a demand dt for each period

t ∈ {1, . . . , N}, which is a random variable with probability density function gt(dt). The

demand we consider is non-stationary, that is it can vary from period to period, and we also

assume that demands in different periods are independent.

As in Eppen and Martin [15], an order placed in period t ∈ {1, ..., N} is subject to a

stochastic lead time lt with probability mass function ft(·). Note that {lt} are mutually inde-

pendent and they are also independent of the respective order quantity. Since we consider a

discrete stochastic lead time with probability mass function ft(·) in each period t = 1, . . . , N ,

this implies that an order placed in period t will be received exactly after k periods with

probability ft(k). Since ft(k) is discrete, we assume that there is a maximum lead time L for
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which
∑L

k=0 ft(k) = 1, i = 1, . . . , N . The probability of observing any lead time length p > L

will always be 0. Therefore, the possible lead time lengths are limited to Λ = {0, . . . , L},
and the probability mass function is defined on the finite set Λ.

A fixed delivery cost a is incurred for each order at the time such an order is placed. A

linear holding cost h is incurred for each unit of product carried in inventory from one period

to the next, as well as those that are part of an outstanding order. This reflects the fact that

we charge interests not only on the actual amount of items we have in stock, but also on

outstanding orders. Doing so often makes sense, since companies may assess holding cost on

their total invested capital and not simply on items in stock — this cost accounting strategy

has been observed during our collaboration with Alcatel-Lucent manufacturing divisions. A

further detailed justification for this cost accounting strategy can be found in Hunt [22].

Demands not met are assumed to be back-ordered, and satisfied as soon as the next

replenishment order arrives. We assume that it is not possible to sell back excess items to

the vendor at the end of a period and that negative orders are not allowed. If the actual

inventory exceeds the order-up-to-level for that review, this excess stock is carried forward

and not returned to the supply source. However, such occurrences are regarded as rare

events and accordingly the cost of carrying this excess stock and its effect on the service

levels of subsequent periods are ignored. This assumption is consistent with previous works

in the literature (Bookbinder and Tan [10], Tarim and Kingsman [40], Tarim and Smith [43],

Tempelmeier [44] and Tarim et al. [39]). Furthermore, a computational study in Rossi et al.

[32] showed that such an assumption does not significantly impact the quality of the optimal

solution obtained.

As a service level constraint, we require the probability that at the end of every period

the net inventory will be non-negative to be at least a given value α. This value is assumed

to be set by the management to a reasonably high threshold, therefore we will not consider

values of α that are less than 0.5 — in real applications, α takes greater values, i.e. 0.95. Our

aim is to minimize the expected total cost, which is composed of ordering costs and inventory

holding costs, over the N -period planning horizon, satisfying the service level constraints.

The actual sequence of ordering and delivery is similar to the one described in Kaplan

[23]. We adopt the same sequence of actions described in his paper, since it handles all the

deliveries symmetrically, and allows for some delay in the arrival deliveries at the beginning

of a period. The sequence is therefore as follows. At the beginning of a period, the inventory

on-hand after the realization of demands from the previous periods is known. Since we are
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assuming complete backlogging, this quantity may be negative. We also know the orders

placed in previous periods, that have not been delivered yet. On the basis of this information,

an ordering decision is made for the current period. All deliveries made during a period are

assumed to arrive immediately after this ordering decision, and hence are on hand at the

beginning of the period. A further discussion that states the convenience of this sequence

of events can be found in Kaplan [23]. To summarize there are three successive events

at the beginning of each period. First, the inventory on-hand and outstanding orders are

determined. Second, an ordering decision is made on the basis of this information. Third,

all supplier deliveries for the current period, including the most recent orders, are received.

3. Stochastic Programming Formulation

A stochastic programming formulation for the problem discussed in the previous section is

given below,

min E{TC} =
∫

d1

. . .

∫

dN

N∑

t=1

[

a · δt + h ·max

(
t∑

k=1

(Xk − dk), 0

)]

g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(1)

subject to,

It = I0 +
∑

{k|k≥1,lk≤t−k}

Xk −
t∑

k=1

dk t = 1, . . . , N (2)

δt =

{
1, if Xt > 0
0, otherwise

t = 1, . . . , N (3)

Pr{It ≥ 0} ≥ α t = L + 1, . . . , N (4)

It ∈ R, Xt ≥ 0, t = 1, . . . , N. (5)

where

E{.} : the expectation operator,

TC : total cost,

dt : the demand in period t, a random variable with probability density

function, gt(dt),

a : the fixed ordering cost (incurred when an order is placed),

h : the proportional inventory holding cost,
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lt : the lead time length of the order placed in period t, a discrete

random variable with probability mass function ft(·).
δt : a {0,1} variable that takes the value of 1 if a replenishment occurs in

period t and 0 otherwise,

It : the inventory level (stock on hand minus back-orders) at the end of

period t,

I0 : the initial inventory,

Xt : the size of the replenishment order placed in period t, Xt ≥ 0,

(received in period t + L).

In this model, the objective function (Eq. 1) minimizes the expected total cost, which is

comprised of ordering costs and inventory holding costs. As discussed earlier, the latter are

charged in each period on delivered and outstanding orders, for this reason the stochastic

lead time does not play a direct role in the objective function. Eq. 2 represents the inventory

balance constraint, which states that the inventory level at period t, It, is the sum of the

initial inventory, I0, and of all the subsequent order quantities that are delivered by period

t,
∑

{k|k≥1,lk≤t−k} Xk, minus the cumulative demand up to period t,
∑t

k=1 dk. Eq. 3 states

that if a replenishment occurs in period t — i.e. the order quantity Xt is greater than 0

— then the corresponding indicator variable δt must take a value of 1. Eq. 4 enforces the

required service level constraint in each period. That is, the probability inventory level at

the end of each period is positive, must be greater or equal to the threshold α. Finally, the

inventory levels, It, are real valued decision variables and the order quantities, Xt, must be

positive. Note that, depending on the lead time probability mass functions, it may not be

possible to provide the required service level for some initial periods. In general, reasoning

in a worst case scenario, it is always possible to provide the required service level α starting

from period L+1. For this reason, the service level constraints are only enforced over periods

L + 1, . . . , N .

4. Deterministic Equivalent Modeling

In order to solve the above model, it is necessary to reformulate the service level constraints

in Eq. 4, in terms of deterministic equivalent expressions. To do so, we blend a scenario
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based approach — since the lead time probability distribution is assumed to be discrete —

with a strategy similar to Bookbinder and Tan’s “static-dynamic” uncertainty [10].

To begin, we discuss how to obtain a deterministic equivalent formulation for the chance-

constraints that enforce the required service level when the lead time in each period varies

and assumes a given deterministic value. Subsequently, we will generalize the same reasoning

to the case in which the lead time is stochastic and assumes a different distribution from

period to period.

When a dynamic deterministic lead time Lt ≥ 0 is considered in each period t = 1, . . . , N ,

an order placed in period t will be received only at period t + Lt. Eq. 2 therefore becomes,

It = I0 +
∑

{k|k≥1,Lk+k≤t}

Xk −
t∑

k=1

dk t = 1, ..., N. (6)

Let us denote the inventory position (the total amount of inventory on-hand plus out-

standing orders minus backorders) at the end of period t as Pt. It directly follows that

Pt = It +
∑

{k|1≤k≤t,Lk+k>t}

Xk, (7)

where we assume P0 = I0. It is easy, then, to reformulate the model using the inventory

position. Furthermore, consider the expectation operator E{·}, and since the demands {dt}
are assumed to be mutually independent, we may rewrite the objective function as

min E{TC} =
N∑

t=1

(h · E {max(Pt, 0)}+ a · δt) . (8)

When a stock-out occurs, all demand is back-ordered and fulfilled as soon as an adequate

supply arrives. Following Bookbinder and Tan [10], since we have assumed that the man-

agement will set the non-stockout probability to a reasonably high level — certainly greater

than 0.5 — we can safely replace the term E{max(Pt, 0)} with the term E{Pt}.
The general stochastic programming formulation can then be modified to incorporate the

“replenishment cycle policy”. Consider a review schedule, which has m reviews over the N

period planning horizon with orders placed at T1, T2, . . . , Tm, where Ti > Ti−1, Tm ≤ N−LTm
.

