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Learning How to Walk: Warm-starting Optimal Control Solver
with Memory of Motion

Teguh Santoso Lembono1,2 Carlos Mastalli3 Pierre Fernbach3 Nicolas Mansard3 Sylvain Calinon1,2

Abstract— In this paper, we propose a framework to build
a memory of motion for warm-starting an optimal control
solver for the locomotion task of a humanoid robot. We use
HPP Loco3D, a versatile locomotion planner, to generate offline
a set of dynamically consistent whole-body trajectory to be
stored as the memory of motion. The learning problem is
formulated as a regression problem to predict a single-step
motion given the desired contact locations, which is used as a
building block for producing multi-step motions. The predicted
motion is then used as a warm-start for the fast optimal
control solver Crocoddyl. We have shown that the approach
manages to reduce the required number of iterations to reach
the convergence from ∼9.5 to only ∼3.0 iterations for the single-
step motion and from ∼6.2 to ∼4.5 iterations for the multi-step
motion, while maintaining the solution’s quality.

I. INTRODUCTION

Legged locomotion is often achieved by first computing
a sequence of contacts, generating a stable centroidal trajec-
tory, and finally computing a whole-body motion through
inverse dynamics [1][2]. However, this approach cannot
properly regulate angular momentum because (a) centroidal
trajectory optimization [3][4] does not consider the limbs
momenta, and (b) whole-body control [5][6] is instantaneous
control action that theoretically cannot properly regulate
the angular momentum since it represents a nonholonomic
constraint on the multibody dynamics [7].

Recently, optimal control is getting more attention in
legged robots due to (a) its ability to properly control
angular momentum [8], and (b) they can be deployed for
real-time control [9][10]. In this vein, we have proposed
an efficient multi-contact optimal control framework called
Crocoddyl [11]. This framework relies on a novel multiple-
shooting optimal control solver called Feasibility-prone Dif-
ferential Dynamic Programming (FDDP). We have shown
that Crocoddyl can generate highly-dynamic manuveurs for
various legged robots such as iCub, Talos and ANYMal.

As a locally optimal solver, providing warm-starts (i.e.,
good initial guesses) to Crocoddyl can improve its real-
time performance in Model Predictive Control (MPC) setting
significantly. In this work, we use the concept of memory
of motion to generate the warm-starts for Crocoddyl, to
avoid poor local optima while speeding up the convergence.
Using HPP Loco3D [12], a versatile locomotion framework
for legged robots, we build offline a database of humanoid
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Fig. 1. Two approaches that are tested. In Approach 1 (dashed green), the
motion generation using HPP Loco3D produces the dataset HPP, while in
Approach 2 (solid blue), the dataset HPP is further optimized by the optimal
control solver (Crocoddyl) to produce the dataset Crl. In each approach, the
memory of motion is used for warm-starting the optimal control solver.

walking motions. We then train function approximators using
the database to generate the warm-starts for Crocoddyl.

The memory of motion concept has been used in other
works, e.g. for bicopter and quadcopter [13], serial manipu-
lators [14][15][16], and humanoid manipulation task [17].
However, none of them involves locomotion tasks except
in [18], where a trajectory library is constructed for the
LittleDog robot. Their work does not involve warm-starting
an optimization solver. Instead, the sequence of joint config-
urations retrieved from the library is used directly, with an
integral controller to correct for errors. The library is created
by using a joystick to move LittleDog across the terrain.
Compared to [18], our approach of using HPP Loco3D
to build the library, function approximations to learn the
motion, and the optimal control solver Crocoddyl to optimize
the motion is more versatile and applicable to higher DoFs
robots with more complex dynamics, such as the humanoid
robot Talos [19] considered in this work.

A. Contribution

Our contribution in this paper is as follows. Firstly, we
propose a framework for learning a memory of motion to
warm-start a multi-contact optimal control solver (Fig. 1).
We generate offline a database of dynamically consistent
and collision-free motions using HPP Loco3D to build the
memory of motion, which is then used to warm-start the
optimal control solver Crocoddyl online. We study the effect
of having different solvers for the offline and online com-
putations, and describe how we tackle this problem. Finally,
we propose a method that learns single-step motions based
on function approximations, which are then used to build
multi-step motions.

