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Abstract—Several solutions to describing service choreogra-
phy have emerged, mainly focused on encoding capabilities
of services especially for those deployed on the Web. These
solutions are either derived from traditional Web service
standards such as WSDL or inspired by the theory of process
calculus. Little attention has however been paid to finding a
lightweight solution which can enable peers to obtain, publish
and share service choreography in an open environment or
peer-to-peer network. This paper proposes a framework for
choreographing semantically enhanced Web Services encoded
in a extended lightweight coordinative language which is
derived from process calculus and is dedicated to running
in modern Web browsers. A proof-of-concept prototype has
been implemented and demoed as a decentralised service-
choreography-management platform based on this framework.
There is no need for users to install any third-party application,
and service choreography execution is achieved via client-side
Web browsers. Also, the preliminary experiments indicate the
efficiency and scalability of our proof-of-concept implementa-
tion of this framework.

Keywords-web service choreography; linked data; process
calculus;

I. INTRODUCTION

Web Services (WSs) have received considerable attention
within both academia and industry as a means of virtualising
software and thereby building scalable decentralised systems
on the Internet. We will focus in this paper on peer-based
WS choreography, which we interpret as a top-down per-
spective on WS coordination where all services participate as
equals but interact in conformance to a specification of social
norms in the peer-to-peer networks. This contrasts with
orchestration, which focuses on the behaviour of a single
service coordinating the interaction (with other services only
being involved as required by the orchestrator). Several
vocabularies inspired by WSDL have been proposed for
semantically enhancing WS descriptions but comparatively
little attention has been paid to the semantic aspects of WS
choreography running in an open ad hoc environment or
peer-to-peer networks. To address this, we will focus on a
minimal language with just these concepts (e.g., constraints
and their interaction with message passing, etc.), taking
as our starting point the notion of the Interaction Model
(IM) encoded in the Lightweight Coordination Calculus

(LCC) [1].1 LCC is a declarative language used by Open-
Knowledge for describing choreography and employed in
this paper due to its lightweight expression and executability.

An IM is a set of clauses defining the behaviours asso-
ciated with roles within peer interactions.2 A role describes
the necessary actions for each of the peers taking part
in the interaction. We show in this paper how to extend
LCC to a new choreography description language, XLCC,
which remains compact enough to execute as a script on
various devices installed with modern browsers. The syntax
of XLCC is described in BNF in Figure 1.

IM := Clause List
Clause List := Clause|Clause List

Clause := Role :: Def .|Role.|plays(Constant, Constant).|
knows(Constant).|iid(Constant).

Role := a(Type, Id)
Def := Message|Def then Def |Def or Def |Def niob Def

Message := M ⇒ Role|M ⇒ Role ← C |M ⇐ Role|
C ← M ⇐ Role|null ← C |Role|Role ← C

C := Constant|Constant(Terms)|not(C )|C && C |
C || C |list(Variable, Variable, Variable)

Terms := Term, Terms|Term
Type := Term

Id := Constant|Variable
M := Constant(Term)

Term := Constant|Variable|Constant(Terms)|
Constant := a string starting with a lower case character
Variable := a string starting with an upper case character

Figure 1. XLCC syntax

After being encoded in XLCC, IMs can be annotated
with the WSCAIM (Web Service Choreography As In-
teraction Models) vocabulary, which can comprehensively
describe IM-driven WS choreography and benefit service
discovery/repurposing. The OKeilidh system3 is an online
decentralised platform built on top of Web browsers and
allows peers to publish, annotate and execute WS chore-
ography modelled as IMs via the components illustrated in
Figure 2. By embedding metadata in (X)HTML, publishers
can attach semantics to Web content, which makes the Web
page itself both machine-readable and human-readable. Sev-

1Cf. also the OpenKnowledge system http://www.openk.org
2 We follow the example of the OpenKnowledge system in using the

term peer (rather than agent) to focus on reactive behaviours of participants
within interaction.

