

Edinburgh Research Explorer

Guarded Ontology-Mediated Queries

Citation for published version:
Barceló, P, Berger, G, Gottlob, G & Pieris, A 2021, Guarded Ontology-Mediated Queries. in Hajnal Andréka
and István Németi on Unity of Science. 1 edn, Outstanding Contributions to Logic, vol. 19, Springer, pp. 27-
52. https://doi.org/10.1007/978-3-030-64187-0_2

Digital Object Identifier (DOI):
10.1007/978-3-030-64187-0_2

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Hajnal Andréka and István Németi on Unity of Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 06. May. 2024

https://doi.org/10.1007/978-3-030-64187-0_2
https://doi.org/10.1007/978-3-030-64187-0_2
https://www.research.ed.ac.uk/en/publications/a47c4cc7-4415-43c2-b0a2-80f8c3fcb25c

Chapter 1
Guarded Ontology-Mediated Queries

Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

Abstract We concentrate on ontology-mediated queries (OMQs) expressed using
guarded Datalog∃ and conjunctive queries. Guarded Datalog∃ is a rule-based knowl-
edge representation formalism inspired by the guarded fragment of first-order logic,
while conjunctive queries represent a prominent database query language that lies
at the core of relational calculus (i.e., first-order queries). For such guarded OMQs
we discuss three main algorithmic tasks: query evaluation, query containment, and
first-order rewritability. The first one is the task of computing the answer to an OMQ
over an input database. The second one is the task of checking whether the answer
to an OMQ is contained in the answer of some other OMQ on every input database.
The third one asks whether an OMQ can be equivalently rewritten as a first-order
query. For query evaluation, we explain how classical results on the satisfiability
problem for the guarded fragment of first-order logic can be applied. For query
containment, we discuss how tree automata techniques can be used. Finally, for
first-order rewritability, we explain how techniques based on a more sophisticated
automata model, known as cost automata, can be exploited.

Pablo Barceló
Department of Computer Science, University of Chile & IMFD Chile
e-mail: pbarcelo@dcc.uchile.cl

Gerald Berger
Institute of Logic and Computation, TU Wien
e-mail: gberger@dbai.tuwien.ac.at

Georg Gottlob
Department of Computer Science, University of Oxford & Institute of Logic and Computation, TU
Wien
e-mail: georg.gottlob@cs.ox.ac.uk

Andreas Pieris
School of Informatics, University of Edinburgh
e-mail: apieris@inf.ed.ac.uk

1

2 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

1.1 Introduction

The novel application of knowledge representation tools for handling incomplete
and heterogeneous data is giving rise to a new field, recently coined as knowledge-
enriched data management [3]. A crucial problem in this field is ontology-based
data access (OBDA) [31], which refers to the utilization of ontologies (i.e., sets of
logical sentences) for providing a unified conceptual view of various data sources.
Users can then pose their queries solely in the schema provided by the ontology,
abstracting away from the specifics of the individual sources. In OBDA, the ontol-
ogy O and the user query q, which is typically a conjunctive query, can be seen as
two components of one composite query Q = (S,O,q), dubbed ontology-mediated
query (OMQ); S is the data schema, indicating that Q will be posed on databases
over S [14]. The main tasks that are of special interest in this setting are as follows:

Query Evaluation. Given an OMQ Q = (S,O,q), a database D over the schema S,
and a candidate answer ā, which is a tuple of constants from the domain of D,
the question is whether ā belongs to the evaluation of q over every extension of
D that satisfies O. In other words, is ā a certain answer for Q over D? The set
of certain answers for Q over D is denoted Q(D).

Query Containment. Given two OMQs Q1 and Q2, both with data schema S, the
question is whether Q1 is contained in Q2, i.e., Q1(D) ⊆ Q2(D) for every
database D over S. This is a crucial static analysis task (i.e., no database is
involved) with applications in query optimization. Whenever we try to optimize
an OMQ Q and get some other one Q′ that is easier to evaluate, we have to
ensure that Q and Q′ are equivalent, i.e., they return the same answer over all
databases. This boils down to check that Q is contained in Q′ and vice versa.

First-Order Rewritability. Given an OMQ Q with data schema S, the question is
whether Q can be rewritten as a first-order query ϕQ that returns the same an-
swer on every input database over the schema S. This is another important static
analysis task, which allows us to check whether an OMQ can be executed via
standard database management systems (DBMSs), which are highly optimized
for evaluating first-order queries. Notice that standard DBMSs are unaware of
ontologies, and thus we cannot blindly pass to such systems an OMQ.

1.1.1 Rule-Based Ontology-Mediated Queries

While in the OMQ setting described above description logics (DLs) are often used
for modeling ontologies, it is widely accepted that for handling arbitrary arity re-
lations in relational databases it is convenient to use Datalog∃ rules, a.k.a. tuple-
generating dependencies and existential rules, of the form

∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ψ(x̄, z̄)) ,

1 Guarded Ontology-Mediated Queries 3

where ϕ and ψ are conjunctions of atoms. Notice that such rules extend plain Dat-
alog rules with the feature of existential quantification (hence the name Datalog∃),
which is crucial for knowledge representation purposes as it allows us to invent new
objects that are not already present in the input database.

Unfortunately, the use of Datalog∃ as an ontology language, without posing any
additional syntactic restrictions, leads to the undecidability of all the algorithmic
tasks for OMQs described above. The undecidability of query evaluation is im-
plicit in [9], where the implication problem for database dependencies is studied.
A stronger result of this kind can be found in [16], where it is shown that query
evaluation is undecidable even when the ontology and the conjunctive query are
fixed. The undecidability of query containment is immediately inherited from the
fact that query containment for plain Datalog queries (without existential quantifi-
cation) is undecidable [35]. Finally, the undecidability of first-order rewritability is
again inherited from the fact that the same problem for plain Datalog queries is un-
decidable. In fact, we know that a Datalog query is first-order rewritable iff it has
bounded recursion [1], while the problem of checking whether a Datalog query has
bounded recursion is undecidable [24].

The above negative results led to a flurry of activity during the last decade for
identifying syntactic restrictions on Datalog∃ rules that make the algorithmic tasks
in question, especially query evaluation, decidable. Several decidable fragments
have been proposed in the literature based on different syntactic restrictions; see,
e.g., [4, 19, 30] – the list is by no means exhaustive.

1.1.2 Guardedness to the Rescue

A prime example of a well-behaved formalism is guarded Datalog∃ [16], which
has been inspired by the guarded fragment of first-order logic (GFO) introduced
by Andréka, Németi, and van Benthem in [2]. A Datalog∃ rule is guarded if the
left-hand side of the implication has an atom, called a guard, that contains all the
universally quantified variables. Guarded Datalog∃ is a member of a broader family
of knowledge representation formalisms, known as Datalog± [18]. Datalog± lan-
guages extend Datalog with useful features such as existential quantification, equal-
ity, negation, etc., and at the same time restrict the syntax (such as guardedness) in
order to guarantee decidability of the main tasks. Hence, the symbol ‘+’ refers to
the additional features, while the symbol ‘−’ refers to the syntactic restrictions.

Just as the robustness and the nice algorithmic properties of GFO can be at-
tributed to the tree model property [2] (i.e., satisfiable GFO-sentences always have
a “tree-like” model, that is, a model of bounded tree-width), the reason why query
evaluation for guarded OMQs, i.e., OMQs where the ontology consists of guarded
Datalog∃ rules, is decidable, is because we can focus on “tree-like” universal mod-
els; for more details see [16]. In fact, guarded Datalog∃ (plus guarded denial con-
straints) is essentially a normal form for the Horn fragment of GFO (cf. [29] for
more details on well-behaved fragments of GFO regarding query evaluation). It is

4 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

worth mentioning that the tree model property of the guarded fragment renders de-
cidable even the problem of query evaluation for OMQs where the ontology is a
GFO-sentence [5], while this fails for other decidable fragments of first-order logic,
most notably the two-variable fragment [32]. The goal of this chapter is to discuss
the algorithmic tasks introduced above for guarded OMQs, and explain how worst-
case optimal complexity results can be established.