For convenience, T1 is defined as the start of the planning horizon and Tm+1 = N + 1 as the

period immediately after the end of the planning horizon. Note that the review schedule

may be generalized to consider the case where T1 > 1, if the opening inventory I0 is sufficient

to cover the immediate needs at the start of the planning horizon. The associated inventory
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reviews will take place at the beginning of periods Ti, i = 1, . . . , m. In the replenishment cycle

policy considered here, clearly the orders Xi are all equal to zero except at replenishment

periods T1, T2, . . . , Tm. The inventory level It carried from period t to period t + 1 is the

opening inventory plus any orders that have arrived up to and including period t less the

total demand to date. Hence, the inventory balance equation becomes,

It = I0 +
∑

{i|LTi
+Ti≤t}

XTi
−

t∑

k=1

dk, t = 1, . . . , N. (9)

Define Tp(t) as the latest review before period t in the planning horizon, for which all the

former orders, including the one placed in Tp(t), are delivered within period t. Therefore,

p(t) = max
{
i|∀j ∈ {1, . . . , i}, Tj + LTj

≤ t, i = 1, . . . , m
}

. (10)

The inventory level It at the end of period t (Eq. 9) can be expressed as

It = I0 +

p(t)∑

i=1

XTi
+

∑

{i|i>p(t),LTi
+Ti≤t}

XTi
−

t∑

k=1

dk, t = 1, . . . , N. (11)

We now want to reformulate the constraints of the chance-constrained model in terms of

a new set of decision variables RTi
, i = 1, . . . , m.

Define,

Pt = RTi
−

t∑

k=Ti

dk, Ti ≤ t < Ti+1, i = 1, . . . , m (12)

where RTi
can be interpreted as the inventory position up to which inventory should be

raised after placing an order at the ith review period Ti. We now express Eq. 11 using RTi

as decision variables

It = RTp(t)
+

∑

{i|i>p(t),LTi
+Ti≤t}

(
RTi
−RTi−1

+ dTi−1
+ . . . + dTi−1

)
−

t∑

k=Tp(t)

dk,

t = 1, . . . , N.

(13)

As mentioned earlier, α is the desired minimum probability that the net inventory level in

any time period is non-negative. Depending on the values assigned to Lt, it may not be

possible to provide the required service level for some initial periods. In general, we provide

the required service level α starting from the period t, for which the value t+Lt is minimum.

Let M be this period. Note that, it will never be optimal to place any order in a period t
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such that t + Lt > N , since such an order will not be received within the given planning

horizon.

By substituting It with the right hand term in Eq. 13 we obtain

GS



RTp(t)
+

∑

{i|i>p(t),LTi
+Ti≤t}

(RTi
−RTi−1

)



 ≥ α,

t = M, . . . , N.

(14)

where S =
∑t

k=Tp(t)
dk −

∑
{i|i>p(t),LTi

+Ti≤t}(dTi−1
+ . . . + dTi−1), and GS(.) is the cumula-

tive distribution function of S. The service level constraints are now deterministic and are

expressed only in terms of the order-up-to-positions.

It is now relatively easy to obtain a deterministic equivalent model in which lead times

are stochastic, under the original assumption that the lead time in each period is a discrete

random variable lt.

We first reformulate the chance-constrained model under stochastic lead time using the

inventory position,

min E{TC} =

∫

d1

. . .

∫

dN

N∑

t=1

(aδt + h · Pt)

g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(15)

subject to,

δt =

{
1, if Xt > 0
0, otherwise

t = 1, ..., N (16)

Pt = I0 +
t∑

k=1

(Xk − dk) t = 1, ..., N (17)

Pr{Pt ≥
∑

{k|1≤k≤t,lk>t−k}

Xk} ≥ α t = L + 1, ..., N (18)

Pt ≥ 0, Xt ≥ 0, t = 1, ..., N. (19)

Also in this case, we want to adopt a replenishment cycle policy and express the whole

model in terms of the new set of variables RTi
, so that order quantities are decided only after

the demand in the former periods is realized.

Similar to the dynamic deterministic lead time case, we now express the service level

constraint as a relation between the opening-inventory-positions, such that the overall service

level provided at the end of each period is at least α. In order to express this service level

constraint, we propose a scenario based approach over the discrete random variables {lt}. In
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a scenario based approach (see also Birge and Louveaux [8] and Tarim et al. [42]), a scenario

tree is generated which incorporates all possible realizations of discrete random variables

into the model explicitly, yielding a fully deterministic model under the non-anticipativity

constraints.

In our problem, we can divide random variables into two sets: the random variables {lt}
which represent lead times and the random variables {dt} which represent demands. We deal

with each set in a separate fashion, by employing a scenario based approach for the {lt} and a

deterministic equivalent modeling approach for the {dt}. This is possible since, under a given

scenario, discrete random variables are treated as constants. The problem is then reduced

to the general multi-period production/inventory problem with dynamic deterministic lead

time and stochastic demands, which has been previously analyzed.

Consider a review schedule, which has m reviews over the N period planning horizon

with orders placed at T1, T2, . . . , Tm. A scenario ωt is a possible lead time realization for all

the orders placed up to period t in a given review schedule. Let (lTi
|ωt) be the realized lead

time in scenario ωt for the order placed in period Ti. Finally, let Ωt be the set of all the

possible scenarios ωt.

Under a given scenario ωt, the service level constraint for a period t can be easily expressed

using Eq. 14. It follows that the service level constraint is always a relation between at most

L + 1 decision variables RTi
that represent the order-up-to-positions of the replenishment

cycles covering the span t − L, . . . , t. Let pω(t) be the value of p(t) under a given scenario

ωt, when a review schedule Z is considered. In order to satisfy the service level constraints

in our original model, we require that the overall service level under all possible scenarios,

for each set of at most L + 1 decision variables, is at least α. Equivalently, by using Eq. 14,

∑

ωt∈Ωt

Pr{ωt} ·GS



RTpω(t)
+

∑

{i|i>pω(t),(lTi
|ωt)≤t−Ti}

(RTi
−RTi−1

)



 ≥ α,

t = L + 1, . . . , N,

(20)

where S =
∑t

k=Tpω(t)
dk −

∑
{i|i>pω(t),(lTi

|ωt)≤t−Ti}
(dTi−1

+ . . . + dTi−1). It should be noted that

this equation is non-linear. In the remainder of the paper, we refer to Eq. 20 as “service level

constraints” or “SL Constraints”, as this equation is refered most commonly throughtout.

In our chance-constrained model, we can now replace the original service level constraints

with the new formulation in Eq. 20. As a consequence, the service level constraints are now

expressed only in terms of the order-up-to-levels. Therefore, the expectation operator can
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be safely applied to the closing-inventory-levels, {Pt}, and to the stochastic demands, {dt},
since these variables are only affecting the objective function in which we are minimizing an

expected value. In what follows, the expected value of Pt and dt are denoted by P̃t and d̃t,

respectively.

We can now express the whole model in terms of a new set of decision variables Rt,

t = 1, . . . , N . If there is no replenishment scheduled for period t, that is if δt = 0, then

Rt must be equal to the expected closing-inventory-position in period t − 1, that is Rt =

P̃t−1. If there is a review Ti in period t, Rt is equal to the order-up-to-position RTi
for this

review. Therefore, the desired order-up-to-positions, {RTi
}, as required for the solution to

the problem, are those values of Rt, for which δt = 1.

The complete model under the replenishment cycle policy is then:

min E{TC} =
N∑

t=1

(
h · P̃t + a · δt

)
(21)

subject to,

Eq. 20 (SL Constraints)

Rt > P̃t−1 ⇒ δt = 1 t = 1, . . . , N (22)

Rt ≥ P̃t−1 t = 1, . . . , N (23)

Rt = P̃t + d̃t t = 1, . . . , N (24)

Rt ≥ 0, P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N, (25)

where {T1, . . . , Tm} = {t ∈ {1, . . . , N}|δt = 1}.
It should be noted that the domain of each P̃t variable — as in the zero lead time case (see

Tarim and Smith [43]) — is limited. In fact, since the period demand variance is additive, the

uncertainty can only increase in the length of a replenishment cycle. Therefore the longer a

cycle is, the higher the inventory levels that are required to achieve a certain service level. It

directly follows that a single replenishment covering the whole planning horizon will provide

upper bounds for the expected period closing-inventory-positions throughout the horizon.

