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A Network Model for Polarization of Political
Opinion

Alex Mantzaris∗ Desmond J. Higham†

February 3, 2020

Abstract

We propose and study a simple model for the evolution of political
opinion through a population. The model includes a nonlinear term
that causes individuals with more extreme views to be less receptive to
external influence. Such a term was suggested in 1981 by Loren Cobb
in the context of a scalar-valued diffusion equation, and recent empiri-
cal studies support this modelling assumption. Here, we use the same
philosophy in a network-based model. This allows us to incorporate
the pattern of pairwise social interactions present in the population.
We show that the model can admit two distinct stable steady states.
This bi-stability property is seen to support polarization, and can also
make the long-term behavior of the system extremely sensitive to the
initial conditions and to the precise connectivity structure. Compu-
tational results are given to illustrate these effects.

1 Background

There is a rich and growing literature on the design and analysis of models
for opinion dynamics. In many application areas, including social science,
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1



political studies, urban analytics, marketing, and advertising, it is of interest
to understand, and possibly to predict and control, how points of view may
vary over time in a given population.

Agent-based models motivated by the seminal work of Axelrod [3] rep-
resent one important modeling approach. Our work is closer in spirit to
the network-based setting used by DeGroot [8], Friedkin & Johnsen [9], and
Hegselmann & Krause [16], where a link between a pair of individuals repre-
sents an opportunity for influence. Here, opinions propagate iteratively, with
each individual taking account of the views of their immediate neighbors.
We refer to [1, 2, 5, 10, 15] for details about the current state of the art.

Our aim in this work is to show that the addition of an appropriate
nonlinearity in a simple network-based model can lead to subtle effects that,
in particular, may lead to a polarization of opinions across the population.
The nonlinear term is motivated by the work of Cobb [7], who developed
a political opinion model in a stochastic differential equation setting. Cobb
introduced the nonlinearity on the basis of a hypothesis that extreme views
are more engrained—if we move towards the ends of the political spectrum
then we take less notice of external influences.

We note that since Cobb’s original work, researchers in the social sci-
ences have developed theories of unthinking or confident extremists [6] and
rigidity-of-the-extreme [19] that support the basic modeling assumption. In
particular, empirical tests suggest that “extremists were less influenced than
political moderates by two types of experimenter-generated anchors” [6], and
“strong partisan intensity predicts reduced cognitive flexibility, regardless of
the political party’s orientation and doctrine” [19].

The main contributions of our work are

• to develop a network-based model that incorporates a Cobb-style non-
linearity,

• to derive analytical results that show how the nonlinearity can produce
polarized populations,

• to perform computational experiments that illustrate how the model
behaves on realistic network structures.

The manuscript is organized as follows. In section 2 we describe the
original Cobb model from [7]. The new model, which applies when pair-
wise connectivity information is available, is introduced Section 3. Uniform
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steady states of the model are studied analytically and computationally in
section 4, with particular attention paid to the case of a periodic ring con-
nectivity structure. In section 5 we then describe further simulations where
the topology is based on samples from random network models. We finish
with some conclusions in section 6.

2 Cobb Model

In [7], Cobb proposed a simple stochastic differential equation (SDE) model
for the dynamics of political opinion. To describe the model, we let the scalar-
valued stochastic process x(t) denote the political opinion of an individual
at time t. Here, 0 ≤ x(t) ≤ 1, with 0 and 1 representing the extreme ends
of a one-dimensional spectrum. To be concrete, we will arbitrarily regard
x(t) = 0 and x(t) = 1 as extremely “liberal” and extremely “conservative”
convictions, respectively. Cobb suggested that x(t) should satisfy the SDE1

dx(t) = r (θ − x(t)) dt+ ε
√
x(t)(1− x(t))dW (t), (1)