The outline of the paper is as follows. In Section II, the
overall framework and the learning method are presented.



Section III presents the simulation results, both for the
single-step and multi-step locomotions. Finally, Section IV
concludes the paper and discuss some ideas for the future
work.

II. METHOD

A. Problem Definition

We consider the problem of generating whole-body lo-
comotion of a biped robot from one location to another
in a known environment and a flat terrain. The desired
output consists of the robot joint configuration trajectory
q ∈ RDq×T and the control input trajectory u ∈ RDu×T ,
where Dq, Du, T are the joint configuration dimension, the
control dimension, and the number of time steps. q includes
both the trajectory of the root (i.e., the hip joint) and the
joint positions, while u consists of the joint torques at each
joint. The joint velocity and acceleration trajectories can also
be included, but we only consider the joint configuration and
the control trajectory here. To generate these trajectories, we
use a fast optimal control solver Crocoddyl as the online
solver. Our aim in this work is to provide good warm-starts
to Crocoddyl using a memory of motion such that the number
of solver iterations to reach convergence can be reduced.

B. Overall Framework

In the proposed memory of motion approach, the choice of
the offline and online solver is crucial. The offline solver is
to build the database of motions, while the online solver is to
control the robot in real time. The online solver has to be fast
and efficient, hence it is usually only locally optimal, such
as Crocoddyl in this work. The offline solver, on the other
hand, is used to generate the database offline, so the speed is
less important. There are two alternatives: either the offline
solver is the same as the online solver, or a different one. The
advantage of choosing the same solver is that the motion in
the database would then have the same characteristics (e.g.,
optimality) as the online solver, which is desirable. However,
since the solver would only be locally optimal, it is difficult
to use it for generating a good database without providing
warm-starts to the solver.

The second alternative uses a different solver for building
the database, e.g. a more global planner that can solve various
tasks without requiring warm-starts. This is the approach that
we take, as can be seen in Fig. 1. HPP Loco3D [20], a
locomotion framework for multi-contact locomotion, is used
as the offline solver. The framework is versatile and has been
applied to both biped and quadruped robots. HPP Loco3D
can compute the sequence of stable contacts to achieve the
locomotion task, which cannot be done yet in Crocoddyl. We
use HPP Loco3D to generate motion samples corresponding
to various tasks and store them as the memory of motion.

However, the issue with this approach is that the motion in
the database might not be considered optimal by Crocoddyl,
because HPP Loco3D does not properly regulate angular
momentum and uses heuristics for defining the swing-foot
trajectories. Indeed, there are qualitatively different motion
characteristics between HPP Loco3D and Crocoddyl. The

former generates conservative and stable motions, while the
latter uses the full dynamics that optimally reduces the
joint torques and contact forces. Therefore, warm-starting
Crocoddyl using HPP Loco3D output will require additional
iterations during the online computation to refine the motion
according to its optimality criteria, which is undesirable.

We overcome this problem by leveraging both HPP
Loco3D and Crocoddyl for building the memory. That is,
we take the motion samples generated by HPP Loco3D and
optimize them using Crocoddyl. The resulting output is then
saved as the new memory of motion. By doing this, we
combine the benefits of both frameworks: we can have a
sequence of stable footholds (HPP Loco3D) with optimal
whole-body motions (Crocoddyl). We will demonstrate that
this will yield improvement in the quality of the warm-
starts. In this work, we refer to the database containing the
HPP Loco3D motion samples as Database Hpp, and the
one containing the optimized Crocoddyl motion samples as
Database Crl.

In what follows, we describe in details HPP Loco3D and
Crocoddyl frameworks.

