

Edinburgh Research Explorer

Delta-like and gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12

Citation for published version:

Takada, S, Tevendale, M, Baker, J, Georgiades, P, Campbell, E, Freeman, T, Johnson, MH, Paulsen, M & Ferguson-Smith, AC 2000, 'Delta-like and gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12', *Current biology : CB*, vol. 10, no. 18, pp. 1135-8.

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Publisher's PDF, also known as Version of record

Published In:

Current biology: CB

Publisher Rights Statement:

© 2000 Elsevier Science Ltd.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Delta-like and Gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12

S. Takada*, M. Tevendale*, J. Baker*, P. Georgiades*, E. Campbell[†], T. Freeman[†], M.H. Johnson^{*}, M. Paulsen^{*} and A.C. Ferguson-Smith^{*}

The distal portion of mouse chromosome 12 is imprinted. To date, however, Gtl2 is the only imprinted gene identified on chromosome 12. Gt/2 encodes multiple alternatively spliced transcripts with no apparent open reading frame. Using conceptuses with maternal or paternal uniparental disomy for chromosome 12 (UPD12), we found that Gt/2 is expressed from the maternal allele and methylated at the 5' end of the silent paternal allele. A reciprocally imprinted gene, Delta-like (Dlk), with homology to genes involved in the Notch signalling pathway was identified 80 kb upstream of Gtl2. Dlk was expressed exclusively from the paternal allele in both the embryo and placenta, but the CpG-island promoter of Dlk was completely unmethylated on both parental alleles. Rather, a paternally methylated region was identified in the last exon of the active Dlk allele. The proximity, reciprocal imprinting and methylation in this domain are reminiscent of the co-ordinately regulated Igf2-H19 imprinted domain on mouse chromosome 7. Like H19 and Igf2, Gt/2 and Dlk were found to be co-expressed in the same tissues throughout development, though not after birth. These results have implications for the regulation, function and evolution of imprinted domains.

Addresses: *Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK. †The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.

Correspondence: A.C. Ferguson-Smith E-mail: afsmith@mole.bio.cam.ac.uk

Received: 11 July 2000 Revised: 2 August 2000 Accepted: 2 August 2000

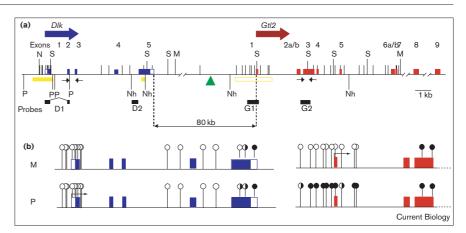
Published: 8 September 2000

Current Biology 2000, 10:1135-1138

0960-9822/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.

Results and discussion

Many imprinted genes identified in the mouse function in the regulation of prenatal growth and in the development of particular lineages [1,2]. These processes are compromised when the dosage of imprinted genes is perturbed, for example, in androgenetic (bipaternal) and parthenogenetic (bimaternal) embryos [3,4] or in embryos with uniparental duplications and deficiencies that include imprinted domains. Eleven such chromosomal regions


have so far been identified in the mouse [5]. One of these is the distal half of mouse chromosome 12 [4]. Paternal UPD12 (pUPD12) causes prenatal lethality after embryonic day 16 (E16) of gestation. These animals have placentomegaly, muscle overgrowth and skeletal defects [6]. Conceptuses with maternal UPD12 (mUPD12) die perinatally and are severely growth retarded [6]. This indicates the presence of imprinted genes on chromosome 12 that are essential for normal growth and development. Consistent with this, a transgene insertion mapping to the distal portion of chromosome 12 results in growth retardation on paternal inheritance [7]. This insertion is located 3 kb upstream of the Gtl2 gene. Gtl2 expression is substantially reduced in mutant embryos [8]. Unexpectedly, for a gene proposed to be associated with this paternally inherited mutant phenotype, Gtl2 is expressed in parthenogenetic embryos [8]. The gene has subsequently been shown to be expressed from the maternal allele and predominantly repressed on the paternal allele in mouse and human [9].