where W (t) represents standard Brownian motion, and the equation is to
be interpreted in Ito form [11, 13]. The model (1) involves three constants.
The value 0 < θ < 1 represents the “average” or “typical” long-term opin-
ion, and the value r > 0 controls the rate at which the long-term expected
value is approached. More precisely, letting E[·] denote the expected value
operation, we have E[x(t)]− θ = (E[x(0)]− θ) e−rt. The diffusion coefficient
ε
√
x(t)(1− x(t)) in (1) quantifies the random fluctuations that an individ-

ual’s political opinions may undergo. The factor
√
x(t)(1− x(t)) causes these

fluctuations to be smallest for people who hold extreme views. Hence, Cobb’s
model is built on the assumption that people closer to the ends of the politi-
cal spectrum have opinions that are more strongly engrained. The parameter
ε, which, without loss of generality, may be taken to be non-negative, con-
trols the overall strength of these random fluctuations; ε will be large in a
population undergoing political unrest, and small in a tranquil population.

We note that the diffusion term in (1) also appears in the classical Fisher-
Wright model in population genetics [12].

1In this work, we find it natural to use ε for the parameter that takes the form ε2 in
[7]. Also, since we will be using capitals to denote matrices, we use θ rather than G for
the long-time mean.
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Figure 1: The beta density function (2) for fixed values r = 1 and θ = 1
2

and
four different ε values: ε = 0.4, 0.6, 0.8 and 1.

Cobb focussed on the long-time, or steady state, distribution of x(t) and
solved the associated steady Fokker-Planck equation to give

f(x) =
Γ(1/δ)

Γ(θ/δ)Γ((1− θ)/δ)
x−1+θ/δ(1− x)−1+(1−θ)/δ, (2)

as the density function over (0, 1), where δ = ε2/r. Here Γ(·) in (2) denotes
the Gamma function, and f(x) is the density function for a Beta distribution
with shape parameters θ/δ and (1−θ)/δ. Cobb’s key observation was that the
steady state density changes qualitatively as the model parameters are varied.
In particular, for a given mean value θ and attraction rate r, increasing the
fluctuation strength ε can switch the steady state from a unimodal to U-
shaped; i.e., in a time of unrest, political consensus may break down, leading
to a polarization of opinions.

Figure 1 illustrates this effect. Here we superimpose the beta density
function (2) with fixed values r = 1 and θ = 1

2
for four different ε values:

ε = 0.4, 0.6, 0.8 and 1. In this case, the exponents of x and (1 − x) in (2)
are both 1 − 1/(2δ). These exponents switch from positive to negative as ε
increases beyond 1/

√
2 ≈ 0.7071.
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3 New Network Model

Our aim now is to develop a network-based model that builds on the ideas
of Cobb. We start with the assumption that the random fluctuations in (1)
are driven by exposure to new ideas, which itself derives from interactions
with other members of the population. We may then move to a microscale
model, which simultaneously tracks the trajectory of each individual, based
on the assumptions that

1. each individual, if left alone, would have an opinion that reverted to the
value θ,

2. the current opinion of each individual is also affected by the current opin-
ions of their associates,

3. an individual who currently holds an extreme view is less likely to be
affected by their associates than an individual who currently holds a
more moderate view.

To produce a model, we assume that there are n individuals whose asso-
ciations are represented by a fixed adjacency matrix A ∈ Rn×n. So aij = 1 if
person i has the potential to be influenced by person j, and aij = 0 otherwise.
By construction aii = 0. Note that A is not required to be symmetric. Let di
denote the number of influencers of person i; in graph-theoretical terms, di
is the out-degree of node i. We will work with the scaled adjacency matrix
Â, which has ij entry given by aij/di. Hence, Â has all row-sums equal to
one.