Roadmap. After giving some basic preliminaries in Section 1.2, we focus in Sec-
tion 1.3 on query evaluation, and explain how classical results on the satisfiability
problem for GFO can be applied in order to show that the problem in question is
in 2EXPTIME. This is done by relying on a technique known as treefication intro-
duced in [5]. In Section 1.4, we concentrate on query containment, and we discuss
how tree automata techniques can be used in order to establish a 2EXPTIME up-
per bound. This section is based on recent results on query containment from [8].
Then, in Section 1.5, we consider first-order rewritability, and explain how tech-
niques based on a more sophisticated automata model, known as cost automata, can
be exploited in order to obtain a 2EXPTIME upper bound. This section is based on
recent results on first-order rewritability from [7]. Finally, in Section 1.6, we dis-
cuss the above three algorithmic problems for guarded OMQs under the lenses of
finite models, i.e., when the evaluation of an OMQ Q = (S,O,q) over a database
D is defined by considering only the finite extensions of D that satisfy O, denoted
Qfin(D). We present a deep result, which is implicit in [5], that establishes the fol-
lowing: for every guarded OMQ Q, with data schema S, and database D over S,
Q(D) = Qfin(D). The latter immediately implies that containment and first-order
rewritability for guarded OMQs are invariant with respect to whether we consider
all the extensions of the database that satisfy the ontology, or only the finite ones.

1.2 Preliminaries

Basics. Let C, N, and V be disjoint, countably infinite sets of constants, (labeled)
nulls, and variables, respectively. We adopt the unique name assumption, i.e., dif-
ferent constants represent different values. A schema S is a finite set of relation
symbols, each having an associated (non-negative) arity. The width of S, denoted
wd(S), is the maximum arity among all relation symbols of S. We write R/n to
indicate that the relation symbol R has arity n ≥ 0. A term is either a constant, a
null, or a variable. An atom over S (or simply S-atom) is an expression of the form
R(t1, . . . , tn), where R∈ S is of arity n and t1, . . . , tn are terms. An S-fact is an S-atom
whose arguments consist of constants only.

Databases. An instance over a schema S (or simply S-instance) is a (possibly infi-
nite) set of S-atoms that contain constants and nulls as arguments only. A database
over S (or simply S-database) is a finite set of S-facts, i.e., a finite S-instance that
contains constants only. The active domain of an instance J, denoted adom(J), con-
sists of all terms occurring in J.

1 Guarded Ontology-Mediated Queries 5

A tree decomposition for an instance J is a tuple δ = (T ,(Xv)v∈T), where T
is a rooted tree whose set of nodes is T , and (Xv)v∈T is a collection of subsets of
adom(J), called bags, such that:

1. If R(t1, . . . , tn) ∈ J, then there exists a v ∈ T such that {t1, . . . , tn} ⊆ Xv.
2. For all a ∈ adom(J), the set {v∈ T | a ∈ Xv} induces a connected subtree of T .

The tree decomposition δ is called guarded if, for every node v ∈ T , there exists an
atom R(t1, . . . , tn) ∈ J such that Xv ⊆ {t1, . . . , tn}. An instance is acyclic if it admits
a guarded tree decomposition.

Conjunctive Queries. A conjunctive query (CQ) over S is a first-order formula

q(x̄) := ∃ȳ(α1(v̄1)∧·· ·∧αm(v̄m)),

where x̄ and ȳ are sequences of variables, each αi(v̄i) is an S-atom that mentions
only variables from v̄i, or an equality atom of the form v1

i = v2
i , with v1

i ,v
2
i ∈ v̄i,

and v̄i ⊆ x̄∪ ȳ, for each i ∈ {1, . . . ,m}.1 The variables x̄ are the answer variables of
q(x̄). If x̄ is empty, then q is a Boolean conjunctive query (BCQ). We shall denote
by var(q) the variables that occur in q(x̄).

The evaluation of CQs over instances is defined in terms of homomorphisms.
A homomorphism from q to an S-instance J is a mapping h : var(q)→ adom(J)
such that, for each i ∈ {1, . . . ,m}, (i) αi(h(v̄i)) ∈ J if αi(v̄i) is an S-atom, and
(ii) h(v1

i) = h(v2
i) if α(v̄i) is the equality atom v1

i = v2
i . We write J |= q(ā) to in-

dicate that there is a homomorphism h from q to J such that h(x̄) = ā; in case q is
Boolean, we write J |= q. We also write q(J) for the set of tuples ā ∈ adom(J)|x̄|

such that J |= q(ā). Let CQ (resp., BCQ) be the class of all CQs (resp., BCQs).

Tuple-Generating Dependencies. A tuple-generating dependency (TGD)2 is a
first-order sentence of the form

τ : ∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ψ(x̄, z̄)) ,

where ϕ and ψ are conjunctions of atoms that mention only variables, called the
body and head of τ , respectively. For brevity, we shall omit the preceding universal
quantifiers and use comma instead of ∧ for joining atoms. We assume that each
variable of x̄ is mentioned in at least one atom of ψ .

The TGD τ is logically equivalent to the sentence

∀x̄(qϕ(x̄)→ qψ(x̄)),

where qϕ(x̄) and qψ(x̄) are the CQs ∃ȳϕ(x̄, ȳ) and ∃z̄ψ(x̄, z̄), respectively. An in-
stance J satisfies τ if qϕ(J) ⊆ qψ(J), while J satisfies a set of TGDs O, denoted
J |= O, if J |= τ ′ for every τ ′ ∈ O. Let TGD be the class of finite sets of TGDs.

1 For technical clarity, we assume that CQs do not mention constants from C. However, all the
results that we discuss can be extended to CQs with constants.
2 For brevity, in the rest of the chapter we adopt the acronym TGD instead of the term Datalog∃.

6 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

A prominent class, which is of special interest for this chapter, is the class of
guarded TGDs. A TGD τ is guarded if it has an atom in its body, called a guard,
that contains all the body variables. Let G be the class of finite sets of guarded TGDs.

Ontology-Mediated Queries. An ontology-mediated query (OMQ) is a triple of the
form Q = (S,O,q(x̄)), where S is a schema (the data schema of Q), O is a finite set
of TGDs (the ontology), and q(x̄) is a CQ over S∪ sig(O), with sig(O) denoting the
set of all relation symbols in O. We include the data schema S in the specification
of Q in order to emphasize that Q is evaluated over S-databases, even though O and
q(x̄) may use additional relation symbols. In fact, O can introduce relations that are
not present in S, which in turn allows us to enrich the schema of q(x̄).

The semantics of Q is given in terms of certain answers. Let D be an S-database.
The certain answers to q(x̄) w.r.t. D and O is the set of all tuples ā of constants
such that (D,O) |= q(ā), that is, for every instance J ⊇ D that satisfies O it holds
that J |= q(ā). We write D |= Q(ā) to indicate that ā is a certain answer to q(x̄)
w.r.t. D and O; in case q is Boolean, we write D |= Q. Moreover, we write Q(D) for
the set of all ā such that D |= Q(ā). Hence, Q can be seen as a function that maps
S-databases to sets of tuples over C.

We write (O,Q) for the class of OMQs (S,O,q(x̄)), where O falls in the class O⊆
TGD, and q(x̄) in the class Q ⊆ CQ. We call the pair (O,Q) an ontology-mediated
query language. In this chapter, we mainly deal with the OMQ language (G,CQ),
which collects all the OMQs where the ontology consists of guarded TGDs.

Example 1. Let Q = (S,O,q(x)) ∈ (G,CQ), where S = {P/1,F/2}, and

O := {P(x)→∃y(F(y,x)∧P(y))} q(x) := ∃y∃z(P(x)∧F(y,x)∧F(x,z)).

Consider the S-database D := {P(a),F(a,b),P(b)}. It is easy to verify that Q(D) =
{〈a〉}. Intuitively, the ontology O states that every person has a father who is himself
a person. The query q(x) asks for all persons x that have a father, and that are fathers
themselves. Notice that the database D does not explicitly store the fact that a has a
father. This is implicit information expressed by the ontology O. ut

1.3 Query Evaluation

As already discussed in Section 1.1, one of the most important tasks for an ontology-
mediated query language is query evaluation, which is defined as follows:

PROBLEM : Eval(O,Q)

INPUT : OMQ Q = (S,O,q(x̄)) ∈ (O,Q), S-database D, ā ∈ adom(D)|x̄|.
QUESTION : Is it the case that ā ∈ Q(D)?

It is well-known that Eval(TGD,CQ) is undecidable; implicit in [9]. However, if we
focus on (G,CQ), then the problem becomes decidable. In fact:

1 Guarded Ontology-Mediated Queries 7

Theorem 1. Eval(G,CQ) is 2EXPTIME-complete.

