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Learning Pregrasp Manipulation of Objects from Ungraspable Poses

Zhaole Sun1, Kai Yuan2, Wenbin Hu2, Chuanyu Yang2, and Zhibin Li2

Abstract— In robotic grasping, objects are often occluded in
ungraspable configurations such that no pregrasp pose can be
found, eg large flat boxes on the table that can only be grasped
from the side. Inspired by humans’ bimanual manipulation,
eg one hand to lift up things and the other to grasp, we
address this type of problems by introducing pregrasp manip-
ulation – push and lift actions. We propose a model-free Deep
Reinforcement Learning framework to train control policies
that utilize visual information and proprioceptive states of the
robot to autonomously discover robust pregrasp manipulation.
The robot arm learns to first push the object towards a
support surface and establishes a pivot to lift up one side
of the object, thus creating a clearance between the object
and the table for possible grasping solutions. Furthermore,
we show the effectiveness of our proposed learning framework
in training robust pregrasp policies that can directly transfer
from simulation to real hardware through suitable design of
training procedures, state, and action space. Lastly, we evaluate
the effectiveness and the generalisation ability of the learned
policies in real-world experiments, and demonstrate pregrasp
manipulation of objects with various size, shape, weight, and
surface friction.

I. INTRODUCTION

Grasping is one of the most fundamental aspects of robotic

manipulation. Previous works concentrate on grasp quality

evaluation [1], [2] and grasp detection [3], [4], [5] to predict

a pose for grasping. Leveraging techniques of supervised

learning, methods such as Dex-Net [2] achieved a grasping

accuracy of more than 90% and exhibited a grasp efficiency

comparable to human performance, even in clutter as being

crowded with many other irrelevant objects.

Noticeably, objects in the aforementioned settings usually

have several graspable positions, and the proposed methods

[2], [6] use grasp quality evaluation in a pipeline as: Sample

several feasible grasping positions on the object, rank them

and then select the best position to grasp. However, in

scenarios where there is no feasible position to grasp, those

methods would fail due to the non-existence of feasible

grasping solutions in such particular configurations.

A notable scenario is that a cuboid with only its height

being less than the max stroke of the gripper laying on

flat ground (see Fig. 1). In this configuration, no feasible

grasp solution exists, and the object needs to be lifted

first creating a feasible clearance, before being possibly
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Fig. 1: Demonstration of our transferred sim2real pregrasp

policy. As the width of the box exceeds the gripper’s size, the

policy needs to learn a feasible grasping pose by a specific

sequence of actions: (1) push the object against a support

surface; (2) lift the object by pivoting; (3) grasp the object.

grasped. Hereby, we name pregrasp manipulation as the

manipulation generating graspable configurations for finding

suitable grasping solutions.

Recently, pregrasp sliding [7] and pregrasp rotation [8]

has been proposed to tackle the pregrasp problem. Pregrasp

sliding concentrates on creating grasping positions by sliding

thin objects over the edge of the table, while pregrasp rotation

focuses on rotating sensitive objects, such as rotating a

pan’s handle to improve grasp performance. These algo-

rithms have strict conditions on the problem formulation and

experimental setup, such as carefully designed end-effectors,

precise and expensive sensors, a more complicated measure

on the environment, and assumptions on the target object

parameters. Also, pregrasp sliding [7] needs to have the

information of the exact shape of the table, and a force-torque

sensor was also used in the work of Hou et al. [9]. Thus, these

methods have limitations to directly solve the problems in

the setting of large objects with unknown structures, material

composition, and uncertain weight and stiffness.

Since once a feasible grasping pose is established, the

state of the art grasping algorithms are likely to be able to

perform successful grasping, we hence focus on the study

to create feasible, pregrasp positions for the existing state

of the art algorithms. In contrast to other existing pregrasp

methods, we do not rely on additional environmental objects

and require no assumptions on the shape or type of object



for pregrasp. This framework has potential to be integrated

later as a pipeline together with existing grasping algorithms.

As experiments showed, our proposed method is robust to

environmental variations as we can use a second manipulator

or a fixed support surface, against which the robot can

successfully push and lift up the object for grasping. We

thus do not require a suitable table edge as setup for the

block to expose its graspable place (in contrast to pregrasp

sliding [7]) and pose no assumptions on the shape of the

object (in contrary to pregrasp rotation [10]).

