

Edinburgh Research Explorer

Specialization Opportunities in Graphical Workloads
Citation for published version:
Crawford, L & O'Boyle, M 2019, Specialization Opportunities in Graphical Workloads. in 2019 28th
International Conference on Parallel Architectures and Compilation Techniques (PACT). Institute of
Electrical and Electronics Engineers (IEEE), pp. 272-283, 28th International Conference on Parallel
Architectures and Compilation Techniques, Seattle, United States, 21/09/19.
https://doi.org/10.1109/PACT.2019.00029

Digital Object Identifier (DOI):
10.1109/PACT.2019.00029

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. May. 2024

https://doi.org/10.1109/PACT.2019.00029
https://doi.org/10.1109/PACT.2019.00029
https://www.research.ed.ac.uk/en/publications/8ff0fd55-c8b3-42be-ab6f-4d294c021e16

Specialization Opportunities in Graphical Workloads
Lewis Crawford, Michael O’Boyle

School of Informatics, University of Edinburgh, UK

Abstract—Computer games are complex performance-critical
graphical applications which require specialized GPU hardware.
For this reason, GPU drivers often include many heuristics
to help optimize throughput. Recently however, new APIs are
emerging which sacrifice many heuristics for lower-level hard-
ware control and more predictable driver behavior. This shifts
the burden for many optimizations from GPU driver developers
to game programmers, but also provides numerous opportunities
to exploit application-specific knowledge.

This paper examines different opportunities for specializing
GPU code and reducing redundant data transfers. Static anal-
ysis of commercial games shows that 5-18% of GPU code is
specializable by pruning dead data elements or moving portions
to different graphics pipeline stages. In some games, up to 97% of
the programs’ data inputs of a particular type, namely uniform
variables, are unused, as well as up to 62% of those in the
GPU internal vertex-fragment interface. This shows potential
for improving memory usage and communication overheads. In
some test scenarios, removing dead uniform data can lead to 6x
performance improvements.

We also explore the upper limits of specialization if all dynamic
inputs are constant at run-time. For instance, if uniform inputs
are constant, up to 44% of instructions can be eliminated in
some games, with a further 14% becoming constant-foldable at
compile time. Analysis of run-time traces, reveals that 48-91%
of uniform inputs are constant in real games, so values close to
the upper limit may be achieved in practice.

I. INTRODUCTION

Despite being a burgeoning industry projected to be worth
$215 billion within 5 years [1], computer graphics receives
minimal academic attention within the systems research com-
munity. Graphics papers typically aim to improve rendering
algorithms or hardware, and many systems papers exist explor-
ing architectural improvements or optimizations for general-
purpose compute, but few focus on such systems-level op-
timizations for graphics workloads. This paper examines a
variety of games, and explores the opportunities for shader
specialization and data transfer optimizations they provide.

Graphical applications work similarly to flip-books – a
series of still images (frames) are displayed quickly to give
the illusion of motion, and the faster the frames are drawn
(rendered), the smoother the motion appears. For PC games,
rendering at least 60 frames-per-second (FPS) is standard,
especially when quick reaction-times are required [2] [3], so
games must update and render the world within 16ms.

The Graphics Processing Unit (GPU) is a specialized piece
of highly parallel hardware designed to accelerate rendering
and help games reach 60FPS. Games use pipelines of small
single-program multiple-data (SPMD) graphics kernels called
shaders. Thousands of instances of these SPMD shaders can
run in parallel on different input data (e.g. one per pixel)

before passing their output to the next round of shaders in the
pipeline, and eventually outputting pixel colours to the screen.
To set up these shader pipelines and control the GPU, games
use a hardware-agnostic graphics API such as OpenGL [4].
Different hardware-specific implementations of the graphics
API are supplied by GPU vendors within their drivers.

GPU drivers are filled with performance-boosting heuristics.
GPU vendors often patch drivers shortly after major big-
budget game releases with game-specific optimizations. One of
the goals for newer lower-level graphics APIs like Vulkan [5]
and DirectX 12 [6] is to provide developers with tools to create
their own highly tuned application-specific optimizations.

Low-level APIs offer lower overheads, increased paral-
lelism, more predictable cross-platform behavior, and finer-
grained control at the expense of removing many driver heuris-
tics. However, developers have access to application-specific
knowledge that provides optimization opportunities beyond
those possible within the GPU driver. This paper explores how
game-specific knowledge can help drive specialization.

The GPU driver must compile shader code within tight
time-constraints. However, developers may be able to perform
more costly optimizations ahead of time during an offline
build-process. Prior work shows that iterative compilation can
give a speed-ups 4-13% on complex shaders [7]. This work
focused only on compiling individual shaders, but real games
often contain thousands. Furthermore, these techniques did not
utilize data from the rest of the graphics stack.

As well as having more time to perform complex shader
optimizations, game developers also have access to more
context. It has been shown that over 99% rendering data is
reused between frames [8], but is impractically large to keep
in cache. Uniform variables are one type of data required by
shaders. Uniforms supply the same value to all instances of
an SPMD shader, and are frequently updated between frames.

In this paper we examine how much data requested by
shaders is actually utilized, revealing that on average 41%
(up to 97%) of uniform variables are unused in fragment
shaders. Also, an average of 71% (up to 91%) of all uniform
variables remain constant throughout the game’s lifetime, not
just between frames. 76% of attempts to update uniform values
are redundant on average. This shows that we can potentially
reduce the data transferred to the GPU, and can use the
constant data to specialize shader code, reducing computation,
memory footprint, and communication overhead.

This paper makes the following contributions

• The first static, oracle and dynamic analysis of special-
ization in existing graphics code

1

Vertex
Shader

Fragment
Shader

Parallel shaders per vertex Parallel shaders per pixel

Vertex Buffer

Uniforms1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Textures

OpenGL API

Application

GPU Driver

Inputs from
Vertex Buffer

Inputs from
Vertex-Fragement

Interface

Pixels
rendered
to Screen

Draw Call
Starts

Pipeline

Texture data for both shader stages

Uniform data for both shader stagesCPU GPU

Fig. 1. Simplified graphics pipeline. The CPU submits draw calls through the OpenGL API to start the GPU rendering pipeline. Triangles are loaded from
the 3D mesh in the vertex buffer. Vertex shaders process every triangle’s vertices in parallel. The results are sent through the vertex-fragment interface, and
get linearly interpolated across the triangle’s surface. Using this, the fragment shaders calculate each pixel’s colour in parallel, and send them to the screen.