The above result has been explicitly established in [16]: the upper bound is shown
via a sophisticated alternating algorithm that uses exponential space, while the lower
bound is shown by simulating the behavior of an alternating exponential space Tur-
ing machine. An alternative way to establish the 2EXPTIME upper bound of The-
orem 1 is by a reduction to the satisfiability problem of the guarded fragment of
first-order logic, which in turn exploits a technique known as treeification [5]. In
what follows, we discuss the latter approach that relies on the fact that satisfiability
for the guarded fragment of first-order logic is feasible in double exponential time,
as shown in [27]. The goal is to reduce Eval(G,CQ) to the problem of deciding
whether a guarded sentence is unsatisfiable.

Recall that the guarded fragment of first-order logic, introduced by Andréka,
Németi and van Benthem in [2], is a collection of first-order formulas with some
syntactic restrictions on quantification patterns, which is analogous to the relativized
nature of modal logic. We write GF[T], where T is a schema, for the smallest set of
formulas that (i) contains all T-atoms (without constants and nulls) and equalities
among variables; (ii) is closed under ¬, ∧, ∨,→; and (iii) if α is an atom containing
all the variables of (x̄∪ ȳ), and ϕ ∈GF[T] with free variables in (x̄∪ ȳ), then ∀x̄(α→
ϕ) and ∃x̄(α ∧ϕ) belong to GF[T] as well; α is the guard of the quantifier. It has
been shown in [2] that satisfiability for guarded sentences is decidable, while Grädel
proved in [27] that it is actually 2EXPTIME-complete.

1.3.1 From Eval(G,CQ) to Satisfiability for the Guarded Fragment

As said above, the goal is to reduce Eval(G,CQ) to the problem of deciding whether
a guarded sentence is unsatisfiable. Consider an instance of Eval(G,CQ), i.e., an
OMQ Q = (S,O,q(x̄)) ∈ (G,CQ), an S-database D, and a tuple of constants ā ∈
adom(D)|x̄|. We define the first-order sentence

ϕQ,D,ā :=
∧

α∈D
α ∧

∧
τ∈O

τ ∧ ¬q(ā),

where q(ā) is the sentence obtained from q(x̄) after instantiating the variables x̄ with
the constants ā. It is easy to verify that

ā ∈ Q(D) ⇐⇒ ϕQ,D,ā is unsatisfiable.

However, ϕQ,D,ā does not directly fall in a well-behaved fragment, and, in particular,
in the guarded fragment of first-order logic, mainly due to the unguarded sentence
q(ā). Notice that, strictly speaking, also

∧
τ∈O τ is unguarded despite the fact that

O consists of guarded TGDs. Nevertheless, a guarded TGD can be easily converted
in polynomial time into an equisatisfiable guarded sentence (see, e.g., [5]) and thus
we assume, w.l.o.g., that

∧
τ∈O τ falls in the guarded fragment. The goal now is to

8 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

transform ϕQ,D,ā into an equisatisfiable guarded sentence ψQ,D,ā. This is done by
exploiting the technique of treeification [5]. Let us first recall this technique, and
then explain how we use it in order to construct the desired sentence ψQ,D,ā.

Treeification

Every BCQ q over a schema S can be naturally associated with an S-database,
known as its canonical database, which consists of the atoms of q after converting
each variable x ∈ var(q) into a constant ax. We say that q is acyclic if its canonical
database is acyclic, i.e., it admits a guarded tree decomposition.

Consider now a BCQ q over a schema S, and a schema T⊇ S. The T-treeification
of q is defined as the set Λ T

q of all acyclic CQs q′ over T of size at most three times
the number of atoms occurring in q, such that q′ is contained in q, i.e., D |= q′

implies D |= q for every T-database D. By abuse of notation, we may write Λ T
q

for the union (or disjunction) of its BCQs, i.e., the sentence
∨

q′∈Λ T
q

q′. The main

property of treeification is that it preserves satisfiability over acyclic models.3 Since
every satisfiable guarded sentence admits an acyclic model, we get the next useful
result from [5]; we write ϕ |=⊥ to denote the fact that ϕ is unsatisfiable:

Lemma 1. Consider a sentence ϕ ∈ GF[T], and a BCQ q over T. It holds that

ϕ ∧¬q |=⊥ ⇐⇒ ϕ ∧¬Λ
T
q |=⊥.

Before we proceed further, let us clarify that an acyclic BCQ does not directly fall
in the guarded fragment. However, it is known that every acyclic BCQ can be equiv-
alently rewritten as a guarded sentence [26]. Therefore, in what follows, we assume,
w.l.o.g., that the sentence obtained after the treeification of a BCQ is guarded.

The Final Construction

Recall that we consider an instance of Eval(G,CQ) consisting of the OMQ Q =
(S,O,q(x̄))∈ (G,CQ), the S-database D, and the tuple of constants ā∈ adom(D)|x̄|.
At this point, one maybe tempted to think that to convert the sentence ϕQ,D,ā into an
equisatisfiable guarded sentence ψQ,D,ā, we simply need to treeify the BCQ q(ā).
However, before doing this, we first need to properly eliminate the constants that
occur in

∧
α∈D α and q(ā) in order to guarantee that after applying treeification the

result will be an equisatisfiable guarded sentence. To this end, we first convert in
polynomial time ϕQ,D,ā into a convenient equisatisfiable sentence ϕ ′Q,D,ā, and then
apply the treefication technique.

Assume that adom(D) = {b1, . . . ,bk}. Let D+ :=D∪{Cb(b)}b∈{b1,...,bk}, where
Cb1 , . . . ,Cbk are fresh unary relation symbols not in S∪ sig(O). Let also D+

var be
the set of atoms obtained from D+ by replacing each occurrence of a constant

3 Here, we see models as sets of atoms, i.e., as instances.

1 Guarded Ontology-Mediated Queries 9

b ∈ adom(D) with the variable xb. Finally, let q+ be the BCQ obtained from q(ā)
by replacing each occurrence of a constant a with a fresh existentially quantified
variable ya, and adding the atom Ca(ya). We now define ϕ ′Q,D,ā as the sentence

∃xb1 , · · ·∃xbk

C(xb1 , . . . ,xbk)∧
∧

1≤i< j≤k

xbi 6= xb j ∧
∧

α∈D+
var

α

 ∧ ∧
τ∈O

τ

︸ ︷︷ ︸
Ξ

∧ ¬q+,

where C is a fresh k-ary relation symbol. It should be clear that ϕQ,D,ā and ϕ ′Q,D,ā
are equisatisfiable sentences. It is also clear that Ξ is a guarded sentence. Thus, by
Lemma 1, we immediately get that

Proposition 1. ϕQ,D,ā and Ξ ∧Λ T
q+ , where T = S∪{C}∪{Cbi}1≤i≤k ∪ sig(O), are

equisatisfiable sentences.

The above result implies that ā∈Q(D) iff the guarded sentence Ξ ∧Λ T
q+ is unsat-

isfiable. Thus, we get a reduction from Eval(G,CQ) to the unsatisfiability problem
for guarded sentences. However, it should not be overlooked that this reduction takes
exponential time due to treefication. In fact, we know from [5] that

|Λ T
q+ | ≤ |T|

O(|q+|) · (|q+| ·wd(T))O(|q+|·wd(T)),

where |q+| is the size of q+, while Λ T
q+ can be constructed in time

|q+| · |T|O(|q+|) · (|q+| ·wd(T))O(|q+|·wd(T)).

Nevertheless, since the reduction provided by Proposition 1 increases the arity of
the schema only polynomially, while the algorithm for checking whether a guarded
sentence is unsatisfiable given in [27] is double exponential only on the arity of the
underlying schema, we conclude that Eval(G,CQ) is in 2EXPTIME, as needed.

Interestingly, query answering against the entire guarded fragment can be shown
to be decidable in 2EXPTIME with the same construction as given above (cf. [5]).

Remark. The complexity stated in Theorem 1 refers to the combined complexity
of query evaluation, i.e., when all the components are part of the input. However, in
practice, it is realistic to assume that the OMQ is fixed, and only the database and the
tuple of constants are part of the input. In this case we refer to the data complexity of
Eval(G,CQ), which is known to be PTIME-complete [17]. Another relevant setting
is when the arity of the underlying schema is bounded by an integer. In this case,
Eval(G,CQ) is EXPTIME-complete [16]. The machinery described above, which
exploits the guarded fragment of first-order logic, is not well-suited for obtaining
optimal results in the above settings, and more refined techniques are needed. We
refer the interested reader to the relevant literature for details.