3http://www.openk.org/okeilidh/
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uhiroeh
Typewritten Text

uhiroeh
Typewritten Text
Bai, X., Klein, E., & Robertson, D. (2012). Choreographing Web Services with Semantically Enhanced Scripting. In Web Intelligence and Intelligent Agent Technology (WI-IAT). (pp. 583-587). IEEE. 10.1109/WI-IAT.2012.127



Figure 2. Architecture overview

eral solutions to embedding metadata into Web pages have
been proposed, including Microformats [2], RDFa[3] and
Microdata[4]. In this paper, we will restrict our attention to
RDFa, which is superior to other solutions by not only taking
advantage of standard XHTML markup but also providing
several new XHTML attributes for achieving flexibility and
disambiguation. RDFa also reuses the existing RDF model
and supports full RDF semantics.

The remainder of this paper is organised as follows.
Section II introduces XLCC designed as an extension of
LCC and elaborates a new asynchrony operator. Section III
proposes a new vocabulary for semantically enhancing the
WS choreography specification shared by peers. The evalua-
tion of a new asynchrony operator is presented in Section IV.
Section V gives a brief description on the work related to
this paper. The conclusion is drawn in Section VI and the
direction of future work is also indicated.

II. OVERVIEW OF XLCC

The XLCC language was derived from LCC, which is
a compact declarative language [5] deployed in the Open-
Knowledge project for describing and executing WS chore-
ography between peers. LCC choreography specifications
are also executable, but until now LCC interpreters have only
been produced for peer-to-peer and service architectures,
not for a Web environment. Moreover, LCC still faces
concurrency-design issues which have not been tackled in
the OpenKnowledge kernel. By contrast, the XLCC script
allows publishers to create IMs which can be executed in
modern browsers. Normally, service orchestration systems
operate by installing server applications or, in the case of
choreography, downloading an application on every peer.
However, it is possible to obtain the same functionality
through a Web browser, which frees users from the need
to download applications or reconfigure port settings. We
demonstrate this for XLCC, although the same princi-
ple could apply to other process languages executable in
browsers. As shown in Figure 2, the XLCC script and the
XLCC Interpreter component are focused on IMs published
via Web documents (in (X)HTML) and corresponding run
time environments (e.g., browsers). Figure 3 describes a
journey-planning IM in xLCC and it involves six roles

including one role-change (due to the limited paper space,
several role bodies are omitted and substituted by ∼). First, a
traveller T sends to a travel agent TA the times and locations
of her departure and arrival. Second, TA normalises the
query and sends it to a CRS (Carrier Routing System)
C which will generate routes from the journey start and
endpoint information. TA also sends the journey query to
an evaluation unit E in order to constantly get latest statistics
on travellers’ queries. Third, C sends each generated route
to a GDS (Global Distribution System) G to obtain costs
for each route and then sends journey information back
to TA, which will reprice each journey and also generate
final options for T . After receiving a message with journey
options from TA, T makes a choice and notifies a TMC
(Travel Management Company) TM for booking by her
credit card. Finally, TM sends the ticket and the receipt
back to the interaction initiator T .

a(traveller, T)::
search(Departure, Arrival, DepTime, ArrTime)
⇒ a(tavelAgent, TA) then

display(Options)← options(Options)⇐ a(travelAgent, TA)
then

book(JourneyID, CC)⇒ a(tmc, TM)
← chooseJourney(Options, JourneyID) && payby(CC) then

booked(Tickets, Receipts)⇐ a(tmc, TM).

a(travelAgent, TA)::
search(Departure, Arrival, DepTime, ArrTime)
⇐ a(traveller, T) then

journeyQuery(Query)⇒ a(crs, C)
← normalise(Departure, Arrival, DepTime, ArrTime, Query)
then

recommend(Journeys)⇐ a(crs(Routes, Journeys), C) then
options(Options)⇒ a(traveller, T)
← repricing(Journeys, Options) then -----> niob

record(Query)⇒ a(evaluator, E) then
evaluation(Statistics)⇐ a(evaluator, E).

a(crs, C)::∼. a(crs(Routes, Journeys), C)::∼.

a(gds, G)::∼. a(evaluator, E)::∼.

a(tmc, TM)::
book(JourneyID, CC)⇐ a(traveller, T) then
booked(Tickets, Receipts)⇒ a(traveller, T)
← charge(JourneyID, CC, Receipt) && print(Ticket).

