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Abstract

In this paper we address the general multi-period production/inventory problem
with non-stationary stochastic demand and supplier lead time under service-level
constraints. A replenishment cycle policy (Rn,Sn) is modeled, where Rn is the n-th
replenishment cycle length and Sn is the respective order-up-to-level. We propose
a Stochastic Constraint Programming approach for computing the optimal policy
parameters. In order to do so, a dedicated global chance-constraint and the respec-
tive filtering algorithm that enforce the required service level are presented. Our
numerical examples show that a stochastic supplier lead time significantly affects
the structure of the optimal policy with respect to the case in which the lead time
is assumed to be deterministic or absent.
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1 Introduction

An interesting class of production/inventory control problems is the one that
considers the single location, single product case under stochastic demand.
One of the well-known policies that can be adopted to control such a system
is the “replenishment cycle policy”, (R,S). Under the nonstationary demand
assumption this policy takes the form (Rn,Sn), where Rn denotes the length
of the nth replenishment cycle, and Sn the order-up-to-level value for the nth
replenishment. This easy to implement inventory control policy yields at most
2N policy parameters fixed at the beginning of an N -period planning horizon.
For a discussion on inventory control policies see Silver et al. [20]. The replen-
ishment cycle policy provides an effective means of dampening the planning
instability. Furthermore, it is particularly appealing when items are ordered
from the same supplier or require resource sharing. In such a case all items
in a coordinated group can be given the same replenishment period. Periodic
review also allows a reasonable prediction of the level of the workload on the
staff involved and is particularly suitable for advanced planning environments.
For these reasons, as stated by Silver et al. [20], (R, S) is a popular inventory
policy. Due to its combinatorial nature, the computation of (Rn,Sn) policy
parameters is known to be a difficult problem to solve to optimality. An early
approach proposed by Bookbinder and Tan [5] is based on a two-step heuristic
method. Tarim and Kingsman [23,24] and Tempelmeier [27] propose a math-
ematical programming approach to compute policy parameters. Tarim and
Smith [26] give a computationally efficient Constraint Programming formula-
tion. An exact formulation and a solution method are presented in Rossi et
al. [19].

All the above mentioned works assume either zero or a fixed (determinis-
tic) supplier lead-time (i.e., replenishment lead-time). However, the lead-time
uncertainty, which in various industries is an inherent part of the business
environment, has a detrimental effect on inventory systems. For this reason,
there is a vast inventory control literature analysing the impact of supplier
lead-time uncertainty on the ordering policy (Whybark and Williams [29],
Speh and Wagenheim [21], Nevison and Burstein [14]). A comprehensive dis-
cussion on stochastic supplier lead-time in continuous-time inventory systems
is presented in Zipkin [30]. Kaplan [13] characterises the optimal policy for a
dynamic inventory problem where the lead-time is a discrete random variable
with known distribution and the demands in successive periods are assumed to
form a stationary stochastic process. Since tracking all the outstanding orders
through the use of Dynamic Programming requires a large multi-dimensional
state vector, Kaplan assumes that orders do not cross in time and supplier lead
time probabilities are independent of the size/number of outstanding orders
(for details on order-crossover see Hayya et al. [9]).
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The assumption that orders do not cross in time is valid for systems where the
supplier production system has a single-server queue structure operating under
a FIFO policy. Nevertheless, there are settings in which this assumption is not
valid and orders cross in time. This has been recently investigated in Hayya
et al. [8], Bashyam and Fu [3] and Riezebos [17]. As Riezebos underscores, the
types of industries that have a higher probability of facing order crossovers are
either located upstream in the supply chain, or use natural resources, or order
strategic materials from multiple suppliers or from abroad. In a case study, he
showed that the potential cost savings realized by taking order crossovers into
account were in the order of 30%. Unfortunately, he remarks, modern ERP
systems are not able to handle order crossovers effectively.

In a recent work, Babäı et al. [2] analyze a dynamic re-order point control
policy for a single-stage, single-item inventory system with non-stationary de-
mand and lead-time uncertainty. To the best of our knowledge, there is no
complete or heuristic approach in the literature that addresses the compu-
tation of (Rn,Sn) policy parameters under stochastic supplier lead time and
service level constraints. Computing optimal policy parameters under these
assumptions is a hard problem from a computational point of view. We argue
that incorporating both a non-stationary stochastic demand and a stochastic
supplier lead time — without assuming that orders do not cross in time — in
an optimization model is a relevant and novel contribution.

In this work, we propose a Stochastic Constraint Programming [28] model for
computing optimal (Rn,Sn) policy parameters under service level constraints
and stochastic supplier lead times. In Stochastic Constraint Programming,
complex non-linear relations among decision and stochastic variables — such
as the chance-constraints that enforce the required service level — can be
effectively modeled by means of global chance-constraints [10]. Examples of
global chance-constraints applied to inventory control problems can be found
in [19,22]. Our model incorporates a dedicated global chance-constraint that
enforces, for each replenishment cycle scheduled, the required non-stockout
probability. The model is tested on a set of instances that are solved to opti-
mality under a discrete stochastic supplier lead time with known distribution.

The paper is organized as follows. In Section 2 we provide the formal defini-
tion of the problem and we discuss the working assumptions. In Section 3 we
provide a deterministic reformulation for the chance-constraints that enforce
the required service level. In Section 4 we introduce Stochastic Constraint
Programming and we discuss how it is possible to embed the deterministic re-
formulation of the chance-constraints within a global chance-constraint. This
global chance-constraint is then enforced in the Stochastic Constraint Pro-
gramming model for computing the optimal policy parameters. In Section 5
we present our computational experience on a set of instances. Finally, in
Section 6, we draw conclusions.
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2 Problem Definition

We consider the uncapacitated, single location, single product inventory prob-
lem with a finite planning horizon of N periods and a demand dt for each
period t ∈ {1, . . . , N}, which is a random variable with probability density
function gt(dt). We assume that the demand occurs instantaneously at the
beginning of each time period. The demand we consider is nonstationary, that
is it can vary from period to period, and we also assume that demands in
different periods are independent.