In this work, we propose a Deep Reinforcement Learning

Framework for pregrasping and apply the learned policy

in real-world scenarios (Fig. 1). In particular, we train a

pregrasp policy in simulation through model-free learning-

based continuous control. To demonstrate the effectiveness of

the proposed design of the learning framework, we directly

transfer the policy trained in simulation to reality (sim2real).

The main contributions are as follows:

• A Deep Reinforcement Learning Framework for pre-

grasp manipulation to generate feasible grasping poses.

• Proposal of environment-independent state and reward

representations, allowing direct sim2real transfer of the

trained pregrasp policy.

• Robust and generalised ability of the trained pregrasp

policy on evaluation metrics.

In the following sections, we first review related work in

Section II, and present our proposed learning framework in

Section III. In Section IV, we describe our experiment set-

tings and methods for direct sim2real transfer. All real-world

experiment results are analysed, compared and presented in

Section V. Lastly, we conclude our work in Section VI.

II. RELATED WORK

A. Pregrasp Manipulation

Grasping is an active research topic in robotics. Many

algorithms have been proposed to give improved grasp

planning, policy, or detection [2], [13], [14]. But these

works all have a common assumption that the object can

be grasped directly from at least one suitable position. In

some scenarios, this assumption is not true, for example

using a small gripper to grasp large flat objects. Pregrasp

manipulation is introduced to solve some grasp tasks un-

der such constrained conditions. Its intuition lays on using

additional manipulation before grasping to improve grasp

quality. Chang et al. proposed automatic planning of pregrasp

rotation for object transport tasks [10]. Recently, Hang et al.

use pregrasp sliding to move thin objects by re-configured

hands to the edge of the table for grasping [7]. To deal with

grasping an object in cluttered and uncertain environments,

Moll et al. raise a rearrangement method to make space for

the gripper to reach and grasp the target [15].

B. Deep Reinforcement Learning for Grasping

Deep Reinforcement Learning (DRL) has achieved great

success with the development of human-level game policies

on strategy games [16] and video games [17]. Due to the

success of implementing DRL to solve control problems

in physical simulation environments like Pybullet [18] and

Mujoco [19], the idea of using DRL to solve robotic manipu-

lation problems has also become increasingly popular. Zeng

et al. propose methods based on DQN to evaluate the highest

probability grasp position in a clutter [20], [21]. Levine et

al. use policy search method to train a end-to-end policy

for robotic manipulation [22]. Quillen et al. [23] provide a

comparative evaluation of multiple DRL methods on vision-

based robotic grasping, including Q-learning [17], deep de-

terministic policy gradient (DDPG) [24], Monte Carlo policy

evaluation [25] and so on. Compared to traditional control

based algorithms, DRL is better at handling high-dimension

problems with larger action space while requiring less human

prior knowledge [26].

C. Comparison with Previous Works

To distinguish our method from several related methods

we list the key differences between our work and previous

work in Table I. We compared our work against previous

work that either focused on pregrasp manipulation to enhance

grasp or grasping thin and flat objects on the table. This

comparison covers several aspects:

1. Target objects: Some works pose assumption on task-

dependent objects to be pregrasped. We chose to focus on

pregrasp rigid objects and pose no assumptions on the shape

or material of the rigid object.

2. Choice of end effector: Reconfiguring the common

parallel-gripper end effector to better improve grasp or

pregrasp manipulation has been a popular choice amongst

various works: (1) Soft, compliant, or under-actuated end-

effector to keep contact with the object while sliding or

rotating the object for pregrasping [7]. (2) 24-Degree of

Freedom (DoF) Shadow Hand C3 end-effector to rotate

objects for better grasping from human demonstrations [8].

(3) Rubber ball as 2 DoF end-effector to lift or tilt objects

with large friction [9]. (4) Two-fingertip gripper as end-

effector [11]. One fingertip serves as a support surface for

the object to attach to, while the other sharper fingertip

mimicking a thumb slides beneath the thin target object. (5)

Three-finger gripper as end-effector [12]. For a pregrasping,

all three fingers are all moved in one direction forming

an open palm to push the target object into a better grasp

configuration. In this work, we chose a spherical end-effector

due to the increased surface contact with the target object,

and speed of collision calculations in simulation.

3. External Condition: To perform pregrasp all methods

assume one external condition for pregrasp manipulation. For

our method, we require the existence of a support surface that

is a static and fixed object, e.g., a wall, against which the

target object can be pushed against for lifting.