A bacterial artificial chromosome (BAC) clone containing Gtl2 was isolated from a 129/Sv mouse genomic library (Invitrogen), and a 100 kb stretch encompassing Gtl2 was mapped (Figure 1). Northern blots using RNA isolated from E15.5 mUPD12, pUPD12 and normal conceptuses were probed with Gtl2 exon 3 (Figure 2b). Gtl2 transcripts were expressed in mUPD12 embryos at levels at least twice those seen in normal embryos, but were absent in pUPD12 embryos, indicating that the gene is imprinted. Southern blot analysis of mUPD12 and pUPD12 DNA, cut with methylation-sensitive restriction enzymes, showed that the promoter region of Gtl2 was differentially methylated (Figure 3c); the inactive paternal promoter was hypermethylated and the promoter of the active maternal allele completely unmethylated. The paternal promoter was not methylated in sperm (Figure 3d, probe G1), suggesting that the promoter methylation on this allele is not the germ-line imprinting signal. The methylation status is summarised in Figure 1b.

We also identified, from genome databases, candidate genes and expressed sequence tags (ESTs) mapping to distal chromosome 12 or the region of syntenic homology on human chromosome 14q. One of these, *Delta-like* (*Dlk*) was found to map 80 kb upstream of Gtl2 on the same mouse BAC clone (Figure 1a). Dlk encodes an EGFrepeat-containing protein and has been shown to function in several cell types, including pre-adipocytes [10], thymocytes [11], adrenal glomerulosa cells [12], pancreatic

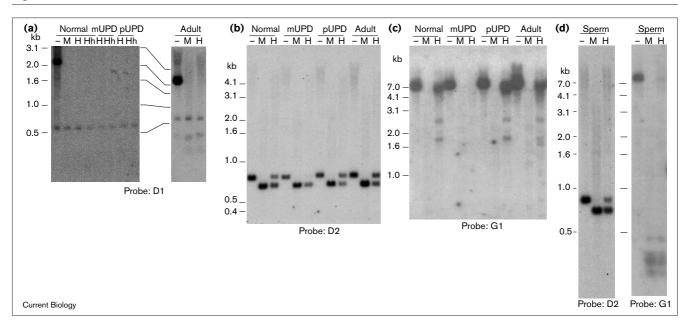
Figure 1


Genomic organisation and differential methylation of the Dlk and Gtl2 genes. (a) Dlk (blue exons) and Gtl2 (red exons) gene structures. Yellow boxes, CpG islands; open yellow box, CpG-rich domain at the Gtl2 promoter; green triangle, lacZ insertion site in the Gtl2lacZ mouse [7,8]; black bars, probes; arrows, positions of primers used in the reverse transcription (RT)-PCR analysis. A restriction map of the region is shown above, and other relevant sites associated with probes used are shown below. Hpall sites are indicated as unlettered vertical lines. N, Notl; S, Smal; M, Mlul; P, Pstl; Nh, Nhel. (b) Summary of differential methylation and opposite imprinting of the Dlk and Gtl2 genes. M and P, the maternally and paternally inherited chromosomes, respectively; circles, methylation status; white, black and half-filled

circles, unmethylated, fully methylated and partially methylated Hpall sites, respectively;

arrows, expression of allele and direction of transcription.

β-cells [13], hematopoietic stromal cells and B lymphocytes [14]. A secreted form of the protein has been isolated from amniotic fluid [15]. In mammalian systems, Dlk plays a role in differentiation (reviewed in [16]). Although murine Gtl2 has previously been mapped to chromosome 12, the map position of the Dlk gene is ambiguous [17,18]. Using a sequence from intron 2 of the Dlk gene, we verified the location of the cloned genomic DNA fragment to mouse chromosome 12 on a mouse x hamster radiation hybrid mapping panel (Research Genetics). The highest anchor LOD (10.6) was obtained for linkage to the marker D12Mit280, and the best-fit position for this locus was


9.5 cR proximal to D12Mit141, and 1.4 cR distal to D12Mit280 (data not shown).