10 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

1.4 Query Containment

We now focus on another important algorithmic task for a query language, namely
query containment. Consider two OMQs Q1 =(S,O1,q1(x̄)) and Q2 =(S,O2,q2(x̄)).
We say that Q1 is contained in Q2, written Q1 ⊆ Q2, if Q1(D) ⊆ Q2(D) for every
S-database D. The main problem that we study in this section is defined as follows:

PROBLEM : Cont(O,Q)
INPUT : Two OMQs Q1,Q2 ∈ (O,Q) with the same data schema.
QUESTION : Is it the case that Q1 ⊆ Q2?

It is well-known that Cont(TGD,CQ) is undecidable. This is immediately inherited
from the fact that query containment for Datalog queries is undecidable [35], since
a Datalog query can be seen as an OMQ that falls in the language (F,CQ), where F
denotes the class of full TGDs, i.e., TGDs without existentially quantified variables
in the head. However, for (G,CQ) the problem becomes decidable. In fact:

Theorem 2. Cont(G,CQ) is 2EXPTIME-complete. The lower bound holds even if
S∪ sig(O1)∪ sig(O2) consists of unary and binary relation symbols only.

The lower bound for Cont(G,CQ) is immediately inherited from [12], where it
is shown that the containment problem for OMQs where the ontology is formulated
using the description logic ELI is 2EXPTIME-hard. Since a set of ELI axioms can
be equivalently rewritten, for query answering purposes, as a set of guarded TGDs,
the 2EXPTIME lower bound follows. It remains to establish the upper bound. In the
rest of the section, we give some details on how this upper bound can be shown.

1.4.1 Atomic Queries

We first focus our attention on the simpler OMQ language (G,AQ0), where AQ0
denotes the class of all CQs that consist of a single atom R(), where R is 0-ary
relation symbol, and show that query containment is in 2EXPTIME. For brevity, we
will simply write R instead of R(). Having this result in place, we are then going to
explain how it can be extended to the language (G,CQ) by exploiting the technique
of treefication discussed in the previous section. We proceed to show that:

Theorem 3. Cont(G,AQ0) is in 2EXPTIME.

To establish the above result, we first show the so-called acyclic witness property,
which states that non-containment for (G,AQ0) is witnessed via an acyclic database,
i.e., a database that admits a guarded tree decomposition, which in turn allows us
to devise a decision procedure for Cont(G,AQ0) based on alternating tree automata
that runs in 2EXPTIME. Summing up, the proof for the 2EXPTIME membership of
Cont(G,AQ0) proceeds in three main steps:

1 Guarded Ontology-Mediated Queries 11

1. Establish the acyclic witness property.
2. Encode the acyclic witnesses as trees that can be accepted by an alternating tree

automaton.
3. Construct an automaton that decides Cont(G,AQ0); in fact, we reduce our prob-

lem to emptiness for two-way alternating parity automata on finite trees.

Each one of the above three steps is discussed in more details below.

Acyclic Witness Property

We proceed to show that non-containment for (G,AQ0) is witnessed via an acyclic
database. We write Q1 6⊆ Q2 to denote the fact that the OMQ Q1 is not contained
in the OMQ Q2, or, equivalently, there exists an S-database D, where S is the data
schema of Q1 and Q2, such that Q1(D) 6⊆ Q2(D).

Proposition 2. Suppose that Q1 and Q2 are OMQs from (G,AQ0) with data schema
S. The following are equivalent:

1. Q1 6⊆ Q2.
2. There exists an acyclic S-database D such that Q1(D) 6⊆ Q2(D).

Proof. The fact that (2)⇒ (1) is trivial. For the other direction, we need an auxiliary
result, which is shown using the notion of guarded unraveling (see, e.g, [2]) and the
compactness theorem. Given two databases D1 and D2, a function h : adom(D1)→
adom(D2) is a homomorphism from D1 to D2 if, for each R(ā)∈D1, R(h(ā))∈D2.
The existence of such a homomorphism is denoted by D1→D2.

Lemma 2. Let D′ be an S-database, and Q∈ (G,AQ0) with data schema S. If D′ |=
Q then there is an acyclic S-database D′′ such that D′′ |= Q and D′′→D′.

Having the above lemma in place, we can now show that (1)⇒ (2). By hypothesis,
there exists an S-database D′ such that D′ |= Q1 and D′ 6|= Q2. By Lemma 2, there
exists an acyclic S-database D such that D |= Q1 and D→ D′. It is known that
OMQs from (G,AQ0) are closed under homomorphisms [14], which immediately
implies that D 6|= Q2. Thus, Q1(D) 6⊆ Q2(D), as needed. ut

Encoding Acyclic Databases

The next step is to encode acyclic databases as trees that can be accepted by an
alternating tree automaton. The key observation here is that acyclic databases are
“tree-like”, i.e., are of bounded tree-width. The tree-width of a database D is the
minimum width among all the tree decompositions δ = (T ,(Xv)v∈T) for D, while
the width of δ is max{|Xv| | v ∈ T}− 1. It is generally known that a database D
whose tree-width is bounded by an integer k can be encoded into a tree over a finite
alphabet of double exponential size in k that can be accepted by an alternating tree

12 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

automaton; see, e.g., [10]. Since the tree-width of an acyclic S-database is bounded
by wd(S)−1, such an encoding can be used for acyclic databases.

Let Γ be an alphabet and (N \ {0})∗ be the set of finite sequences of posi-
tive integers, including the empty sequence. A Γ -labeled tree is a partial function
t : (N\{0})∗→Γ , whose domain dom(t) is closed under prefixes, i.e., x · i∈ dom(t)
implies x ∈ dom(t), for all x ∈ (N\{0})∗ and i ∈ N\{0}. The elements of dom(t)
identify the nodes of t. Given an acyclic S-database D, and a guarded tree decompo-
sition δ for D of width wd(S)−1, it can be shown that D and δ can be encoded as
a ΓS-labeled tree t, where ΓS is an alphabet of double exponential size in wd(S) and
exponential size in |S|, such that each node of δ corresponds to exactly one node of
t and vice versa.

Although every acyclic S-database can be encoded as a ΓS-labeled tree, the other
direction does not hold. In other words, it is not the case that every ΓS-labeled tree
encodes an acyclic S-database and its corresponding guarded tree decomposition.
In view of this fact, we need the additional notion of consistency. A ΓS-labeled tree
is called consistent if it satisfies certain syntactic properties – we do not give these
properties here since they are not vital in order to understand the high-level idea of
the proof. Now, given a consistent ΓS-labeled tree t, we can show that t can be de-
coded into an acyclic S-database JtK. From the above discussion and Proposition 2,
we obtain the following lemma:

Lemma 3. Suppose that Q1 and Q2 are OMQs from (G,AQ0) with data schema S.
The following are equivalent:

1. Q1 6⊆ Q2.
2. There exists a consistent ΓS-labeled tree t such that Q1(JtK) 6⊆ Q2(JtK).

Constructing Tree Automata

We now proceed with our automata-based procedure. We use two-way alternating
parity automata (2ATA) that run on finite labeled trees of unbounded degree. Two-
way alternating automata process the input tree while branching in an alternating
fashion to successor states, and thereby moving either down or up the input tree.
Our goal is to reduce Cont(G,AQ0) to the emptiness problem for 2ATA. As usual,
given a 2ATA A , we denote by L(A) the language of A , i.e., the set of labeled
trees it accepts. The emptiness problem is defined as follows: given a 2ATA A ,
does L(A) = /0? Thus, given Q1,Q2 ∈ (G,AQ0), we need to construct a 2ATA A
such that Q1 ⊆ Q2 iff L(A) = /0. It is well-known that deciding whether L(A) is
empty is feasible in exponential time in the number of states, and in polynomial
time in the size of the input alphabet [23]. Therefore, in order to obtain the desired
2EXPTIME upper bound, we should construct A in double exponential time, while
the number of states must be at most exponential.

We first need a way to check consistency of labeled trees. The construction of an
automaton for this task is fairly standard in the literature on automata for guarded
logics (see, e.g., [10, 11]), and we omit the details.

1 Guarded Ontology-Mediated Queries 13

Lemma 4. Consider a schema S. There exists a 2ATA CS that accepts a ΓS-labeled
tree t iff t is consistent. The number of states of CS is exponential in wd(S) and
linear in |S|. Moreover, CS can be constructed in double exponential time in wd(S)
and in exponential time in |S|.

Now, the crucial task is, given an OMQ Q ∈ (G,AQ0), to devise an automaton
that accepts labeled trees which correspond to databases that make Q true.