4. Manipulation: They type of motion enabling the pre-

grasp configuration. We first push the target object against a

static object and then lift by leveraging the point of contact

between the target and fixed object as a pivot point.

5. Method: Describes the core methods to be generated

the pregrasp motion. In our work, a DRL agent is able

to learn a pregrasp policy by autonomously exploring and



TABLE I: Comparison across related algorithms on each aspect for pregrasp manipulation or lifting a thin object.

Work End Effector Target Manipulation External Condition Method Perception

Proposed Sphere Rigid objects Push&Lift Fixed object DRL RGB Camera
Hang et al. [7] Fingertip Thin Objects Slide Table Edge Tree Search Table Modeling
Babin et al. [11] Gripper Small or Thin Objects Nail-Scoop Quasistatic Mechanism Known Object
King et al. [12] Hand Normal Objects Slide Gradient Optimisation Known Object
Hou et al. [9] Rubber Ball Cuboid Tilt(Lift) Vertical Wall Force-Velocity Control FT Sensor
Chang et al. [8] Hand Rotation-Sensitive Objects Rotation Motion Data Human Demonstration Vicon camera system

generating training data from which it infers reward signals

to accomplish the task.

6. Perception: For obtaining the target object state, percep-

tion is required. The required sensors vary in their precision,

cost, and capability. Generally, the more sophisticated the

sensing mechanism, the fewer assumptions are posed on the

experimental setup. Our work strikes a good balance between

cheap and expressive external sensing (RGB camera) and

generality of the target object (any rigid object).

To pregrasp the target object, our method uses a spherical

end-effector and requires a fixed support surface to push

the target object against. In Section V we show that the

support surface can be a variety of surfaces, such as a wall,

the gripper of a robot arm, objects with unusual form, and

deformable objects. Furthermore, through training in our

proposed DRL framework, the policy exhibits robustness and

generalisation as shown in Section V.

III. TRAINING A PREGRASP POLICY VIA DRL

In this section, we will present a learning framework for

pregrasp manipulation. In particular, we leverage the sample-

efficiency and exploration characteristics of the Soft-Actor-

Critic (SAC) algorithm [27] to train a policy to solve this

task. We further detail all necessary design choices and

training procedures for the pregrasp task to enable a direct

transfer of the policy trained in simulation to the real robot.

A. Policy Optimization

The overall learning pipeline in how to obtain a robust

pregrasp policy πθ(a|st) is shown in Fig. 2. We model

the environment as an infinite horizon Markov Decision

Process (MDP). Every state transition within this MDP can

be defined by a tuple (st, at, rt, st+1) consisting of the state

st, action at in the continuous action space A, the resulting

state st+1, and the reward rt returned by the environment.

For policy, at any given state st at time t, the agent get

an action at according to learned policy π(st), and we

denote the state and state-action marginals and trajectory

distribution ρπ(st) and ρπ(st, at) induced by this policy

following original SAC denotations and settings [27].

For SAC, the policy π aims to maximize the expected

cumulative soft value objective:

J(π) =

T
∑

t=0

E(st,at)∼ρπ
[r(st, at) + αH(π(·|st))],

with temperature α for the policy entropy H(π(·|st)), which

encourages agent exploration when being enlarged.

During training and exploration, the stochastic action is be-

ing sampled from a Gaussian policy π(s) = µ(s)+σ(s) with

deterministic policy µ(s) and standard deviations σ(s). Both

deterministic policy, and standard deviation are parametrized

as 2 layered Multi-Layer Perceptron (MLP) with 64 neurons

each using a tanh activation function.

B. State Representation

The state input (Fig. 3 left and middle) consists of pro-

prioceptive sensor information of the robot and perception

information about the manipulated object from an external

camera. The state st is defined as a 7-dimension vector:

s = [d, peff,y, peff,z, θeff, ptarget,y, ptarget,z, θtarget], (1)

with distance d between the end effector’s sphere surface

to the front surface of the target object, centre positions

ptarget,y, ptarget,z, peff,y, peff,z , and pitch orientations θtarget, θeff

of the target object and end effector respectively.

The distance d ≥ 0 between end-effector and the front

surface of the target object is normalized equating to zero

during contact. The centre of the spherical end-effector are

obtained via Forward Kinematics. The centre of the front

surface of the object is extracted from the visual information.