• A large scale evaluation of over 12,000 shader programs
in 8 real-world games

• Identification of significant specialization opportunities

II. GRAPHICS OVERVIEW

Before exploring how we can specialize our graphics code,
we first give a brief overview of how the graphics pipeline
works, and introduce terms used in subsequent sections.

Consider the diagram in Figure 1. Here we can see that
graphical applications have two parts - the CPU host code,
and the GPU shader code. For games, CPU code is typically
written in C/C++, and controls the GPU via a graphics API1

To display meshes on screen, OpenGL sends the GPU draw
calls, which initialize state and start the shader pipeline as
shown in Figure 1. Three types of data are input to the GPU:
uniform, vertex buffer and textures which are accessed by
the shader programs within the pipeline. On the GPU, shader
programs are executed in a parallel pipeline, which usually
consists of vertex and fragment shader stages. All 3D objects
are represented as a series of triangles, which get stored within
the vertex buffer. The first step in the pipeline is to load
every vertex of every triangle from this buffer, and process
them with vertex shaders running the same SPMD code in
parallel (denoted by the multiple vertex boxes in Figure 1).
After processing, the vertex shaders, write multiple outputs
including the 3D vertex’s position to appear on the 2D screen.

After vertex shading, the triangles are rasterized, meaning
all their pixels get filled in. Vertex shader outputs get passed
through the vertex-fragment interface, and are linearly interpo-
lated across the surface of the triangle. Using these interpolated
results, fragment shaders then run in parallel once for every

1On Microsoft platforms, DirectX 11 is most commonly used [9]. Cross-
platform rendering applications use OpenGL or Vulkan. We focus on OpenGL
in this paper, but the concepts are broadly similar across all APIs.

pixel. They perform arbitrary calculations (e.g. lighting effects)
before writing the pixel’s final colour.

OpenGL shaders are written in GLSL (OpenGL Shader
Language) [10], which has C-like syntax with extensions like
vector and matrix primitives to simplify graphics calculations.
Source-code for shaders gets submitted individually to the
GPU driver’s compiler, and then linked together into pipelines.

A. Data Types

Data can be passed to the GPU in several different ways:
Uniforms - Specified via the uniform keyword, these

variables are passed from CPU to GPU. All parallel shader
invocations receive the same value (i.e. it is uniform across all
invocations). Uniforms are often small and frequently updated.
They may contain values such as 4D transformation matrices
specifying a mesh’s position and orientation.

Inputs - Specified via the in keyword, these variables
represent data from a prior pipeline stage. Vertex shader inputs
come from the vertex buffer holding the 3D mesh’s triangles.
Each shader invocation receives a different vertex’s data.

Textures - Textures are 2D images accessed using the
texture function. This retrieve’s the image’s red, green,
blue, and alpha channel values at a given 2D coordinate after
performing hardware filtering and decompression.

III. MOTIVATING EXAMPLE

The example code in Figure 2 depicts a simple shader
pipeline before and after specialization. The top two boxes
Vert and Frag show the vertex and fragment shader code
before we apply any specialization. The arrow between the
boxes denotes that the variable outUV is an output from the
vertex shader getting passed as an input to the fragment shader.
The lower two boxes Vert’ and Frag’ refer to the code
after specialization has taken place.

2

Fig. 2. Example vertex + fragment shader pipeline before and after code specialization. Coloured highlights in the ”before” pipeline show specialization
opportunities. After specialization, these highlight what has changed. We know that transform is the identity matrix through run-time profiling.

- constant - constant-foldable - movable to CPU - movable to vertex shader - contains dead elements

In Vert and Frag, we highlight a number of opportunities
for specialization with colour-coded boxes. In Vert’ and
Frag’ the highlights show the effects of the specialization.
The specialization types examined are as follows:

Constant Uniforms. Consider the upper left hand
box Vert and the declaration of transform highlighted
in yellow. Run-time profiling has shown that transform is
constant, and is known to be the identity matrix. This means
that the declaration can be removed after specialization as
shown in yellow in the lower program Vert’.

Constant-Folding - Knowing that transform is
constant and the identity matrix lets us avoid the unnecessary
matrix-vector multiplication transform * inVert high-
lighted in red in Vert. This multiplication is removed after
specialization to give just inVert as highlighted in red in
the vertex shader Vert’.

GPU-CPU Code Motion - Calculations using only
uniforms can be pre-computed on CPU. The calculation
lightCol * intensity highlighted in green in the
Frag code of Figure 2 is an example of this. In the
transformed code of in Frag’, this multiplication is per-
formed on the CPU, and is passed in via the new uniform
lightColTimesIntensity.

Fragment-Vertex Code Motion - Consider the cal-
culation outUV + 0.5 highlighted in blue in the fragment
shader Frag. Its value is unaffected by linear interpolation, so
can be moved to the vertex shader Vert’ also shown in blue.
This lets the fragment shader use the raw value of outUV for
texture look-ups, potentially enabling better pre-fetching.

Removing Dead Vector Elements - If we again con-

sider the code in Frag, only 3 components of col are used
for the fragment shader’s output, highlighted in grey. Knowing
this, we see the 4th elements of t and lightCol are also
unused. After specialization, we can change all these variables
to vec3s instead, potentially saving registers, uniform buffer
space, and texture unit bandwidth as shown in Frag’.

IV. OPTIMIZATION OPPORTUNITIES

This section provides more detail about the specialization
opportunities demonstrated in Section III, and explains when
they occur and how they might benefit performance. We start
by defining some terms used throughout the paper:

Specialization Type: We focus on the following specialization
opportunities: Dead code or data; Movable code; Constant
data; Constant-foldable code i.e. compile-time computable.

Code Location: Code can be executed in the following
locations: CPU, Vertex Shader; Fragment Shader.
Data Location: Data can come from the following locations:
Uniforms; Inputs (from the vertex buffer or vertex-fragment
interface); Textures.

Analysis Type: We perform the following types of analysis:
Static; Oracle - an estimated upper bound on specializations
Dynamic - using online profiling or offline trace analysis.

Specialization Granularity: We treat every element of
vectors, matrices, and arrays individually. Specializations
may be applied to variables either: Fully all elements can be

3

specialized; Partially only some elements can be specialized,
but could be extracted.