1) HPP Loco3D: The planning framework proposed in
HPP Loco-3D generates dynamically consistent and collision
free multi-contact whole-body motion for legged robot. It
takes as input the model of the environment and an initial and
goal poses of the robot’s root. Optionally, some additional
constraints may be specified, such as velocity bounds or a
set of initial and final contact positions. This framework
decouples the motion planning problem into several sub-
problems to be solved sequentially. First, the guide planning
produces a rough initial guess of the root path of the
robot [12][21]. Then, a contact planner produces a feasible
sequence of contacts following the root path [12][22]. After
that, an optimal centroidal trajectory satisfying the centroidal
dynamic constraints for the given contact points is com-
puted [3]. Finally, a second order inverse dynamic solver1

generates a whole-body motion, following the references of
the contact locations and the centroidal trajectory.

2) Crocoddyl: It is a framework for multi-contact op-
timal control. Given a predefined sequence of contacts, it
computes efficiently the state trajectory and control policy
by using sparse analytical derivatives and by exploiting the
problem structure inherited from the dynamic programming
principle. Its optimal control algorithm, called feasibility-
prone differential dynamic programming (FDDP), has a great
globalization strategy and similar numerical behavior to
multiple-shooting methods [11]. During the numerical op-
timization, FDDP computes the search direction and length
through backward and forward passes, respectively. Unlike
the classical DDP, the backward pass accepts infeasible state-
control trajectories which is a critical aspect to warm-starting
the solver from the memory of motion; the forward pass
simulates properly infeasible search direction, obtained in the
backward pass, which improves the algorithm exploration.

1https://github.com/stack-of-tasks/tsid



C. Learning Strategies

One important question that needs to be considered is,
what do we expect the memory to learn? Should it learn
directly how to move from one location to another? while
this is indeed possible, such method does not generalize very
well, even in a given environment. Instead, we decompose
the data into single-step motions, and we retrieve a multi-step
trajectory as a combination of single-step motions.

1) Learning Single-step Motion: Following our previous
work [23], we formulate the problem of learning the single-
step motion as a regression problem to approximate the
mapping f : x → y, where x is the task and y is the
corresponding trajectory output. We separate the database
into left-leg and right-leg movements, as this yields better
results than combining both and let the memory learns how
to choose the leg. Each motion starts with the root position
at the origin.2 The task is defined as the initial and goal
foot poses, x = [cl0, cr0, c∗T ] ∈ R9, where c ∈ R3 is the
foot pose (2D position and orientation), the subscripts l, r
correspond to the left and right foot, while ∗ is either l for
the left-leg or r for the right-leg database. T is the final
time step. y can be either the joint configuration trajectory
q ∈ RDq×T or the control trajectory u ∈ RDu×T . We then
apply dimensionality reduction and function approximation
techniques to solve the regression problem.

Since the dimension of y ∈ RD×T is high, we need to
find a smaller representation of y. First, we represent the
trajectory of each dimension of y as the weight of radial
basis functions (RBFs), as commonly done in probabilistic
movement primitives [24][25]. Let yi ∈ RT be the trajectory
of the ith dimension of y. We can define the basis matrix Φ
as [φ0, . . . ,φK−1] ∈ RT×K , where φk ∈ RT is the kth
basis function, defined as a Gaussian function centered at
the kth mean. The means are distributed equally along the
time axis T , whereas the variance is chosen to be equal for
all the basis functions and to have sufficient overlap. yi can
then be represented as the weights of these basis functions,

yi = Φwi, (1)

where wi ∈ RK can be computed by standard linear least
squares algorithm. This reduces the number of variables
for each dimension from T , which is usually large, to
K which can be much smaller. We can then stack the
weights corresponding to all dimensions of y and obtain
w = [w0, . . . ,wi, . . . ,wD−1] ∈ RDK . Each y has the
corresponding weight vector w.

Now let’s consider all the N samples in the database. We
can apply principal component analysis (PCA) to further
reduce the dimension of w over this database by keeping
only M principal components to obtain ŷ ∈ RM . We have
thus reduced the dimension of y from DT to M . Inverse
transformation from ŷ to y is a matrix multiplication that can
be performed quickly. The regression problem then becomes
f : x → ŷ. To solve the regression problem, we consider

2Without any loss of generality, as we can always transform the coordinate
system

two function approximation techniques: Gaussian process
regression (GPR) and Gaussian mixture regression (GMR).