Following Eppen and Martin [6], an order placed in period t will be received
after lt periods, where lt is a discrete random variable with probability mass
function ft(·). This means that an order placed in period t will be received after
k periods with probability ft(k). We shall assume that there is a maximum
lead-time L for which

∑L
k=0 ft(k) = 1. Therefore the possible lead-time lengths

are limited to Λ = {0, . . . , L} and the probability mass function is defined on
the finite set Λ. Note that lead-times are mutually independent and each of
them is also independent of the respective order quantity.

A fixed delivery cost a is incurred for each order. A linear holding cost h
is incurred for each unit of product carried in stock from one period to the
next. Without loss of generality, we will adopt the following assumption that
concerns the accounting of inventory holding costs: we will charge an inventory
holding cost at the end of each period based on the current inventory position,
rather than the current inventory level. This will reflect the fact that interests
are charged not only on the actual amount of items in stock, but also on
outstanding orders. Doing so often makes sense since companies may assess
holding cost on their total invested capital and not simply on items in stock.
A further and detailed justification for this can be found in [11].

We assume that it is not possible to sell back excess items to the vendor at the
end of a period and that negative orders are not allowed, so that if the actual
stock exceeds the order-up-to-level for that review, this excess stock is carried
forward and not returned to the supply source. However, such occurrences are
regarded as rare events (see the discussion in [5,23]) and accordingly the cost
of carrying this excess stock and its effect on the service levels of subsequent
periods are ignored.

As a service level constraint we require that, with a probability of at least a
given value α, at the end of each period the net inventory will be non-negative.
Our aim is to minimize the expected total cost, which is composed of ordering
costs and holding costs, over the N -period planning horizon, satisfying the
service level constraints by fixing the future replenishment periods and the
corresponding order-up-to-levels at the beginning of the planning horizon.
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The actual sequence of actions is adopted from Kaplan [13]. At the beginning
of a period, the inventory on hand after all the demands from previous periods
have been realized is known. Since we are assuming complete backlogging, this
quantity may be negative. Also known are orders placed in previous periods
which have not been delivered yet. On the basis of this information, an order-
ing decision is made for the current period. All the deliveries that are to be
made during a period are assumed to be made immediately after this ordering
decision and hence are on hand at the beginning of the period. To summarize
there are three successive events at the beginning of each period. First, stock
on hand and outstanding orders are determined. Second, an ordering decision
is made on the basis of this information. Third, all supplier deliveries for the
current period, including possibly the most recent orders, are received.

3 Nonstationary Stochastic Lead-Time

Let us denote the inventory position (the total amount of stock on hand plus
outstanding orders minus back-orders) at the end of period t as Pt. It directly
follows that

Pt = It +
∑

{k|1≤k≤t,lk+k>t}

Xk, (1)

where It is the inventory level (stock on hand minus back-orders) at the end of
period t, Xk is the size of the replenishment order placed in period k, Xk ≥ 0
(received in period k+lk), and it is assumed that I0 equals the initial inventory.

The general chance-constrained programming model for the problem described
in Section 2 is given below. The reader is referred to Bookbinder and Tan [5]
for the zero lead-time version of this problem.

min E{TC} =
∫

d1

. . .
∫

dN

N
∑

t=1

(aδt + hPt)

g1(d1) . . . gN(dN)d(d1) . . .d(dN)

(2)

subject to,

δt =

{

1, if Xt > 0
0, otherwise t = 1, ..., N (3)

Pt = I0 +
t
∑

k=1

(Xk − dk) t = 1, ..., N (4)

Pr{Pt ≥
∑

{k|1≤k≤t,lk>t−k}

Xk} ≥ α t = L + 1, ..., N (5)

Pt ∈ R, Xt ≥ 0, t = 1, ..., N. (6)

where we comply with the following notation:
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E{.} : the expectation operator,
TC : total cost,
dt : the demand in period t, a random variable with probability density

function, gt(dt),
a : the fixed ordering cost (incurred when an order is placed),
h : the proportional stock holding cost,
lt : the lead-time length of the order placed in period t, a discrete

random variable with a probability mass function ft(·).
δt : a {0,1} variable that takes the value of 1 if a replenishment occurs in

period t and 0 otherwise.

The objective function (Eq. 2) minimizes the expected total ordering and
inventory holding cost. It should be noted that, by charging holding cost on
the inventory position rather than on the inventory level, the objective function
becomes particularly simple and it resembles the one employed when the lead
time is zero. Eq. 3 states that if a replenishment occurs in period t — i.e. the
order quantity Xt is greater than 0 — then the corresponding indicator variable
δt must take value 1. Eq. 4 enforces the inventory conservation constraint for
each period t, this constraint is expressed in terms of the inventory position Pt.
Eq. 5 enforces the required service level in each period t, and it is also expressed
in terms of the inventory position Pt. Finally Eq. 6 states that the inventory
position in each period may either be zero or take any positive/negative value
(i.e. full backorders) and that the order quantity is forced to be greater or
equal to 0.

Note that depending on the probabilities assigned to each lead time length by
the probability mass function, it may not be possible, in general, to provide
the required service level for some initial periods. Nevertheless, by reasoning
on a worst case scenario, it will always be possible to provide the required
service level α starting from period L + 1. Hence, the service level constraints
are enforced in periods L + 1, . . . , N (see Eq. 5).