4.1. An example

We assume an initial null inventory level and a normally distributed demand with a coefficient

of variation σt/d̃t = 0.3 for each period t ∈ {1, . . . , 5}. The expected values for the demand

in each period are: {36, 28, 42, 33, 30}. The other parameters are a = 1, h = 1, α =
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Policy cost: 356
Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 125 124 129 87 55
δt 1 1 1 1 1
Shortage probability − − 5% 5% 5%

Table 1: A replenishment plan.
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Figure 1: A graphical illustration of the replenishment plan in Table 1.

0.95(zα=0.95 = 1.645). We consider that every period i in the planning horizon has following

lead time probability mass function ft(k) = {0.3(0), 0.2(1), 0.5(2)}. This implies that we

receive an order placed in period i after t ∈ {0, . . . , 2} periods with a given probability (0

periods: 30%; 1 period: 20%; 2 periods: 50%). It is obvious that in this case, we will always

receive the order within 2 periods, after it is placed. In Table 1, we show the optimal solution.

The optimal replenishment plan is also illustrated in Fig. 1. We now show, through Eq. 20

(SL Constraints), that the order-up-to-positions in this example satisfy every service level

constraint in the model. We assume that for the first 2 periods, no service level constraint

is enforced, since it is not possible to control the inventory in the first 2 periods. Therefore,

we enforce the required service level on period 3, 4 and 5 (that is Eq. 20 or SL Constraints)

for t = 3, . . . , N . Let us verify that the given order-up-to-levels satisfy this condition for

these three periods. Since we know the probability mass function ft(·) for each period t in

the planning horizon, we can compute the probability Pr(ωt) for each scenario ωt ∈ Ωt. We

thus have four of these scenarios for each period t ∈ {3, . . . , N}, as we are placing an order

in each period.

• S1, Pr{S1} = 0.15; in this scenario for period t, we receive all the former orders
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• S2, Pr{S2} = 0.35; in this scenario for period t, we do not receive the last order placed

in period t

• S3, Pr{S3} = 0.35; in this scenario for period t, we do not receive the last two orders

placed in period t and t− 1

• S4, Pr{S4} = 0.15; in this scenario for period t, we do not receive the order placed in

period t− 1, and we observe order-crossover.

In the described scenarios, every possible configuration is considered, without loss of gen-

erality. In fact, if some of the configurations are unrealistic (for instance, if we assume

that order-crossover may not take place) we just need to set the probability of the respec-

tive scenario to zero. Now, it is possible to write SL Constraints (Eq. 20) for each period

t ∈ {3, . . . , N}. For period 3,

Pr{S1} ·G
(

129− 42

0.3
√

422

)
+ Pr{S2} ·G

(
124− (28 + 42)

0.3
√

282 + 422

)
+

Pr{S3} ·G
(

125− (36 + 28 + 42)

0.3
√

362 + 282 + 422

)
+

Pr{S4} ·G
(

125 + (129− 124)− (36 + 42)

0.3
√

362 + 422

)
= 94.60 ∼= 95,

(26)

where G(·) is the standard normal distribution function with zero mean and unit standard

deviation. This implies that the combined effect of order delivery delays in our policy, under

any possible scenario results in a stock-out probability of exactly 95% for period 3. A similar

reasoning can be applied to verify that the given solution satisfies the required service level

for period 4 and 5.

5. Heuristic Method I

In this section, we introduce a first heuristic method, named Heuristic I or, shortly, H1,

for computing near optimal replenishment cycle policy parameters under non-stationary

stochastic demand and lead time. The key intuition behind this heuristic strategy consists

in noticing that when all the replenishment decisions have been fixed, the SL Constraints

(Eq. 20) can be used to check if in a given period the required service level constraint is met.

If the service level is not met, the gradient function is able to indicate which order-up-to-

position should be increased in order to achieve the maximum service level improvement for
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that period. This method employs one of the efficient techniques proposed in the literature

such as the one in Tarim and Smith [43].

min E{TC} =

N∑

t=1

(
aδt + hĨt

)
(27)

subject to, for t = 1 . . .N

Ĩt + d̃t − Ĩt−1 ≥ 0 (28)

Ĩt + d̃t − Ĩt−1 > 0⇒ δt = 1 (29)

Ĩt ≥ b

(
max

j∈{1,...,t}
j · δj , t

)
(30)

Ĩt ∈ Z
+ ∪ {0}, δt ∈ {0, 1}, (31)

where b(i, j) = G−1
di+di+1+...+dj

(α)−∑j

k=i d̃k, and G−1
di+di+1+...+dj

(·) denotes the inverse cumu-

lative distribution function of di + di+1 + . . . + dj.

In Tarim and Smith’s model (Eqs. 27–31), each decision variable Ĩt, represents the

expected inventory level at the end of period t. Each d̃t represents the expected value of

the demand in a given period t, according to its probability density function gt(dt). The

binary decision variables δt state whether a replenishment is fixed for period t (δt = 1) or

not (δt = 0). The objective function (27) minimizes the expected total cost over the given

planning horizon. The two terms that contribute to the expected total cost are ordering

costs and inventory holding costs. Constraint (28) enforces a no-buy-back condition, which

means that received goods cannot be returned to the supplier. As a consequence of this, the

expected inventory level at the end of period t must be no less than the expected inventory

level at the end of period t − 1 minus the expected demand in period t. Constraint (29)

expresses the replenishment condition. We have a replenishment if the expected inventory

level at the end of period t is greater than the expected inventory level at the end of period

t−1 minus the expected demand in period t. This means that we receive some extra goods as

a consequence of an order. Constraint (30) enforces the required service level α. This is done

by specifying the minimum expected closing-inventory-level (or “buffer stock”) required for

each period t in order to assure that, at the end of each time period, the probability that the

net inventory is non-negative is at least α. These buffer stocks, which are stored in matrix

b(·, ·), are pre-computed following the approach suggested in Tarim and Kingsman [40].

The buffer stocks mentioned in the previous paragraph refer to the case in which no lead

time is considered and where every order is delivered immediately. These buffer stocks are
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Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 54 42 63 49 45
δt 1 1 1 1 1
Shortage probability − − 78% 78% 77%

Table 2: No lead time solution.

typically lower than those required to provide the required service level α, when a stochastic

delivery lead time is considered. Our strategy, in this first heuristic, consists in iteratively

adjusting the buffer stocks in the matrix in order to increase the service level in each period

till the required service level α is met in every period of the planning horizon. The local search

procedure to compute policy parameters under stochastic lead time is shown in Algorithm

1. In this algorithm a replenishment plan is made of a number of replenishment cycles. A

replenishment cycle R(i, j) is the set of periods that are located between two consecutive

replenishment periods i and j + 1.

The method initially solves the model in Eqs. 27–31 (Algorithm 1, line 5), with buffer

stocks set as in the no lead time case. This gives a replenishment plan, that is an assignment

for decision variables δt and a (possibly) infeasible assignment for the respective order-up-

to-positions. If this assignment is infeasible (Algorithm 1, line 6), we consider sequentially

(Algorithm 1, line 10) each period in every replenishment cycle scheduled and increase the

buffer stocks (Algorithm 1, line 15) of replenishment cycles affecting the service level in this

period (Algorithm 1, line 11) until the required service level α is met (Algorithm 1, line 12).

This can be checked by using SL Constraints (Eq. 20). Buffer stocks are increased according

to a rule that increments at each step the buffer stock that produces the highest service level

improvement for the period considered (Algorithm 1, line 14). This process is iterated by

solving again the model in Eqs. 27–31 using this modified buffer stock matrix (Algorithm

1, line 17), until the model directly produces a feasible solution (Algorithm 1, line 18). We

now provide a simple example to illustrate this procedure.

We present the same example proposed in Section 4.1. By disregarding the information

on the stochastic lead time, we use the relevant data in the model shown in Eqs. 27–31.