Allele-specific expression of Dlk was analysed using RNA isolated from mUPD12 and pUPD12 embryos (and placentae, data not shown). Four different transcripts were evident in both embryos and placentae. Dlk was not expressed in mUPD12 material, and was expressed at approximately twice the normal level in pUPD12 conceptuses (Figure 2a), making it the first paternally expressed imprinted gene identified on mouse chromosome 12. Furthermore, Dlk and Gtl2 are imprinted reciprocally. To determine whether the imprinting of Dlk is associated with allele-specific methylation, DNA from UPD12 conceptuses was digested with methylation-sensitive restriction enzymes. The promoter of Dlk is a CpG island, at which no parental-origin specific methylation differences were observed (Figure 3a, probe D1). Systematic analysis of all the *Hpa*II sites in the gene identified a single differentially methylated site in a smaller CpG island within the last exon. This HpaII site was completely unmethylated

Figure 2

Imprinted expression of Dlk and Gtl2. (a) Dlk is exclusively expressed from the paternal allele. Total RNA (10 µg) prepared from normal (lane 1), mUPD12 (lanes 2-4) and pUPD12 mice (lanes 5,6) at E15.5 were analysed by northern blot hybridisation [23] using D2 as a probe. RNA loading was confirmed with a probe for glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Expression of Dlk was 1.9 ± 0.3 times stronger in pUPD12 compared with normal embryos, as determined by densitometric analysis on a Storm 860 phosphorimager (Amersham). (b) Gt/2 is expressed exclusively from the maternal allele. PolyA+ RNA (0.5 μg) prepared from normal (lanes 1,2), mUPD12 (lane 3) and pUPD12 mice (lane 4) was analysed as in (a). Gtl2 exon 3 (G2) was used as a probe. Expression of Gtl2 was 2.7 ± 0.3 times stronger in mUPD12 compared with normal embryos, as determined by densitometric analysis.

Figure 3

Identification of the differentially methylated regions of Dlk and Gtl2. (a) The CpG island at the start of Dlk is completely unmethylated on both parental alleles in embryos and adults. Genomic DNA prepared from normal, mUPD12 and pUPD12 mice at E15.5 and kidney from an adult C57BL/6J mouse was digested with PstI (-), further digested with Mspl (M), Hpall (H), or Hhal (Hh) and analysed by Southern blot hybridisation [24] using D1 as a probe. (b) The CpG island in exon 5 of Dlk is differentially methylated on the two parental alleles. Genomic DNA, prepared as in (a), was digested with Nhel (-). further digested with Mspl or Hpall and analysed by Southern blot

hybridisation using D2 as a probe. (c) The CpG-rich 5' region at the Gt/2 promoter is hypermethylated on the paternal allele and unmethylated on the maternal allele. Genomic DNA, prepared as in (a), was digested with Nhel (-), further digested with Mspl or Hpall and analysed by Southern blot hybridisation using G1 as a probe. (d) Analysis of genomic DNA isolated from sperm indicated that the paternal-specific methylation in Dlk exon 5 is inherited from sperm (probe D2). In contrast, the paternal methylation at the Gt/2 promoter was predominantly unmethylated in sperm (probe G1). Thus, this modification was acquired after fertilisation.

on the maternal inactive allele and partially methylated on the active paternal allele (Figure 3b). This partial methylation was present in sperm (Figure 3d, probe D2). To determine whether this differentially methylated region was associated with antisense transcription, as has been described for other imprinted genes with internal differentially methylated sites [19,20], strand-specific RT-PCR was carried out using primers located along the length of the gene. No antisense transcripts from either parental allele were identified 5' of the last exon (data not shown). Thus, the Dlk exon 5 differential methylation is reminiscent, in pattern and parental origin, to that seen in the last exon of the paternally expressed *Igf2* gene. In *Igf2*, the partial methylation pattern represents tissue-specific methylation correlating with organs in which the gene is active and it has been proposed that, when methylated, this region is unable to bind a repressor [21].