Consider a review schedule, which has m reviews over the N period planning
horizon with orders placed at T1, T2, . . . , Tm, where Ti < Ti+1.In order to
incorporate the “replenishment cycle policy” into this model, we express the
whole model in terms of a new set of decision variables , RTi

, i = 1, . . . , m.
Define,

Pt = RTi
−

t
∑

k=Ti

dk, Ti ≤ t < Ti+1, i = 1, . . . , m (7)

where RTi
(“order-up-to-position”) can be interpreted as the inventory posi-

tion up to which inventory should be raised after placing an order at the ith
review period Ti. By doing so, order quantities Xt have to be decided only after
the demands in the former periods have been realized. Under such a policy the
orders Xt are all equal to zero except at replenishment periods T1, T2, . . . , Tm.
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The service level constraint has to be expressed as a relation between the
order-up-to-positions such that the overall service level provided at the end
of each period is at least α. In order to express this service level constraint
we propose a scenario based approach over the discrete random variables lt,
t = 1, . . . , N . In a scenario based approach [4,25], a scenario tree is generated
which incorporates all possible realisations of discrete random variables into
the model explicitly, yielding a fully deterministic model under the nonantic-
ipativity constraints.

In our problem we can divide random variables into two sets: the random
variables {lt|t = 1, . . . , N}, which represent lead-times, and the random vari-
ables {dt|t = 1, . . . , N}, which represent demands. We deal with each set in
a separate fashion, by employing a scenario based approach for the lt and a
deterministic equivalent modeling approach for the dt variables. This is pos-
sible since under a given scenario discrete random variables are treated as
constants. The problem is then reduced to the general multi-period produc-
tion/inventory problem with dynamic deterministic lead-times and stochastic
demands. It should be noted that, although it has been assumed that the
supplier lead-time is zero in Tarim and Kingsman [23], it is possible to extend
their model for the non-zero lead-time situation without any loss of generality
when the lead time is deterministic and remains constant for each order. In
the Appendix we show how to model the situation in which the lead time
is deterministic and dynamic (i.e. it may take a different deterministic value
in each period). This more general situation corresponds to what is observed
within any given scenario.

A scenario ωt is a possible lead-time realization for all the orders placed up to
period t in a given review schedule. We denote the probability of a scenario
ωt as Pr{ωt}. Let lTi

(ωt) be the realized lead-time in scenario ωt for the order
placed in period Ti, where i = 1, . . . , m. Finally, let Ωt be the set of all the
possible scenarios ωt. Note that

∑

Ωt
Pr{ωt} = 1 for all t = 1, . . . , N .

We define Tp(t) as the latest review before period t in the planning horizon,
for which we are sure that all the former orders, including the one placed
in Tp(t), have been delivered within period t. Under the assumption that the
probability mass function ft(·) is defined on a finite set Λ, the index p(t)
provides a bound for the scenario tree size. In fact if the possible lead-time
lengths in Λ are 0, . . . , L, the earliest order that is delivered in period t with
probability 1 under every possible scenario ωt is the latest placed in the span
1, . . . , t − L. Therefore since each scenario ωt identifies the orders that have
been received before or in period t, it directly follows that the number of
scenarios in the tree that is needed to compute the order-up-to-positions for
periods t−L, . . . , t under any possible review schedule is at most 2L, when we
place L + 1 orders in periods t−L, . . . , t, but it may be lower if fewer reviews
are planned.
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In order to clarify this, we shall provide a small numerical example. Consider a
planning horizon of N = 6 periods. The probability mass function for the lead-
time in each period t = 1, . . . , 6 is ft(·) = {0(1/3), 1(1/3), 2(1/3)}, therefore
an order will arrive immediately with probability 1/3, after one period with
probability 1/3, and after 2 periods with probability 1/3. It follows that in
our example L = 2 and ft(·) is defined on a finite set Λ that comprises 3
possible options. Let us now consider period t = 5. Clearly, Tp(t) = 3, in fact
with probability 1.0 an order placed at period 3, as well as any other order
placed at previous periods, is received by period 5. Under a review schedule
that places an order in every period, there are 2L = 4 possible scenarios for
the remaining orders that have been delivered by period 5:

• S1, Pr{S1} = (1/3+1/3)1/3; both the orders placed at period 4 and 5 have
been delivered by period 5.
• S2, Pr{S2} = (1/3+ 1/3)(1/3+ 1/3); the order placed at period 4 has been

delivered by period 5, but not the one placed at period 5;
• S3, Pr{S3} = 1/3 · 1/3; the order placed at period 5 has been delivered by

period 5, but not the one placed at period 4;
• S4, Pr{S3} = 1/3(1/3 + 1/3); the orders placed at period 4 and at period 5

have not been delivered by period 5;

It is easy to see that under any other possible review schedule the number of
scenarios to be considered for the orders that have been delivered by period
5 is less or equal to 2L = 4. For instance, consider a review schedule in which
orders are placed only in period 1, period 3, and period 5. In this case we
only have 2 possible scenarios at period 5. As in the previous case, any order
placed at period 3 or before will be received with probability 1.0 by period 5.
No order is placed at period 4. The 2 scenarios for the remaining order are

• S1, Pr{S1} = 1/3; the order placed at period 5 has been delivered by period
5;
• S2, Pr{S1} = 2/3; the order placed at period 5 has not been been delivered

by period 5.