By solving this model, we obtain the solution shown in Table 2. Considering the stochastic

lead time and by using SL Constraints (Eq. 20), it is possible to compute the service level

provided in period 3, 4 and 5 for this solution (These service levels are also shown in Table
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Algorithm 1: Heuristic Method I

input : d1, . . . , dN ; a; h; α
output: a replenishment plan

begin1

for each period i in 1, . . . , N do2

for each period j in i, . . . , N do3

b(i, j)← G−1
di+di+1+...+dj

(α)−∑j

k=i d̃k4

Solve the model in Eqs. 27–31 with input d1, . . . , dN , a, h, α, and buffer matrix5

b(·, ·);
By using SL Constraints (Eq. 20), check if the solution found provides the6

required service level α at the end of each period;
while the current solution does not provide service level α do7

Let R be the set of consecutive replenishment cycles in the solution;8

for each replenishment cycle R(i, j) in R do9

for each period t in R(i, j) do10

Let P be the set of former cycles influencing the service level in period t11

according to Eq. 20;
while the service level in period t is less than α do12

For each cycle R(m, n) ∈ P⋃{R(i, j)} obtain the respective13

minimum allowed order-up-to-position Rm = Ĩn +
∑n

i=m d̃i;
Let R(m, n) ∈ P⋃{R(i, j)} be the cycle for which a unit increment14

in Rm produces the highest service level improvement;
b(m, n)← Ĩn + 1;15

Ĩn ← Ĩn + 1;16

Solve the model in Eqs. 27–31 with input d1, . . . , dN , a, h, α, and modified17

buffer matrix b(·, ·);
By using SL Constraints (Eq. 20), check if the solution found provides the18

required service level α at the end of each period;

return the current replenishment plan;19

end20

2). Clearly, these service levels are not higher than the required minimum service level α.

Therefore, using SL Constraints we modify the buffer stock matrix b(·, ·) in such a way so as

to increase the relevant buffers and thus obtain a feasible solution. For instance, we increase

the buffer stock level b(1, 1) of replenishment cycle R(1, 1) from 18 to 102, the buffer stock

level b(2, 2) of replenishment cycle R(2, 2) from 14 to 106, the buffer stock level b(3, 3) of

replenishment cycle R(3, 3) from 21 to 94, and the buffer stock level b(4, 4) of replenishment

cycle R(4, 4) from 16 to 50. This is based on the greedy rule discussed in Algorithm 1,
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Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 138 102 74 83 50
δt 1 0 0 1 1
Shortage probability − − 5% 35% 48%

Table 3: Solution with increased buffers.

Policy cost: 397
Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 138 134 136 94 61
δt 1 1 1 0 0
Shortage probability − − 2% 2% 5%

Table 4: Feasible solution.

and further based on the SL Constraints. We solve the model again using the modified

buffer stock matrix b(·, ·). Since some of the buffers are increased, it is not anymore optimal

to schedule a replenishment in each period, as noticed in the solution obtained using this

new modified buffer stock matrix (Table 3). The service level provided in period 3 is now

sufficiently high, but those provided in period 4 and 5 is not. We shall therefore iterate

the process until we eventually converge to the feasible solution presented in Table 4. This

heuristic is about 11% more costly than the optimal replenishment strategy.

6. Heuristic method II

The Heuristic Method I presented in the former section typically converges to a good solution

in a few iterations, but often it may not produce solutions that are sufficiently close to the

optimal. In order to produce higher quality solutions, we discuss here a different strategy

that employs a Constraint Based Local Search approach. We name this second heuristic

Heuristic II or H2.

6.1. Constraint Reasoning

Constraint Programming (see Apt [2]) is a declarative programming paradigm in which re-

lations between decision variables are stated in the form of constraints. Informally speaking,

constraints specify the properties of a solution to be found. The constraints used in con-
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straint programming are of various kinds: logic constraints (i.e. ”x or y is true”, where x

and y are boolean decision variables), linear constraints, and global constraints (Régin [29]).

A global constraint captures a relation among a non-fixed number of variables. One of the

most well known global constraints is the alldiff constraint (Régin [28]), that can be enforced

on a certain set of decision variables in order to guarantee that no two variables are assigned

the same value.

With each constraint, CP associates a filtering algorithm able to remove provably infea-

sible or suboptimal values from the domains of the decision variables that are constrained

and, therefore, to enforce some degree of consistency (see Rossi et al. [31]). These filtering

algorithms are repeatedly called until no more values are pruned. This process is called

constraint propagation.

In addition to constraints and filtering algorithms, constraint solvers also feature some

sort of heuristic search engine (e.g. a backtracking algorithm). During the search, the

constraint solver exploits filtering algorithms in order to proactively prune part of the search

space that cannot lead to a feasible or to an optimal solution.

6.2. Local Search

A neighborhood structure is a function N : S → 2S that assigns to every solution s ∈ S, a

set of neighbors N (s) ⊆ S. N (s) called the neighborhood of s. Without loss of generality,

we here restrict the discussion to minimization problems. A locally minimal solution (or

local minimum) with respect to a neighborhood structure N is a solution ŝ such that ∀s ∈
N (ŝ) : f(ŝ) ≤ f(s). We call ŝ a strict local minimal solution if ∀s ∈ N (ŝ) : f(ŝ) < f(s).

Local search (LS) algorithms for COPs start from some initial solution and iteratively try to

replace the current solution by a better solution in an appropriately defined neighborhood of

the current solution. In this process, it is extremely important to achieve a proper balance

between diversification and intensification of the search. The term diversification generally

refers to the exploration of the search space, whereas the term intensification refers to the

exploitation of the accumulated search experience. Among the most popular local search

strategies we recall the Iterative Improvement, or Hill Climbing, in which each move is only

performed if the resulting solution is better than the current solution and the algorithm stops

as soon as it finds a local minimum. Tabu Search is a more advanced strategy, in fact it is

among the most cited and used. Tabu search explicitly uses the history of the search, both

to escape from local minima and to implement an explorative strategy. Iterated Local Search
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Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 54 42 63 − −
δt 1 1 1 − −
Shortage probability − − 78% − −

Table 5: Partial assignment.

and Variable Neighborhood Search constitute other examples of local search strategies. For

a comprehensive survey on local search and metaheuristic strategies, the reader may refer to

Blum and Roli [9]. In what follows, we will employ a strategy known as coordinate descent.

Coordinate descent algorithms, sometimes called one-at-a-time, minimize (maximize) a given

function by minimizing (maximizing) it over a single variable while holding all other variables

constant. There are two approaches: cyclic algorithms that cycle through all of the variables;

and greedy algorithms that choose the variable that reduces the cost by the largest amount in

each iteration. In the coordinate descent strategy discussed in the next section, an algorithm

belonging to this second “greedy” class will be employed.

6.3. The Approach

The key intuition behind the second heuristic strategy slightly differs from that of the first

heuristic. In this heuristic, we emphasize that when some replenishment decisions have

been fixed, SL Constraints (Eq. 20) can be used to check if in a given period, the required

service level constraint is met. If the service level is not met, a gradient function indicates

which order-up-to-position should be increased in order to achieve the maximum service level

improvement in such a period. We shall now provide a simple example to clarify how this

procedure works.

We consider again the example proposed in Section 4.1. In Table 5, we show a possible

partial replenishment plan that schedules orders in period 1, 2, and 3; the remaining replen-

ishment decisions are not yet fixed. Clearly, the order-up-to-level in each period t = 1, . . . , 3

will be at least as high as those required to provide the service level α, when the lead time

is 0. Therefore, a good starting configuration for the order-up-to-level is 54, 42, and 63

respectively for R1, R2, and R3. As it is easy to observe using SL Constraints, it is now

possible to compute the service level provided in period 3.
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Policy cost: 366
Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 131 128 130 88 55
δt 1 1 1 1 1
Shortage probability − − 3% 3% 5%

Table 6: Full assignment.