We will develop the model over discrete time, with integer time points
k = 0, 1, 2, . . ., letting uk ∈ Rn be such that uki is the opinion of person i at
time point k. Our model then takes the form

uk+1 = F (uk), (3)

where F : Rn → Rn satisfies

(F (u))i = ui + r(θ − ui) + εui(1− ui)
(

(Âu)i − θ
)
, for 1 ≤ i ≤ n. (4)

Here, as in the original Cobb model (1), the parameter r > 0 determines
the rate at which an isolated individual would approach the level θ and
ε > 0 controls the strength of the external influence. However, rather than
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having a general diffusion term, this network-based model takes account of
the local interactions; the factor (Âu)i − θ takes the average view over the
network neighbors and compares this with the value θ. If this average over
the neighbors exceeds θ, then, on the grounds that node i is associating with
a group whose views are currently more conservative than the typical value

θ, the term εui(1− ui)
(

(Âu)i − θ
)

makes a positive contribution to uk+1
i in

(3). Conversely, if the average opinion over the neighbours is below θ, then
this term reduces uk+1

i in (3).

4 Uniform Steady States

To get some insight into the model (3) we look for uniform steady states; that
is, time-invariant solutions of the form uk = u?1, for some real-valued scalar
u?, where 1 ∈ Rn has all components equal to one. Imposing u?1 = F (u?1)

in (3), and using Â1 = 1, we arrive at the scalar equation

r(θ − u?) + εu?(1− u?)(u? − θ) = 0.

This has solutions when u? = θ and when u? solves the quadratic equation

u2 − u+ r/ε = 0. (5)

The quadratic (5) has solutions

u1,2 = 1
2
± 1

2

√
1− 4r/ε.

We require these roots to be real and to lie between zero and one. This
restricts us to

r

ε
≤ 1

4
. (6)

As r/ε → 0 from above, these roots tend to 0 and 1. As r/ε → 1/4 from
below, the roots both tend to 1/2.

To understand the relevance of these fixed points, we now consider their
linear stability. We mention first the special case where ε = 0. In this case (3)
corresponds to n independent copies of the scalar recurrence uk+1 = f(uk),
where f(u) = u + r(θ − u). This has a single fixed point at u = θ, which is
linearly stable when |f ′(θ)| < 1; that is |1 − r| < 1, which becomes r < 2.
It makes sense to restrict our attention to the case where in the absence of
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external influence an individual naturally evolves to the steady state value θ;
so henceforth we impose r < 2.

For a general fixed point of the map (3), linear stability is characterized
by the Jacobian of F having spectral radius less than one. Basic calculus
shows that this Jacobian has the form

∂F

∂u
= (1− r)I + ε diag

[
(1− 2ui)

(
(Âu)i − θ

)]
+ ε diag [ui(1− ui)] Â. (7)

Here, for v ∈ Rn, we are using diag[vi] to denote the diagonal matrix
v1

v2

. . .

vn

 ∈ Rn×n.

We may now evaluate the Jacobian at the uniform fixed points. For
u? = θ1 we find that

∂F

∂u
= (1− r)I + εθ(1− θ)Â. (8)

Then for u? = u?1 with u? = u1 or u? = u21 we have

∂F

∂u
= (1− r + ε(1− 2u?) (u? − θ)) I + rÂ. (9)

The expressions (8) and (9) lead to the following conclusions concern-
ing the linear stability of the uniform fixed points in terms of the model
parameters.

• The steady state u? = θ1 is linearly stable when

|(1− r) + εθ(1− θ)λi| < 1, (10)

for every eigenvalue λi of Â.

• The steady state u? = u11 is linearly stable when

| (1− r + ε(1− 2u1) (u1 − θ)) I + rλi| < 1 (11)

for every eigenvalue λi of Â. Similarly for u? = u21.
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4.1 Analysis for the Periodic Ring with θ = 1
2

We now focus on the simple case of a nearest neighbour periodic ring, where

Â = 1
2


1 1

1 1
. . . . . .

1 1
1 1

 ∈ Rn×n. (12)

The ring with n = 10 nodes is illustrated in Figure 2. Here, each node is
connected to its nearest neighbors on the periodic one-dimensional lattice.
The network is undirected, so Â is symmetric and hence has real eigenvalues.
The eigenvalues of Â are known to be

λi = cos(2πk/n), for 1 ≤ k ≤ n.