The service level constraint at period t is always a relation over at most L+1
decision variables RTi

that represent the order-up-to-positions of the replen-
ishment cycles covering the span t − L, . . . , t. Let pω(t) be the value of p(t)
under a given scenario ωt when a review schedule is considered. In order to
satisfy the service level constraints in our original model, we require that the
overall service level under all the possible scenarios for each set of at most
L + 1 decision variables is at least α or equivalently,

∑

ωt∈Ωt

Pr{ωt} ·GS



RTpω(t)
+

∑

{i|i>pω(t),lTi
(ωt)≤t−Ti}

(RTi
− RTi−1

)



 ≥ α,

t = L + 1, . . . , N,

(8)
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where S =
∑t

k=Tpω(t)
dk −

∑

{i|i>pω(t),lTi
(ωt)≤t−Ti}(dTi−1

+ . . . + dTi−1), and GS(.)

is the cumulative distribution function of S. Further details on the derivation
of Eq. 8 are provided in the Appendix.

As the reader may notice, the service level constraints (Eq. 8) are now fully
deterministic constraints expressed only in terms of the order-up-to-positions,
RTi

. This makes it possible to replace throughout the rest of the model the Pt

variables with their expected values P̃t, as originally proposed in Bookbinder
and Tan [5], since these are only affecting the objective function in which we
are considering expected values.

We can now express the whole model in terms of the new set of decision
variables Rt, t = 1, . . . , N . If there is no replenishment scheduled for period
t, that is if δt = 0, then Rt must be equal to the expected closing-inventory-
position in period t− 1, that is Rt = P̃t−1. If there is a review Ti in period t,
Rt is simply the order-up-to-position, RTi

, for this review. Therefore, the set
of the desired order-up-to-positions, {RTi

|i = 1, . . . , m}, as required for the
solution to the problem, comprises those values of Rt for which δt = 1.

Hence, the complete deterministic equivalent model under the replenishment
cycle policy can be expressed as

min E{TC} =
N
∑

t=1

(

aδt + hP̃t

)

(9)

subject to,

δt = 0⇒ Rt = P̃t−1 t = 1, . . . , N (10)

Rt ≥ P̃t−1 t = 1, . . . , N (11)

Rt = P̃t + d̃t t = 1, . . . , N (12)

Eq. 8 (service level constraints),

Rt ≥ 0, P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N, (13)

where {T1, . . . , Tm} = {t ∈ {1, . . . , N}|δt = 1}.

The model neatly resembles the original stochastic programming formulation.
The reader can easily notice that, while the objective function and the re-
maining constraints in the model are now deterministic and linear — thus
they can be easily modeled by means of existing mathematical programming
packages — Eq. 8 is deterministic but non-linear and it cannot be implemented
in a straightforward manner by using existing solvers. For this reason, in the
following section, we will introduce a Stochastic Constraint Programming for-
mulation that we will employ to solve the above model.

8



4 A Stochastic Constraint Programming Approach

In this section, we aim to propose a Stochastic Constraint Programming ap-
proach for modeling and solving the model discussed in the previous sec-
tion. Firstly, we introduce the key concepts in Constraint Programming and
Stochastic Constraint Programming, the extension of Constraint Program-
ming that deals with problems of decision making under uncertainty. Secondly,
we introduce our Stochastic Constraint Programming model.

4.1 Constraint Reasoning

Constraint Programming (CP) [1] is a declarative programming paradigm in
which relations between decision variables are stated in the form of constraints.
Informally speaking, constraints specify the properties of a solution to be
found. The constraints used in constraint programming are of various kinds:
logic constraints (i.e. ”x or y is true”, where x and y are boolean decision
variables), linear constraints, and global constraints [16]. A global constraint
captures a relation among a non-fixed number of variables. One of the most
well known global constraints is the alldiff constraint [15], that can be en-
forced on a certain set of decision variables in order to guarantee that no
two variables are assigned the same value. With each constraint, CP asso-
ciates a filtering algorithm able to remove provably infeasible or suboptimal
values from the domains of the decision variables that are constrained and,
therefore, to enforce some degree of consistency (see [18]). These filtering al-
gorithms are repeatedly called until no more values are pruned. This process
is called constraint propagation. In addition to constraints and filtering algo-
rithms, constraint solvers also feature some sort of heuristic search engine (e.g.
a backtracking algorithm). During the search, the constraint solver exploits
filtering algorithms in order to proactively prune parts of the search space that
cannot lead to a feasible or to an optimal solution.

Stochastic Constraint Programming (SCP) was first introduced in [28] in order
to model combinatorial decision problems involving uncertainty and probabil-
ity. According to Walsh, SCP combines together the best features of CP (i.e.
global constraints, search heuristics, filtering strategies, etc.) and of Stochastic
Programming [12] (i.e. stochastic variables, chance-constraints, etc.). In addi-
tion to decision variables, SCP features stochastic variables. Furthermore, in
SCP it is possible to capture complex non-linear relations among decision and
stochastic variables by means of global chance-constraints [19,10]. Similarly
to global constraints, global chance-constraints incorporate efficient strategies
for performing logical inference on these relations during the search in order
to enforce some degree of consistency through constraint propagation.
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In what follows we will introduce an SCP model for computing (Rn,Sn) policy
parameters under non-stationary stochastic demand, lead time, and service
level constraints. In order to capture the service level constraints, a dedicated
global chance-constraint and the respective propagation logic are introduced
and incorporated in the SCP model.

4.2 A Stochastic Constraint Programming Model

We now present an SCP formulation for computing (Rn,Sn) policy parame-
ters under stochastic lead times. Results from Section 3 will be employed in
the SCP formulation. More specifically, in order to model the service level
constraint (Eq. 8), a new global chance-constraint, serviceLevel(·), will be
defined. Such a constraint is needed to dynamically compute the correct ex-
pected closing-inventory-positions {P̃t|t = 1, . . . , N} on the basis of the cur-
rent replenishment plan, that is {δt|t = 1, . . . , N} assignments.