Pr{S1} ·G
(

63− 42

0.3
√

422

)
+ Pr{S2} ·G

(
42− (28 + 42)

0.3
√

282 + 422

)
+

Pr{S3} ·G
(

54− (36 + 28 + 42)

0.3
√

362 + 282 + 422

)
+

Pr{S4} ·G
(

54 + (63− 42)− (36 + 42)

0.3
√

362 + 422

)
= 0.2192 ∼= 0.22

(32)

The service level provided (about 0.22) is not sufficient to satisfy SL Constraints (Eq. 20) in

period 3. In order to decide which order-up-to-position to increase, we analyze the behavior

of the service level at period 3, when R1, R2, and R3 are increased respectively. If we increase

R1 by one unit, the service level at period 3 becomes 0.2229; if we increase R2 by one unit,

the service level at period 3 becomes 0.2175; finally, if we increase R3 by one unit, the service

level at period 3 becomes 0.2239 It follows that, an increase of one unit for R3 achieves the

maximum service level improvement. We proceed in a similar fashion by increasing at each

step the order-up-to-position Rt that produces the maximum increase in the service level

provided, until SL Constraints are satisfied for the period of interest. The reader may be

easily convinced that, when we consider period 3, this process terminates after a few steps,

when R1 = 131, R2 = 95, and R3 = 75. We then proceed and repeat the same process,

assuming that the ordering decisions are all fixed and that an order is scheduled in every

period. In this case, we consider period 4 and period 5 sequentially. The final solution

produced by this approach is shown in Table 6.

We next describe the complete approach. Our technique exploits the model presented in

Eq. 21 - 25. This model is implemented within Choco 1.2 (Laburthe et al. [24]), an open

source Constraint Programming solver developed in Java. The variable selection heuristic

branches first on decision variables δt. These variables are selected according to their natural

order, that is {δ1, . . . , δN}. The value selection heuristic selects values in increasing order.

SL Constraints (Eq. 20) cannot be directly implemented as such, and therefore are replaced,

in our Constraint Programming model, by a global constraint able to dynamically compute

21

Page 24 of 41First Look

IJOC



the required order-up-to-level for a given partial replenishment plan (that is, a partial as-

signment for decision variables δt). As discussed, the order-up-to-levels are computed using

the gradient-based local search approach shown in the former example, which in practice

follows a coordinate descent strategy. A pseudo-code describing the propagation logic of this

constraint is presented below in Algorithm 2.

Algorithm 2: Heuristic Method II - Propagation

input : a partial assignment for decision variables δt, t = 1, . . . , N ,
the expected closing-inventory-positions P̃t, t = 1, . . . , N ,
the service level α

begin1

Let R be the set of consecutive replenishment cycles identified by the partial2

assignment for decision variables δt;
for each replenishment cycle R(i, j) in R do3

for each period t in R(i, j) do4

Let P be the set of former cycles influencing the service level in period t5

according to SL Constraint (Eq. 20);
while the service level in period t is less than α do6

For each cycle R(m, n) ∈ R⋃{R(i, j)} obtain the respective minimum7

allowed order-up-to-position Rm as Inf{Dom(P̃m)}+ d̃m;
Let R(m, n) ∈ R⋃{R(i, j)} be the cycle for which a unit increment in8

Rm produces the highest service level improvement;
Inf{Dom(P̃m)} ← Inf{Dom(P̃m)}+ 1;9

end10

The propagation logic described in Algorithm 2 is triggered each and every time, during

the search, a replenishment decision is fixed. Recall that our search strategy branches first on

decision variables δt, according to their natural sequence, so that at each node of the search

tree we have a set of consecutive replenishment decisions {δ1, . . . , δt} that have been assigned.

This implies, that at each node of the search tree, we will also have a set of consecutive

replenishment cycles, R ≡ {R(1, i), . . . ,R(j, t)}, that are uniquely identified by the current

partial assignment (Algorithm 2, line 2). For each cycle, we consider each and every period

(Algorithm 2, line 4). By using SL Constraints (Eq. 20) and more specifically condition

10, we can easily identify which former cycles (and order-up-to-positions) are affecting the

service level in the period under consideration (Algorithm 2, line 5). We consider each of

these order-up-to-positions, say Rm, and observe the behavior of the service level when the
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minimum value allowed for it, Rm = Inf{Dom(P̃m)}+ d̃m, (Algorithm 2, line 7) is increased

by one unit. That is, when the minimum value (Inf) in the domain (Dom) of P̃m plus d̃m, is

increased by one unit. Once the order-up-to-position Rm that produces the maximum service

level improvement for the period considered is identified (Algorithm 2, line 8), we restrict the

domain of the corresponding expected closing inventory position P̃m by removing the value

Inf{Dom(P̃m)} (Algorithm 2, line 9). This process eventually produces (by subsequent

greedy improvements), a set of order-up-to-positions that meet the required service level.

Also this second approach is clearly heuristic, since the order-up-to-levels are adjusted

by using “local” moves that aim to locally maximize the improvement in the service level

provided at a given period. It is also an example of a hybrid method that employs local

search, at each node of the search tree, within the propagation logic of a global constraint.

Nevertheless, this approach does perform better than the previous one in terms of quality

of the solutions produced. For instance, with respect to the example presented in Section

4.1, this second heuristic approach produces a solution with cost 366, that is only 2.8% more

costly than the optimal solution.

It is worth recalling that, as discussed in Section 1, the strategy described in this sec-

tion introduces local search techniques within a constructive global search algorithm, i.e.

the Constraint Programming solver. More specifically, a coordinate descent heuristic is em-

ployed in order to heuristically propagate the service level constraints within a Constraint

Programming model. In contrast, the technique discussed in Section 5 exploits the local

search engine to “guide” the search, by restructuring the buffer stock matrix, while Con-

straint Programming is used to explore promising neighborhood, i.e. to find the optimal

solution with respect to a given buffer stock matrix.

7. Computational Results

In the illustrative example provided in the previous section, it was shown that Heuristic I

and Heuristic II are 11% and 3% more costly than the optimal solution. In this section,

we aim to further analyze both the effectiveness and the efficiency of these two heuristics.

More specifically, we consider a large set of instances and we investigate, for each of the two

heuristics, the optimality gap and the computational effort. The optimal solution used for

comparison is obtained from the complete approach discussed in Rossi et al. [33]. In addition,

we investigate how well the two heuristics scale, when the instances become intractable for

23

Page 26 of 41First Look

IJOC



the complete approach.

We consider four patterns for the expected value of the demand in each period of the

planning horizon. These patterns resemble the structure of the experiments proposed in

Berry [7] and comprise a constant level, a life-cycle trend, a sinusoidal change, and a very

erratic pattern (Fig. 2). The demand is normally distributed, in each period, about the

forecast value. We consider two possible values for the coefficient of variation, cv ∈ {0.2, 0.3}.
cv shows the effect of the size of random variation in demand about the mean. Recall that

σt = d̃tcv, where σt is the standard deviation of the demand in period t and d̃t is the expected

value of the demand in period t. The holding cost h is assumed to be fixed to 1 for all the

instances, while the ordering cost a takes values in the set {100, 175, 250}. We consider two

possible service levels α ∈ {0.85, 0.95}. In our experiments, we consider five possible discrete

probability density functions for the stochastic lead time. These are shown in Fig. 3. The

lead time may therefore take one of the values shown in the x-axis with the probability

indicated on the y-axis. It should be noted that it is not relevant in this work to compare

the performance of our heuristics for a deterministic lead time. In fact, efficient complete

solution methods have been proposed in the literature [39] for the case in which the lead

time is absent. These methods, according to the discussion in [38], can be directly applied

to solve instances in which the lead time is deterministic.

All the experiments were performed on an Intel R© Pentium R©4 3.66 Ghz with 2 Gb of

RAM. Heuristic I has been implemented using ILOG OPL Studio 3.7 [1] and Solver 6.0

interfaced with a Java routine for updating the buffer stock matrix. Heuristic II has been

implemented on the top of Choco 1.2 (Laburthe et al. [24]).

The CP model repeatedly solved by Heuristic I only comprises 2N variables and 3N

constraints, as discussed in [43]. Several efficient approaches [43, 39, 34] exist for solving

such a model in fraction of a second for planning horizons comprising hundreds of periods.

Both the complete approach in Rossi et al. [33] and Heuristic II operate on CP models that

comprise 3N variables and 3N + 1 constraints. Therefore all these models are scalable with

respect to lead time and planning horizon length.