C. Action Representation

The policy π(st) outputs an incremental action:

a = [∆y,∆z,∆pitch] (2)

where the action bounds of ∆y and ∆z range between

−0.025m ≤ ∆y,z ≤ 0.025m. The action bound for the pitch

orientation is −0.01 ≤ ∆pitch ≤ 0.01.

The policy network’s output action is incrementally added

to the current end effector target command:




peff,y

peff,z

θeef





t+1

=





peff,y

peff,z

θeef





t

+





∆y

∆z

∆pitch





t

(3)

The target end-effector pose of the robot is further limited

to be within the range of the dexterous workspace, and

without colliding with the static supporting surface (e.g.,

wall). We terminate the episode if undesired collision occurs.

To keep the object from continually rotating, we set a

maximum angle 0.785 rad which is around 45◦ in training,

and the agent will also terminate the episode when the pitch

angle is larger than 0.785 rad.

D. Reward Design

We follow a paradigm of simple reward design that is

independent from the reality gap between simulation and

reality, while not over-constraining the emerging motions

through over-engineering the reward. To prevent reward

exploitation, we regularly validate the sub-reward terms in



Fig. 2: An overview of the proposed pipeline of pregrasp manipulation.

Fig. 3: State and action space for the pregrasping policy.

Left: calculation of distance d between the end-effector and

the object. Middle: definition of the end-effector and target

object poses. Right: action space in global coordinates.

their correctness. We found that the following reward is able

to robustly pregrasp any rigid target object:

r = λ1rpitch + λ2rdist, rpitch = θtarget, rdist = −d (4)

with positive reward weights λ1, λ2, negative distance reward

rdist for contact between end-effector and target object while

pushing, and target pitch orientation reward rpitch for lifting

the object as high as possible.

E. Increasing Policy Robustness for sim2real

To train a robust pregrasp policy that is able to reliably

act under uncertainties, such as the reality gap between

simulation and reality and inherent noise in the action and

state space, we train the policy in randomly changing en-

vironments. During the initialisation stage of the simulation

environment, we randomize the quantities shown in Table II.

Further, to bias the sample distribution towards high

reward success states, while omitting infeasible states, we

initialise the robot during training in multiple reference states

yielding high results, or where it struggles to find a solution.

Furthermore, we terminate the episode in undesired states,

such as self-collision, or being outside of the workspace.

TABLE II: Randomisation of physics parameters for training

a robust pregrasp policy. All default values are uniformly

randomized within their bounds.

Parameters Initialisation Default Min Max Probability

Mass(kg) 0.08 0.02 0.10 0.30
Friction Coefficient 0.40 0.20 0.80 0.25
Object Position(m) 0.21 0.16 0.23 0.20
Support Object Position(m) 0.35 0.32 0.38 0.05
peff,y(m) 0.00 -0.30 0.10 0.40
peff,z(m) 0.18 0.17 0.25 0.40
θeef(rad) -2.75 -2.40 -2.80 0.40

Reference Initialisation 0.05

IV. EXPERIMENT SETTING

This section presents the experimental setup for simulation

and real experiments, the metrics for evaluating the trained

pregrasp policy, and the overall control diagram (Fig. 4).

Fig. 4: Control diagram for both simulation and real tests:

states estimation (1kHz), actions (25Hz), control frequency

of the robot arm (500Hz). The physics is simulated at 1kHz.

A. Simulation Setup

1) Simulation Environment: PyBullet is used to simulate

the physics including realistic contacts, friction, and dynam-

ics. The simulation environment (Fig. 5 left) consists of a

dual-arm setup, the target object, and a vertical wall as the

support object. One arm is used for pregrasping using a

spheric end-effector, while the other arm is gripping using

the default two parallel gripper end-effector.

For training a robust policy, we randomly sample different

values for the physical quantities described in Section III-E.



Fig. 5: Experiment setup. Left: Simulation setup in Pybullet.

Right: Real-world setup. The base of the grasper is 1 meter

away from the base of the lifter. The target and support

objects are placed between the two robot arms.

The ADAM optimiser is used for optimising both the actor

and critic parameters. The learning rate is set to 10−3, and

the batch size is fixed at 100 samples. Both the actor and the

critic contain 2 hidden layers, 64 neurons per layer. For SAC,

we use a discount factor of γ = 0.99, polyak averaging of

θpolyak = 0.995, and optimise over the temperature parameter

α. The policy is trained on i7-8700K without GPU, and

converges towards a robust pregrasp policy after 250,000

samples which takes around one hour.

