

Edinburgh Research Explorer

Decomposition-based algorithms to the crew scheduling and
routing problem in road restoration

Citation for published version:
Moreno, A, Munari, P & Alem, D 2020, 'Decomposition-based algorithms to the crew scheduling and routing
problem in road restoration', Computers and Operations Research, vol. 119.
https://doi.org/10.1016/j.cor.2020.104935

Digital Object Identifier (DOI):
10.1016/j.cor.2020.104935

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computers and Operations Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Apr. 2024

https://doi.org/10.1016/j.cor.2020.104935
https://doi.org/10.1016/j.cor.2020.104935
https://www.research.ed.ac.uk/en/publications/a80e6334-3950-4470-a9c6-4b3ff04712f5

 Elsevier Editorial System(tm) for Computers

& Operations Research

 Manuscript Draft

Manuscript Number: COR-D-19-00787R3

Title: Decomposition-based algorithms for the crew scheduling and routing

problem in road restoration

Article Type: Research Article

Keywords: Benders decomposition; Branch-and-Benders-cut; Decomposition-

based metaheuristic; Hybrid method; Crew scheduling and routing; Road

restoration.

Corresponding Author: Dr. Douglas Alem, Doctor

Corresponding Author's Institution: University of Edinburgh

First Author: Alfredo Moreno

Order of Authors: Alfredo Moreno; Pedro Munari; Douglas Alem, Doctor

Abstract: The crew scheduling and routing problem (CSRP) consists of

determining the best route and schedule for a single crew to repair

damaged nodes in a network affected by extreme events. The problem also

involves the design of paths to connect a depot to demand nodes that

become accessible only after the damaged nodes in these paths are

repaired. The objective is to minimize the total time that demand nodes

remain inaccessible from the depot. The integrated scheduling and routing

decisions make the problem too complicated to be effectively solved using

mixed-integer programming (MIP) formulations. In this paper, we propose

exact, heuristic and hybrid approaches for the CSRP. Specifically, we

introduce (i) a branch-and-Benders-cut (BBC) method that enhances a

previous approach by using a different variable partitioning scheme and

new valid inequalities that strengthen the linear relaxation of the

master problem; (ii) genetic algorithm and simulated annealing

metaheuristics; and (iii) an exact hybrid BBC (HBBC) method that

effectively combines the first two approaches. Computational experiments

using benchmark instances show that the proposed algorithms can solve

large-scale instances in comparison to other methods proposed in the

literature, mainly as result of the enhanced BBC method and the

hybridization scheme. The HBBC method obtained feasible solutions for the

390 tested instances, solving 30 of them to proven optimality for the

first time. On average, it improved the best known lower and upper bounds

by 15.21% and 8.41%, respectively, and reduced the computational times by

more than 70% with respect to the standalone BBC.

Douglas Alem, Ph.D.
University of Edinburgh Business School,

29 Buccleuch Place
Edinburgh, EH8 9JS, UK

Email: douglas.alem@ed.ac.uk
February 26, 2020

Dear Prof. Francisco Saldanha da Gama:

We hereby submit the revised version of our manuscript entitled “Decomposition-based
algorithms for the crew scheduling and routing problem in road restoration” by Alfredo
Moreno, Pedro Munari and Douglas Alem to be considered for publication as a general paper in
Computers & Operations Research.

We would like to thank you for processing our submission and sending us the feedback of
referee # 1. The three comments of the first reviewer were addressed in the enclosed response
letter, and incorporated in the revised manuscript using red font.

We declare that the manuscript submitted is original, it has not been published before and it is
not currently being considered for publication elsewhere. Our research was financially
supported by the São Paulo Research Foundation (FAPESP), the Brazilian National Council for
Scientific and Technological Development (CNPq), and the Leverhulme Small Research Grant
SRG18R1n180939.

We hope you find our revised manuscript suitable for publication and look forward to hearing
from you.

With best regards,

Alfredo Moreno, MSc.
PhD student at Federal University of São Carlos, São Carlos, Brazil

Pedro Munari, Ph.D.
Assistant Professor at Federal University of São Carlos, São Carlos, Brazil.