We now provide more detail about the specialization op-
portunities explored, and their potential benefits. To provide
continuity throughput the paper we use the same colour coding
as used in Figure 2 to describe the various specializations:

constant constant-foldable movable to vertex shader
movable to CPU contains dead elements

A. Dead
Dead shader code and dead data elements in memory can be

detected via static source-code analysis (see Subsection V-A),
and provide the following optimization opportunities:

Dead Code: When some elements of an instruction’s output
have no impact on the final result. These may be pruned to
reduce calculations, free up registers, or allow other non-dead
elements to occupy their place.

Dead code can be eliminated using only static data. The
driver’s shader compiler may cull fully dead variables, but
pruning partially dead ones is less common. Element-wise
pruning may allow more compact storage e.g. combining 2
half-dead vec4s into a single live vec4. However, it must
be applied carefully, as it may introduce unnecessary mov
instructions or remove useful padding.

Dead Data: Elements in a shader’s uniform, input, or
texture interface that are either never loaded from, or the
loaded result is never used. Removing dead data from a
shader’s interface may improve cache usage, and reduce the
amount of memory, communication, interpolation slots, or
texture look-ups required.

B. Movable
Static analysis can also detect which calculations may be

transferred to different pipeline stages or to the CPU:
CPU-Movable: Some code can be moved from GPU

shaders to the CPU. This can shrink the shader’s uniform
interface if the pre-computed results are smaller than the com-
ponents of the calculation. Pre-computing values on the CPU
may also improve performance if the GPU is the bottleneck.
If branch conditions are evaluated on the CPU, it can select
different specialized shader pipelines without GPU branches.

Vertex-Movable: If calculations are unaffected by linear
interpolation, they can be transferred from the fragment to the
vertex shader, which is typically invoked less often as objects
usually have fewer vertices than pixels. This can reduce the
total GPU calculations, use fewer vertex-fragment interpola-
tion slots, and eliminate dynamically indexed texture look-ups.
This code motion alters the vertex-fragment interface, and may
be detrimental for meshes with many sub-pixel triangles.

Code motion requires knowledge of either the CPU-side
code, or the shader pipeline linkage, these interfaces must
be altered when code is moved. It will not always result
in improved performance, so care should be taken that code
movement only occurs where it will be beneficial. Using
dynamic analysis increases the amount of code motion op-
portunities beyond those visible using only static data.

C. Constant

Detecting data that is constant at run-time enables further
optimizations and specializations. In addition to the coloured
squares used to label specialization opportunities, we use
coloured circles to represent which type of data is constant:

Uniforms Inputs Textures
Constant Uniforms: Uniforms which always take the same

value at run-time. Uniforms are stored on a per shader-pipeline
basis, and are frequently updated, but are often set to the same
value each frame.

Constant Inputs: Vertex shader inputs come from the
vertex buffer. They are constant if they have the same value for
all vertices in all buffers the pipeline uses (which is fairly rare).
Fragment shader inputs come from vertex shader outputs,
which may be constant at compile-time, or via propagating
dynamic data detected at run-time.

Constant Textures: If a texture’s colour channel is the same
for every pixel, elements read from this channel are constant.
This is common for fully opaque textures with constant alpha
channels of 1.0.

D. Constant Foldable

Constant-Foldable: Elements that are compile-time con-
stant or known via prior run-time analysis can be folded in
the compiler to reduce computation.

V. METHODS

Here, we describe the analysis used to detect the specializa-
tion opportunities above, and the games used as benchmarks.
The static specialization opportunities detected are described
in Section VI, and the run-time trace analysis of constant
uniform data is found in Section VII.

A. Dead Code/Data Analysis

To detect dead elements in the shader code (see Subsec-
tion IV-A), we use a backwards-propagating dataflow analysis.
This starts with only final store calls live, and propagates this
liveness into every other element used to calculate the existing
live ones. After all the live elements were determined, all
others were defined to be dead as can be seen in Algorithm 1.

Dead uniform and input data is determined by examining
which elements of load instructions are live, and merging
results for any aliased loads. This let us see not only which
variables were declared but never loaded from, but also which
ones were loaded from but only partially used.

B. Movable & Constant Code Detection

To statically analyse which code elements were movable
to the CPU or the vertex shader (see Subsection IV-B), we
used a simple forward-propagating algorithm. This algorithm
also tagged which sources different inputs were loaded from,
enabling us to explore runtime-constant inputs (see Subsec-
tion IV-C) via an oracle study in Subsection VI-C.

We iterated through all the shader’s instructions, and as-
signed every element of the return value the following values:2

2We use the same colour coding as before

4

(a) A Bird Story (b) Antichamber (c) Bastion (d) Broken Age

(e) Brütal Legend (f) Cities: Skylines (g) Costume Quest (h) Counter-Strike: Source

Fig. 3. Screenshots from the 8 Ubuntu-compatible games selected as benchmarks, covering a variety of different game-engines and art-styles.

Algorithm 1 Dead Element Detection
for all Inst in Instructions do

if Inst is a store, a terminator, or has side-effects then
Set all elements of LivenessInst to Live
Add Inst to WorkList

while WorkList not empty do
Pop Inst from WorkList
for all Op in operands of I do

if Inst ∈ { extract, insert, swizzle } then
LivenessOp ←− permutation of LivenessInst

if Inst is an elementwise operation (e.g. +, *) then
LivenessOp ←− LivenessInst

if Inst uses all elements of Op (e.g. dot, cross) then
LivenessOp ←− all elements Live

if Any elements of LivenessOp changed then
Add instruction defining Op to WorkList

All elements not set to Live by now must be Dead

• U - Loaded from a Uniform
• V - Loaded as Input from a previous shader stage
• T - Loaded from a Texture
• C - Constant

We then used the following rules for tagging data as
constant-foldable or movable:

• CC - Constant-foldable

CC = f(C,C)

where CC is the result of an arbitrary function f() whose
arguments are all constant.

• UU - Movable from GPU to CPU

UU = f(U, {C|U|CC|UU})
where UU is the result of a function f() whose arguments

consist of only uniform or constant values.

• VV - Movable from fragment to vertex shader

VV ={V|VV}
∗{1|C|U|CC|UU}
+{0|C|U|V|CC|UU|VV}

where the value of VV will be unaltered by linear inter-
polation between corners of the triangle, so must be a linear
combination of a vertex input and either constants or uniforms.

All these tags are applied to scalar elements individually,
and are permuted whenever a vector’s elements are inserted,
extracted, or shuffled. This gives a fine-level analysis, where
the same vector may have different elements that are dead,
movable, and constant. We implemented this analysis in Lu-
narGlass, an LLVM-based compiler [11] which handles GLSL.