In order to assess the quality of the solutions produced by the two heuristics, we first

consider small instances over a 6-period planning horizon. We also limit the maximum length

of the stochastic lead time, so that the resulting instances are tractable for the complete

approach, which can therefore prove optimality in a reasonable time. In order to do so, we

consider in Fig. 2 only the expected demand in periods {1, . . . , 6}, and in Fig. 3 the lead
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Figure 2: The mean demand patterns over time as in Berry [7].
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Figure 3: The lead time probability density functions.
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Cost Overhead
Instances H1 H2 H1

⊕
H2 Exact - 10 secs

2.7% 0 0 0 0
25% < 0.26% 0 0 0
50% < 3.1% < 0.54% < 0.29% 0
80% < 7% < 1% < 0.75% < 8.5%
90% < 10% < 2% < 1% < 16%
100% < 22% < 8.5% < 4.27% < 45.7%

Table 7: Statistics on the cost overhead, over a 6-period planning horizon, incurred by
Heuristic I (H1), Heuristic II (H2), a strategy that combines H1 and H2 (H1

⊕
H2), and a

strategy that limits to 10 seconds the run time of the exact approach (Exact - 10 secs). The
cost overhead is expressed in percentage of the optimal policy cost.

time probability density functions (LT) 1, 2, and 3. By varying the model parameters (a,

cv, α, etc.) as discussed in the previous paragraphs, we obtain a total of 144 instances.

The results obtained by running the exact approach in Rossi et al. [33] over the test bed

are shown in Table 9 and Table 10. The exact approach often required a significant amount

of time in order to solve these instances to optimality. More precisely, in the worst case it

ran for 105 hours before finding the optimal solution. On an average, the optimal solution

was found in 2 hours. For half of the instances, the optimal solution was found in less than

45 seconds; approximately 80% of the instances required less than 30 minutes to be solved;

and about 90% of the instances required less than 2 hours.

In Table 11, we compare the cost of the solutions found by the two heuristics to the

optimal ones. For convenience, results are also summarized in Table 7. Heuristic I found the

optimal solution only for 2.7% of the instances, while Heuristic II succeeded in finding the

optimal solution for about 25% of the instances. For half of the instances, the cost overhead

incurred by Heuristic I was below 3.1%, while that incurred by Heuristic II was significantly

lower, being only 0.54%. In Table 7 we provide further statistics, namely, the 80% and the

90% percentile. In the worst case, Heuristic I produced a solution 22% costlier than the

optimal one, while Heuristic II produced a solution that is 8.5% more costly. On an average,

the solution found by Heuristic I was 3.8% expensive than the optimal one, while Heuristic

II produced a solution that was 0.56% more expensive than the optimal. It should be noted

that, since none of the two heuristics fully dominates the other in terms of solution quality, if

they are used in conjunction (Table 7, column “H1
⊕

H2”) the overall performance improves.

In fact, the average cost overhead decreases to 0.48%, the maximum cost overhead is halved
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to 4.27%, and also the other quantiles, as shown in Table 7, significantly improve.

In Table 12, we present the run-times for the two heuristics. It is easy to observe that for

all the instances Heuristic II was faster than Heuristic I. Nevertheless, both the heuristics

did not require more than a few seconds to solve any of the instances. More precisely, the

maximum run time observed is 8.5 seconds.

It might be argued that the exact approach in Rossi et al. [33] may converge quickly to

good solutions and therefore be used as a heuristic approach by simply limiting the run time

and collecting the best solution found within the given time limit. Since the maximum run

time observed for our heuristic methods over the given test bed is 8.5 seconds, we allocated

a run time of 10 seconds to the exact approach and observed the cost difference between the

optimal solution produced by the exact approach without a time limit and the best solution

that this approach could find in the given time limit of 10 seconds. In Table 13 we present

cost differences, in percentage of optimal costs. For convenience, we also summarized the

results in Table 7, column “Exact - 10 secs”. The exact approach with a 10 seconds limit

was able to reach the optimal solution for more than 50% of the instances. Nevertheless,

the performance of this heuristic strategy quickly deteriorates when we consider the 30 most

difficult instances. For 20% of the instances, the error exceeded 8.5%. For 10% of the

instances, the error exceeded 16%. In the worst case, the error reached 45.7%. On an

average, the solution found by this strategy was 4.8% more expensive than the optimal one.

As shown, both Heuristic I and II produced better average and worst case results. In light of

these results, it is clear that imposing a time limit to the exact approach in Rossi et al. [33]

does not constitute a viable heuristic strategy. It should also be noted that longer planning

horizons exacerbate the poor performance of this heuristic.

In order to assess the scalability of the two heuristics, we now consider the full demand

patterns in Fig. 2, therefore we now run tests over a 15-period planning horizon. In addition,

we also consider all the 5 possible discrete probability density functions shown in Fig. 3,

therefore LT ranges now in {1, . . . , 5}, and we vary the remaining model parameters (a, h,

cv and α) as discussed before. By doing so, we obtain a total of 240 instances. In Table 14

and Table 15 we compare, respectively, the run times and the cost of the solutions found by

the two heuristics for this new set of instances. Since these instances are intractable for the

exact approach, we will only compare the two heuristics among each other.

Over the 240 instances considered, Heuristic I produced the best solution only 25% of

the times. In all the other cases, Heuristic II found a better solution (75% of the instances).
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Run time
Instances H1 H2

25% 0 0
50% < 25 seconds < 11 minutes
80% < 40 seconds < 30 minutes
90% < 1 minute < 35 minutes
100% < 3 minutes < 1 hour and 10 minutes

Table 8: Statistics on the run times incurred by Heuristic I (H1) and Heuristic II (H2), over
a 15-period planning horizon.

In the worst case, Heuristic I (Heuristic II) produced a solution that was 14.6% (3.5%) more

expensive than the one obtained using Heuristic II (Heuristic I). On an average, for the

instances in which Heuristic I (Heuristic II) could not produce the best solution, the solution

produced was 3.66% (0.80%) more expensive than that produced by Heuristic II (Heuristic

I).

From this comparison, and from the previous discussion, it is possible to observe that

Heuristic II typically performs better than Heuristic I in terms of quality of the solution

produced. Nevertheless, in terms of run times (Table 8), the picture is different. In fact,

Heuristic I maintains good performances over all the instances in the 15-period planning

horizon test bed. More specifically, the average run time for Heuristic I was 30 seconds,

in contrast to an average run time of about 16 minutes for Heuristic II. In the worst case,

Heuristic I took less than 3 minutes to complete the search, while Heuristic II completed the

search in 1 hour and 10 minutes. About 50% of the instances could be solved by Heuristic I

in less than 25 seconds, in contrast to the 11 minutes required by Heuristic II. Furthermore,

we observed that 80% of the instances required less than 40 seconds in order to be solved

by using Heuristic I, in contrast to the 30 minutes required by Heuristic II. Finally, the 90%

quantile was less than a minute for Heuristic I and about 35 minutes for Heuristic II.

8. Summary and Conclusions

We addressed the computation of near-optimal replenishment cycle policy parameters under

non-stationary stochastic demand, stochastic supplier lead time and service-level constraints.

Two hybrid heuristic algorithms that blend Constraint Programming and Local Search were

proposed.

Firstly, we compared these two heuristics for small instances against an exact method.
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In our experiments, Heuristic I was within 3.8% of the optimal, while Heuristic II was within

0.56% of the optimal. In addition, when used in conjunction, the two heuristics were within

0.48% of the optimal. In terms of computational time, the average run time for Heuristic I,

Heuristic II and the Optimal solution is 2.96 seconds, 0.75 seconds and 2 hours respectively.

The results proved that Heuristic II typically performs better than Heuristic I in terms of

quality of the solutions produced, by achieving a very little cost overhead.

Secondly, the two heuristics were tested and compared with each other, in terms of both

solution quality and run time over a set of larger instances that are intractable for the exact

approach. In terms of solution quality, Heuristic II performed better and was on average

3% better than the performance of Heuristic I, while the average run times for Heuristic I

and Heuristic II were 30 seconds and 16 minutes respectively. The results confirmed that

Heuristic I typically produces lower quality solutions than Heuristic II, but also that Heuristic

I runs much faster than Heuristic II.