Douglas Alem, Ph.D.
Lecturer at University of Edinburgh Business School, Edinburgh, UK.

Cover Letter

Highlights:

 We develop two new metaheuristics to solve the crew scheduling and routing problem

 We devise a new branch-and-Benders-cut approach for the crew scheduling and routing

problem

 We hybridize the branch-and-Benders-cut approach embedding the metaheuristics in

the branch-and-cut tree that solves the master problem

 The hybrid branch-and-Benders-cut approach found new optimal solutions and

improved bounds for benchmark instances of the problem

Highlights (for review)

We appreciate the first reviewer effort in providing new relevant comments. All the
three suggestions were carefully incorporated in the revised manuscript, as indicated
below.

Area Editor: The paper has improved, but there are still some minor remarks made by
Reviewer #1 that must be addressed. Please revise your paper accordingly.

Reviewer #1: The authors accommodated all of my previous comments adequately. Therefore, I
think the paper would be suitable for being published in Computers & Operations Research
(COR). Therefore, I recommend publication of the paper subject to some minor comments.

1. I recommend that the authors mention that the proposed algorithms can solve large-scale
instances in comparison to the methods in the existing literature either in Abstract or
Conclusions.

2. The following study is quite similar to this study. However, it is missing in the literature
survey:

S.W. Kim, Y.C. Shin, G. Lee, and I.K. Moon, Network Repair Crew Scheduling for Short-Term
Disasters, Applied Mathematical Modelling, Vol. 64, pp.510-523, 2018.

3. In Section 7, in the first line, because BBC and HBBC are not metaheuristics, "two novel
metaheuristics, a BBC algorithm and HBBC, […]" needs to be changed to "two novel
metaheuristics, which can be hybridized with a BBC algorithm, […]"

Response to items 1, 2 and 3: All the three suggestions were properly addressed in the
revised manuscript. They are highlighted in red font.

*Detailed Response to Reviewers

Decomposition-based algorithms for the crew scheduling and routing

problem in road restoration

Alfredo Morenoa, Pedro Munaria, Douglas Alemb,∗

aProduction Engineering Department, Federal University of São Carlos, Rod. Washington Luis Km 235,

CEP 13565-905, São Carlos - SP, Brazil
bUniversity of Edinburgh Business School, Management Science and Business Economics Group,

29 Buccleuch Place, EH89JS, Edinburgh, UK

Abstract

The crew scheduling and routing problem (CSRP) consists of determining the best route and

schedule for a single crew to repair damaged nodes in a network a�ected by extreme events.

The problem also involves the design of paths to connect a depot to demand nodes that become

accessible only after the damaged nodes in these paths are repaired. The objective is to minimize

the total time that demand nodes remain inaccessible from the depot. The integrated scheduling

and routing decisions make the problem too complicated to be e�ectively solved using mixed-

integer programming (MIP) formulations. In this paper, we propose exact, heuristic and hybrid

approaches for the CSRP. Speci�cally, we introduce (i) a branch-and-Benders-cut (BBC) method

that enhances a previous approach by using a di�erent variable partitioning scheme and new valid

inequalities that strengthen the linear relaxation of the master problem; (ii) genetic algorithm

and simulated annealing metaheuristics; and (iii) an exact hybrid BBC (HBBC) method that

e�ectively combines the �rst two approaches. Computational experiments using benchmark

instances show that the proposed algorithms can solve large-scale instances in comparison to

other methods proposed in the literature, mainly as result of the enhanced BBC method and

the hybridization scheme. The HBBC method obtained feasible solutions for the 390 tested

instances, solving 30 of them to proven optimality for the �rst time. On average, it improved

the best known lower and upper bounds by 15.21% and 8.41%, respectively, and reduced the

computational times by more than 70% with respect to the standalone BBC.

