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Summary

In mammals, day-length-sensitive (photoperiodic) seasonal
breeding cycles depend on the pineal hormone melatonin,

which modulates secretion of reproductive hormones by
the anterior pituitary gland [1]. It is thought that melatonin

acts in the hypothalamus to control reproduction through

the release of neurosecretory signals into the pituitary portal
blood supply, where they act on pituitary endocrine cells [2].

Contrastingly, we show here that during the reproductive re-
sponse of Soay sheep exposed to summer day lengths, the

reverse applies: Melatonin acts directly on anterior-pituitary
cells, and these then relay the photoperiodic message back

into the hypothalamus to control neuroendocrine output.
The switch to long days causes melatonin-responsive cells

in the pars tuberalis (PT) of the anterior pituitary to increase
production of thyrotrophin (TSH). This acts locally on TSH-

receptor-expressing cells in the adjacent mediobasal hypo-
thalamus, leading to increased expression of type II thyroid

hormone deiodinase (DIO2). DIO2 initiates the summer re-
sponse by increasing hypothalamic tri-iodothyronine (T3)

levels. These data and recent findings in quail [3] indicate
that the TSH-expressing cells of the PT play an ancestral

role in seasonal reproductive control in vertebrates. In mam-
mals this provides the missing link between the pineal mel-

atonin signal and thyroid-dependent seasonal biology.

Results and Discussion

Seasonal Neuroendocrine Control of the Reproductive and
Prolactin Axes in Soay Sheep

The Soay sheep is a primitive breed, showing many character-
istics of wild mouflon, and is an excellent example of a photo-
periodic mammal [4]. Previously, we have used a ‘‘first long

*Correspondence: d.hazlerigg@abdn.ac.uk
day’’ paradigm in Soay rams to investigate the molecular phys-
iology underlying seasonal regulation of the anterior-pituitary
hormone prolactin, which controls lactation and the molting
cycle [5]. Here, we extended this approach to consider secre-
tion of the pituitary reproductive hormone follicle-stimulating
hormone (FSH), which supports ovarian and testicular function
during the winter breeding season [4]. Transfer of Soay rams
from short photoperiod (SP, 8 hr of light/day) to long photope-
riod (LP, 16 hr of light/day) initiated a decline in FSH secretion
within 2 weeks, an effect that is the inverse of that we observed
in prolactin regulation. The decline continued for a further 6
weeks, by which time the testes became fully regressed and
a reproductively inactive ‘‘summer phenotype’’ was estab-
lished (Figure 1A).

The secretion of FSH by the pituitary depends on the release
of gonadotrophin-releasing hormone (GnRH) by hypothalamic
neurosecretory cells into the pituitary portal blood supply
(Figure 1B), implying that melatonin-responsive cells in the
vicinity of this system relay the reproductive effects of photo-
period [2]. Although experiments conducted in the 1990s
employing electrolytic lesions or melatonin microimplants
suggest that sites within the mediobasal hypothalamus
(MBH) mediate these effects of melatonin [6–9], we were un-
able to detect expression of type 1 melatonin receptors
(MT1) within the MBH of Soay sheep (Figure 1C). Because
we have been unable to detect expression of type II melatonin
receptors (MT2) in this species, and because the MT2 gene is
not functionally expressed in seasonally breeding hamsters
[10], this result appears inconsistent with hypothalamic medi-
ation of melatonin actions. Indeed, earlier autoradiographic
studies with 2-iodo-melatonin (IMEL) reveal wide species var-
iation in the distribution of hypothalamic melatonin-binding
sites [11], and in the ferret, a highly photoperiodic mustelid,
no neural IMEL binding has been detected [12]. Contrastingly,
in the Soay sheep (Figure 1C) and across all other photoperi-
odic mammals studied, high levels of MT1 expression are
consistently observed in a region of the anterior pituitary sur-
rounding the hypophyseal stalk known as the pars tuberalis
(PT) [13].

Previously, the PT has been implicated in the seasonal
regulation of prolactin secretion [14]. Because prolactin re-
sponses persist in hypothalamopituitary-disconnected sheep
and PT cells do not secrete prolactin [15], this role of PT is en-
visaged to involve a relay function within the pituitary whereby
PT cells secrete a paracrine factor that governs the activity of
the lactotrophs [13]. The melatonin-receptor-expressing PT
cells derive from a thyrotroph lineage, expressing both
thyroid-stimulating hormone beta subunit (TSHb) and the com-
mon glycoprotein hormone alpha subunit (aGSU). The bio-
logically active TSH hormone is a heterodimer of these mol-
ecules [16].