Gaussian Process Regression (GPR)

GPR [26] is a non-parametric method which improves its
accuracy as the number of datapoints increases. Given the
database {X,Y }, GPR assigns a Gaussian prior to the joint
probability of Y , i.e., p(Y |X) = N

(
µ(X),K(X,X)

)
.

µ(X) is the mean function and K(X,X) is the covariance
matrix constructed with elements Kij = k(xi,xj), where
k(xi,xj) is the kernel function that measures the similarity
between the inputs xi and xj . In this paper we use RBF as
the kernel function, and the mean function µ(X) is set to
zero, as usually done in GPR.

To predict the output y∗ given a new input x∗, GPR
constructs the joint probability distribution of the training
data and the prediction, and then conditions on the training
data to obtain the predictive distribution of the output,
p(y∗| x∗) ∼ N (m,Σ), where m is the posterior mean
computed as

m =K(x∗,X)K−1(X,X)Y (X), (2)

and Σ is the posterior covariance which provides a measure
of uncertainty on the output. In this work we simply use the
posterior mean m as the output, i.e., y∗ =m.

Gaussian Mixture Regression (GMR)

Given the training database {X,Y } GMR constructs the
joint probability of (x,y) as a mixture of Gaussians,

p(x,y) =

K∑
k=1

πkN (µk,Σk), (3)

where πk, µk, and Σk are the k-th component’s mixing
coefficient, mean, and covariance, respectively. Let θ =
{πk,µk,Σk}Kk=1, denoting the GMR parameters to be de-
termined from the data.

We can decompose µk and Σk according to x and y as

µk =

(
µk,x

µk,y

)
and Σk =

(
Σk,xx Σk,xy

Σk,yx Σk,yy

)
. (4)

Given a query x∗, the predictive distribution of y can then
computed by conditioning on x∗,

p(y| x∗,θ) =

K∑
k=1

p(k| x∗,θ) p(y| k,x∗,θ), (5)

where p(k| x∗,θ) is the probability of x∗ belonging to the
k-th component,

p(k| x∗,θ) =
πkN (x∗| µk,x,Σk,xx)∑K
i=1 πiN (x∗| µi,x,Σi,xx)

, (6)

and p(y| k,x∗,θ) is the predictive distribution of y accord-
ing to the k-th component,

p(y| k,x∗,θ) = N
(
µk,y +Σk,yxΣ

−1
k,xx(x

∗ − µk,x),

Σk,yy −Σk,yxΣ
−1
k,xxΣk,xy

)
, (7)



which is a Gaussian distribution with the mean being linear in
x∗. The resulting predictive distribution (5) is then a mixture
of Gaussians. The point prediction y∗ can be obtained
from this distribution by applying moment matching to the
distribution in (5) to approximate it by a single Gaussian,
and use the mean of the Gaussian as the desired output y∗,
see [25], [27] for details.

2) Constructing Multi-step Motion: To use the single-
step motion for generating multi-step motions, we have to
transform the coordinate system at each step. Let’s first
assume that we have the planned sequence of contacts (i.e.,
foot poses), {Ci}P−1

i=0 , where Ci = (cli, cri) is the contacts
at ith footstep and P is the total number of footsteps. Assume,
without loss of generality, that the motion starts at zero
root position horizontally. The first step can be obtained by
querying the single-step memory directly to move from C0

toC1, obtaining y0. To move fromC1 toC2, we first need to
shift the coordinate system such that the current root (based
on the last configuration at y0) is in zero horizontal position.
The motion from C1 to C2 can then be queried from the
memory to obtain y1, and this is iterated until CP−1 to
obtain {yi}P−1

i=0 . Finally, each trajectory yi is transformed
back to the original coordinate system and concatenated as
a single trajectory y.

The contact sequence {Ci}P−1
i=0 can be obtained from

another planner, such as RB-PRM [12]. The alternative is
to also learn it from the database. In this work we assume
that the contact sequence is already given, and the contact
sequence learning will be considered in future work.