The SCP model that incorporates our dedicated global chance-constraint is
therefore

min E{TC} =
N
∑

t=1

(

a · δt + h · P̃t

)

(14)

subject to,

δt = 0⇒ P̃t + d̃t − P̃t−1 = 0 t = 1, . . . , N (15)

P̃t + d̃t − P̃t−1 ≥ 0 t = 1, . . . , N (16)

serviceLevel(δ1, . . . , δN , P̃1, . . . , P̃N ,

g1(d1), . . . , gN(dN), f(·), α)
(17)

P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N. (18)

It should be noted that the domain of each P̃t variable — as in the zero
lead time case (see Tarim and Smith [26]) — is limited. In fact, since the
period demand variance is additive, the uncertainty can only increase in the
length of a replenishment cycle. Therefore the longer a cycle is, the higher
are the inventory levels that are required to achieve a certain service level.
It directly follows that a single replenishment covering the whole planning
horizon will provide upper bounds for the expected period closing-inventory-
positions throughout the horizon.

We now describe the signature of the new constraint we have introduced.
serviceLevel(·) describes a relation between all the decision variables in the
model. It also accepts as parameters the distribution of the demand in each
period t, g(dt); the probability mass function of the lead time f(·), which,
without loss of generality, is here assumed to be the same for all the periods;
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and the required service level α.

A high level pseudo-code for the propagation logic of serviceLevel(·) is pre-
sented in Algorithm 1. Note that to keep the description of the algorithm
simple we assume here a stochastic lead time l with probability mass function
f(l) in every period. The maximum lead time length is L.

Algorithm 1: propagate

input : δ1, . . . , δN , P̃1, . . . , P̃N , α, d1, . . . , dN , l, L, N

begin1

cycles← {};2

pointer ← 1;3

periods← 0;4

for each period i in 2, . . . , N do5

if δi is not assigned then6

cycles← {};7

periods← 0;8

pointer = −1;9

else if δi is assigned to 1 then10

if pointer 6= −1 then11

cycle← a replenishment cycle over {pointer, ..., i− 1};12

add cycle to cycles;13

if periods ≥ L then14

checkBuffers();15

pointer ← i;16

periods← periods + 1;17

else18

periods← periods + 1;19

if pointer 6= −1 then20

cycle← a replenishment cycle over {pointer, ..., N};21

add cycle to cycles;22

if periods ≥ L then23

checkBuffers();24

end25

In order to propagate this constraint, we consider every set of consecutive
replenishment cycles covering at least L+1 periods (that is the one of interest
plus L former periods) and having the smallest possible cardinality in terms
of replenishment cycle number (Algorithm 1, line 5). Obviously, to identify
such a group of cycles, we have to wait until, during the search, a subset of

11



Procedure checkBuffers

begin1

cycle← the last element in cycles, a replenishment cycle over {i, . . . , j};2

if no decision variable P̃i, . . . , P̃j is assigned then3

return;4

counter ← 1;5

for each period t covered by cycle do6

formerCycles← cycles;7

remove cycle from formerCycles;8

coveredPeriods← the number of periods covered by cycles in9

formerCycles;
head← first element in formerCycles;10

headLength← periods covered by head;11

if counter < L then12

while coveredPeriods− headLength + counter ≥ L do13

remove head from formerCycles;14

head← first element in formerCycles;15

headLength← periods covered by head;16

else17

formerCycles← {};18

condition← true;19

for each cycle c in formerCycles do20

let {m, . . . , n} be the periods covered by c;21

if no decision variable P̃m, . . . , P̃n is assigned then22

condition← false;23

if condition then24

if Eq. 8 for period t in cycle and former replenishment25

cycles in formerCycles is not satisfied then

backtrack() ;26

counter ← counter + 1;27

end28

consecutive δt variables is assigned (Algorithm 1, line 10). Then, in order to
verify if the service level constraint is satisfied for the last period in this group,
we check that for each replenishment cycle in the group identified at least one
decision variable P̃t is assigned (Procedure checkBuffers, line 3 and line 22).
If this is the case the partial policy for the span is completely defined and,
by recalling that Rt = P̃t + d̃t, its feasibility can be checked by using the
condition in Eq. 8 (Procedure checkBuffers, line 25). If the condition is not
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Fig. 1. Optimal policy under stochastic lead time, ft(k) = {0.3, 0.2, 0.5}.

E{TC}: 356

Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 125 124 129 87 55

δt 1 1 1 1 1

Shortage probability − − 5% 5% 5%

Table 1
Optimal solution.

satisfied we backtrack (Procedure checkBuffers, line 26). Notice that such a
condition involves for each period only a subset of all the decision variables in
the model, which means that our constraint is able to detect infeasible partial
assignments, i.e. nogoods [18].

Finally, it should be emphasized that, during the search, any CP solver will
be able to exploit constraint propagation and detect infeasible or suboptimal
assignments with respect to the other constraints in the model. Furthermore,
suboptimal solutions may be pruned by using dedicated cost-based filtering

methods [7,22].