Figure 3. Basic Travel Planning IM in XLCC

A. Design of the Asynchrony Operator

An IM describes the interaction of peers and their as-
sociated obligations. The latter are encoded as constraints
whose solvers are wrapped into so-called OpenKnowledge
Components (OKCs), which can be retrieved from external
repositories or created locally on the fly (cf. Figure 2). Every
IM models a process driven by diverse events, including con-
straint solving and message passing, and significant overhead
during the IM execution is caused by message passing. For
instance, in Figure 3, the travel agent T constantly receives
updated statistics on the journey query history in order to
find out travellers’ preferences and improve its own recom-
mendation system. This interaction is orthogonal to other
interactions arising from booking a journey. It will however



be unnecessarily blocked by the CRS C if C cannot send
the message recommend(Journeys) back to T in time. This
inefficiency is caused by use of the operator then (high-
lighted in the left box in Figure 3), which requires blocked
I/O—an input/output-processing pattern that prohibits other
processing until the transmission has finished). Although
message-intensive choreography demands the careful design,
so far little attention has been paid to the potential scalability
issue.

By taking advantage of both thread-driven programming
and event-driven programming, we propose an efficient
method of interpreting IMs that incorporates a non-blocking
I/O mechanism. Specifically, we add to XLCC an asyn-
chrony operator niob, interpreted via the event-based asyn-
chronous design pattern. Modern browsers normally are
single-thread-ed (Google Chrome has one process for each
tab in a single window) and support non-blocking I/O
natively. Our XLCC script interpreter has been designed and
implemented to run in widely adopted browsers.

Standard LCC uses two operators to sequence message
passing in a clause: then, as mentioned earlier, and or.
S1 then S2 requires S1 to be completed first, after which
S2 will be completed; S1 or S2 stipulates that either S1

or S2 will be completed and that S1 will be attempted first.
After adding the new operator niob, we adopt the following
interpretations (in JavaScript callback functions) of the three
sequence operators:

Table I
INTERPRETING SEQUENCE OPERATORS IN XLCC

S1 then S2 execute(S1, function(satisfied) {
if (satisfied) execute(S2);
});

S1 or S2 execute(S1, function(satisfied) {
if (!satisfied) execute(S2);
});

S1 niob S2 execute(S1); execute(S2);

As shown in Table I, callback functions are used for
ensuring a strict execution sequence for then and or in
which S1 is completed first and S2 is only attempted in
the callback body with the parameter satisfied, which
indicates whether the completion of S1 was successful or
not. By contrast, no callback function is invoked in the
interpretation of niob, and as a result, if there is message
passing in S1, the execution of S2 will not be blocked as
long as it is not dependent on that message passing. It is also
notable that in XLCC, binary operators including then, or
and niob are not symmetric. If the left-hand-side of niob
does not involve any message passing, the evaluation will
be the same as when the then operator is used; that is, the
following equivalence holds:

S1 niobS2 ⇔ S1 thenS2 [if ¬has(S1,⇐)∧¬has(S1,⇒)]
(1)

Assume there are n niobs appear in a role clause which is
split into n+1 segments (named as niob contexts hereafter).

For IMs containing more than one niob, we make each
context referred to via a specific identifier by which the
remaining defs can be resumed after the main thread comes
back to that context once the awaited message finally arrives.

B. XLCC Semantics

The semantics of XLCC inherits the operational semantics
defined in LCC (see in [1]) but XLCC has extended LCC
by bringing in new operators and built-in predicates. As
mentioned in [1], LCC does not prescribe the means of
transmitting messages. However, since XLCC has been de-
signed as a browser-focused choreography script language,
the semantics behind message passing needs to be grounded.

1) Messaging: In XLCC, ⇒ and ⇐ denote sending a
message to and receiving a message from another peer re-
spectively. In order to achieve peer-to-peer message passing,
any cross-domain messaging protocol could be used here
for serving this purpose. By “cross-domain”, we mean any
messaging client is able to fulfil incoming connections in
either a physical manner or a logical manner.