So the most positive eigenvalue is 1 and the most negative eigenvalue is −1
when n is even and cos(π(n + 1)/n) when n is odd, which is −1 + O(n−2).
We will assume that n is even to avoid this slight complication.

We also assume for simplicity that θ = 1
2
.

For the steady state u? = 1
2
1, at the extreme of λ = 1 in (10) we obtain

−8 + 4r < ε < 4r.

At the extreme of λ = −1, we obtain

8− 4r > ε > −4r.

Together, these reduce to the following stability constraint for the steady
state u? = 1

2
1:

ε < 4 min (r, 2− r) . (13)

(Recall that we are assuming r < 2.) So we have u? = 1
2
1 stable if the

diffusion coefficient ε is not too big.
For the other two possible uniform steady states, we note that for u? = u1

or u? = u2 and θ = 1
2

we have u? − θ = (2u? − 1)/2. So

(1− 2u?)(u? − θ) = −(1− 2u?)2

2
. (14)
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Figure 2: An illustration of the periodic ring in the case of n = 10 nodes.

Since 1− 2u? = ±
√

1− 4r/ε, this gives, in (14),

(1− 2u?)(u? − θ) = −(1− 4r/ε)

2
=
−1

2
+

2r

ε
. (15)

We need to impose (11) with the extreme eigenvalues of λ = 1 and λ =
−1. For λ = 1, using (15) we require

−1 < 1− r + ε

(
−1

2
+

2r

ε

)
+ r < 1.

This simplifies to −2 < 2r − ε/2 < 0. Only one of these is active (because
4r < ε is being assumed, from (6)), so we require ε < 4(r + 1).

For λ = −1, using (15) we require

−1 < 1− r + ε

(
−1

2
+

2r

ε

)
− r < 1.

This simplifies to −2 < −ε/2 < 0. Only one of these is active (because
ε > 0), so we require ε < 4.
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Overall, we find that ε < 4 is the constraint that determines linear sta-
bility of the fixed points u? = u11 or u? = u21.

In summary, in this idealized case we find that

• in order for the steady states u? = u11 or u? = u21 to exist and have
linear stability, we require r < 1, in which case they exist and are stable
for 4r < ε < 4,

• in this case, where r < 1, the steady state u? = 1
2
1 is stable for ε < 4r.

This scenario corresponds to the classic supercritical pitchfork bifurcation
and period doubling cascade seen for the logistic map [14]; the two new steady
states emerge when the original steady state becomes unstable. Figure 3 plots
the size of these fixed points in a bifurcation diagram, with dashed lines
denoting instability. We note that the new model captures the underlying
effect of the SDE (1): increasing the diffusion coefficient can cause the θ-level
consensus to break down allowing more extreme views to be supported.

4.2 Simulations for the Periodic Ring with θ = 1
2

To illustrate the relevance of the analysis in subsection 4.1, we show a simu-
lation result. Here, we used θ = 1

2
, r = 1

2
and ε = 2.5, with a population of

size n = 32. In this case the u? = 1
2
1 steady state is unstable and the two

states u? = u11 and u? = u21 with u1 ≈ 0.2764 and u2 ≈ 0.7236 are stable.
To perform the simulation, we needed to make a decision about how to

deal with values of uki that leave the interval [0, 1]. We chose to set uk+1
i = 0

and uk+1
i = 1 if the map (4) produced uk+1

i < 0 or uk+1
i > 1, respectively.

We set the initial condition to be u0
i = 0.3+0.225vi, where vi = exp(yi)/(1+

exp(yi)) and the components yi run over 32 equally spaced values between
−10 and 10. This shifted and scaled sigmoid function was chosen so that
one subset of the initial population has views close to the lower value u1 and
another subset has views close to the higher value u2.

Figure 4 shows the evolution of uk. We see that there is an initial phase
where one set of connected nodes is drawn towards u1 and another is drawn
towards u2. So both stable steady states are relevant for these intermediate
dynamics. Of course, it is not possible for the whole solution to consist of
a combination of these two distinct steady state values, and after around
200 time steps the lower steady state at u1 is seen to dominate—the entire
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population has been attracted to this value. For further clarification, Figure 5
plots the profile of the solution after 0, 150 and 300 timesteps.