B. Real-World Setup

The experiments were conducted on the platform Panda

Robotic Arms developed by Franka Emika with 7 Degrees

of Freedom (DoF). The relative positions between robots, the

target object, the support object are the same as the setup in

simulation. The robot’s end-effector (Fig. 6 top left) operates

on the centre vertical plane of the workspace, observed by an

RGB camera. Through digital image processing, we extract

the target object’s position and pitch angle from the image.

We first transfer RGB space into HSV space and use an upper

and lower bound to segment the side which has already been

pasted with a piece of red paper. These two bounds need to

be determined first by humans. Then we use OpenCV library

[28] to extract a rectangle bounding box from this segmented

image, which contains the necessary state information.

From joint encoder measurements, we further estimate the

end effector’s Cartesian y, z position, pitch orientation, and

the distance between the end effector and the centre point of

the front surface of the target object.

As shown in Fig. 6, real experiments used and tested a

variety of target objects: Cuboids (Object 1, 2, 3), two 3D

Printed objects with different contact shapes (Object 4, 5)

and a compressible wrapped tissue bag (Object 6, 7). It

shall be noted that only the size of Object 1 is used for

training. Object 2 - 7 are used to test both the robustness

and generalisation ability of the policy. The coefficients of

friction (CoF) between two pieces of bandage, the objects,

and the support surface are in Table III. More experimental

trials on Object 8 - 13 showing the generalisability of the

policy can be found in the accompanying video.

Fig. 6: End-effector, target objects, and support surfaces. Top

left: 3D Printed end-effector with blue bandage to increase

friction. Top right: object 1, 2, 3 with varying size and

mass; plasticine cups for changing the objects’ mass and as

disturbances. Middle left: object 4, 5, 6, 7 as target object.

Middle right: support surfaces 1 & 2 with curve shape and

zigzag shape respectively; sponges as deformable support

Surface 3. Bottom: a box of eggs (Obj 8), a cup (Obj 9),

a filled bowl (Obj 10), a bag of bread (Obj 11), a cylindric-

shaped ham (Obj 12), a full plastic container (Obj 13).

C. Evaluation Metric

To show the effectiveness of our DRL framework for

pregrasp and the resulting policy, we define three evalua-

tion metrics: 1. Task Completion Evaluation which is most

fundamental metric to test whether an object is successfully

lifted up and can be grasped at a feasible angle. 2. Robustness

Evaluation which includes two definition, robustness towards

disturbances, and robustness to different initial conditions. 3.

Generalisation Evaluation which evaluates the generalisation

ability to different objects and different support surfaces.

1) Task Completion Evaluation: For task completion, we

propose to use the pregrasp lift angle as success indicator for



TABLE III: Coefficient of Friction between the target object

and support surfaces. The static and kinetic CoF are indicated

as first and second value respectively. The static CoF µs and

kinetic CoF µk between the end effector’s bandage and target

object are 1.7 and 1.4 respectively. Blank data indicate non-

conducted experiments. Object ID’s as defined in Fig. 6.

Obj ID Wood and Obj Surface 1, 2 and Obj

µs µk µs µk

Obj 1 0.32 0.23
Obj 2, 3 0.24 0.17
Obj 4, 5 0.26 0.19
Obj 6 0.29 0.23 0.24 0.18
Obj 7 0.25 0.20
Obj 8 0.38 0.29 0.29 0.24
Obj 9 0.26 0.21 0.14 0.12
Obj 10 0.29 0.23 0.19 0.14
Obj 11 0.40 0.36 0.24 0.20
Obj 12 0.41 0.36 0.31 0.26
Obj 13 0.33 0.24 0.28 0.23

Fig. 7: Task completion of 3 objects with varying shapes: all

lifting angles were above a threshold for enough clearance.

whether pregrasp lifting is finished under different scenarios.

For a success, the lift angle must be larger than a threshold

such that the space underneath the target object is large

enough for the gripper to grasp (Fig. 7):

λLtanθ > w,

with length L and pitch angle θ of the object, and λ ∈ [0, 1]
indicating where the gripper’s centre locates. We set λ = 0.9,

and the gripper will target at around 90% length to grasp. The

threshold w is defined to be w = 0.05m in our experiment.