Lemma 5. Consider an OMQ Q = (S,O,q) ∈ (G,AQ0). There is a 2ATA AQ that
accepts a consistent ΓS-labeled tree t iff JtK |= Q. The number of states of AQ is
exponential in wd(S) and linear in |S∪ sig(O)|. Moreover, AQ can be constructed
in double exponential time in the size of Q.

Let us give some insights on the construction of AQ. Assume that Q = (S,O,G),
i.e., the atomic query consists of the 0-ary predicate G. Roughly speaking, given
a consistent ΓS-labeled tree t as input, AQ tries to find derivations that witness the
fact that JtK |= Q. But let us first formalize the notion of derivation. Let D be an
S-database. A derivation tree for D and Q is a finite labeled tree T , with η being
the node labeling function that assigns facts R(ā) to nodes, where R ∈ S∪ sig(O)
and ā⊆ adom(D), such that the following conditions are satisfied:

1. For the root node v of T we have that η(v) = G.
2. For each leaf node v of T we have that η(v) ∈D.
3. For each non-leaf node v of T , with u1, . . . ,uk being its children, we have that
{η(u1), . . . ,η(uk)} is guarded, i.e., it has an atom that contains all the terms of
adom({η(u1), . . . ,η(uk)}), and ({η(u1), . . . ,η(uk)},O) |= η(v).

Intuitively, T describes how the atom G can be entailed from D and O. It is easy
to show that D |= Q iff there exists a derivation tree for D and Q. Moreover, due
to the guardedness condition in point (3) above, it is possible to show that when-
ever there is a derivation tree for D and Q, there is one whose branching degree is
bounded by a function that is exponential in wd(S∪ sig(O)). The automaton AQ ex-
ploits these facts in order to exhaustively search for derivation trees that witness the
fact that JtK |= Q on an input tree t. To this end, AQ maintains states for the possible
labels that may occur in a derivation tree for JtK and Q. It turns out that this state
set is exponential, as stated in Lemma 5. Starting with the atom G, the automaton
guesses labels of children of G that may occur in a candidate derivation tree of JtK
and Q. Thanks to alternation, it can then proceed in the same way for each child
label until it succeeds to build a derivation tree for JtK and Q. A detailed analysis
of the construction of AQ reveals that AQ can be constructed in double exponential
time in the size of Q, where the second exponent depends only on the maximum
arity among all relation symbols present in Q.

Having the above automata in place, we can show that Cont(G,AQ0) can be
reduced to the emptiness problem for 2ATA. But let us first recall some key results
about 2ATA, which are essential for the final construction. It is well-known that
languages accepted by 2ATAs are closed under intersection and complement. Given
two 2ATAs A1 and A2, we write A1∩A2 for a 2ATA, which can be constructed in

14 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

polynomial time, that accepts the language L(A1)∩L(A2). Moreover, for a 2ATA
A , we write A for the 2ATA, which is also constructible in polynomial time, that
accepts the complement of L(A). We can now show the following result:

Proposition 3. Consider Q1,Q2 ∈ (G,AQ0). We can construct in double exponential
time a 2ATA A with exponentially many states such that Q1 ⊆ Q2 iff L(A) = /0.

Proof. Assume that both Q1 and Q2 have data schema S. We define A as the au-
tomaton CS∩AQ1 ∩AQ2 . By Lemmas 3, 4 and 5, it is easy to verify that indeed A
is constructible in double exponential time, while it has exponentially many states,
and that Q1 ⊆ Q2 iff L(A) = /0. The claim follows. ut

Recall that for a 2ATA A deciding whether L(A) is empty is feasible in expo-
nential time in the number of states, and in polynomial time in the size of the input
alphabet [23]. Consequently, Proposition 3 immediately implies that Cont(G,AQ0)
is in 2EXPTIME, and Theorem 3 follows.

1.4.2 From Conjunctive Queries to Atomic Queries

Let us now explain how we get the desired 2EXPTIME upper bound for Cont(G,CQ)
by exploiting the fact that Cont(G,AQ0) is in 2EXPTIME. We first observe that it
suffices to focus on the OMQ language (G,BCQ), i.e., queries from (G,CQ) where
the CQ is Boolean. This follows from the fact that there is a simple polynomial time
reduction from Cont(G,CQ) to Cont(G,BCQ), which is a straightforward adapta-
tion of the one give in [12] for OMQs based on the description logic ELI. Therefore,
the goal is to reduce Cont(G,BCQ) to Cont(G,AQ0), and then apply Theorem 3.
This reduction relies on the treefication technique discussed in Section 1.3, and is
inspired by a translation of guarded negation fixed-point sentences to guarded fixed-
point sentences given in [6].

Consider an OMQ Q = (S,O,q) ∈ (G,BCQ), and let C be a relation symbol not
in S∪ sig(O) that has arity wd(q), where wd(q) denotes the width of q, i.e., the
number of variables occurring in q. We define the set of TGDs

η
Q
C :=

{
q′→ Gq | q′ ∈Λ

S∪{C}∪sig(O)
q

}
,

where Gq is a new 0-ary relation symbol not in S∪{C}∪ sig(O). Notice that the
TGDs in η

Q
C are, in general, not guarded. However, by construction, their bodies are

acyclic Boolean CQs, and this allows us to rewrite each TGD τ into linearly many
guarded TGDs, which we denote by γτ . We then define the set of guarded TGDs

γ
Q
C :=

⋃
τ∈η

Q
C

γτ .

We finally define the OMQ

1 Guarded Ontology-Mediated Queries 15

gC(Q) :=
(

S∪{C},O∪ γ
Q
C ,Gq

)
∈ (G,AQ0).

It can be shown that the translation gC(·) preserves containment. More precisely:

Lemma 6. Let Qi = (S,Oi,qi) ∈ (G,BCQ), for i ∈ {1,2}, and consider a predicate
C 6∈ S∪ sig(O1)∪ sig(O2) that has arity maxi∈{1,2}{wd(qi)}. It holds that

Q1 ⊆ Q2 ⇐⇒ gC(Q1)⊆ gC(Q2).

The above lemma provides the reduction from Cont(G,BCQ) to Cont(G,AQ0),
which allows us to apply the algorithm for Cont(G,AQ0) underlying Theorem 3.
However, it should not be forgotten that this reduction takes exponential time due
to treefication. Nevertheless, since the reduction provided by Lemma 6 increases
the arity of the schema only polynomially, while the algorithm for Cont(G,AQ0)
provided by Theorem 3 is double exponential only on the arity of the underlying
schema, we conclude that Cont(G,BCQ) is in 2EXPTIME, as needed.

1.5 First-Order Rewritability

We now focus on another algorithmic task that is relevant for OMQs, that is, decid-
ing whether an OMQ can be equivalently rewritten as a first-order query. A first-
order (FO) query over a schema S is a (function-free) FO-formula ϕ(x̄), with x̄
being its free variables, that uses only relations from S. The evaluation of ϕ over
an S-database D, denoted ϕ(D), is the set of tuples {ā ∈ adom(D)|x̄| |D |= ϕ(ā)},
where |= denotes the standard notion of satisfaction for first-order logic. An OMQ
Q = (S,O,q(x̄)) is FO-rewritable if there is a (finite) FO-query ϕQ(x̄) over S that
is equivalent to Q, i.e., Q(D) = ϕQ(D) for every S-database D. We call ϕQ(x̄) an
FO-rewriting of Q. The main problem that we study in this section is the following:

PROBLEM : FORew(O,Q)
INPUT : An OMQ Q ∈ (O,Q).
QUESTION : Is it the case that Q is FO-rewritable?

It is well-known that FORew(TGD,CQ) is undecidable. This follows from the fact
that deciding whether a Datalog query, and thus an OMQ from (F,CQ)4, is FO-
rewritable is undecidable. Actually, we know that a Datalog query is FO-rewritable
iff it is bounded [1], while the problem of deciding whether a Datalog query is
bounded is undecidable [24]. What about OMQs that fall in the language (G,CQ)?

The next two examples show that FORew(G,CQ) is a non-trivial problem in the
sense that there are queries from (G,CQ) that are not FO-rewritable, but at the same
time there are FO-rewritable queries from (G,CQ).

4 Recall that F denotes the class of full TGDs, i.e., TGDs without existentially quantified variables.

16 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

Example 2. Let Q = (S,O,q) ∈ (G,CQ), where S = {T/3,A/1,B/1},

O := {T (x,y,z),A(z)→ R(x,z), T (x,y,z),R(x,z)→ R(x,y)}

and
q := ∃x∃y∃z(T (x,y,z)∧R(x,z)∧B(y)).