Dlk and Gtl2 represent a new pair of reciprocally imprinted genes. The imprinting characteristics of Dlk and Gtl2 are highly reminiscent of those seen for the Igf2-H19 locus. Like Igf2-H19, Dlk and Gtl2 are 80-100 kb apart, oppositely imprinted, and the 3' gene, Gtl2, like H19, encodes an untranslated RNA. The

methylation profiles are also very similar: H19 and Gtl2 have paternally methylated CpG-rich promoters on the inactive alleles, and Igf2 and Dlk have paternal-specific partial methylation in the last exon of the active allele. H19 and Igf2 are expressed in the same tissues in the embryo and the genomic organisation and epigenetic characteristics are important for this co-ordinate regulation (reviewed in [22]). We therefore predicted that Dlk and Gtl2 might also show co-ordinate regulation. Developmental expression of Gt/2 has been documented by in situ hybridisation [8], but Dlk expression data are limited. Co-expression of the genes was therefore assessed by PCR amplification of a tissue- and stage-specific panel of cDNAs generated for comprehensive developmental expression assays (E.C., A.C.F.-S., M.H.J. and T.F., unpublished). Gtl2 and Dlk transcripts were detected at most stages in all embryonic and extraembryonic tissues (see Supplementary material). Northern analysis of total RNA from E18.5 foetal tissues confirmed this Dlk expression (data not shown). In 88-90% of the prenatal tissues examined, the genes were co-expressed. In adult tissues, no Dlk expression was detected but Gtl2 was expressed in some adult tissues. Thus, at prenatal stages, Dlk is expressed in the majority of tissues that also

express Gtl2. The relative levels of expression varied between tissues and, because each gene encodes multiple transcripts, may reflect differences in the specific transcripts amplified. The sites of strongest expression were, however, consistent with previous reports [8,10]. Thus, Dlk and Gtl2 share the combination of common methylation imprints, common sites of expression, the same linkage pattern, the same absence of open reading frame in the 3' gene, and the same reciprocity in imprinting as Igf2-H19. Further studies will determine whether the two genes share common regulatory elements, as has been shown for the *Igf2–H19* locus.

Gtl2 was isolated originally as a gene, located 3 kb downstream of a transgene insertion, Gtl2lacZ, which caused a foetal and postnatal growth retardation phenotype on paternal transmission [7]. Maternal transmission of the insertion results in normal animals. Gtl2 expression is reduced though not absent in mutant embryos homozygous for the insertion. Thus Gtl2 is repressed on the paternal allele, and does not appear to be activated in the transgene homozygotes [8]. The growth retardation phenotype observed on paternal transmission might therefore be explained by the silencing of a paternally expressed imprinted gene, which is in the vicinity of Gtl2, with regulatory elements affected by the insertion. Consistent with this is the finding that all mUPD12 embryos are severely growth retarded [6]. Based on the results presented here, absence of Dlk expression might be responsible for this growth retardation. Analysis of Dlk expression in the Gtl2lacZ mouse, and comparison of the Gtl2lacZ phenotype with that of a Dlk knockout mouse, will test this explanation. The lethality and accompanying array of mutant phenotypes identified in mUPD12 and pUPD12 conceptuses indicate that imprinted genes on chromosome 12 play roles in multiple lineages that are not affected in the Gtl2lacZ mutant. It is therefore likely that other imprinted genes exist on mouse chromosome 12, and Dlk and Gtl2 may be two genes within a larger imprinted domain.

Supplementary material

A figure showing co-ordinate expression of Dlk and Gtl2 is available at http://current-biology.com/supmat/supmatin.htm.

Acknowledgements

We are grateful to Christine Starr, C-E Tsai, Neil Youngson, John Richardson and Marie Watkins for assistance during the course of this work. The work was supported by grants from the MRC, CRC and Wellcome Trust. M.T. and J.B. are funded by BBSRC research studentships.

- 1. Joyce J, Ferguson-Smith AC: Genomic imprinting in development and disease. In Developmental Genetics, Epigenetics and Environmental Regulation. Edited by Russo VAE, Cove D, Edgar L, Jaenisch R, Salamani F. Springer-Verlag; 1999:421-434.
- Tilghman SM: The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 1999, 96:185-193.
- McGrath J, Solter D: Completion of mouse embryogenesis requires both maternal and paternal genomes. Cell 1984, 37:179-183.