Keywords: Benders decomposition, Branch-and-Benders-cut, Decomposition-based

metaheuristic, Hybrid method, Crew scheduling and routing, Road restoration

1. Introduction

The crew scheduling and routing problem (CSRP) is an important network repair problem

usually de�ned on an undirected graph G = (V, E), in which V is the set of nodes and E is the set
of undirected arcs. The graph G represents a transportation infrastructure system composed of

roads, bridges, and tunnels. Some of these components may be dramatically a�ected by extreme

∗Corresponding author
Email addresses: alfredmorenoarteaga@gmail.com (Alfredo Moreno), munari@dep.ufscar.br (Pedro

Munari), douglas.alem@ed.ac.uk (Douglas Alem)

Working paper February 26, 2020

*Manuscript
Click here to view linked References

http://ees.elsevier.com/cor/viewRCResults.aspx?pdf=1&docID=33173&rev=3&fileID=321174&msid={BDB89A4E-36C0-4A7D-8C06-0B3F32CB4057}

events, such as natural hazards and terrorist attacks that interrupt distribution and/or evacuation

operations to demand nodes. These operations are usually performed from or to a central depot.

In this context, one of the decisions usually attributed to the CSRP is to determine the relief

paths that must be used to connect the depot with the demand nodes, which are composed of

arcs and nodes that can be damaged by the extreme events. The objective of this problem is to

repair such damaged nodes as soon as possible in order to minimize the time that the demand

nodes remain inaccessible from the depot. The damaged nodes must be repaired by a single

crew initially located at the depot node. Thus, the CSRP also involves de�ning the schedule or

sequence in which the damaged nodes must be repaired by the crew, in addition to the route

that the crew must use to repair the damaged nodes and return to the depot in the end.

The CSRP has received increased attention in the last few years. Solution approaches for

the problem range from mathematical programming models solved by commercial optimization

packages to metaheuristics. Mathematical programming models for the basic variant of the

CSRP have been proposed by Maya-Duque et al. (2016) and Moreno et al. (2019). Maya-Duque

et al. (2016) proposed a nonlinear formulation for the problem that, according to the authors,

could not be solved by optimization packages even for small-sized instances; for this reason,

they did not present computational results for the proposed model. Later, Moreno et al. (2019)

linearized the model presented by Maya-Duque et al. (2016) and obtained results for some small

instances. Kim et al. (2018) developed a model to minimize the weighted sum of total damages

caused by short-term disasters in rural areas and the completion time of a repair crew while

assuming that damage characteristics can substantially change with time. To solve this problem,

the authors developed an ant colony algorithm. Shin et al. (2019) proposed a di�erent version

for the CSRP by including additional relief distribution decisions. Mathematical formulations

for other variants of the problem that do not integrate the de�nition of paths between the depot

and the demand nodes have been proposed as well (Pramudita et al., 2012; Yan et al., 2014;

Özdamar et al., 2014; Pramudita and Taniguchi, 2014; Kasaei and Salman, 2016; Akbari and

Salman, 2017b,a). However, as some of these variants have proven to be NP-hard (Pramudita

et al., 2012; Yan et al., 2014; Özdamar et al., 2014; Kasaei and Salman, 2016) and the models

fail at solving even small instances, there has been an e�ort to devise heuristic and metaheuristic

algorithms. In fact, the CSRP can be reduced to the traveling salesman problem (TSP), which is

known to be an NP-hard problem, by considering that the paths from the depot to the demand

nodes, and between the damaged nodes, are known a priori, i.e., considering only the scheduling

decisions. The metaheuristics developed in the literature have focused on ant colony-based

systems (Yan et al., 2014; Shin et al., 2019), tabu search (Pramudita et al., 2012; Pramudita and

Taniguchi, 2014), and GRASP (Maya-Duque et al., 2016). Other specialized heuristics grounded

on particular characteristics of the problem were developed in Özdamar et al. (2014); Akbari

and Salman (2017a) and Akbari and Salman (2017b). Solution approaches for the restoration of

disrupted links in other contexts such as power, water, and railway networks have also emerged

recently (Jamshidi et al., 2018; Morshedlou et al., 2018; Zhang et al., 2019; Su et al., 2019).

Exact methods, such as dynamic programming (Maya-Duque et al., 2016) and branch-and-

Benders-cut (BBC) algorithms (Moreno et al., 2019), were also designed for the CSRP. The

2

dynamic programming method failed at solving even small instances of the problem since the

number of possible states that need to be considered grows dramatically with the number of

damaged nodes. The BBC approach takes advantage of the fact that when a schedule is �xed,

the route of the crew and the paths to the demand nodes can be found using e�cient algorithms.