Unlike classical thyrotrophs in the pars distalis (PD) of the
pituitary gland, PT cells lack receptors for both thyrotropin-
releasing hormone (TRH) and thyroid hormone (TH) [17], sug-
gesting that PT cells serve a distinctive role. Involvement of
PT glycoprotein-hormone production in seasonal photoperi-
odic responses is suggested by the marked induction of PT
aGSU and TSHb expression in hamsters and Soay sheep
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Figure 1. Neuroendocrine Basis to Photoperiodic Responses in the Sheep

(A) Anterior pituitary hormonal profiles from Soay sheep subjected to an

abrupt change from short photoperiod (SP, 8 hr light and 16 hr dark per

day) to long photoperiod (LP, 16 hr light and 8 hr dark per day); data are

mean 6 SEM from n = 7 animals/group. Note that within a week, LP begins

to activate prolactin and suppress FSH secretion, and testicular regression

reaches a maximum at 8–12 weeks under LP (represented schematically).

(B) Schematic drawing of the hypothalamus-anterior-pituitary portal sys-

tem. Hypothalamic neurosecretory cells release signals into capillaries in

the median eminence (ME) that drain into portal vessels (shown in red); fur-

ther capillary beds in the anterior pituitary allow these signals to reach pitu-

itary endocrine cells, whose hormone secretions reach the peripheral blood
exposed to LP [18, 19] (Figure 1C). These effects are not re-
flected in circulating TSH concentrations [20], probably be-
cause of the small size of the PT relative to the PD and the
fact that the PD shows no photoperiodic changes in TSHb

expression (Figure 1C). These factors presumably swamp
any photoperiodic effect of the PT on systemic TSH titers.
We therefore considered local rather than systemic
actions of PT-derived TSH a plausible hypothesis for further
investigation.

Local Expression of Functional TSH Receptors in the

Sheep Neuroendocrine System
We cloned the ovine homolog of the TSH receptor (TSH-R) and
performed in situ hybridization in brains from Soay sheep
raised on either SP or LP and killed at different times of day.
Strikingly, we observed strong expression of TSH-R both
within the PT itself and in adjacent cells in the median emi-
nence (ME), extending into the ependymal paraventricular
zone (PVZ) surrounding the base of the third ventricle (3V)
(Figure 2A). No TSH-R expression was observed in the PD, in-
dicating that PT-derived TSH does not act as the pituitary
paracrine signal between melatonin and prolactin secretion.
TSH-R expression in PT, but not in the hypothalamus, was
subject to a pronounced diurnal variation, depressed in the
day (3 hr after lights on) and elevated at night (3 hr after lights
off) (Figure 2B). No photoperiodic effects on TSH-R expression
were observed.

In the thyroid gland, activation of TSH-Rs stimulates
production of the intracellular second messenger cyclic aden-
osine monophosphate (cAMP) [21], whereas in the PT, activa-
tion of melatonin receptors has the opposite effect [22]. We
therefore used primary cultures prepared from explants of
sheep PT and attached ME to assess the interactive effects
of TSH and melatonin on cAMP production (Figure 2C). TSH
caused a dose-dependent induction of cAMP within 30 min
of application, and this effect was strongly inhibited by co-
treatment with melatonin. These data confirm the functionality
of the TSH-R RNA expression observed in the region of the PT
and ME and suggest that TSH and melatonin interact to control
PT function. Because TSHb is a cAMP-induced gene [23], we
speculate that the presence of TSH-R positively coupled to
cAMP in PT cells may form the basis for a positive-feedback-
loop-based amplification of TSH production with exposure to
increasing photoperiods.

Long-Day Induction of Type II Deiodinase in Hypothalamic
TSH-R-Expressing Regions

The anatomical distribution of TSH-R expression within the
mediobasal hypothalamus of the Soay sheep is strikingly rem-
iniscent of that of type II thyroid hormone deiodinase (DIO2)
described in tanycytes of photoperiodic rodents [24–26] and
quail [27]. DIO2 is a key enzyme for the control of thyroid-hor-
mone bioactivity that converts thyroxine (T4) into tri-iodothy-
ronine (T3) in various target tissues [28]. In the hypothalamus,
DIO2 expression is confined to specialized cells known as

circulation. The dashed line indicates the plane of section from which the in-

set is drawn. This shows a coronal view at the level of the ME, which lies ven-

tral to the third ventricle (3V); cells surrounding the sides of the 3V form

a layer known as the paraventricular zone (PVZ), extending down to the

ME. The pituitary pars tuberalis (PT) lies adjacent to the ME ventrally.