III. EXPERIMENTS

To evaluate the proposed approach, we conduct several
experiments with the humanoid robot Talos in simulation.
The robot joint configuration consists of 3 DoFs root posi-
tion, 3 DoFs root orientation (described in quaternion), and
32 joint angles (Dq = 39), while the control input consists
of 32 joint torques (Du = 32). First, HPP Loco3D is used
to generate N = 1200 samples of one-step motion (right-leg
and left-leg movement in equal proportions), starting from
the initial contact (cl0, cr0) to the goal contact (clT , crT ).
One sample thus consists of {(cl0, cr0), (clT , crT ), q,u}.
These are stored as Database Hpp.3 Next, each sample is
optimized using Crocoddyl, and the resulting samples are
stored as Database Crl. The cost function in Crocoddyl
consists of state and control regularization (around a standing
pose and zero, respectively), and contact placement. Since
we need high-quality database for the memory of motion,
we use a small convergence threshold of 10−5 and the
maximum number of iterations is set to be 50. The time
interval in HPP Loco3D is 1 ms and 40 ms, respectively,
so the HPP Loco3D data is subsampled to Crocoddyl’s
interval for the optimization. Both databases will be used
and the performance will be compared. The databases are
split into the training and the test dataset, with Ntrain = 1000

3The database is available at https://github.com/
MeMory-of-MOtion/docker-loco3d.

TABLE I
COMPARING THE ACCURACY OF GPR AND GMR

Database Hpp Database Crl
Method Traj. Err. Contact Err. Traj. Err. Contact Err.

GPR 9.53 ± 4.63 0.07 ± 0.03 13.04 ± 6.15 0.04 ± 0.02
GMR 12.39 ± 5.00 0.13 ± 0.05 18.51 ± 6.80 0.09 ± 0.04
k-NN 18.78 ± 4.96 0.49 ± 0.15 29.93 ± 9.02 0.51 ± 0.10

and Ntest = 200. We applied RBF and PCA to reduce the
dimensions of q and u with K = 60 and M = 60, as
determined empirically.

We proceed as follows. First, we evaluate the accuracy
performance of GPR and GMR in approximating the map-
ping f . The warm-starts generated by GPR and GPR are
then compared to the cold-start in terms of the Crocoddyl
performance, i.e., the number of iterations until convergence
and the resulting trajectory cost. Finally, we also compare
the result of warm-starts using only q to using both q and
u. For all comparisons, we use both the databases Hpp and
Crl and compare their performance.

A. Comparing GPR and GMR Accuracy

We train GPR and GMR on the reduced-dimension dataset
{x, ŷ} for both databases Hpp and Crl with Ntrain samples.
The task x is defined as the initial and goal foot poses,
x = [cl0, cr0, c∗T ] where ∗ = l for the left-leg movement
and ∗ = r for the right-leg movement. The output y is
defined here as the joint configuration trajectory q, and ŷ is
its smaller dimension representation. For each x in the Ntest
samples, we use GPR and GMR to predict the corresponding
trajectory y, and the accuracy is evaluted against the true
trajectory in the database. The trajectory error (rad) is
calculated as the difference between the true and predicted
trajectory, i.e. 1

Ntest

∑Ntest
i=1 ||yi − ỹi||2, whereas the contact

error (m) is defined as the difference between the foot poses
of the true and predicted trajectory, 1

Ntest

∑Ntest
i=1 ||Ci− C̃i||2.

The results can be seen in Table I (averaged over the
left and right leg movements). We compare against k-NN
with k = 1 as a baseline, to demonstrate that the proposed
algorithm indeed generalizes well and the good performance
is not due to having a very dense database. GPR overall has
the lowest errors in both criteria and both databases. GMR
has higher errors than GPR but still outperforms the baseline
k-NN by a large margin. Some example of the motions can
be found in Fig. 2. We can see that motion predicted by GPR
fit the desired contact locations very well.

Furthermore, for the subsequent results we will use the
subscripts Hpp and Crl for the function approximators trained
on the databases Hpp and Crl, respectively.