Intuitively, an FO-rewriting of Q should check for the existence of a set of atoms
{T (c,ai,ai−1)}1≤i≤k for some k ≥ 0. However, since there is no upper bound for k,
this cannot be done via a finite first-order query, and thus Q is not FO-rewritable. A
proof for this fact is given below. ut

By slightly adapting the above example, we get a query that is FO-rewritable.

Example 3. Let Q′=(S,O,q′)∈ (G,CQ) be the query obtain from the OMQ Q given
in Example 2 by replacing q with

q′ := ∃x∃y∃z(T (x,y,z)∧R(x,z)∧B(y)∧A(z)),

i.e., by simply adding to the CQ q the atom A(z). The query Q′ is indeed FO-
rewritable since the FO-query, which is actually a CQ,

∃x∃y∃z(T (x,y,z)∧B(y)∧A(z))

is an FO-rewriting of Q′. ut

Interestingly, we can decide whether a query from (G,CQ) is FO-rewritable:

Theorem 4. FORew(G,CQ) is 2EXPTIME-complete. The lower bound holds even
if S∪ sig(O) consists of unary and binary relation symbols only.

The lower bound for FORew(G,CQ) is immediately inherited from [12], where it
is shown that deciding FO-rewritability for OMQs where the ontology is formulated
using the description logic ELI is 2EXPTIME-hard, while, as discussed in the previ-
ous section, a set of ELI axioms can be equivalently rewritten, for query answering
purposes, as a set of guarded TGDs. It remains to establish the upper bound. In the
rest of the section, we discuss how this can be obtained.

1.5.1 Atomic Queries

As in the case of query containment, we first concentrate our attention on the simpler
language (G,AQ0), and show that deciding FO-rewritability is in 2EXPTIME. Then,
we are going to explain how we can get the desired upper bound for queries from
(G,CQ) by exploiting the decision procedure for FORew(G,AQ0) and the treeifica-
tion technique. We proceed to show that:

Theorem 5. FORew(G,AQ0) is in 2EXPTIME.

1 Guarded Ontology-Mediated Queries 17

Towards a decision procedure for FORew(G,AQ0), we first semantically charac-
terize the FO-rewritable OMQs from (G,AQ0), and then explain how this semantic
characterization can be exploited in order to devise a decision procedure based on
automata techniques.

Semantic Characterization

We give a characterization of FO-rewritability of OMQs from (G,AQ0) in terms
of the existence of certain acyclic databases. This characterization is related to, but
different from characterizations used for OMQs based on DLs such as ELI and
EL [12, 13]. The DL characterizations essentially state that a unary OMQ Q (i.e.,
one whose query has a single answer variable) is FO-rewritable iff there is a bound
k such that, whenever the root of a tree-shaped database D is returned as an answer
to Q, then this is already true for the restriction of D up to depth k. The proof of
the (contrapositive of the) “only if” direction uses a locality argument: if there is no
such bound k, then this is witnessed by an infinite sequence of deeper and deeper
tree databases that establish non-locality of Q. For guarded TGDs, we would have
to replace tree-shaped databases with acyclic databases. However, increasing depth
of guarded tree decompositions does not correspond to increasing distance in the
Gaifman graph and thus does not establish non-locality. We therefore depart from
imposing a bound on the depth, and instead we impose a bound on the number of
facts (see Proposition 4). It is also interesting to note that, while it is implicit in [12]
that an OMQ based on ELI and CQs is FO-rewritable iff it is Gaifman local, there is
an OMQ from (G,CQ) that is Gaifman local, but not FO-rewritable. Such an OMQ
is the one obtained from the query Q given in Example 2, by removing the existential
quantification on the variable x in the CQ q, i.e., converting q into a unary CQ.

Proposition 4. Consider an OMQ Q ∈ (G,AQ0) with data schema S. The following
are equivalent:

1. Q is FO-rewritable.
2. There exists a k ≥ 0 such that, for every acyclic S-database D, if D |= Q, then

there is a D′ ⊆D with at most k facts such that D′ |= Q.

Proof. For (1)⇒ (2) we exploit the fact that, if Q ∈ (G,AQ0) is FO-rewritable, then
it can be expressed as a union of CQs qQ, i.e., a disjunction of CQs. This follows
from the fact that queries from (G,AQ0) are preserved under homomorphisms [14],
and Rossman’s powerful theorem stating that an FO-query is preserved under ho-
momorphisms over finite instances iff it is equivalent to a union of CQs [34]. It is
then easy to show that (2) holds with k being the size of the largest disjunct of qQ.

For (2)⇒ (1) we explicitly construct an FO-rewriting of Q. Let

ΛQ,k := {D′ ⊆D |D is an acyclic S-database, |D′| ≤ k,D′ |= Q}.

We consider the union of Boolean CQs ϕQ :=
∨

D∈ΛQ,k
qD, where qD is the Boolean

CQ obtained from D by replacing each constant c ∈ adom(D) with an existentially

18 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

quantified variable xc. It is easy to see that ϕQ is finite (modulo variable renaming).
By exploiting Lemma 2, it is not difficult to show that ϕQ is indeed an FO-rewriting
of Q, i.e., Q(D) = ϕQ(D), for every S-database D, and the claim follows. ut.

The next example illustrates Proposition 4.

Example 4. Let Q = (S,O,G) ∈ (G,AQ0), where S = {T/3,A/1,B/1}, and O con-
sists of the TGDs given in Example 2 plus the guarded TGD

T (x,y,z),R(x,z),B(y) → G.

It is easy to verify that, for an arbitrary k ≥ 0, the acyclic S-database

Dk = {A(a0),T (c,a1,a0), . . . ,T (c,ak−1,ak−2),B(ak−1)}

is such that Dk |= Q, but for every D′ ⊂Dk with at most k facts, D′ 6|= Q. Thus, by
Proposition 4, Q is not FO-rewritable. ut

At this point, one might expect that Proposition 4 allows us to devise a deci-
sion procedure for FORew(G,AQ0) based on 2ATA. Indeed, although the semantic
characterization established in Proposition 4 does not immediately provide a way
to devise such a procedure, it can be refined in order to arrive at a criterion that
permits an implementation via 2ATA [7]. However, the automata-based decision
procedure that emerges from this refined characterization runs in triple exponential
time. Roughly, the refined semantic characterization relies on a minimality criterion
that is defined on the class of all acyclic databases, and ensures that there are only
finitely many “minimal” acyclic databases that satisfy the input OMQ Q. One can
then devise a 2ATA AQ that checks for this criterion, and thus, Q is FO-rewritable
iff the language accepted by AQ is finite. The latter is feasible in exponential time in
the number of states. Unfortunately, the construction of AQ relies on the costly op-
eration of projection, and for this reason AQ has double exponentially many states.
Therefore, this leads to a decision procedure that runs in triple exponential time,
which is not optimal. We refer the interested reader to [7] for more details.

Cost Automata Approach

Since it is not apparent how the use of traditional automata techniques may lead
to the desired 2EXPTIME upper bound for FORew(G,AQ0), we instead are going
to exploit the more sophisticated model of cost automata. The goal is to provide a
refined version of the semantic characterization given in Proposition 4 that relies on
a minimality criterion. Since in the cost automata model the operation of minimiza-
tion is a native citizen (details are given below), we can deal with such a minimality
criterion in a more efficient way than standard 2ATA. In what follows, we briefly
discuss cost automata, we then revisit the semantic characterization in Proposition 4,
and finally explain how the refined characterization of FO-rewritability leads to an
optimal decision procedure for FORew(G,AQ0) based on cost automata.

1 Guarded Ontology-Mediated Queries 19

Cost Automata Models. Cost automata extend traditional automata (on words,
trees, etc.) by providing counters that can be manipulated at each transition. In-
stead of assigning a Boolean value to each input structure (indicating whether the
input is accepted or not), these automata assign a value from N∞ :=N∪{∞} to each
input. We shall only give a high-level idea of cost automata in the following, and
refer the reader to the literature for more details [11, 20, 22].