(C) Representative images of MT1 melatonin receptor and TSHb gene ex-

pression in the PT or PD of sheep acclimated to LP or SP; note MT1 expres-

sion on both photoperiods and strong SP suppression of TSHb expression

in the PT, but not in the PD.
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tanycytes that surround the base of the third ventricle [28].
These cells have a characteristic bipolar morphology, with
projections to the surface of the 3V and down into the median
eminence [29]. In hamsters, SP inhibits hypothalamic expres-
sion of DIO2 through a melatonin-dependent pathway [25,
26]. Importantly, the suppressive effects of SP exposure on
reproduction and energy metabolism can be overridden by in-
trahypothalamic T3 microimplants [30], implying that DIO2-
mediated effects of melatonin on hypothalamic T3 are crucial
for expression of a summer endocrine phenotype. The mech-
anisms underlying T3-dependent tanycyte actions possibly
relate to plasticity in the morphology of their endfeet, which

Figure 2. Expression of Functional TSH Receptors in the Sheep Neuroendo-

crine System

(A) Representative autoradiograhic images taken at two different coronal

planes at the level of the PT and PD, showing TSH-R and TSHb expression

patterns observed by in situ hybridization. Note strong TSH-R labeling in the

ME and PVZ, and also in the PT itself. Caudally, no TSH-R expression is seen

in the PD.

(B) Diurnal regulation of TSH-R expression in the PT, but not in the region of

the ME and PVZ; note that expression in the PT is depressed in the light

phase. Data are mean 6 SEM from n = 8 animals/group.

(C) Interactive effects of TSH and melatonin on cAMP accumulation in

primary cultures of sheep PT and attached ME. Cells were stimulated for

20 min in the presence of the indicated concentration of purified ovine

TSH with or without melatonin (10 nM). Data are mean 6 SEM of triplicate

observations in a single experiment that was repeated three times with

similar results. **/*** p < 0.01/0.001, respectively.
surround and isolate the terminals of the GnRH neurons in
the median eminence [31].

We therefore investigated how DIO2 is regulated by photo-
period in Soay sheep and found an unambiguous induction
of DIO2 by LP exposure for 6 weeks (Figures 3A and 3B). Fur-
thermore, DIO2 expression was induced within 10 days of
transfer to LP, when increased TSHb expression was first ob-
served (Figures 3C and 3D). This pattern of LP-induced DIO2
expression probably accounts for earlier reports that hypotha-
lamic T4 microimplants are sufficient to override the blocking
effects of thyroidectomy on LP-induced gonadotrophin sup-
pression in sheep [32]. Further, the data show that DIO2 induc-
tion by LP is a common feature in different photoperiodic
mammals, whether they breed under long days as in rodents
or short days as in sheep.

Direct Effects of TSH on DIO2 Expression in the Sheep

Hypothalamus
This regulation of DIO2, coupled with our studies on TSH-R
function in the same local region of the mediobasal hypothal-
amus, prompted us to consider whether TSH drives photope-
riodic changes in DIO2 expression. We stimulated PT/ME cell
cultures with purified ovine TSH (0.1 IU/ml) and then assayed
cells for DIO2 RNA expression by real-time PCR (Figure 3E).
Within 3 hr of stimulation, we observed an acute induction of
DIO2 expression, which was also mimicked by forskolin
(5 mM), a pharmacological stimulus for cAMP production [33].
These data are consistent with the hypothesis that TSH in-
duces DIO2 RNA expression in the median eminence through
a cAMP-dependent pathway.

To investigate whether these in vitro effects reflect in vivo
hypothalamic sensitivity to TSH, we performed lateral intracer-
ebroventricular (i.c.v.) cannulations of Soay sheep acclimated
to SP with low baseline levels of hypothalamic DIO2 expres-
sion (Figure 3F). Animals were then injected twice daily with
purified ovine TSH (0.1 IU in 1 ml artificial cerebrospinal fluid)
for 5 days (a duration chosen on the basis of the DIO2 re-
sponse seen in the LP transfer experiment), after which hy-
pothalamic DIO2 expression was assayed by in situ hybrid-
ization. Relative to vehicle control injections, TSH infusion
caused a clear induction of DIO2 expression, specifically in
those areas in which TSH-R expression occurs, producing
an expression pattern similar to that seen in LP-acclimated
sheep. Blood prolactin concentrations were predictably low
in the experimental animals under SP and were unaffected
by the i.c.v. infusion of TSH (data not shown).

Conclusions

Collectively, these results support a model for melatonin ac-
tion in mammals in which the PT acts as a relay to feed photo-
periodic information into the hypothalamus, governing local
responsiveness to thyroid hormone. This model fills a crucial
gap in the understanding of mammalian photoperiodism,
providing a link between thyroid signaling in the ependymal
PVZ and the major site of melatonin-receptor expression in
the pituitary. This pathway shows remarkable similarity to the
pathway very recently described in the Japanese quail, the
key difference being that in the quail, the photoperiodic repro-
ductive response to LP exposure is more rapid and is believed
to depend on an uncharacterized deep-brain photoreceptor [3]
rather than melatonin. Although DIO2-dependent changes in
hypothalamic T3 levels seem to be crucial for the reproductive
response, they are not required for photoperiodic regulation of
prolactin secretion in mammals [14]. Hence, we predict that
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the PT produces additional signals, distinct from TSH, through
which prolactin secretion is governed.