C. Dynamic Trace Analysis

To extract shaders and analyse the run-time behavior of our
benchmarks, we used a modified version apitrace [12]. Widely
used for debugging graphics drivers and games, apitrace is an
open-source tool that injects itself into applications, and traces
all OpenGL API calls. This trace can then be played back
and inspected on different devices. Because OpenGL drivers
require shader source code to be submitted for compilation,
these shaders are recorded as arguments by apitrace. We
extracted these shaders from the trace files, and used them for
static analysis in Section VI. We also used apitrace to analyse
how each shader’s uniforms were updated by tracking every
uniform update call.

D. Benchmark Games

We used a variety of 2D and 3D Linux-compatible games to
gauge the behavior of typical graphics workloads (screenshots
in Figure 3). The table in Figure 4 show the games used, and
their total vertex and fragment shaders to give a rough idea of
their complexity.

Antichamber uses the Unreal engine, and Cities: Skylines
uses Unity, which are the most popular commercial game
engines. Counter-Strike: Source uses Valve’s famous Source
engine, which is also available for studios to licence. Brütal
Legend and Costume Quest use the in-house Budda engine,

5

Short Full Name 2D/ No. Shaders Avg. LOC
Name 3D Vert Frag Vert Frag
Bird A Bird Story 2D 16 16 7 8
Anti Antichamber 3D 1277 2833 105 70
Bast Bastion 3D 7 22 11 17
BAge Broken Age 2D 88 70 32 7
Brut Brütal Legend 3D 262 1238 77 158
City Cities: Skylines 3D 484 484 86 98
CQuest Costume Quest 3D 150 888 70 150
CS:S Counter-Strike:Source 3D 3025 503 72 42

Fig. 4. Benchmarks’ abbreviations, numbers of shaders, and lines of code.

but have different art-styles. Including both allows us to see
whether engines or art-styles have more impact on shaders
data patterns. Bastion using another in-house engine, but its
3D graphics are much simpler, and many of the backgrounds
are 2D. A Bird Story uses a modified version of the RPG-
Maker, and its simple tile-based 2D graphics barely utilize
shaders. Broken Age is a more complex 2D game in the
open-source Moai engine, using skeletal animations, parallax
layers, particles, and some 3D effects. These games span a
wide variety of engines and art-styles of varying complexities,
and are a good cross-section of games available on Linux.

VI. SHADER SPECIALIZATION RESULTS

Here, we examine the results of our shader analysis de-
scribed in Section V, and show how many of the specialization
opportunities from Section IV occur in shaders from typical
games. First, we use static analysis to determine that large
percentages of code and data are dead (and in Section VIII,
we see that removing this give up to 6x speed-ups). We then
show how there are small statically available specialization op-
portunities in shader code, especially in hoisting conditionals
from the GPU to the CPU to avoid branching.

In Subsection VI-C, we perform an oracle study to deter-
mine the upper bounds of code specializability if all uniform,
input, or texture variables were known to be constant at
compile time. The results indicate that large code reductions
are possible, especially since many condition variables for
branching or select statements become constant-foldable.

Based on the results of this oracle study, we examine in
Section VII the actual dynamic values of uniforms and show
that there is both a large amount of constant values and
redundant update operations.

A. Static Dead Code and Data

Dead Code: Figure 5 shows that up to 13% of all scalar el-
ements across all shaders in a game can be statically classified
as dead code, with 6 / 9% dead on average for vertex/fragment
shaders. This means most games have many shaders with
a modest amount of dead code amenable to pruning. This
modest amount is not surprising as all fully dead instructions
are already stripped out by a previous compiler pass.

Dead uniform data: While there is little dead code, there is
significant dead data. On average, 21 / 41% of vertex/fragment

Fig. 5. Aggregated % dead code, and dead uniform and input data across all
shaders for each game. Small portions of code elements, but sizeable amounts
of uniform and input data are dead.

Fig. 6. % Dead uniform elements for all individual shaders in each game.
There is wide variability between games, and for shaders within each game.
Simple 2D games often have good uniform usage, but larger 3D games often
have more dead elements, especially Antichamber and Counter Strike: Source.

uniforms are dead, as shown in Figure 5, but there is high vari-
ability among games. Some games’ uniform interfaces are far
larger than necessary. Complex 3D games with automatically
generated shaders such as Antichamber, which uses the Unreal
Engine [13] can produce pathological cases. Figure 6 provides
more detail on a per game basis. Here we can see that 68 /
97% of Antichamber’s declared vertex/fragment uniforms are
statically dead. In contrast, simpler 2D games like A Bird
Story utilize almost almost every uniform. Overall, fragment
shader uniforms contain dead data more often than vertex
shaders uniforms, and their usage varies more between games.

Dead input data: Input variables are also frequently dead.
Figure 5 shows that on average, 19% of inputs from the vertex
buffer and 27 % from the vertex-fragment interface are dead.
There is again considerable variation across games as shown
in Figure 7. Here 26% of Cities: Skylines vertex inputs and
62% of Antichamber fragment inputs are dead. This means

6

Fig. 7. % Dead input elements for all individual shaders in each game. Results
are less variable than they are for uniforms. Most vertex shaders have around
20% dead inputs. Fragment shaders are more variable, with simple 2D games
having better utilization than complex 3D games like Antichamber.

a significant portion of the vertex buffer could be reduced,
lowering the mesh’s memory footprint and speed up the vertex
input assembly stage. If we back-propagated the dead data
information across the vertex-fragment interface, then vertex
computations could be significantly reduced. We could also
shrink the size of the interface to lower the number of vertex-
fragment interpolation slots and load instructions required.

Fig. 8. Aggregated % statically movable code for across all vertex/fragment
shaders for each game. Statically movable code makes up a small percentage
of all instructions, but many branches could be hoisted to the CPU.

B. Statically Movable Code

As well as finding dead code elements, we can also statically
determine how much code is movable to either the CPU, or
the vertex shader (see Figure 8).

We can see that statically movable code makes up an even
lower percentage of shaders than dead code. On average, 4 /
1% is movable to the CPU for vertex/fragment shaders, with
up to 14% CPU-movable in A Bird Story’s vertex shaders. An

average of 3% (max 4%) is movable from fragment to vertex
shaders too. This indicates that statically detecting movable
code does little to reduce the overall percentage of instructions.