2) Concurrency: XLCC does not employ the par opera-
tor originally designed in LCC and instead invents the niob
operator which is inspired by non-blocking I/O to achieve
the concurrent computing. niob is a binary operator and
differentiated from another operator then by removing the
I/O blocking when the left-hand-side sub-clause is evaluated.
As soon as a message passing is encountered, the interpreter
will create a callback function and wrap all the remainder of
the left-hand-side, which has not been evaluated, into this
function. After that, the interpreter will begin to evaluate
the right-hand-side sub-clause of niob without waiting until
the above callback function is fired. If the left-hand-side of
niob does not involve any message passing, the evaluation
will proceed exactly the same as when the then operator
is applied. Therefore, the niob operator can in this case be
substituted by the then operator, as described in Equation 1.

3) Built-In-Predicates: As of writing this paper, XLCC
is still evolving and has the following built-in predicates:

a. plays defines which peer will play which role during
the IM execution;

b. knows defines which OKC(s) the current logged-in
peer will provide;

c. iid defines the universal ID of an interaction which
denotes a one-time execution of a specific IM;

d. list replicates the list operations in Prolog, which
were part of the original design of LCC.

III. ANNOTATING IMS WITH WSCAIM

In Figure 3, the vocabulary employed inside the IM is
unfortunately not machine-interpretable, nor is it easy for hu-
mans to interpret; for instance, we can not understand what
CC denotes unless the original publisher has added free
text comments on this variable. Although the IM publisher
could use more self-descriptive labels for arguments, like



CreditCard instead of CC , this does not help unless there
is accompanying ontology which provides semantics for the
new label, such as http://dbpedia.or-g/resource/Credit card.
IMs without semantic enhancement cannot be properly dis-
covered, understood or repurposed. We propose a framework
for semantically enhancing choreography with the IM An-
notator component as shown in Figure 2. This framework
complies with the Linked Data principles [6], thus allowing
the annotated choreography to be easily discovered and
consumed. We have developed a lightweight choreogra-
phy ontology named WSCAIM (at http://www.openk.org/
wscaim.owl) based on OWL-P [7], the CSP vocabulary (at
http://vocab.deri.ie/csp/ and OPENK (originally designed for
describing interaction-driven peer communities). Details of
our annotation strategy are discussed below where we refine
the IM described in Figure 3 by adding two arguments CCC
and JTP , which denote the remaining credit in one’s credit
card and the price for a specific journey option respectively.

A. Process-Dedicated Annotations

Like LCC, XLCC is a process calculus, and consequently
we have drawn on OWL-P for terms focused on message
passing between peers. OWL-P defines several process-
calculus related concepts such as messages, protocols, roles,
propositions and commitments. XLCC uses constraints to
restrict peers to their obligations. Therefore, checking if
policies inside IMs have been obeyed boils down solving a
Constraint Satisfaction Problem (CSP), and the annotations
related to this are discussed in Subsection III-B. IMs are
annotated and serialised in XHTML+RDFa.

B. Constraint-Dedicated Annotations

We use the CSP vocabulary to annotate the constraint ele-
ments of the IM. Figure 4 describes an excerpt of constraint-
solving related RDF triples extracted from an IM document
and serialised in Turtle. It is notable that the CSP vocabulary
does not support comparison between values of variables
and without this more expressive annotation, it is difficult if
not impossible for IM publishers to annotate constraints on
relations between variables. Therefore, we extend CSP with
MathML[8] in order to make data comparisons required by
IM constraints possible. The triples that realise this extension
are also described in Figure 4.

IV. EXPERIMENT

Our XLCC interpreter’s performance on the IM execution
with non-blocking I/O is compared with the performance on
the I/O-blocking execution in this section. This comparison
involved two peers, one of which triggered the interaction
by sending messages to the other and received responses
later on. Each sending and receiving pair here forms a
basic request/response unit (RnR) in which message sending
and receiving should happen sequentially. Therefore, the
operator then was used here to join message sending

@prefix :<http://www.openk.org/ims/JourneyPlanning.html#>.
@prefix csp:<http://vocab.deri.ie/csp#>.
@prefix m3:<http://www.w3.org/1998/Math/MathML/>.
@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

:TMCArgumentRelation
a csp:Relation;
csp:isSatisfiable "true"∧∧

<http://www.w3.org/2011/XMLSchema#Boolean>;
csp:supports (
[csp:and
[csp:var :CC; csp:val :VISA],
[csp:var :R; csp:val :VISA_REC],
[m3:apply [m3:geq [m3:ci :CCC], [m3:ci :JTP]]]]

[csp:and
[csp:var :CC; csp:val :MASTER],
[csp:var :R; csp:val :MASTER_REC],
[m3:apply [m3:geq [m3:ci :CCC], [m3:ci :JTP]]]]).