The data presented here constitute an intriguing reverse of
Harris’s classic model for hypothalamic control of the anterior
pituitary by neurosecretion into the pituitary portal blood

Figure 3. Regulation of Hypothalamic DIO2

Expression by Photoperiod and TSH

(A and B) DIO2 expression in Soay sheep accli-

mated to SP or LP for 6 weeks. Representative

images are shown with densitometric analysis;

data are mean 6 SEM from n = 8 animals/group.

(C and D) Induction of DIO2 and TSHb expression

by transfer to LP; no expression is seen after 1

day, but both genes are significantly induced by

10 days. Data are mean 6 SEM from n = 4

animals/group.

(E) Stimulation of DIO2 expression by TSH (0.1 IU/

ml) or forskolin (5 mM) in primary PT/ME cultures.

Cells were stimulated for 3 hr prior to assay of ex-

pression by real-time PCR. Data are mean 6 SEM.

(F) Induction of DIO2 expression in the PVZ and

ME by TSH infusion into the lateral ventricles of

sheep acclimated to SP. TSH (0.1 IU in 1 ml artifi-

cial cerebrospinal fluid) or an equivalent volume

of saline was infused twice daily for a period of

5 days prior to sacrifice and assay for DIO2

expression. Data are mean 6 SEM for n = 6

animals/group. **/*** p < 0.01/0.001, respectively.

Figure 4. Melatonin Relay Overcomes Evolution-

ary Loss of Seasonal Photoreceptors

A coronal section through the vertebrate CNS is

shown; left of midline shows the situation in an

ancestral vertebrate, and right of midline shows

the situation in mammals. In ancestral forms, light

input (red) to different structures serves different

principal functions (overlapping roles are not

specifically excluded). The eye deals with vision,

and the pineal and deep-brain sites deal with cir-

cadian and photoperiodic functions. Within the

deep brain of ancestral forms, sites of photoperi-

odic integration and endocrine secretion (open

arrows) overlap (indicated by stippling in the dia-

gram). In mammals, pineal and deep-brain pho-

tosensitivity is lost, and the lateral eyes are re-

sponsible for all light input. Additionally, the

hypothalamus integrates environmental informa-

tion, and the pituitary gland generates endocrine

output. Loss of direct-light sensitivity in these

structures leads to the establishment of a photo-

period relay whereby light information perceived

by the retina defines the nocturnal pattern of pi-

neal melatonin secretion. This is translated at

the level of the PT, which forms an interface

between the hypothalamus and pituitary.

supply [34]. Here, a peripheral circula-
tory signal (melatonin) is decoded in
the pituitary to produce photoperiodic
control of anterior pituitary hormone
(TSH) production; the TSH then acts lo-
cally in the adjacent hypothalamus by
changing T3 production in the tany-
cytes, thereby altering the activity of
the neurosecretory cells in the hypothal-
amus that govern seasonal biology.

The unusual direction of information
flow described here probably reflects

an ancestral mechanism preceding the evolution of a
separation between the hypothalamus and pituitary and the
development of a local portal blood system linking the tissues.
In ancestral vertebrates (Figure 4, left), it is likely that photore-
ceptor expression in multiple sites in the central nervous
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system (CNS) served discrete principal functions: control of
vision (lateral eyes), circadian rhythms (pineal structures),
and photoperiodism (deep brain and pituitary). In mammals
(Figure 4, right), photoreceptor loss has led to the lateral
eyes’ assuming all light-sensing functions, with pineal melato-
nin secretion becoming a humoral relay for photoperiodic
information to pituitary and deep-brain sites. Additionally, dis-
tinct regions of the ancestral brain have become specialized
for different functions, notably the hypothalamus for integra-
tion of environmental cues and the pituitary for hormone pro-
duction. Our interpretation is that photoperiodic control has
been assumed by TSH expression at the PT-brain interface, al-
lowing information encoded in the melatonin signal to reach
hypothalamic sites. Birds may be viewed as an intermediate
scenario in which compartmentalization of endocrine control
into sites of integration (hypothalamus) and output (pituitary)
has occurred, but extraretinal photoreceptor sites persist
[35]. The highly derived state of the photoperiod-transduction
pathway in mammals may well reveal the constraints imposed
by their nocturnal ancestry.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures and

can be found with this article online at http://www.current-biology.com/

cgi/content/full/18/15/1147/DC1/.
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