Branches: If we focus only on variables that are conditions
for branching and select statements, we see that large portions
of these are CPU-movable, as shown in the right-hand part
of Figure 8. An average of 33 / 10% (up to 100 / 32%)
of vertex/fragment shader conditionals can be hoisted to the
CPU, indicating that expressions based on uniform variables
are significantly over-represented in conditional statements.

All of the conditionals in Brütal Legend’s vertex shaders,
and 99% of those in Costume Quest’s can be moved to the
CPU. However, it should be noted that conditional statements
are far less common in shaders than in typical CPU code.
Moving the few existing branch conditions to the CPU might
allow fully specialized pipelines to be selected, thereby avoid-
ing GPU branching and removing large sections of shader code
altogether. This can allow for better instruction pipelining,
constant-folding, and instruction caching.

C. Oracle Constants

If we knew which shader inputs were constant at run-time,
we could increase the amount of specialize the code. To
quantify these effects, we perform an oracle study here to
measure the upper limits of how specializable code becomes
if we knew that 100% of each input type was constant. Based
on this study, we explore the most promising candidates using
dynamic analysis in Section VII. Figures 9 and 10 show the
increase in all specializable instructions, and in specializable
branch/select conditions. We now examine the effects of
constant uniforms, inputs, and textures.

1) Oracle: Constant Uniforms: In the left hand
column of Figure 9, we see that uniform load instructions
make up an average of 23 / 17% of vertex/fragment shaders,
so setting these as constants greatly reduces loads. There is
also a small increase in constant-foldable code – 4 / 1% for
average vertex/fragment shaders, and up to 14% in A Bird
Story’s vertex shaders.

Branches: The newly constant-foldable code has a large
impact on branch and select instructions, as can be seen on
the left hand column of Figure 10. Here, an average of 33 /
10% of conditions can now be statically determined, and up
to 100 / 32% for some game’s vertex/fragment shaders. This
has large code reduction possibilities depending on which
branch is statically selected. We can see in Subsection VII-A
that large portions of a shader’s uniforms are constant at
run-time, so values close to these oracle results are likely to
be achievable.

2) Oracle: Constant Inputs: From the middle
column of Figure 9, we see that constant inputs are rarer than
constant uniforms, but enable a wider range of specializations.

Vertex: If vertex shader inputs are constant, elements can be
removed from the vertex buffer to reduce its memory footprint
by an amount proportional to the number of triangles in the

7

Fig. 9. % of shader elements that become specializable when setting all uniforms/inputs/textures to constants (aggregated across all shaders for each game).
Load instructions significantly decrease for all types, and much of the vertex shader could be run on the CPU if vertex-buffer inputs were constant.

Fig. 10. % of branch/select conditions that become specializable when setting all uniform/input/texture resources to constants (aggregated across all shaders for
each game). Many branches become constant-foldable or CPU-movable, with especially many branches becoming constant-foldable if uniforms are constant.

mesh (several thousand for complex models). On average,
Vertex shaders’ code is 16% input load instructions, which
would all be specialized away if they were constant, and would
render a further 4% constant-foldable. Much of vertex shader
could also be extracted to the CPU, with 28% becoming CPU-
movable on average.

Fragment: Fragment shader inputs are only constant when
data passed out of the vertex shader is constant, so this
occurrence is also rarer than constant uniform data. If this
data was constant, however, fragment shaders would benefit
from removing the 13% of instruction that were input loads,
increasing constant-foldability by by 4%, and moving 8% of
code to the CPU on average. Removing constant inputs from
the vertex-fragment interface would also reduce the amount of
linear interpolation required between shader stages.

Branches: As can be seen in Figure 10, constant inputs
have less of an impact on branch conditions than constant
uniforms. However, Figure 8 shows that most vertex shader
conditionals are already statically CPU-movable, so there is
less room for improvement using dynamic data. If all vertex
buffer inputs were constant, over 70% of conditionals could be
constant-folded or moved to the CPU (100% for most vertex
shaders).

Constant input data in fragment shaders also impacts
branching. An average of 23% (max 100%) more conditions
become constant or constant-foldable, and 18% become CPU-
movable. This means around 50% of fragment shader condi-

tions can be specialized, which is a lower percentage than that
of vertex shaders, but may account for more shaders overall,
as fragment contain branches more often.

3) Oracle Constant Textures: Consider the final
column of Figure 9. Here, texture look-ups account for 12%
of fragment shader code on average, which can be omitted
if their values are constant. Fragment shaders from simple
2D games like A Bird Story consist of 30% texture look-ups.
Fully constant textures are rare, but constant colour channels
are not uncommon, and can increase code specializability in
every way. With constant textures, code becomes an average
of 6% more constant-foldable, 9% more CPU-movable, and
4% more movable from fragment to vertex shaders.

Branches: Constant textures also improve branch special-
izability as can be seen in Figure 9. 10% more conditions be-
come constant-foldable on average (max 36%), and 14% more
become CPU-movable (with 100% for A Bird Story). This
has the least impact on specializing conditionals compared
to constant uniform and input data, but still offers significant
potential for branch reduction.

Texture look-ups are seldom used in vertex shaders. Cities:
Skylines is the only game we tested that did so, but even then
they were so rare that they had a ≤1% impact on specializ-
ability. All significant specialization opportunities that constant
textures provide are contained within fragment shaders.

4) Oracle Study Summary: Using dynamically constant
data can improve code specializability far beyond what is

8

possible with only static data. Utilising constant uniform
data provides the largest reduction in load instructions, and
can cause large percentages of branch conditions to become
constant-foldable. This is true for both vertex and fragment
shaders, and we shall show in Section VII that constant
uniforms are very common in practice.

VII. DYNAMICALLY CONSTANT UNIFORMS

Based on the previous section’ observations, we explore to
what extent uniforms are actually constant in practice.

Fig. 11. % uniforms that are constant at run-time for all shader pipelines in
each game. Despite high variability between shader pipelines, large portions
of all uniform data is dynamically constant in every game.

Fig. 12. % uniforms that are constant at run-time for all shader pipelines in
each game. Games with fewer shaders like A Bird Story and Bastion have
many constant uniforms for all pipelines. All games have significant portions
of constant uniform data above 50% for most shaders apart from a few outliers.

A. Constant Uniform Values

In Figure 11, we see that an average of 60-90% of uniform
variables in each shader pipeline are constant for almost every
game tested. This means there is room in most games to
achieve close to the oracle results for perfect specializability
when setting all uniforms to constant. In Figure 12, we can
see that most shaders within each game have at least 50%
of their uniforms constant, so these optimization opportunities
are almost ubiquitous among shaders.