The BBC approach was e�ective to obtain feasible solutions and, in many cases, good lower

bounds for the tested instances.

The BBC algorithm is a branch-and-cut algorithm in which the master problem obtained from

a Benders decomposition is solved by a single search tree, and the cuts are generated within the

tree using the subproblems as separation routines. This strategy has yielded satisfactory results

in many applications and has been used together with other acceleration strategies to improve

the performance of the method (Rahmaniani et al., 2017). For instance, Ta³kin and Cevik

(2013) and Gendron et al. (2014) proposed heuristics to �nd initial solutions to warm-start the

BBC and valid inequalities to improve the lower bound of the master problem. Additionally,

Ta³kin and Cevik (2013) applied a local search algorithm to the master problem solutions during

the execution of the BBC. Salazar-González and Santos-Hernández (2015) also proposed valid

inequalities that are added in a BBC scheme together with Benders cuts and a heuristic approach

to �nd good upper bounds. Furthermore, the authors transformed the subproblem into a classical

max-�ow problem instead of using a linear programming formulation in the separation procedure.

Adulyasak et al. (2015) used lifting inequalities, multiple Pareto-optimal cuts generation, and

an exponential-sized set of subtour elimination constraints (SECs) dynamically added together

with the Benders cuts to accelerate the BBC. Arslan and Kara³an (2016) increased the e�ciency

of a BBC method by using multiple Pareto-optimal cuts generation and by using a construction

heuristic to derive solutions for the subproblems. Gendron et al. (2016) devised a BBC method

in which integer variables of the subproblem are relaxed and included in the master problem.

More recently, Shao et al. (2017) adopted a tabu list of solutions in the master problem to

eliminate solutions that would invoke repetitive Benders subproblems. Fischetti et al. (2017)

applied a stabilization procedure at the root node and heuristics along the nodes of the branch-

and-cut tree. Errico et al. (2017) enhanced a BBC by adding SECs and other inequalities

together with the Benders cuts. Additionally, the authors proposed heuristics to generate initial

cuts and solutions. They also applied a local search operator during the BBC to improve the

master problem solutions and to generate multiple cuts from the neighborhood of the current

solution. Li et al. (2018) developed a BBC algorithm involving Pareto-optimal cuts and valid

inequalities to restrict the feasible space of the master problem. Moreno et al. (2019) derived

valid inequalities to strengthen the master problem formulation in the context of the CSRP.

Additionally, they derived multiple cuts exploring particular characteristics of the problem and

used construction heuristics to generate initial solutions. The authors also proposed specialized

algorithms based on Dijkstra's algorithm to e�ciently solve the subproblems.

Most of the related studies used valid inequalities to improve the lower bound of the master

problem, heuristics to provide a solution to warm-start the algorithm, and strategies to e�-

ciently solve the subproblems derived from the decomposition. Other e�ective strategies such

as heuristics along the branch-and-cut tree to generate cuts in the neighborhood of the master

3

problem solutions have been seldom considered in the corresponding literature. We call this

strategy hybrid branch-and-Benders-cut (HBBC). Hybridizing Benders decomposition methods

with heuristics or metaheuristics can simultaneously improve both the lower and upper bounds

(Rei et al., 2009; Raidl, 2015). The upper bound can be enhanced when new best solutions are

found during the evaluation of the neighborhood of the current master problem solution, while

the lower bound can be boosted via the generation of feasibility or optimality cuts from the

solutions found by the heuristics. Heuristics can also reduce the size of the branch-and-cut tree

by providing good solutions in early stages of the algorithm (Errico et al., 2017) and can be

used as simple stabilization tools to handle the instability of the classical Benders decomposition

(Rahmaniani et al., 2017).

Given this literature review, our contributions can be summarized as follows:

(i) We develop a BBC method that enhances the approach proposed by Moreno et al. (2019)

using a di�erent variable partitioning scheme that leads to a stronger relaxed master prob-

lem. This scheme keeps in the master problem the original objective function and the

variables related to relief paths and scheduling decisions. In the BBC method of Moreno

et al. (2019), only variables related to scheduling decisions were kept in the master problem,

with no information on the original cost. With a stronger master problem, the enhanced

BBC method requires fewer calls to the subproblem and hence generates fewer cuts.