We can conclude that, if run time is a critical aspect, Heuristic I may be a viable choice,

while if the quality of the solution produced is a major concern, then Heuristic II (or a

combination of the two heuristics) should be chosen, as it achieves high quality solutions

and is orders of magnitude faster than the exact approach.
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a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

Set LT α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95

1
1 620 682 640 728 770 833 797 893 920 983 947 1043
2 677 764 686 826 834 914 836 976 970 1042 986 1126
3 703 820 738 869 853 967 888 1020 970 1042 1030 1138

2
1 715 783 745 847 895 973 937 1051 1045 1123 1087 1201
2 803 961 838 1028 1028 1131 1057 1215 1187 1281 1207 1365
3 903 1025 953 1103 1057 1243 1105 1317 1207 1383 1255 1467

3
1 772 854 798 924 966 1052 1016 1148 1116 1202 1166 1298
2 836 1032 886 1098 1061 1182 1100 1280 1214 1332 1250 1430
3 889 1087 950 1162 1065 1278 1137 1362 1215 1378 1287 1504

4
1 530 590 560 650 680 740 710 800 808 886 860 950
2 576 662 588 716 726 811 738 866 808 886 874 994
3 545 678 600 734 695 811 750 884 808 886 874 994

Table 9: Exact approach, optimal policy costs, 6-period planning horizon.

a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

Set LT α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95

1
1 20 46 15 47 0.98 2.5 0.86 3.7 0.39 0.72 0.52 1.2
2 210 582 142 793 4.4 16 3.2 24 0.66 1.9 0.80 4.5
3 3188 15570 4258 18496 27 243 35 318 0.66 2.8 2.0 19

2
1 210 583 212 934 7.2 20 9.4 37 1.1 2.9 1.4 4.8
2 1611 14409 1993 23781 150 521 148 935 16 43 13 76
3 46082 88934 62789 132963 794 16092 1224 24845 49 537 82 943

3
1 571 1800 436 2413 28 69 39 153 3.3 8.3 4.3 16
2 1866 16488 2486 20712 340 1176 379 2016 17 115 14 234
3 70805 216835 104318 380934 2630 49724 6767 79378 110 1261 208 5472

4
1 3.6 6.1 3.1 9.5 0.42 1.2 0.69 1.9 0.19 0.53 0.44 1.1
2 52 211 32 292 1.4 12 1.2 15 0.19 0.53 0.49 1.4
3 90 2684 304 4139 2.0 40 7.7 90 0.20 0.53 0.47 1.4

Table 10: Exact approach, run times (secs), 6-period planning horizon.
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a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95
Set LT H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

1
1 3.4 0.48 0.44 0 3.1 0.63 1.4 0.55 3.4 0.39 0.12 0.36 4.6 0.38 0.11 0.67 2.7 0.33 0.10 0.31 4 0.32 0 0.58
2 5.0 0.44 0.52 0.79 5.4 0.87 0.85 0.97 3.2 0.48 0.44 0.66 4.4 0.72 0.82 0.82 4.2 0 0.19 0 4 0.61 0 0.71
3 22 0 0.12 3.3 8.0 0.54 0.12 4.1 5.0 0 0.21 0 4.6 0.45 0.10 4.2 7.6 0 0.19 0 5 0 0.09 0

2
1 4.2 0.56 0.77 0.51 6.7 0.27 2.7 0.71 4.9 0.67 0.31 0.31 7.5 0.64 0.10 0.29 4.2 0.57 0.27 0.27 6 0.55 0.08 0.25
2 14 0.50 1.2 0.94 14 1.1 1.6 0.58 5.6 0.39 0.27 0.18 6.0 0.85 0.25 0.49 4.1 0.17 0.23 0.16 5 0.75 0.22 0.44
3 2.3 0 6.9 0.68 4.0 0.10 7.7 1.1 13 0 0.16 0.80 7.1 0 0 1.2 4.8 0 0.14 0 6 0 0.07 1.1

3
1 2.8 0.78 0.35 0.70 3.9 0.75 0.22 0.65 5.1 0.62 1.2 0.57 3.6 0.30 0.26 0.52 4.4 0.54 0.17 0.50 5 0.26 0.23 0.46
2 15 2.0 0.29 0.78 8.9 2.6 2.3 0.82 6.4 1.0 0.25 0.68 4.7 0.91 0.47 0.31 5.4 0.66 0.23 0.60 4 0.80 0.28 0.28
3 13 4.3 4.0 6.0 10 2.4 4.5 6.3 8.8 3.5 0.16 1.9 8.9 0 0.22 1.8 7.8 3.0 0.15 0 7 0 0.07 0

4
1 5.7 0.38 0.34 1.0 9.3 1.1 1.2 1.2 4.4 0.29 0.27 0.81 6.6 0.85 0.12 1.0 6.4 0 0.56 0 5 0.70 0.11 0.84
2 5.2 0.69 0.76 1.2 9.4 1.0 0.42 1.1 4.1 0.55 0.49 0 6.1 0.81 0.35 0.92 10 0 0.45 0 7 0 0.10 0
3 21 0 1.2 8.6 9.5 0 0.82 8.2 10 0 0.37 0 10 0 0.68 4.0 10 0 0.34 0 12 0 0.10 0

Table 11: Additional cost, in % of the cost of the optimal policy, incurred if Heuristic I (H1) or Heuristic II (H2) are used,
6-period planning horizon.

a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95
Set LT H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

1
1 3.5 0.72 2.4 0.16 1.2 0.14 2.8 0.16 1.2 0.11 1.7 0.13 0.88 0.34 1.8 0.20 1.3 0.39 1.2 0.36 0.91 0.69 1.4 0.14
2 3.9 0.72 3.5 0.33 3.0 0.56 5.2 0.41 1.8 0.19 2.4 0.27 2.3 0.45 1.5 0.27 1.6 0.30 1.8 0.70 2.0 1.0 1.8 0.67
3 3.4 0.36 4.4 1.3 3.5 1.2 2.2 1.1 2.3 0.27 2.2 1.8 2.8 0.49 2.1 1.27 1.5 0.70 1.4 0.69 1.3 0.77 1.2 1.5

2
1 2.8 0.45 3.2 0.17 2.4 0.20 3.2 0.20 1.8 0.17 2.4 0.55 2.4 0.17 2.6 0.20 1.8 0.52 2.1 0.44 2.0 0.16 2.5 0.50
2 3.8 0.89 2.9 0.66 4.7 0.77 3.2 1.5 3.5 0.70 3.4 0.95 3.6 0.38 3.4 1.1 2.2 0.83 2.2 0.94 2.3 0.39 2.6 1.0
3 3.3 0.83 3.7 2.0 4.4 1.4 4.3 1.7 3.1 1.5 2.7 2.5 3.8 1.5 3.4 1.6 3.0 0.97 2.0 0.88 2.7 1.5 3.1 1.3

3
1 2.7 0.53 3.8 0.78 2.4 0.16 4.4 0.20 3.4 1.2 3.7 0.58 1.5 0.55 3.6 0.70 2.3 0.41 2.0 0.31 2.4 0.47 4.6 0.34
2 4.3 0.80 6.4 1.7 3.2 0.88 5.7 1.0 3.8 1.1 4.3 0.67 2.9 0.78 3.9 1.2 4.1 0.69 2.5 0.91 3.0 0.61 4.1 0.94
3 7.7 1.1 5.5 2.4 6.3 1.4 5.5 3.4 4.0 2.6 4.5 1.6 4.8 1.4 3.5 1.1 3.7 1.2 2.1 1.3 4.0 0.36 5.6 1.3

4
1 2.5 0.33 2.6 0.39 2.8 0.33 3.0 0.38 2.4 0.16 2.1 0.31 1.3 0.23 2.7 0.39 1.3 0.31 1.4 0.34 0.7 0.09 1.7 0.30
2 3.2 0.59 4.0 0.74 3.9 0.70 3.0 0.58 2.7 0.16 2.9 0.50 1.7 0.72 3.9 0.70 2.0 0.50 2.1 0.55 2.1 0.36 2.3 0.17
3 3.8 0.49 8.5 0.61 3.2 0.63 4.8 2.3 2.6 0.16 2.7 1.1 4.0 0.55 2.9 1.2 1.4 0.16 1.3 0.78 1.8 0.45 3.3 0.47