This means that real games can achieve large reductions
in uniform loading, and large increases in constant-foldable

conditional statements, which allow many branches to be
removed at compile-time if the dynamically constant uniform
values are known.

Fig. 13. % uniform element updates that are redundant, as they set uniforms to
the same value they were previously. For almost every game, large percentages
of uniform updates are unnecessary.

Fig. 14. % uniform element updates that are redundant for all shader pipelines
in each game. In all games except Antichamber, over 75% of uniform updates
to most pipeline set the uniform to the same value it was previously.

B. Redundant Uniform Updates

In figure Figure 11, we saw that large percentages of
a game’s uniform variables are constant at run time. In
Figure 13, we can see that around 70-90% of all uniform
updates are redundant, so the CPU-side code calling the update
functions in the API is not making use of the constant nature
of these values, and is unnecessarily updating them with the
same values many times. From Figure 14, we can see that
over 75% of uniform updates are redundant for almost every
shader pipeline in each game. This means there are a large
number of redundant OpenGL API calls, which might can have
a significant performance impact in languages such as Java on
Android devices, which incurs overhead for every JNI call. In
the worst case, the driver does not catch this redundancy, and
there is also unnecessary CPU-GPU communication.

Uniforms are updated very frequently, sometimes many
times per frame, so there is room for optimization by reducing
these frequent redundant update calls. It may be possible

9

(a) Antichamber (Ubuntu + GTX1080) (b) Antichamber (Windows + GTX970) (c) Counter-Strike (Windows + GTX970)

Fig. 15. Speed-up (X) in mean CPU time per frame when removing dead uniforms from several shader pipelines from Antichamber and Counter-Strike:Source.
Timings were measured within an isolated timing harness performing thousands of draw-calls per frame with a single shader pipeline to reduce noise. On
Windows 10 with a GTX 970, speed-ups reached up to 6.6x, with most around 2x. On Ubuntu with a GTX 1080, speed-ups were usually between 1.2-1.5x.

to fully specialize shaders such that all constant values are
removed from the uniform interface, and the remaining dy-
namically updated uniforms are packed more tightly together
to reduce communication bandwidth and the number of API
calls required to update them. It may even be possible to use
this sort of dynamic data to automatically group frequently-
updated uniforms together so that seldom-updated values can
be cached more effectively in a separate block.

VIII. TIMING TESTS

In order to determine whether some of the specialization
opportunities detected would be able to provide concrete
performance improvements, we built a timing tool to measure
speed-ups on shaders before and after transformations. This
timing harness was designed to run individual shader pipelines
in an isolated environment to accurately more measure their
performance characteristics.

In Figure 6, we can see that around 97% of Antichamber’s
fragment shader uniforms are unused, as well as a high
percentage of its vertex shader uniforms. When examining
these shaders’ source-code, we noticed they all declare large
arrays (224-256 elements) of vec4 uniforms, but only tend to
use the first 8 or so elements. This means we can remove large
proportions of the dead uniform data by simply re-declaring
these arrays using a smaller size (determined by the max array
index used in the source code). Some vertex shaders contain an
extra uniform array for bone transformations used in skeletal
animations, which is indexed into via a variable rather than
a constant, so we cannot statically determine which elements
are dead, and would require run-time information on the array
indices used in order to shrink these. However, typical uniform
arrays are only ever accessed using constant indices, so it is
simple to determine what the maximum index used is, and
truncate the arrays accordingly.

We extracted the first 60 vertex/fragment shader pairs from a
trace of Antichamber, and resized the uniform arrays to remove
all trailing dead elements beyond the maximum index used.
This typically meant that 2 arrays per shader pipeline with
around 256 elements were shrunk to around 10 elements each.

We measured the performance impact of shrinking these
arrays in our timing harness. This ran a simple rendering

loop, iterating over 1024 models in a 32*32 grid, selecting
the shader pipeline, vertex attribute bindings, textures, and
uniform data to use for each model, and then rendering them
to the screen. We recorded both the CPU and GPU time per
frame over 100K frames, and took the mean of the median
80% of times to avoid outliers but still capture different phase
change behaviors.

We can see the resulting speed-ups in Figure 15, which
show significant performance improvements on two different
PCs with Nvidia graphics cards. On a Windows 10 PC with
a GTX 970, most shaders ran 2x faster, with several around
6x. The speed-ups on an Ubuntu machine with a GTX 1080
were more modest, ranging from 1.2-1.5x.

Counter-Strike:Source also has high percentages of dead
uniforms (as seen in Figure 6) due to declaring large uniform
arrays but only accessing a few elements. Unlike Antichamber,
the indices used are sometimes spread out rather than clustered
near 0, meaning we cannot just change the array’s declared
size, as we also need to compact it and alter the indices when
accessing it. We performed this optimization manually on a
several shaders from Counter-Strike:Source, and can see from
Subfigure 15c that this also leads to significant speed-ups.
The results are less extreme than Antichamber’s, as the initial
arrays are around 50 elements rather than 256, but the array
compaction still leads to 1.5-1.7x improvements.

IX. SUMMARY OF RESULTS

We performed static analysis of over 12,000 shaders ex-
tracted from 8 different games, as well as dynamic trace
analysis of their run-time behavior. Through this, we found:

• Significant amounts of uniform and input data is dead.
• Culling dead uniforms sometimes provides 6x speed-ups.
• Many branch conditions can be hoisted to the CPU.
• If uniforms, inputs, or textures were constant, we could

significantly reduce shaders’ load instructions and in-
crease their constant-foldable and CPU-movable code.

• If uniforms are constant, many branches can be deter-
mined at compile-time.

• Most uniforms are constant at run-time.
• Most updates to uniform values redundantly set them to

the same value each time.

10

X. RELATED WORK

The concept of specializing shaders has existed for decades
[14]. However, shaders were quite different in this era, with
abstractions like Cook’s shader trees [15] and Perlin’s image
synthesizer [16] proposing flexible abstract ways of rendering
3D images. Much of the early graphics work was focused on
ray-traced rendering for films, such as using Pixar’s Render-
man shading language [17], which later had custom SIMD
hardware developed for it [18].

Early consumer GPUs for real-time rendering in games
had fixed-function hardware, but researchers proposed ways
to make it programmable [19]. Around 2001, GPUs began
executing arbitrary vertex shaders [20], with fragment shaders
and other user-programmable stages following in subsequent
years. Researchers quickly exploited these capabilities for
more than graphics computations [21], and the majority of
GPU compiler and system optimization research today focuses
on these general-purpose computations.