Furthermore, to indicate the quality of the pregrasp lift,

we present the largest lift pitch angle in all evaluation tests.

2) Robustness Evaluation: Robustness evaluation in-

cludes two parts, robustness towards external disturbances,

and robustness to different initial conditions.

To evaluate robustness against disturbances, we apply

external forces on the target object. An object from a certain

height will be dropped above the CoM of the object to find

the max angular momentum that will make the target object

fall. The angular momentum that the falling object applies

to the target can be calculated by L = r ×mv = mr
√
2gh,

with height h and mass m of the falling object, moment arm

r considering that grasp manipulation might cause a external

torque on the object after lifting.

To evaluate robustness to different initial conditions, the

object is placed in different x, y positions and yaw poses

(Fig. 8). A robust agent should achieve success on a wide

range of initial positions and poses.

3) Generalisation Evaluation: Generalisation ability is

measured by how many differences can the policy tolerate,

Fig. 8: Two examples of testing robustness. Left: An object

dropped from 0.5m height. Middle: The object collides with

the target object by an impulse disturbance. Right: Objects’

initial positions (x, y) and poses (yaw).

which can be the discrepancy between simulation and real-

world physics properties, and differences among experiments

settings. We vary properties of the target, such as object size,

shape, surface friction coefficient and mass. Furthermore, we

test the generalisation ability by changing the type of sup-

port surfaces from vertical surfaces to inclined, deformable

objects, and objects with different shapes.

V. EXPERIMENTS

This section presents the experiments and analysis towards

the robustness and generalisation ability of our method. We

visualize the learned actions as vector fields to provide an

intuitive interpretation of the policy.

A. Robustness Test

In real-world tests, we use falling objects (Fig. 8) to test

the robustness of this lifting action. We choose plasticine

cups (Fig. 6) as our test unit, which weighs 0.028 kg (1

ounce) per cup. The falling height is 0.5 m above the

collision point, and the corresponding angular momentum is

0.014 kgm2/s. The target object itself weights 0.082 kg. The

policy robustly withstands an angular momentum of 0.028

kgm2/s equating to two plasticine cups, more than half of

the target objects weight, being dropped simultaneously.

To evaluate on different initial positions and poses (Fig.

8), we use Object 6. The y position ranges from 0.05 m to

0.26 m, the longest distance from the object to the support

surface is 0.21 m which is 1.3 times its length, and the

shortest distance is 0 m where the object is next to the surface

initially. The position on X ranges from -0.05 m to 0.05 m,

from 30% on the left side to 70% to the right. The pose on

Yaw angles from -0.3 rad to 0.3 rad. See results in Fig. 10.

B. Generalisation Test

The policy was trained only with Object 1 (Fig. 6) and

a vertical wall as the support surface. To test the generali-

sation, we varied both the parameters of the object and the

support surface in the experiments. Furthermore, we tested

the policy’s ability to pregrasp under varying environmental

conditions, and introduced variations in the contact friction

between the object and the support surface, object size,

surface inclination, and different support surfaces.

1) Varying Object Parameters: We change the parameters

in simulation, including the mass, the coefficient of friction,

and size (height, width and length) (Fig. 9):



Fig. 9: Robustness and generalisation tests in simulation

(success when lift angle > 0.32 rad). Variation in the width

(top left) and height (top right), the mass (bottom left) of the

target object, and varying the coefficient of friction (bottom

right) between target object and support surface.

Coefficient of Friction: For real-world experiments, we use

different boxes with different contact surface material. Their

corresponding CoF is shown in Table III.

Weight: The target object used in simulation training

weighs 0.02kg. In real-world experiments, we range this

mass from 0.08kg to 0.23kg by filling plasticine cups

(0.028kg per cup) into the box. Additionally to a change

of mass, the CoM of the target object will dynamically shift

due to randomly moving cups inside the box. The result is

shown in Fig. 10 bottom right.

Size: In simulation we adjust width and height individually

to obtain the graph between lift angles over width and height.

In real-world test, we use Object 1 - 7 which have different

sizes to show our agent’s generalisation ability in Table IV

and in Fig. 12.

Shape: In reality, we use Object 4 and 5 to evaluate our

generalisation ability on different shapes. Object 4 has bowl-

shape, and Object 5’s contact shape is a half-circle.