- 4. Barton SC, Surani MA, Norris ML; Role of maternal and paternal genomes in mouse development, Nature 1984, 311:374-376.
- Cattanach BM: Parental origin effects in mice. J Embryol Exp Morphol 1986, Suppl:137-150.
- Georgiades P, Watkins M, Surani MA, Ferguson-Smith AC: Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12. Development 2000, in press
- Schuster-Gossler K, Simon-Chazottes D, Guenet JL, Zachgo J, Gossler A: Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype. Mamm Genome 1996, 7:20-24.
- Schuster-Gossler K, Bilinski P, Sado T, Ferguson-Smith A, Gossler A: The mouse Gtl2 gene is differentially expressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as an RNA. Dev Dyn 1998, 12:214-128.
- Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, et al.: Identification of an imprinted gene, Meg3/Gt/2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 2000,
- Smas CM, Sul HS: Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 1993, 73:725-734.
- 11. Kaneta M, Osawa M, Sudo K, Nakauchi H, Farr AG, Takahama Y: A role for pref-1 and HES-1 in thymocyte development. J Immunol 2000, 164:256-264.
- Halder SK, Takemori H, Hatano O, Nonaka Y, Wada A, Okamoto M: Cloning of a membrane-spanning protein with epidermal growth factor-like repeat motifs from adrenal glomerulosa cells. Endocrinology 1998, 139:3316-3328.
- Carlsson C, Tornehave D, Lindberg K, Galante P, Billestrup N, Michelsen B, et al.: Growth hormone and prolactin stimulate the expression of rat preadipocyte factor-1/delta-like protein in pancreatic islets: molecular cloning and expression pattern during development and growth of the endocrine pancreas. Endocrinology 1997, 138:3940-3948.
- 14. Bauer SR, Ruiz-Hidalgo MJ, Rudikoff EK, Goldstein J, Laborda J: Modulated expression of the epidermal growth factor-like homeotic protein dlk influences stromal-cell-pre-B-cell interactions, stromal cell adipogenesis, and pre-B-cell interleukin-7 requirements. Mol Cell Biol 1998, 18:5247-5255.
- Fay TN, Jacobs I, Teisner B, Poulsen O, Chapman MG, Stabile I, et al.: Two fetal antigens (FA-1 and FA-2) and endometrial proteins (PP12 and PP14) isolated from amniotic fluid; preliminary observations in fetal and maternal tissues. Eur J Obstet Gynecol Reprod Biol 1988, 29:73-85.
- Laborda J: The role of the epidermal growth factor-like protein dlk in cell differentiation. Histol Histopathol 2000, 15:119-1129.
- Brady KP, Rowe LB, Her H, Stevens TJ, Eppig J, Sussman DJ, et al.: Genetic mapping of 262 loci derived from expressed sequences in a murine interspecific cross using single-strand conformational polymorphism analysis. Genome Res 1997, 7:1085-1093
- Gubina E, Ruiz-Hidalgo MJ, Baladron V, Laborda J: Assignment of dlk (Dlk1) to mouse chromosome band 12E-F1 by in situ hybridization. Cytogenet Cell Genet 2000, 88:322-323.
- Lyle R, Watanabe D, te Vruchte D, Lerchner W, Smrzka O, Wutz A, et al.: The imprinted antisense RNA at the lgf2r locus overlaps but does not imprint Mas1. Nat Genet 2000, 25:19-21.
- Mitsyuya K, Meguro M, Lee M, Katoh M, Schulz T, Kugoh H, et al.: Lit1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet 1999, 8:1209-1217.
- Feil R, Walter J, Allen ND, Reik W: Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 1994, 120:2933-2943.
- Brannan Cl. Bartolomei MS: Mechanisms of genomic imprinting. Curr Opin Genet Dev 1999, 9:164-170.
- Ferguson-Smith AC, Cattanach BM, Barton SC, Beechey CV, Surani MA: Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 1991, 351:667-670.
- 24. Ferguson-Smith AC, Sasaki H, Cattanach BM, Surani MA: Parental origin-specific epigenetic modification of the mouse H19 gene. Nature 1993, 362:751-755.