Much of graphics systems research is focused on developing
novel pipeline abstractions such as RTSL [22], shader algebra
[23], abstract shader trees [24], GRAMPS [25], SPARK [26],
CoSMo [27], Spire [28], and Braid [29]. Research has also
explored alternative shader programming languages and meta-
programming systems like Sh [30], Cg [31], Renaissance
[32], and Slang [33]. Most of these languages and pipeline
abstractions focus primarily on allowing greater programmer
productivity and expressiveness, rather than aiming to improve
performance of existing systems.

One graphics research area focused on improving shading
performance, is splitting large and complex shaders into multi-
ple less expensive passes [34] [35] [36] [37] [38]. Other early
work examines methods of optimizing resources for better
shader throughput [39], or re-ordering shader pipeline calls
to minimize state changes [40]. He et. al. have suggested
using modular shader components [41] to aid both productivity
and performance by allowing more opportunities for shader
specialization and allowing better pipeline resource binding
to avoid large amounts of unused shader parameters being
defined (as this paper’s results show is common). Research
has also been done into code motion techniques to optimize
power consumption rather than performance [42]. Other papers
explore offline compiler optimizations for GLSL shaders [7],
and analysing memory usage patterns [8], but little other work
has examined the data redundancy and code specialization
opportunities of real-world graphics workloads.

An adjacent field of study aiming to automatically speed
up shader code, is to create simplified versions of shaders.
When objects are far away, it is common for simplified
visual representations to be used, with an increasing level of
detail (LOD) used for objects closer to the camera. Olano
et. al. exploit this idea to generate simplified shader code
for different LODs [43] [44] [45] by repeatedly applying
lossy code transformation rules. Others have extended these
simplification techniques using pattern matching [46], genetic
programming [47], and surface-signal approximations [48].

Searching for simplified shader variants with a good balance
between visual error and performance could take hours, but He
et. al. [49] introduce search heuristics to reduce this to minutes.
Recently, Yuan et. al. [50] introduce techniques to perform
simplification-space searches in milliseconds, allowing real-
time simplification of the most expensive few shaders, and
the ability to exploit run-time context when determining the
simplification’s visual error. NVidia have also implemented
run-time shader LOD simplifications based on their material
definition language [51]. Although this paper focuses mainly
on lossless optimization opportunities, the patterns in dead and
constant data we have show here may be also exploitable
in lossy shader simplification techniques like those above,
especially since some are now capable of running in real-time.

XI. CONCLUSION

Given full knowledge of a graphics system, it is possible
to heavily specialize shaders for large potential performance
gains and memory bandwidth savings. As industry is moving
to a state where such specializations might be done by
game developers rather than driver engineers, such domain
knowledge is exploitable.

Large amounts of uniform data is dynamically constant in
typical games, so is ripe for shader specialization. There are
also many other potential specialization opportunities for re-
moving redundant buffer data and re-packing it, or transferring
code from GPU to CPU or between shader stages.

This paper acts as a motivation for cross-stack graphics op-
timization tools by pinpointing some widespread opportunities
for optimization. Future work will explore these opportunities.

REFERENCES

[1] Research Nester, “Computer graphics market : Global demand analysis
& opportunity outlook 2024,” https://www.researchnester.com/reports/
computer-graphics-market-global-demand-analysis-opportunity-
outlook-2024/354.

[2] K. T. Claypool and M. Claypool, “On frame rate and player performance
in first person shooter games,” Multimedia systems, vol. 13, no. 1, pp.
3–17, 2007.

[3] B. F. Janzen and R. J. Teather, “Is 60 fps better than 30?: the impact of
frame rate and latency on moving target selection,” in CHI’14 Extended
Abstracts on Human Factors in Computing Systems. ACM, 2014, pp.
1477–1482.

[4] M. Segal and K. Akeley, “Opengl 4.5 core api specification,” https:
//www.opengl.org/registry/doc/glspec45.core.pdf, 2016.

[5] The Khronos Vulkan Working Group, “Vulkan 1.0 core api specifica-
tion,” https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.
html, 2016.

[6] Microsoft, “Direct3d 12 programming guide,” https://msdn.microsoft.
com/en-us/library/windows/desktop/dn899121(v=vs.85).aspx, 2016.

[7] L. Crawford and M. O’Boyle, “A cross-platform evaluation of graphics
shader compiler optimization,” in Performance Analysis of Systems and
Software (ISPASS), 2018 IEEE International Symposium on. IEEE,
2018, pp. 219–228.

[8] G. Ceballos, A. Sembrant, T. E. Carlson, and D. Black-Schaffer, “Behind
the scenes: Memory analysis of graphical workloads on tile-based gpus,”
in Performance Analysis of Systems and Software (ISPASS), 2018 IEEE
International Symposium on. IEEE, 2018, pp. 1–11.

[9] A. Valdetaro, G. Nunes, A. Raposo, B. Feijó, and R. De Toledo,
“Understanding shader model 5.0 with directx11,” in IX Brazilian
symposium on computer games and digital entertainment, vol. 1, no. 2,
2010.

[10] J. Kessenichm, “Opengl shading language 4.50 specification,” https://
www.opengl.org/registry/doc/GLSLangSpec.4.50.pdf, 2016.

11

[11] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on. IEEE, 2004, pp.
75–86.

[12] J. Fonseca, “apitrace graphics tracing tool,” http://apitrace.github.io/,
2008.

[13] “Unreal engine - a 3d game engine and development environment,” https:
//www.unrealengine.com, 2017.

[14] B. Guenter, T. B. Knoblock, and E. Ruf, “Specializing shaders,” in
Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques. ACM, 1995, pp. 343–350.

[15] R. L. Cook, “Shade trees,” ACM Siggraph Computer Graphics, vol. 18,
no. 3, pp. 223–231, 1984.

[16] K. Perlin, “An image synthesizer,” ACM Siggraph Computer Graphics,
vol. 19, no. 3, pp. 287–296, 1985.

[17] P. Hanrahan and J. Lawson, “A language for shading and lighting
calculations,” in ACM SIGGRAPH Computer Graphics, vol. 24, no. 4.
ACM, 1990, pp. 289–298.

[18] M. Olano and A. Lastra, “A shading language on graphics hardware: The
pixelflow shading system,” in SIGGRAPH, vol. 98, 1998, pp. 159–168.