Here, we focus on cost automata that work on finite trees of unbounded degree,
and allow for two-way movements; in fact, the automata that we need are those
that extend 2ATA over labeled trees with a single counter. The operation of such an
automaton A on each input t will be viewed as a two-player cost game G (A , t)
between players Eve and Adam. Recall that the acceptance of an input tree for a
conventional 2ATA can be formalized via a two-player game as well, and, in fact,
the standard parity game for 2ATA can be seen as a special case of a cost game [11].
However, instead of the parity acceptance condition for 2ATA, plays in the cost
game between Eve and Adam will be assigned costs, and the cost automaton spec-
ifies via an objective whether Eve’s goal is to minimize or maximize that cost. In
case of a minimizing (resp., maximizing) objective, a strategy ξ of Eve in the cost
game G (A , t) is n-winning if any play of Adam consistent with ξ has cost at most n
(resp., at least n). A defines the following function on the domain of all input trees:

JA K : t 7−→ op{n | Eve has an n-winning strategy in G (A , t)},

where op = inf (resp., op = sup) in case Eve’s objective is to minimize (resp., max-
imize). Therefore, JA K defines a function from the domain of input trees to N∞. We
call functions of that type cost functions. A key property of such functions is bound-
edness. We say that JA K is bounded if there exists an n ∈ N such that JA K(t) ≤ n
for every input tree t.

We employ cost automata on trees with a single counter, where Eve’s objective
is to minimize the cost, while satisfying the parity condition. Such an automaton
is known in the literature as dist∧parity-automaton [11]. To navigate in the tree, it
may use the directions {0,l}, where 0 indicates that the automaton should stay in the
current node, and lmeans that the automaton may move to an arbitrary neighboring
node, including the parent. For this type of automaton, we can decide whether its
cost function is bounded [11, 21]. As usual, |A | denotes the size A . Then:5

Theorem 6. There is a polynomial f such that, for every dist∧parity-automaton A
using priorities {0,1} for the parity acceptance condition, boundedness of JA K is
decidable in time |A | f (m), where m is the number of states of A .

The goal is to reduce FORew(G,AQ0) to the problem of deciding whether a
dist∧parity-automaton is bounded. To this end, we first need to revise the semantic
characterization of FO-rewritability provided in Proposition 4.

A Revised Semantic Charaterization. Consider an S-database D, and a query Q =
(S,O,q) ∈ (G,AQ0). Recall that a derivation tree for D and Q is a finite labeled tree

5 This result from [11] initially relied on an unpublished result. Such a result has been now pub-
lished in [21].

20 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

that describes how the atomic query of Q can be entailed from D and O; the formal
definition can be found in the previous section. The height of a derivation tree T
for D and Q is the maximum number of nodes of a branch in T , i.e., the maximum
number of nodes that lie on a path that leads from the root node to a leaf node
without repeating nodes. Assuming that D |= Q, we define the cost of D w.r.t. Q as

cost(D,Q) := min{n |T is a derivation tree for D and Q of height n}.

The cost of Q is defined as

cost(Q) := sup{cost(D,Q) | Q(D) 6= /0, where D is an acyclic S-database}.

Therefore, the cost of Q is the least upper bound of the height over all derivation
trees for all acyclic S-databases D such that D |= Q. If there is no such a database,
then the cost of Q is zero since sup /0 = 0. Actually, cost(Q) = 0 indicates that there
is no (acyclic) database D that satisfies Q, which means that Q is unsatisfiable, and
thus it is trivially FO-rewritable.

Having the notion of the cost of an OMQ from (G,AQ0) in place, it should be
clear how the semantic characterization in Proposition 4 can be refined:

Proposition 5. Consider an OMQ Q ∈ (G,AQ0) with data schema S. The following
are equivalent:

1. Condition 2 from Proposition 4 is satisfied.
2. cost(Q) is finite.

Constructing Cost Automata. We briefly describe how we can use cost automata
in order to devise an algorithm for FORew(G,AQ0) that runs in double exponen-
tial time. Consider an OMQ Q = (S,O,G) ∈ (G,AQ0). The goal is to devise a
dist∧parity-automaton BQ such that the cost function JBQK is bounded iff cost(Q)
is finite. Therefore, by Proposition 5, to check whether Q is FO-rewritable we simply
need to check if JBQK is bounded, which, by Theorem 6, can be done in exponential
time in the size of BQ. The input trees to our automata will be over the same alpha-
bet ΓS that is used to encode acyclic S-databases in Section 1.4. Recall that, for a
dist∧parity-automaton A , the cost function JA K is bounded over a certain class C
of trees iff there is an n ∈ N such that JA K(t)≤ n for every input tree t ∈ C . Then:

Lemma 7. There is a dist∧parity-automaton HQ such that JHQK is bounded over
consistent ΓS-labeled trees iff cost(Q) is finite. The number of states of HQ is expo-
nential in wd(S), and polynomial in |S∪ sig(O)|. Moreover, HQ can be constructed
in double exponential time in the size of Q.

The automaton HQ is built in such a way that, on an input tree t, Eve has an n-
winning strategy in G (HQ, t) iff there is a derivation tree for JtK and Q of height at
most n. Thus, Eve tries to construct derivation trees of minimal height. The counter
is used to count the height of the derivation tree.

Having this automaton in place, we can now complete the proof of Theorem 5.
The desired dist∧parity-automaton BQ is defined as C ′S∩HQ, where C ′S is similar

1 Guarded Ontology-Mediated Queries 21

to the 2ATA CS (in Lemma 4) that checks for consistency of ΓS-labeled trees. Notice
that C ′S is essentially a dist∧parity-automaton that assigns zero (resp., ∞) to input
trees that are consistent (resp., inconsistent), and thus, C ′S ∩HQ is well-defined.
Since the intersection of dist∧parity-automata is feasible in polynomial time [11],
Lemma 4 and Lemma 7 imply that BQ has exponentially many states, and it can be
constructed in double exponential time. Lemma 7 implies also that JBQK is bounded
iff cost(Q) is finite. It remains to show that the boundedness of JBQK can be checked
in double exponential time. By Theorem 6, there is a polynomial f such that the
latter task can be carried out in time |BQ| f (m), where m is the number of states of
BQ, and the claim follows.

1.5.2 From Conjunctive Queries to Atomic Queries

In this final section, we explain how we get the desired 2EXPTIME upper bound
for FORew(G,CQ) by exploiting the fact that FORew(G,AQ0) is in 2EXPTIME.
As for containment, it suffices to focus on the OMQ language (G,BCQ); implicit
in [12]. Therefore, the goal is to reduce FORew(G,BCQ) to FORew(G,AQ0), and
then apply Theorem 5. To this end, we follow the same approach as for containment.
Recall that for an OMQ Q = (S,O,q)∈ (G,BCQ), gC(Q), where C is a new relation
symbol not in S∪ sig(O) of arity wd(q), is an OMQ that falls in (G,AQ0), while
gC(·) preserves containment. It turned out that gC(·) preserves also FO-rewritability.

Lemma 8. Let Q = (S,O,q) ∈ (G,BCQ), and consider a predicate C 6∈ S∪ sig(O)
that has arity wd(q). It holds that

Q is FO-rewritable ⇐⇒ gC(Q) is FO-rewritable.

Even though the reduction from FORew(G,BCQ) to FORew(G,AQ0) provided
by Lemma 8 is exponential, we can still obtain the desired 2EXPTIME upper bound
for FORew(G,BCQ). This is because it increases the arity of the schema only poly-
nomially, while the algorithm for FORew(G,AQ0) underlying Theorem 5 is double
exponential only on the arity of the schema.

1.6 Reasoning over Finite Instances

The semantics of query evaluation for OMQs is defined in terms of all instances,
including finite and infinite ones. In particular, recall that, given an OMQ Q =
(S,O,q(x̄)), a database D over S, and a tuple ā of constants from adom(D), we
write D |= Q(ā) whenever, for every (finite or infinite) instance J ⊇ D that satis-
fies O, it holds that J |= q(ā). However, there are applications in which reasoning
over finite instances is more appropriate. A prime example of this is the area of data
management, as databases are by definition finite objects.

22 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

We write D |=fin Q(ā) whenever, for every finite instance J⊇D that satisfies O,
it holds that J |= q(ā). It is easy to show that for arbitrary sets of TGDs, entailment
under arbitrary instances (|=) and entailment under finite instances (|=fin) are, in gen-
eral, different. Interestingly, this is not the case when we focus on guarded TGDs,
a property known as finite controllability. In particular, a deep result in [5], relying
on techniques from [33], established that for OMQs from (G,CQ) the entailment
notions of |= and |=fin coincide. This is formalized below.

Theorem 7. Consider an OMQ Q∈ (G,CQ) with data schema S, a database D over
S, and a tuple ā of constants over adom(D). It holds that

D |= Q(ā) ⇐⇒ D |=fin Q(ā).