4.2.1 An example

We assume an initial null inventory level and a normally distributed demand
with a coefficient of variation σt/d̃t = 0.3 for each period t ∈ {1, . . . , 5}. The
expected values for the demand in each period are: {36, 28, 42, 33, 30}. The
other parameters are a = 1, h = 1, α = 0.95. We consider for every period
t in the planning horizon the following lead time probability mass function
ft(k) = {0.3(0), 0.2(1), 0.5(2)}, which means that we receive an order placed
in period t after {0, . . . , 2} periods with the given probability (0 periods: 30%;
1 period: 20%; 2 periods: 50%). It is obvious that in this case we will always
receive the order at most after 2 periods. In Table 1 (Fig. 1) we show the
optimal solution found by the SCP model. We now want to show that the
order-up-to-positions — computed in this example by using Eq. 8 — satisfy
every service level constraint in the model. We assume that for the first 2
periods no service level constraint is enforced, since it is not possible to fully
control the inventory in the first 2 periods. Therefore we enforce the required
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service level on periods 3, 4 and 5, that is Eq. 8 for t = 3, . . . , N . Let us
verify that the given order-up-to levels satisfy this condition for each of these
three periods. Since we know the probability mass function ft(·) for each
period t in the planning horizon we can easily compute the probability Pr(ωt)
for each scenario ωt ∈ Ωt. We have four of these scenarios for each period
t ∈ {3, . . . , N}, since we are placing an order in every period:

• S1, Pr{S1} = 0.15 = (0.3+0.2)0.3; in this scenario at period t all the orders
placed are received. That is the order placed in period t − 1 is received
immediately (probability 0.3), or after one period (probability 0.2), while
the order placed in period t is received immediately (probability 0.3)
• S2, Pr{S2} = 0.35 = (0.3 + 0.2)(0.2 + 0.5); in this scenario at period t we

do not receive the last order placed in period t. That is the order placed in
period t − 1 is received immediately (probability 0.3), or after one period
(probability 0.2), while the order placed in period t is not received immedi-
ately, therefore it is received after one period (probability 0.2), or after two
periods (probability 0.5)
• S3, Pr{S3} = 0.35 = 0.5(0.2 + 0.5); in this scenario at period t we don’t

receive the last two orders placed in periods t and t − 1. That is the order
placed in period t−1 is received after two periods (probability 0.5), and the
order placed in period t is not received immediately, therefore it is received
after one period (probability 0.2), or after two periods (probability 0.5)
• S4, Pr{S4} = 0.15 = 0.5 · 0.3; in this scenario at period t we don’t receive

the order placed in period t− 1 and we observe order-crossover. That is the
order placed in period t − 1 is received after two periods (probability 0.5),
and the order placed in period t is received immediately (probability 0.3)

In the described scenarios every possible configuration is considered. We do
this without any loss of generality. In fact if some of the configurations are
unrealistic (for instance if we assume that order-crossover may not take place)
we just need to set the probability of the respective scenario to zero. Now it
is possible to write Eq. 8 for each period t ∈ {3, . . . , N}. Consider period 3:

Pr{S1} ·G
(

129− 42

0.3
√

422

)

+ Pr{S2} ·G
(

124− (28 + 42)

0.3
√

282 + 422

)

+

Pr{S3} ·G
(

125− (36 + 28 + 42)

0.3
√

362 + 282 + 422

)

+

Pr{S4} ·G
(

125 + (129− 124)− (36 + 42)

0.3
√

362 + 422

)

= 94.60% ∼= 95%

(19)

where G(·) is the standard normal distribution function. This means that the
combined effect of order delivery delays in our policy, when all the possible
scenarios are taken into account, gives a no stock-out probability of about
95% for period 3. A similar reasoning can be employed to verify that the
given solution satisfies the required service level also for period t ∈ {4, 5}.
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E{TC}: 211 (lower bound)

Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt − 124 100 87 −
δt − 1 1 1 −
Shortage probability 6%

Table 2
A partial assignment and the respective shortage probability in period 4. The

dashes, “-”, are used to denote decision variables that have not been assigned yet.

Period (t) 1 2 3 4 5 6 7 8

d̃t 15 18 13 33 30 18 23 15

Table 3
Forecasts of period demands.

The reader may notice that, since we are placing an order in every period
and since the lead time is at most of two periods, the service level in any
given period is only influenced by the replenishment in such a period and by
the last two replenishments. For instance, the service level in period 4 is only
influenced by the order-up-to-position in periods 3 and 2. Let us consider the
partial assignment in Table 2. The shortage probability in period 4 is greater
than the required 5% therefore this partial assignment constitutes a nogood.
As soon as our global chance-constraint detects this partial assignment during
the search, it will immediately trigger a backtrack and it will prevent the CP
solver from exploring any assignment that extends such a partial assignment.

5 Computational Experience

In this section we solve to optimality an 8-period inventory problem under
stochastic demand and lead time. Different lead time configurations are con-
sidered. The stochastic, deterministic and zero lead time cases are compared.
As in the previous example we assume an initial null inventory level and a nor-
mally distributed demand with a coefficient of variation σt/d̃t = 0.3 for each
period t ∈ {1, . . . , 8}. The expected value d̃t for the demand in each period
t = 1, . . . , N are listed in Table 3. The other parameters are a = 30, h = 1,
α = 0.95. Initially we consider the problem under stochastic demand and no
lead time, an efficient CP approach to find policy parameters in this case was
presented in [26,22]. Obviously our approach is general and can provide solu-
tions for this case as well, although less efficiently. The optimal solution for
the instance considered is presented in Fig. 2, details about the optimal policy
are reported in Table 4. We observe 5 replenishment cycles, policy parameters
are: cycle lengths= [1, 2, 1, 2, 2] and order-up-to-positions= [72, 42, 49, 65, 52].
The shortage probability is at most 5%, therefore the service level is met in
every period. The E{TC} is 303.
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Fig. 2. Optimal policy under no lead time.

E{TC}: 303

Period (t) 1 2 3 4 5 6 7 8
Rt 22 42 24 49 65 35 52 29

δt 1 1 0 1 1 0 1 0

Shortage probability 5% 0% 5% 5% 0% 5% 0% 5%

Table 4
Optimal policy under no lead time.
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Fig. 3. Optimal policy under deterministic one period lead time.