[19] M. S. Peercy, M. Olano, J. Airey, and P. J. Ungar, “Interactive multi-pass
programmable shading,” in Proceedings of the 27th annual conference
on Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co., 2000, pp. 425–432.

[20] E. Lindholm, M. J. Kilgard, and H. Moreton, “A user-programmable ver-
tex engine,” in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. ACM, 2001, pp. 149–158.

[21] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, “Brook for gpus: stream computing on graphics hardware,”
ACM transactions on graphics (TOG), vol. 23, no. 3, pp. 777–786, 2004.

[22] K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan, “A real-time
procedural shading system for programmable graphics hardware,” in
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. ACM, 2001, pp. 159–170.

[23] M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule, “Shader
algebra,” ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp.
787–795, 2004.

[24] M. McGuire, G. Stathis, H. Pfister, and S. Krishnamurthi, “Abstract
shade trees,” in Proceedings of the 2006 symposium on Interactive 3D
graphics and games. ACM, 2006, pp. 79–86.

[25] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan,
“Gramps: A programming model for graphics pipelines,” ACM Trans-
actions on Graphics (TOG), vol. 28, no. 1, p. 4, 2009.

[26] T. Foley and P. Hanrahan, Spark: modular, composable shaders for
graphics hardware. ACM, 2011, vol. 30, no. 4.

[27] G. Haaser, H. Steinlechner, M. May, M. Schwärzler, S. Maierhofer, and
R. Tobler, “Cosmo: Intent-based composition of shader modules,” in
Computer Graphics Theory and Applications (GRAPP), 2014 Interna-
tional Conference on. IEEE, 2014, pp. 1–11.

[28] Y. He, T. Foley, and K. Fatahalian, “A system for rapid exploration of
shader optimization choices,” ACM Transactions on Graphics (TOG),
vol. 35, no. 4, p. 112, 2016.

[29] A. Sampson, K. S. McKinley, and T. Mytkowicz, “Static stages for
heterogeneous programming,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, p. 71, 2017.

[30] M. D. McCool, Z. Qin, and T. S. Popa, “Shader metaprogramming,” in
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware. Eurographics Association, 2002, pp. 57–68.

[31] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: A
system for programming graphics hardware in a c-like language,” ACM
Transactions on Graphics (TOG), vol. 22, no. 3, pp. 896–907, 2003.

[32] C. A. Austin and D. Reiners, “Renaissance: A functional shading
language,” Ph.D. dissertation, Iowa State University, 2005.

[33] Y. He, K. Fatahalian, and T. Foley, “Slang: language mechanisms for
extensible real-time shading systems,” ACM Transactions on Graphics
(TOG), vol. 37, no. 4, p. 141, 2018.

[34] E. Chan, R. Ng, P. Sen, K. Proudfoot, and P. Hanrahan, “Efficient par-
titioning of fragment shaders for multipass rendering on programmable
graphics hardware,” in Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware. Eurographics Asso-
ciation, 2002, pp. 69–78.

[35] T. Foley, M. Houston, and P. Hanrahan, “Efficient partitioning of
fragment shaders for multiple-output hardware,” in Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware.
ACM, 2004, pp. 45–53.

[36] A. Riffel, A. E. Lefohn, K. Vidimce, M. Leone, and J. D. Owens, “Mio:
Fast multipass partitioning via priority-based instruction scheduling,” in
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware. ACM, 2004, pp. 35–44.

[37] A. Heirich, “Optimal automatic multi-pass shader partitioning by dy-
namic programming,” in Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware. ACM, 2005, pp. 91–98.

[38] B. Silpa, K. S. Vemuri, and P. R. Panda, “Adaptive partitioning of
vertex shader for low power high performance geometry engine,” in
International Symposium on Visual Computing. Springer, 2009, pp.
111–124.

[39] P. Lalonde and E. Schenk, “Shader-driven compilation of rendering
assets,” in ACM Transactions on Graphics (TOG), vol. 21, no. 3. ACM,
2002, pp. 713–720.

[40] J. Krokowski, H. Räcke, C. Sohler, and M. Westermann, “Reducing state
changes with a pipeline buffer.” in VMV, 2004, p. 217.

[41] Y. He, T. Foley, T. Hofstee, H. Long, and K. Fatahalian, “Shader
components: modular and high performance shader development,” ACM
Transactions on Graphics (TOG), vol. 36, no. 4, p. 100, 2017.

[42] Y.-P. You and S.-H. Wang, “Energy-aware code motion for gpu
shader processors,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 13, no. 3, p. 49, 2013.

[43] M. Olano, B. Kuehne, and M. Simmons, “Automatic shader level
of detail,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware. Eurographics Association, 2003,
pp. 7–14.

[44] M. Olano and B. Kuehne, “Sgi opengl shader level-of-detail shader white
paper,” SGI, Tech. Rep., 2002.

[45] M. Simmons and D. Shreiner, “Per-pixel smooth shader level of detail,”
in ACM SIGGRAPH 2003 Sketches & Applications. ACM, 2003, pp.
1–1.

[46] F. Pellacini, “User-configurable automatic shader simplification,” in
ACM Transactions on Graphics (TOG), vol. 24, no. 3. ACM, 2005,
pp. 445–452.

[47] P. Sitthi-Amorn, N. Modly, W. Weimer, and J. Lawrence, “Genetic pro-
gramming for shader simplification,” in ACM Transactions on Graphics
(TOG), vol. 30, no. 6. ACM, 2011, p. 152.

[48] R. Wang, X. Yang, Y. Yuan, W. Chen, K. Bala, and H. Bao, “Auto-
matic shader simplification using surface signal approximation,” ACM
Transactions on Graphics (TOG), vol. 33, no. 6, p. 226, 2014.

[49] Y. He, T. Foley, N. Tatarchuk, and K. Fatahalian, “A system for
rapid, automatic shader level-of-detail,” ACM Transactions on Graphics
(TOG), vol. 34, no. 6, p. 187, 2015.

[50] Y. Yuan, R. Wang, T. Hu, and H. Bao, “Runtime shader simplification
via instant search in reduced optimization space,” in Computer Graphics
Forum, vol. 37, no. 4. Wiley Online Library, 2018, pp. 143–154.

[51] L. Kettner, “Fast automatic level of detail for physically-based materi-
als,” in ACM SIGGRAPH 2017 Talks. ACM, 2017, p. 39.