B. Single-step Motion: Warm-start vs Cold-start

In this section we compare the results of warm-starting
Crocoddyl using the function approximators against the cold-
start, i.e., using zero initial guess. For each x in the Ntest
samples, GPR and GMR are queried to obtain the initial
guess y, defined here as the joint configuration trajectory



Fig. 2. Examples of predicting single-step motions. Warm-start produced by Top: GPR, Middle: GMR, and Bottom: k-NN. Left: left foot movement.
Right: right foot movement. The green, blue and red box correspond to the initial left, the initial right, and the goal contact pose, respectively.

q. We do not predict the trajectory of the control input
here, but instead calculate it from q assuming quasi-static
movement. This computed control input trajectory is denoted
as u0. The initial guess is used to warm-start Crocoddyl,
and the result is compared against the cold-start. We also
compare the effect of using Database Hpp and Crl. We use
a large convergence threshold (10−2) for Crocoddyl here,
based on the assumption that at online computation a very
refined optimal motion is not really necessary. The number
of iterations is also limited to 20. The query time is ∼5ms
for GPR and ∼10ms for GMR in python implementation.

The results can be seen in Table II. The solver is consid-
ered successful if it finds a feasible trajectory within the max-
imum number of iterations. We see from the table that the
warm-starts results consistently outperform the cold-starts;
it justifies our assumption that warm-starting Crocoddyl can
speed-up the computation time for online MPC.

Although in Table I we see that the accuracy of GPR
outperforms GMR quite substantially, the warm-starting per-
formance in Table II turns out to be very similar, with GPR
having very slightly better performance. This is due to the
fact that the initial guesses produced by GPR and GMR
still go through an optimization process in Crocoddyl, and
hence the small difference between the predictions does not
affect the results much. This means that while in standard
regression tasks the accuracy is highly important, it may be
less important in tasks such as producing warm-starts, as
long as the predicted initial guesses are sufficiently close to
the optimal solutions.

Finally, we compared the results between the function
approximators trained on Database Hpp (GPRHpp, GMRHpp)
and Crl (GPRCrl, GMRCrl). Those trained on the database

TABLE II
COMPARING WARM-START VS COLD-START: SINGLE-STEP

Method Success Rate Cost Num. Iteration

Cold-start 98.50 55.56 ±8.32 9.52 ± 3.94
GPRHpp 99.00 55.27 ±8.01 5.01 ± 0.74
GMRHpp 100.00 55.31 ±7.99 4.85 ± 0.66
GPRCrl 100.00 55.32 ±7.99 3.04 ± 0.41
GMRCrl 100.00 55.32 ±7.99 3.06 ± 0.45

Crl have lower number of iterations, which justify our step
of optimizing the HPP Loco3D dataset by Crocoddyl. The
dataset in Crl contain motion samples that are optimal
according to Crocoddyl, and therefore they perform better
in warm-starting Crocoddyl.

C. Single-step Motion: Evaluating Warm-starts Components

In Section III-B, we only predict the joint configuration
trajectory q for warm-starting Crocoddyl while the control
trajectory u is computed based on the predicted q. In this
section we evaluate the different performances if we also
predict u, or use zero control trajectory as warm-start. We
train two different GPRs for the prediction, one for predicting
q and the other one for predicting u.

Table III shows the comparison results. (q,u0) denotes the
warm-starts using the predicted q while the control trajectory
is computed as u0, the same as in the previous subsection.
(q) denotes the warm-starts using only the joint configuration
trajectory while the control trajectory is set to be zero. While
the cost remains the same, the number of iterations increases
when the control trajectory is omitted from the warm-starts.
(q,u) denotes the warm-starts using both predicted joint
configuration and control trajectory, which has similar results



(a)

Fig. 3. Examples of predicting a multi-step motion by GPR.