Further experiments with larger values of n indicate that is possible for
the system to spend a long time in a region where the majority of the nodes
can be split into two groups, with one group close to u1 and the other to u2.
Indeed, such a polarized solution can effectively act as a fixed point in floating
point arithmetic. In Figure 6, we repeat the computation from Figure 4 with
n increased to 100. Here, the numerical solution is such that the relative
Euclidean norm difference between successive iterates, ‖uk+1−uk ‖2/‖uk ‖2,
falls to the level of unit roundoff: it reached ≈ 3.7×10−16 after 200 steps in a
computation using IEEE double precision. Thereafter it remained constant
over time to within floating point accuracy.

In Figure 7 we use same parameters as in Figure 6 with a different initial
condition. Here, we draw each u0

i independently from the uniform (0.4, 0.6)
distribution, which is symmetric about the unstable fixed point u? = 1

2
. In

this case, we see that isolated pockets emerge around the u1 and u2 lev-
els, some of which merge at the expense of others. After around 320 steps
the solution settled to a profile that remained almost constant (the relative
normwise change over each step was less than 2 × 10−7) for a much longer
computation of 10, 000 steps. The profile of this solution is shown in Figure 8;
the effect of the two stable steady states is apparent.

5 Random Network Structure

5.1 Rewiring the Ring

The classical “small world” model of Watts and Strogatz [18] uses a parametrized
rewiring process to interpolate between a periodic lattice and a fully random
graph. Motivated by that work, we now look at the effect of rewiring the pe-
riodic ring network in subsection 4.2. For a given probability p, the rewiring
process has the following form. Here, we regard each undirected edge as a
separate pair of directed edges.

1 Loop over every edge in the original network (that is, every nonzero entry
in A).

2 For each edge, i→ j, with independent probability p, replace the index j
by an index chosen uniformly at random from the full set 1, 2, . . . , n.
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Figure 4: Evolution of opinions when there are two extreme stable steady
states in the map (4) for a periodic ring. Here, and throughout all experi-
ments, θ = 1

2
, r = 1

2
and ε = 2.5, giving u1 ≈ 0.2764 and u2 ≈ 0.7236. For

this test we have n = 32 nodes.
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Figure 6: As in Figure 4 with number of nodes increased to n = 100.

For Figure 9 we used the same model parameters and initial condition
as in Figure 6, but with A arising from a rewired ring with p = 0.1. Here,
rewiring 10% of the edges has broken up the lattice structure, so that the
smooth initial condition no longer maps onto definite neighbors. We see that
a much more fragmented transient phase arises than that in Figure 6, before
the u2 state eventually dominates. Figure 10 repeats the computation with
a different random number seed, so that the microscale detail of the wiring
is changed. In this case the long term solution is attracted to u1. So we see
that, because the underlying deterministic system is bi-stable, the long term
dynamics can be dependent upon the very fine scale structure of the random
rewiring.

In Figure 11 we look at the effect of the rewiring probability p on two
quantities. The plot on the left shows an approximation of the mean time
to reach a numerical steady state. More precisely, for each fixed p in a range
between 0.1 and 0.9, we simulated with 104 independently sampled rewirings,
using the same parameters and initial condition as in Figure 6. The vertical
axis in the plot represents the sample average of k = final, where final is
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Figure 7: As in Figure 6 with initial condition sampled from U(0.4, 0.6).

defined to be the first step at which the relative normwise difference between
successive iterates does not exceed 10−8, or 10, 000 if this value is smaller.
On the right in Figure 11 we show how much movement each node underwent
by computing the sample average of the vacillation, defined as