Table 12: Heuristic I (H1) and Heuristic II (H2) run times (secs), 6-period planning horizon.
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a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

Set LT α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95

1
1 0 0 0 2.0 0 0 0 0 0 0 0 0
2 1 2.3 0 0.85 0 0 0 0 0 0 0 0
3 12 8.7 6.7 10 0.59 0 0 4.2 0 0 0 0

2
1 4.2 5.1 5.6 6.3 0 0 0 0 0 0 0 0
2 42 28 45 31 1.3 15 22 17 0 2.4 0 1.6
3 26 20 28 22 15 5.2 17 8.4 7.1 0 9.2 2.4

3
1 5.7 7 8.5 8 0 1.1 0 0 0 0 0 0
2 12 17 7 17 2.8 3.9 0 11 0 3.4 0 1.6
3 25 12 24 14 12 1.9 12 4.9 2.5 0 5.6 0

4
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 2.9 0 0 0 0 0 0 0 0
3 11 0 5 4.5 0 0 0 0 0 0 0 0

Table 13: Exact approach with a run time limited to 10 seconds. Additional cost, in % of the cost of the optimal policy.
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a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95
Set LT H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

1

1 1.5 0 0.5 0 1.7 0 0 0.21 0.68 0 0 0.45 1.2 0 0 0.59 1.4 0 0 0.50 1.7 0 0 0.54
2 2.0 0 0 0.18 1.1 0 0.04 0 1.3 0 0 0.84 1.5 0 0 0.91 1.5 0 0 0.37 2.2 0 0 0.85
3 1.6 0 1.4 0 2.7 0 0 0.12 1.5 0 0 0 0.76 0 0 0.71 2.2 0 0 0.93 1.4 0 0 0.97
4 9.8 0 3.4 0 11 0 2.6 0 11 0 1.0 0 5.0 0 2.3 0 2.6 0 1.3 0 1.6 0 0.33 0
5 18 0 6.1 0 5.1 0 2.1 0 16 0 2.4 0 9.9 0 0 0.94 8.9 0 1.3 0 9.6 0 0.53 0

2

1 0.9 0 0 0.04 1.6 0 0 0 1.3 0 0 0.43 0.82 0 0 0.5 0.88 0 0 0.09 1.1 0 0 0.49
2 6.2 0 0.5 0 4.0 0 0.9 0 3 0 0 0.48 2.4 0 0 0 3.0 0 0 0.55 0.77 0 0 0.58
3 5.4 0 4.3 0 1.0 0 1.1 0 1.0 0 2.5 0 2.0 0 0.65 0 1.9 0 2.1 0 1.5 0 0.44 0
4 2.9 0 5.7 0 1.7 0 2.5 0 3.5 0 2.9 0 3.2 0 3.5 0 2.5 0 2.6 0 3.0 0 2.88 0
5 9.4 0 6.9 0 1.1 0 0 3.3 14 0 0 0.29 0.09 0 0 0.19 8.1 0 1.6 0 3.7 0 0 0.84

3

1 3.0 0 0 0.44 4.0 0 0 0 2.4 0 0 0 4.8 0 0.25 0 4.5 0 0 0.51 5.3 0 0 0.73
2 8.6 0 0.5 0 5.5 0 0.42 0 6.0 0 0 0.54 2.4 0 0 0 3.6 0 0 0.48 4.3 0 0.32 0
3 8.1 0 0 1.4 8.5 0 0 0 6.2 0 0.45 0 6.1 0 0 3.5 5.2 0 1.7 0 5.9 0 0 3.4
4 15 0 3.3 0 11 0 0 0 6.0 0 2.4 0 9.6 0 0 0.32 5.3 0 2.2 0 9.5 0 0 0.27
5 6.4 0 0.8 0 1.8 0 0 0 14 0 1.6 0 4.3 0 0 2.8 7.5 0 1.5 0 4.1 0 0 1.4

4

1 2.7 0 0.0 0.65 3.5 0 0 0.82 0.82 0 0 0.47 2.1 0 0 0.71 2.4 0 0 0.20 3.0 0 0 0.61
2 2.2 0 1.9 0 3.7 0 0.55 0 2.6 0 0 0.70 3.1 0 0 0.86 2.3 0 0 0.44 2.7 0 0 0.81
3 2.2 0 0.3 0 3.7 0 1.7 0 2.9 0 0 1.3 3.7 0 0 0.65 3.2 0 0 0.88 3.8 0 0 0.58
4 14 0 7.0 0 8.0 0 3.9 0 5.0 0 6.2 0 1.5 0 5.3 0 5.5 0 3.0 0 3.1 0 2.85 0
5 8.7 0 4.6 0 11 0 3.0 0 5.6 0 3.2 0 6.1 0 0.64 0 1.2 0 0 0.03 2.8 0 0 0.03

Table 14: Cost comparison between Heuristic I (H1) and Heuristic II (H2). A value of 0 is associated with the heuristic that
has found the best solution, the other value denotes the cost difference — in percentage of the best solution — achieved by the
other heuristic, 15-period planning horizon.
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a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95
Set LT H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

1

1 24 161 17 224 18 195 15 218 12 150 16 196 10 127 18 194 21 69 21 102 14 60 21 104
2 26 446 33 420 14 311 28 404 23 327 30 421 12 275 27 405 28 210 36 360 19 153 30 355
3 26 602 33 763 24 568 43 741 29 588 36 762 19 560 36 742 40 437 49 730 28 397 46 702
4 36 1096 53 1294 46 1088 51 1516 39 1098 43 1296 19 1089 41 1439 43 979 56 1291 38 935 46 1431
5 48 1874 48 2178 37 1902 66 2391 30 1870 42 2190 31 1909 47 2391 54 1646 50 2191 50 1678 44 2402

2

1 11 295 16 328 14 281 15 327 17 299 15 331 10 282 16 330 12 255 23 311 12 231 21 310
2 25 520 29 669 18 472 28 648 25 524 35 674 18 480 29 653 24 523 29 673 16 473 37 651
3 28 959 35 1345 24 924 51 1219 23 961 35 1272 25 930 35 1220 26 961 40 1272 25 925 53 1217
4 32 1837 99 2105 35 1826 27 2443 36 1836 59 2099 32 1825 38 2449 31 1843 71 2103 36 1825 84 2447
5 37 3129 48 3470 46 3223 36 4206 38 3122 46 3479 38 3207 73 4221 30 3123 66 3475 33 3213 67 4267

3

1 21 196 21 218 18 189 21 220 13 120 21 172 12 122 19 194 12 43 18 80 6 50 17 110
2 35 359 32 442 27 342 39 440 28 323 26 438 19 318 25 439 20 178 24 308 17 165 22 357
3 33 629 33 793 36 605 38 811 25 587 34 792 25 576 26 809 22 360 30 689 22 366 24 761
4 36 1219 42 1303 32 1202 29 1549 24 1207 30 1304 32 1190 31 1551 21 883 20 1283 27 853 28 1519
5 30 1800 31 2076 30 1915 34 2422 26 1794 20 2070 28 1906 23 2421 19 1559 17 2044 22 1697 19 2418

4

1 11 200 12 219 9 182 12 217 12 98 22 141 9 75 17 137 15 39 17 64 4 29 16 61
2 18 343 22 400 17 322 27 387 26 313 29 401 21 283 26 385 20 153 24 276 18 128 22 270
3 13 547 27 722 21 530 39 706 19 515 29 721 26 493 30 705 21 290 29 616 21 278 27 605
4 65 1018 153 1347 23 992 65 1353 30 1016 46 1345 32 1045 48 1351 33 784 35 1289 25 706 39 1288
5 25 1709 40 2067 22 1720 52 2126 139 1702 46 2069 47 1717 37 2124 28 1465 41 2055 36 1471 53 2121

Table 15: Heuristic I (H1) and Heuristic II (H2) run times (secs), 15-period planning horizon.
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