TABLE III
COMPARING WARM-START COMPONENTS: SINGLE-STEP

Method Success Rate Cost Num. Iteration

(q) 96.50 55.06 ±8.19 5.30 ± 2.19
(q,u0) 100.00 55.32 ±7.99 3.04 ± 0.41
(q,u) 100.00 55.32 ±7.99 2.93 ± 0.45
(u) 97.50 55.36 ±7.95 6.83 ± 2.46
Cold-start 98.50 55.56 ±8.32 9.52 ± 3.94

to (q,u0) except for the slightly lower number of iterations.
Finally, (u) denotes the warm-starts using only the control
trajectory while the joint configuration trajectory is set to
zero, and cold-start means warm-starting using zero joint
configuration and control trajectory.

Comparing (q,u) and (q,u0), we conclude that predict-
ing the control trajectory from the memory does not give
significant benefit as compared to computing it based on q.
However, control trajectory is still important to be included in
the warm-starts, as omitting them in (q) increases the number
of iterations. Finally, comparing (q) and (u), we conclude
that warm-starting using only the joint configuration trajec-
tory performs better than using only control trajectory, which
has higher cost and number of iterations.

D. Multi-step Motion: Warm-start vs Cold-start

Finally, we use the single-step motions as a building block
for multi-step locomotion, as described in Section II-C. We
use HPP Loco3D to generate 50 contact sequences, each
consists of P = 3 footsteps. GPRHpp, GMRHpp, GPRCrl and
GMRCrl generate the initial guesses of the joint configuration
trajectory q while the control trajectory is computed based
on q, as in Section III-B. The warm-starts are then given
to Crocoddyl, and the results are presented in Table IV.
Interestingly the Hpp database does not perform better than
the cold-start (indeed, it is the opposite). This could be due
to the fact that we build the motion using a concatenation
of three single-step motions, each step starts and ends with
zero velocity. The nonoptimality of the Hpp database, added
with the nonoptimality of the multi-step motion strategy,
seem to render the warm-start to be not useful at all. On the
contrary, warm-starting using the Crl database still speeds-up
the convergence, although not as much as in the single-step
case (Section III-B). An example of multi-step locomotion
warm-start produced by GPR is given in Fig. 3.

TABLE IV
COMPARING WARM-START VS COLD-START: MULTI-STEP

Method Success Rate Cost Num. Iteration

Cold-start 100.00 86.36 ±23.16 6.17 ± 1.52
GPRHpp 100.00 86.39 ±23.07 6.40 ± 0.73
GMRHpp 100.00 86.38 ±23.12 7.29 ± 1.32
GPRCrl 100.00 86.47 ±23.16 4.54 ± 0.55
GMRCrl 100.00 86.51 ±23.22 4.71 ± 0.70

IV. CONCLUSION AND FUTURE WORK

We have presented a framework for learning a memory of
motion to warm-start an optimal control solver. The proposed
approach manages to reduce the average number of solver
iterations from ∼9.5 to only ∼3.0 iterations for the single-
step motion and from ∼6.2 to ∼4.5 iterations for the multi-
step motion, while maintaining the solution’s quality.

This paper shows a preliminary result of warm-starting an
optimal control solver. In the current formulation, Crocoddyl
does not include constraints such as torque limit or obstacle
avoidance, and we are working towards this direction. When
the optimal control formulation becomes more realistic and
complex, the solver would need even higher computational
time, and the proposed warm-starting approach would po-
tentially be even more useful. The final goal is to use the
whole framework to control the real robot using MPC.

In this work, we decompose the multistep locomotion
into single-step motions, with the initial and goal contact
locations as the task that needs to be provided by some other
methods. Another potential strategy is to define the task to
be the final root pose instead of the contact location. The
memory will then determine the contact location to reach
the desired root pose. This may allow more flexibility in
generating the multi-step motions, as only the root trajectory
needs to be provided instead of the contact sequence. An-
other issue with the single-step decomposition strategy is that
the predicted motion has zero velocity at the beginning and
the end of each step. We can include the initial and goal root
velocity in the task definition, but the task space and hence
the required number of samples will increase. While random
sampling is used in this work to generate the tasks, active
learning [28] can reduce the required number of samples.

Finally, we plan to extend the approach to include multi-
contact locomotion with both hands and legs as potential
contacts, and locomotion with varying contacts’ heights (e.g.
climbing stairs or uneven terrains).
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