1

final

final−1∑
k=1

‖uk+1 − uk‖1, (16)

where ‖ · ‖1 denotes the 1-norm. (The standard errors in the two plots are
negligible to visual accuracy.) We see that the mean time to steady state
decays as as the rewiring probability is increased, while the vacillation grows.
Intuitively, because our initial condition contains a region close to u1 and a
region close to u2, when the connections are lattice-like (p small) each of
these two states locally attracts a group of nodes—the system takes a long
time to resolve the competition between the two states, but individual nodes
spend a long time close to a single state. As we increase randomness in the
connections (p large), the smoothness of the initial condition becomes less
relevant— strong, like-minded and slow-moving clusters cannot survive over
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Figure 9: Evolution of opinions from a rewired periodic ring.

long time scales, so there is more rapid and dynamic evolution to steady
state. In both cases, the variance drops dramatically with increasing p.

We note in passing that [18] identified a small world regime for interme-
diate p values where local clustering has not been destroyed, but the added
shortcuts have reduced the typical pathlength. In our setting, it appears that
this regime also combines the two properties of (a) rapid progress to steady
state, and (b) gradual changes in opinion profiles.

5.2 Preferential Attachment

We finish by considering the case where A is a sample from the preferential
attachment model of [4]. The upper picture in Figure 12 shows the nonzero
structure in the adjacency matrix. Here n = 100 and the network sample was
computed with the pref.m function from [17], using the default parameters.
The lower plot shows the degree of each node. We see that node 1 has the
highest degree, and, more generally, lower indexed nodes have higher degrees.

For the same r, θ and ε values as in the previous experiments, the upper
plot in Figure 13 shows the evolution of opinions in the case where the initial

18



Figure 10: Same parameters as in in Figure 9 with a different random choice
of rewiring.
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Figure 11: Solution characteristics as the rewiring parameter, p, is varied
(horizontal axis). Left: mean number of steps until solutions appears to
reach steady state. Right: variation in the solution over time, as defined in
(16).
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Figure 12: Upper: adjacency matrix from a preferential attachment model.
Lower: nodal degrees.

condition has the form u0
i = 0.1 for i = 1, 2, . . . , 21 and ui0 = 0.8 for i =

22, 23, . . . , 100. Here, the first 21 nodes, which include all those of high
degree, are given initial conditions close to the lower steady state value, u1.
The remaining 79 nodes start close to the upper steady state value, u2. We
see that the dynamics are dominated by the initial opinion shared by the
larger set of nodes, and the system evolves towards the u2 level. In the lower
picture, we alter the initial condition so that u0

22 = 0.1; adding one more
node to the u1 set. In this case, despite their numerical disadvantage, the
high degree nodes are now able to dominate, and the system is attracted to
the u1 level.

6 Conclusions

In this work we developed and analyzed a network-based model that incor-
porates the unthinking/confident extremists or rigidity-of-the-extreme effects
[6, 19], and was motivated by the stochastic differential equation model of
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Figure 13: Evolution of the system with adjacency matrix from Figure 12
for two different initial conditions that differ only for node 22.
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Cobb [7].
Analysis shows that the model can support two distinct stable steady

states and, moreover, the system may spend a significant amount of time with
an opinion profile that contains patches of extreme views from each end of the
one-dimensional political spectrum. Indeed, up to the accuracy of floating
point arithmetic, these highly polarized profiles are effectively steady state
solutions. A further consequence of the bi-stability in the model is that the
equilibrium behavior of the system can be extremely sensitive to microscale
details: subtle changes to the initial profile or the local connectivity pattern
can cause qualitatively different long-term results. We also saw that, in the
case of randomized connectivity, where an initial condition that is “smooth”
with respect to the component index no longer corresponds to like-minded
neighbors, there can be rapid transitions as smaller patches compete and
subsume or become subsumed.

There are many interesting directions in which this work could be devel-
oped. These include

• testing the model on further network classes,

• analysing the nature of the transitions between extreme levels in the
“quasi-steady-state” solutions, as, for example, in Figure 8,

• fitting the model to relevant data sets,

• extending the model to allow the network topology to evolve alongside
the opinion profile, and

• developing and testing analogous agent based models where individuals
who hold more extreme opinions are less likely to be influenced by their
associates.
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