Stiffness: Additional to the rigid objects, a wrapped tissue

box (Object 7), as a deformable object which can be com-

pressed during lifting, was used in Fig. 12. Three contact

parts will deform during pregrasp: The part between object

and support surface, the part between object and end effector,

and the part between object and table.

TABLE IV: Task Completion Evaluation on Objects with

Different Sizes

Object ID 1 2 3 4 5 6 7

Lift Angle (rad) .838 .314 .611 .602 .585 .622 .593
Threshold(rad) .316 .259 .479 .378 .404 .334 .316

2) Varying Support Surfaces: Although the policy is

trained using a vertical wall as support surface, the policy

learned by the agent can generalize and operate on different

support surfaces (Fig. 11, Fig. 12), such as various inclined

surfaces with different inclinations, deformable surface made

out of thin cardboard or a piece of sponge, the fingertips of

the Grasper robot arm. This is because our method does

not pose assumptions on the support surface properties. The

policy can successfully generate pregrasp configurations in

the following settings:

Fig. 10: Robustness and generalisation tests in real experi-

ments with different initial conditions. Top left: initial x from

-0.05 m to 0.05 m. Top right: initial y from 0.0 m to 0.26

m. Bottom left: initial yaw angle from -0.2 rad to 0.2 rad.

Bottom right: objects with different mass.

Fig. 11: Two support surfaces with different shapes and

firmness in our experiments: the gripper fingertips (left) and

a flexible, deformable cardboard (right).

Fixed Inclination: In the real-world we use three settings:

90◦, 80◦, 75◦, and the lift angle of Object 1 is 0.803 rad,

0.820 rad, and 0.838 rad for each inclination angle.

Deformable Support Surface: In this part, deformable

support objects are used. We use a piece of cardboard to

build a flexible surface (Fig. 11), which changes inclination

angles when applied with larger force. We demonstrate that

our agent trained on a vertical wall in simulation environment

can generalize to this setting. In this case, the object is lifted

to 0.803 rad which is larger than the threshold of 0.316 rad,

and can be regarded as a feasible pose. For the deformable

support surface, we use a piece of sponge which can also

be compressed and deform during lifting. The lift angle is

0.611 rad where the threshold is 0.316 rad.

Support Surface with Different Shapes: The support object

in this experiment is two gripper fingertips (Fig. 11), but

can be any fixed support surface, such as the base of the

manipulator. The object is successfully lifted to 0.768 rad

which is above the threshold of 0.316 rad. For other shapes,

we use two 3D Printed surfaces, Surface 1 with the curved

shape and Surface 2 with the zigzag shape.

C. Policy Visualization and Analysis

To understand better the fundamental mechanism of the

learned policy, we conducted an analysis and visualization

of the trained network’s action space. In Fig. 13, we can

seen that the policy learns a mapping from spatial positions

to actions, where the pitch angle of the end effector is fixed

in this visualization to provide a 2D representation for y



Fig. 12: Combinations of different target objects and support

surfaces. A: Surface 1 & Obj 6. B: Surface 1 (upside down)

& Obj 6. C: Surface 2 & Obj 6. D: Surface 2 (upside down)

& Obj 6. E: Surface 3 & Obj 6. F: Wooden Wall & Obj 5.

G: Wooden Wall & Obj 4. H: Wooden Wall & Obj 7.

Fig. 13: End effector actions as vector fields in the Cartesian

space. Blue rectangle is the target object, and green rectangle

is the support surface.

and z directions. We find that the policy learns to formulate

actions as a field of attraction or a vector field, resulting

in attractions for each state in the continuous space. During

pushing and lifting, the end effector in the space will be

guided based on the state feedback, and thus converge to the

vector field automatically for following the task trajectory,

which is robust to environmental disturbances.

VI. CONCLUSIONS

In this paper, we propose a Deep Reinforcement Learning

Framework using SAC to control the robot arm, learning

to push and lift those flat thin objects in ungraspable

poses on the table. Compared to previous methods, we

use less sensors and deal with more complicated scenarios.

Besides the framework, with the proper state and action

space representation, our SAC policy trained in simulation

environment can directly transfer into real-world experiments

with dynamic initialisation and reference initialisation. To

better compare and evaluate the performance of the SAC

policy, we further propose three metrics, including task com-

pletion, robustness and generalisation ability. Our extensive

experiments in both simulation environment and real-world

demonstrate the success of our framework.
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