In very rough terms, the main idea behind the proof of Theorem 7 is to show the
following: if there exists a counterexample to the fact that D |=Q(ā), i.e., an instance
J⊇D that satisfies O but J 6|= q(ā), then there is also a finite counterexample to it.
Following a reasoning similar to that in Proposition 2, we can assume, w.l.o.g.,
that J is acyclic. The finite counterexample Jfin is then defined as a “nearly-acyclic
covering” of J with respect to D and Q, which is a finite instance such that:

1. Jfin ⊇D,
2. Jfin satisfies O, and
3. There is a homomorphism from every set of at most |q| atoms in Jfin to J that is

the identity over adom(D).

From (3), which is the “near-acyclicity” condition, one obtains that ā 6∈ q(Jfin). To-
wards a contradiction, assume that ā ∈ q(Jfin). Then, there is a homomorphism h
from q to D that maps x̄ to ā. By composing h with the homomorphism given by (3)
that maps the image of q under h to J, we obtain a homomorphism from q to J that
maps x̄ to ā. This contradicts the fact J 6|= q(ā). Therefore, due to (1) and (2), we
conclude that Jfin is a counterexample to D |=fin Q(ā).

As a direct corollary to Theorem 7, we obtain that also the notions of containment
and first-order rewritability for OMQs based on guarded TGDs are invariant with
respect to whether we consider |= or |=fin. Formally, consider two OMQs Q and Q′

from (G,CQ) over the same data schema S. We write Q⊆fin Q′ if, for every database
D over S and tuple ā of constants over adom(D), it is the case that D |=fin Q(ā) iff
D |=fin Q′(ā). Moreover, we say that Q is FO-rewritable in the finite, if there exists a
first-order query φQ such that D |=fin Q(ā) iff ā ∈ φQ(D), for every database D over
S and tuple ā of constants over adom(D). We then have the following:

Corollary 1. Consider Q,Q′ ∈ (G,CQ) with the same data schema. It holds that:

• Q⊆ Q′ iff Q⊆fin Q′.
• Q is FO-rewritable iff Q is FO-rewritable in the finite.

1 Guarded Ontology-Mediated Queries 23

1.7 Conclusions

We have discussed in depth the crucial tasks of query evaluation, query contain-
ment, and first-order rewritability for guarded ontology-mediated queries. For query
evaluation, we explained how classical results on the satisfiability problem for the
guarded fragment of first-order logic can be applied. For query containment, we dis-
cussed how tree automata techniques can be used, while for first-order rewritability,
we explained how techniques based on a more sophisticated automata model, known
as cost automata, can be exploited. Finally, we discussed that the above problems
are invariant with respect to whether we consider arbitrary or finite models.

There are still several open problems that deserve our attention:

• It is unclear whether the results on query containment and first-order rewritabil-
ity presented for guarded ontology-mediated queries can be extended to the case
where the ontology is an arbitrary set of guarded first-order sentences. Recall
that in this generalized setting, query evaluation is decidable in 2EXPTIME [5].

• The problem of extending guarded TGDs with additional features has been ex-
tensively studied in the literature. For example, guarded TGDs have been ex-
tended with default negation (a.k.a. negation as failure) in a series of papers.
In [17], negation is interpreted according to the perfect model semantics, in [28]
according to the well-founded semantics, while in [25] according to the stable
model semantics. The query evaluation problem for OMQs based on the above
extensions of guarded TGDs is by now well-understood. However, query con-
tainment and first-order rewritability have remained unexplored.

• Another relevant extension is guarded TGDs with disjunction, which has been
studied in [15]. Again, query evaluation is well-understood, while query con-
tainment and first-order rewritability have remained open problems.

References

1. Miklós Ajtai and Yuri Gurevich. Datalog vs first-order logic. J. Comput. Syst. Sci., 49(3):562–
588, 1994.

2. Hajnal Andréka, István Németi, and Johan van Benthem. Modal Languages and Bounded
Fragments of Predicate Logic. J. Philosophical Logic, 27(3):217–274, 1998.

3. Marcelo Arenas, Richard Hull, Wim Martens, Tova Milo, and Thomas Schwentick. Foun-
dations of Data Management (Dagstuhl perspectives workshop 16151). Dagstuhl Reports,
6(4):39–56, 2016.

4. Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On rules with
existential variables: Walking the decidability line. Artif. Intell., 175(9-10):1620–1654, 2011.

5. Vince Bárány, Georg Gottlob, and Martin Otto. Querying the Guarded Fragment. Logical
Methods in Computer Science, 10(2), 2014.

6. Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded Negation. J. ACM, 62(3):22:1–
22:26, 2015.

7. Pablo Barceló, Gerald Berger, Carsten Lutz, and Andreas Pieris. First-Order Rewritability of
Frontier-Guarded Ontology-Mediated Queries. In IJCAI, pages 1707–1713, 2018.

8. Pablo Barceló, Gerald Berger, and Andreas Pieris. Containment for Rule-Based Ontology-
Mediated Queries. In PODS, pages 267–279, 2018.

24 Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas Pieris

9. Catriel Beeri and Moshe Y. Vardi. The implication problem for data dependencies. In ICALP,
pages 73–85, 1981.

10. Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. A step up in expressiveness of
decidable fixpoint logics. In LICS, pages 817–826, 2016.

11. Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden Boom. The
complexity of boundedness for guarded logics. In LICS, pages 293–304, 2015.

12. Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. First Order-Rewritability
and Containment of Conjunctive Queries in Horn Description Logics. In IJCAI, pages 965–
971, 2016.

13. Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. First-Order Rewritability of Atomic
Queries in Horn Description Logics. In IJCAI, pages 754–760, 2013.

14. Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive Datalog, CSP, and MMSNP. ACM Trans. Database Syst.,
39(4):33:1–33:44, 2014.

15. Pierre Bourhis, Marco Manna, Michael Morak, and Andreas Pieris. Guarded-based disjunctive
tuple-generating dependencies. ACM Trans. Database Syst., 41(4):27:1–27:45, 2016.

16. Andrea Calı̀, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. J. Artif. Intell. Res., 48:115–174, 2013.

17. Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based framework
for tractable query answering over ontologies. In PODS, pages 77–86, 2009.

18. Andrea Calı̀, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and Andreas Pieris.
Datalog+/-: A family of logical knowledge representation and query languages for new ap-
plications. In LICS, pages 228–242, 2010.

19. Andrea Calı̀, Georg Gottlob, and Andreas Pieris. Towards more expressive ontology lan-
guages: The query answering problem. Artif. Intell., 193:87–128, 2012.

20. Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In ICALP,
pages 139–150, 2009.

21. Thomas Colcombet and Nathanaël Fijalkow. The bridge between regular cost functions and
omega-regular languages. In ICALP, pages 126:1–126:13, 2016.

22. Thomas Colcombet and Christof Löding. Regular cost functions over finite trees. In LICS,
pages 70–79, 2010.

23. Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable
optimization problems for database logic programs (preliminary report). In STOC, pages 477–
490, 1988.

24. Haim Gaifman, Harry G. Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. Undecidable opti-
mization problems for database logic programs. J. ACM, 40(3):683–713, 1993.

25. Georg Gottlob, André Hernich, Clemens Kupke, and Thomas Lukasiewicz. Stable model
semantics for guarded existential rules and description logics. In KR, 2014.

26. Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and guards: game
theoretic and logical characterizations of hypertree width. J. Comput. Syst. Sci., 66(4):775–
808, 2003.

27. Erich Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.
28. André Hernich, Clemens Kupke, Thomas Lukasiewicz, and Georg Gottlob. Well-founded

semantics for extended datalog and ontological reasoning. In PODS, pages 225–236, 2013.
29. André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter. Dichotomies in ontology-

mediated querying with the guarded fragment. In PODS, pages 185–199, 2017.
30. Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. Efficiently com-

putable Datalog∃ programs. In KR, 2012.
31. Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-

erini, and Riccardo Rosati. Linking data to ontologies. J. Data Semantics, 10:133–173, 2008.
32. Riccardo Rosati. The limits of querying ontologies. In ICDT, pages 164–178, 2007.
33. Riccardo Rosati. On the finite controllability of conjunctive query answering in databases

under open-world assumption. J. Comput. Syst. Sci., 77(3):572–594, 2011.
34. Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55(3):15:1–15:53, 2008.
35. Oded Shmueli. Equivalence of DATALOG queries is undecidable. J. Log. Program.,

15(3):231–241, 1993.