E{TC}: 456

Period (t) 1 2 3 4 5 6 7 8
Rt 59 44 64 105 72 72 54 31

δt 1 0 1 1 0 1 0 0

Shortage probability − 0% 5% 5% 0% 5% 0% 5%

Table 5
Optimal policy under deterministic one period lead time, notice that the service

level in the first period can obviously not be controlled.

We now consider the same instance, but with a deterministic lead time of one
period. The optimal solution is presented in Fig. 3, details about the optimal
policy are reported in Table 5. We observe now only 4 replenishment cycles,
policy parameters are: cycle lengths= [2, 1, 2, 3] and order-up-to-positions=
[59, 64, 105, 72]. Again the shortage probability is at most 5% in every period,
which means that the service level constraint is met. The E{TC} is 456.
Therefore we observe now an expected total cost that is 50.5% higher than
the zero lead time case. The replenishment plan is significantly affected by
the lead time both in term of replenishment cycle lengths and order-up-to-
positions.

When a deterministic lead time of two periods is considered, as the reader may
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Fig. 4. Optimal policy under deterministic two periods lead time.

E{TC}: 602

Period (t) 1 2 3 4 5 6 7 8
Rt 59 84 119 106 92 72 54 31

δt 1 1 1 0 1 1 0 0

Shortage probability − − 5% 5% 0% 5% 5% 5%

Table 6
Optimal policy under deterministic two periods lead time.
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Fig. 5. Optimal policy under stochastic lead time, ft(k) = {0.2(0), 0.6(1), 0.2(2)}.

expect, we observe again higher costs and a different replenishment policy. The
optimal solution is presented in Fig. 4, details about the optimal policy are
reported in Table 6. The number of replenishment cycles is now again 5,
policy parameters are: cycle lengths= [1, 1, 2, 1, 3] and order-up-to-positions=
[59, 84, 119, 92, 72]. The service level constraint is met in every period. The
E{TC} is 602. This means that we observe a cost 98.6% and 32.0% higher
than respectively the zero lead time case and the one period lead time case.
The replenishment plan is again completely modified as a consequence of the
lead time length.

We now concentrate on two instances where a stochastic lead time is considered
and we compare results with the former cases. Firstly we analyze a stochas-
tic lead time with probability mass function ft(k) = {0.2(0), 0.6(1), 0.2(2)}.
That is an order is received immediately with probability 0.2, after one period
with probability 0.6, and after two periods with probability 0.2. The optimal
solution is presented in Fig. 5, details about the optimal policy are reported
in Table 7. The number of replenishment cycles is again 5 as in the two
period lead time case, policy parameters are: cycle lengths= [1, 1, 2, 1, 3] and
order-up-to-positions= [50, 72, 101, 79, 72]. Therefore we see that the number
and the length of replenishment cycles does not change from the deterministic

17



E{TC}: 532

Period (t) 1 2 3 4 5 6 7 8
Rt 50 72 101 88 79 72 54 31

δt 1 1 1 0 1 1 0 0

Shortage probability − − 5% 5% 3% 5% 5% 5%

Table 7
Optimal policy under stochastic lead time, ft(k) = {0.2(0), 0.6(1), 0.2(2)}, in peri-
ods {1, 2} the inventory cannot be controlled.
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Fig. 6. Optimal policy under stochastic lead time, fi(t) = {0.5(0), 0.0(1), 0.5(2)}.

E{TC}: 562

Period (t) 1 2 3 4 5 6 7 8
Rt 53 79 107 94 87 72 54 31

δt 1 1 1 0 1 1 0 0

Shortage probability − − 5% 5% 0% 5% 5% 5%

Table 8
Optimal policy under stochastic lead time, fi(t) = {0.5(0), 0.0(1), 0.5(2)}.

two period lead time case, although we observe lower order-up-to-positions as
we may expect since the lead time is in average one period therefore lower
than in the former case. Also the cost reflects this, in fact it is 11.6% lower
than in the two period deterministic lead time case. It should be noted that
the uncertainty of the lead time plays a significant role, in fact although the
average lead time is one period, the structure of the policy resembles much
more the one under a two period deterministic lead time than the one under a
deterministic one period lead time. Moreover the expected total cost is 16.6%
higher than in this latter case.

We finally consider a different probability mass function for the lead time:
ft(k) = {0.5(0), 0.0(1), 0.5(2)}, which means that we maintain the same aver-
age lead time of one period, but we increase its variance. The optimal solution
is presented in Fig. 6, details about the optimal policy are reported in Ta-
ble 8. The number of replenishment cycles is still 5, policy parameters are:
cycle lengths= [1, 1, 2, 1, 3] and order-up-to-positions= [50, 72, 101, 79, 72]. Al-
though the average lead time is still one period, order-up-to-positions are
slightly higher than in the former case where the variance of the lead time
was lower. Also the cost reflects this, in fact it is 5.6% higher than in the
former case, but still lower than the expected total cost of the two period
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deterministic lead time case.

To summarize, in our experiments we saw that supplier lead time uncertainty
may significantly affect the structure of the optimal (Rn,Sn) policy. Computing
optimal policy parameters constitutes a hard computational and theoretical
challenge. Under different degrees of lead time uncertainty, when other input
parameters for the problem remain fixed, order-up-to-positions and reorder
points in the optimal policy change significantly. Realizing what the optimal
decisions are for certain input parameters is a counterintuitive task. Our ap-
proach provides a systematic way to compute these optimal policy parameters.