...

Figure 4. Constraint-solving-related triples

and message receiving in each RnR and the interaction
containing only one unit was not taken into account since
I/O has to be blocked by then in this case. In the real world,
messages passed during peer interactions could be different
in length and in order to simplify this, messages lengths were
assumed to be equal in this experiment. We experimented
with the performance of the XLCC interpreter by calculating
the costs of time spent on running IMs with non-blocking
I/O (RnRs were joined with niobs) and running IMs with
blocking I/O (RnRs were joined with thens), respectively.
After each calculation, the number of units was increased
by one. Figure 5 illustrates the result of calculations on the
time costs of interactions between two peers based on the
above experiment design.

Figure 5. Comparison between peer interactions with non-blocking I/O
and blocking I/O

From the above figure, with the increasing of the number
of RnR units, there is a steep increase in the time cost
of running IM with blocking I/O. However, for the IM
executions with non-blocking I/O, the changing of the time
cost is relatively trivial and the increase is not obvious.

http://dbpedia.or-g/resource/Credit_card
http://www.openk.org/wscaim.owl
http://www.openk.org/wscaim.owl
http://vocab.deri.ie/csp/


Moreover, the experiment on the running of IMs with
blocking I/O stopped when the number of RnRs reached 35,
which occurred due to the timeout of the employed BOSH
HTTP endpoint. Needless to say, this could be improved
by reconfiguring the BOSH property settings or employing
another endpoint with better performance. Nevertheless, with
the same timeout configuration, as shown in Figure 5,
running IMs in a non-blocking-I/O manner can handle
more RnR unites and our framework based on non-blocking
I/O therefore scales to the peer-to-peer knowledge sharing
environment with a large number of messages being passed
around more than the approaches based on the traditional
blocking-I/O manner.

V. RELATED WORK

Although several vocabularies inspired by WSDL have
been proposed for annotating WS descriptions with seman-
tic markups, most notably OWL-S[9], WSDL-S[10] and
SAWSDL[11], little attention has been paid to semantically
enhancing the WS choreography which will be launched
in the more dynamic environments emerging from open
environments and peer-to-peer networks. For example, WS-
CDL [12] lacks an appropriate URI-based vocabulary for
semantic annotations and other Semantic Web Service so-
lutions such as WSMO [13] are expressive and powerful
but also relatively heavyweight, and consequently difficult
to apply to portable devices (e.g., mobile phones and tablet
PC, etc.). Several lightweight vocabularies have been devel-
oped for semantic annotation and targeting at either SOAP-
based WSs or RESTful WSs or both, including WSMO-
Lite [14], hRESTS [15] (HTML for RESTful Services)
and RESTdesc [16]. Also, WS annotation tools have been
developed and are still evolving. Crucially, the core concepts
for the interaction (or process) specification and markup
are still missing in existing choreography approaches of
which we are aware. LCC choreography specifications are
also executable, but until now LCC interpreters had only
been produced for peer-to-peer and service architectures,
not for a Web environment. Moreover, LCC still faces
concurrency-design issues which have not been tackled in
the OpenKnowledge kernel. By contrast, the XLCC script
allows publishers to create IMs which can be executed in
modern Web browsers.

VI. CONCLUSIONS

WS choreography provides a model for representing how
peers collaborate with one another in order to achieve their
top-level goals. In this paper, we presented OKeilidh as
a decentralised proof-of-concept platform which encodes
choreography as Interaction Models and executes user agent
interactions within modern browsers. XLCC extends the
LCC language as a lightweight and browser-focused script
language for encoding choreography and its interpreter sup-
ports message passing in a peer-to-peer manner. In addition,

we have developed a vocabulary that makes it easy for ser-
vice publishers to annotate services and link them to others
in an interconnected manner. This in turn benefits from and
enriches the increasing number of resources published in
conformity to Linked Data principles.

In future work, we intend to integrate OKeilidh with OK-
Book [17] (an open online platform for curating peer com-
munities) and thus to make IM publication, IM discovery,
IM subscription and IM execution interoperate seamlessly
together.
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