6 Conclusions

A novel approach for computing replenishment cycle policy parameters under
non-stationary stochastic demand, stochastic lead time and service level con-
straints has been presented. The approach is based on SCP and it employs
a dedicated global chance-constraint in order to enforce the required service
level in each period. The assumptions under which we developed our approach
for the stochastic lead time case proved to be less restrictive than those com-
monly adopted in the literature for complete methods. In particular we faced
the problem of order-crossover, which is a very active research topic. Our ap-
proach merged well known concepts such as deterministic equivalent modeling
of chance-constraints and scenario based modeling. Our computational experi-
ence showed that a stochastic supplier lead time may significantly impact the
structure and the cost of the optimal replenishment cycle policy with respect
to the case in which the lead time is deterministic or absent. In our future
research, we aim to develop dedicated cost-based filtering algorithms able to
significantly speed up the search for the optimal policy parameters.

7 Appendix

In this Appendix we discuss the main steps required to derive the deterministic
equivalent non-linear formulation of the service level constraints (Eq. 8).

To begin, we discuss how to obtain a deterministic equivalent formulation
for the chance-constraints that enforce the required service level when the
lead time in each period varies and assumes a given deterministic value. The
same reasoning is then easily generalized to the case in which the lead time is
stochastic and assumes a different distribution from period to period.

When a dynamic deterministic lead time Lt ≥ 0 is considered in each period
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t = 1, . . . , N , an order placed in period t will be received only at period t+Lt,
that is

It = I0 +
∑

{k|k≥1,Lk+k≤t}

Xk −
t
∑

k=1

dk t = 1, ..., N. (20)

Let us recall that the inventory position, Pt, represents the total amount of
inventory on-hand plus outstanding orders minus backorders at the end of
period t. It directly follows that

Pt = It +
∑

{k|1≤k≤t,Lk+k>t}

Xk, (21)

where we assume P0 = I0. It is easy, then, to reformulate the model using the
inventory position.

Next, we modify the general stochastic programming formulation in order
to incorporate the “replenishment cycle policy”. Consider a review schedule,
which has m reviews over the N period planning horizon with orders placed
at {T1, T2, . . . , Tm}, where Ti > Ti−1, Tm ≤ N − LTm

. For convenience, T1 is
defined as the start of the planning horizon and Tm+1 = N + 1 as the period
immediately after the end of the planning horizon. 1 The associated inventory
reviews will take place at the beginning of periods Ti, i = 1, . . . , m. In the
replenishment cycle policy considered here, clearly the orders Xt are all equal
to zero except at replenishment periods T1, T2, . . . , Tm. The inventory level It

carried from period t to period t + 1 is the opening inventory plus any orders
that have arrived up to and including period t less the total demand to date.
Hence, the inventory balance equation becomes,

It = I0 +
∑

{i|LTi
+Ti≤t}

XTi
−

t
∑

k=1

dk, t = 1, . . . , N. (22)

Define Tp(t) as the latest review before period t in the planning horizon, for
which all the former orders, including the one placed in Tp(t), are delivered
within period t, therefore

p(t) = max
{

i|∀j ∈ {1, . . . , i}, Tj + LTj
≤ t, i = 1, . . . , m

}

, (23)

for all t = 1, . . . , N . The inventory level It at the end of period t (Eq. 22) can
be expressed as

It = I0 +
p(t)
∑

i=1

XTi
+

∑

{i|i>p(t),LTi
+Ti≤t}

XTi
−

t
∑

k=1

dk, t = 1, . . . , N. (24)

1 The review schedule may be generalized to consider the case where T1 > 1, if the
opening inventory I0 is sufficient to cover the immediate needs at the start of the
planning horizon.
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We now want to reformulate the constraints of the chance-constrained model
in terms of a new set of decision variables RTi

, i = 1, . . . , m. Define,

Pt = RTi
−

t
∑

k=Ti

dk, Ti ≤ t < Ti+1, i = 1, . . . , m (25)

where RTi
can be interpreted as the inventory position up to which inventory

should be raised after placing an order at the ith review period Ti. We can
now express the whole model in terms of these new decision variables RTi

.
The new problem is to determine the number of reviews, m, the Ti, and the
associated RTi

for i = 1, . . . , m.

Let us now express Eq. 24 using RTi
as decision variables

It = RTp(t)
+

∑

{i|i>p(t),LTi
+Ti≤t}

(

RTi
− RTi−1

+ dTi−1
+ . . . + dTi−1

)

−
t
∑

k=Tp(t)

dk,

t = 1, . . . , N.

(26)

As mentioned earlier, α is the desired minimum probability that the net in-
ventory level in any time period is non-negative. Depending on the values
assigned to Lt it is obviously not possible to provide the required service level
for some initial periods. In general, we provide the required service level α
starting from the period t, for which the value t + Lt is minimum. Let M be
this period. Notice that, it will never be optimal to place any order in a period
t such that t + Lt > N , since such an order will not be received within the
given planning horizon.

By substituting It with the right hand term in Eq. 26 we obtain

GS



RTp(t)
+

∑

{i|i>p(t),LTi
+Ti≤t}

(RTi
−RTi−1

)



 ≥ α,

t = M, . . . , N.

(27)

where S =
∑t

k=Tp(t)
dk−

∑

{i|i>p(t),LTi
+Ti≤t}(dTi−1

+ . . .+dTi−1), and GS(.) is the

cumulative distribution function of S.

The service level constraints are now deterministic and they are expressed
only in terms of the order-up-to-positions. Eq. 27 can be directly employed
in order to obtain Eq. 8, under the original assumption that the lead time in
each period t ∈ {1, . . . , N} is a discrete random variable lt.
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