(ii) We propose new valid inequalities to improve the performance of the BBC algorithm. These

valid inequalities explore the special structure of the master problem and take advantage

of the variables related to relief paths to further strengthen its linear relaxation.

(iii) We devise two new metaheuristics based on a genetic algorithm (GA) and simulated an-

nealing (SA) to solve the CSRP. Our metaheuristics have a random search component that

explores the space of scheduling decisions and an optimization component to �nd the best

crew route and relief paths given a schedule. These are the �rst GA and SA approaches

proposed for the CSRP. We show that both metaheuristics outperform the existing GRASP-

based metaheuristic developed to solve the same problem.

(iv) We hybridize our BBC approach by embedding metaheuristics in the branch-and-cut tree

that solves the master problem. We use the metaheuristics not only to improve the master

problem solutions but also to derive Benders cuts from the neighborhood of the solutions.

To the best of our knowledge, this is the �rst time that a hybrid solution method has been

proposed to solve the CSRP. Our hybrid approach signi�cantly improves the results of the

current best known approach.

The e�ciency of the developed solution methods are compared using benchmark instances.

As a result of the development of these techniques, the methods managed to obtain feasible

solutions for the 390 benchmark instances, proving optimality for the �rst time on 30 of them.

Moreover, they signi�cantly improve the best known lower and upper bounds, optimality gaps,

and execution times by 15.21%, 8.15%, 26.17%, and 71.14%, respectively, on average.

The remainder of this paper is organized as follows. The CSRP is described in Section 2.

We apply Benders reformulation to the CSRP and describe the BBC algorithm in Section 3.

We then describe the proposed SA and GA metaheuristics in Section 4. Section 5 presents the

4

HBBC algorithm that combines the metaheuristics with the BBC algorithm. Finally, we report

the computational results and analyses in Section 6 and draw our conclusions in Section 7.

2. Problem description and mathematical formulation

The crew scheduling and routing problem (CSRP) is de�ned on an undirected graph G =

(V, E), in which V is the set of nodes and E is the set of undirected arcs. The subset Vr ⊂ V
contains the collection of damaged nodes, and Vd ⊂ V characterizes those nodes for which there

exists some type of demand, e.g., humanitarian assistance or relief supplies. The demand must

be served from a source node (depot). There might also be transshipment nodes in set V, thus
representing the connection of arcs. A travel time τe and length `e are de�ned for each arc e ∈ E .
Furthermore, there exists a repair time δj spent by the crew to repair a damaged node j ∈ Vr.
Figure 1(a) shows an example of a graph G representing a damaged network.

Depot

Damaged nodes

Transshipment
nodes

Demand nodes

Crew
scheduling

Crew routing

Relief paths

1 8

6

0

2

3

7 4

5

2

3

7

56

8

4

1

0

(a) Graph G representing a damaged
network.

Depot

Damaged nodes

Transshipment
nodes

Demand nodes

Crew
scheduling

Crew routing

Relief paths

1 8

6

0

2

3

7 4

5

2

3

7

56

8

4

1

0

(b) Main decisions in the CSRP.

Figure 1: Damaged network and main decisions in the CSRP.

One of the decisions attributed to the CSRP is to determine, for each demand node i ∈ Vd,
a path pi connecting the depot with node i. We call such paths relief paths, and they are

composed of arcs and nodes, some of which can be damaged by extreme events. Figure 1(b)

shows an example of relief paths p1, p2, and p3 (blue arrows). p1 is composed of nodes 0→1, p2 is

composed of nodes 0→7→4→2, and p3 is composed of nodes 0→6→5→3. More than one path pi

may be available for node i. For example, nodes 0→1→8→2 de�ne an alternative path p2. The

objective of this problem is to repair the damaged nodes in the relief paths as soon as possible to

minimize the time that the demand nodes remain inaccessible from the depot. A demand node

i becomes accessible when the damaged nodes used in pi are repaired. However, some demand

nodes do not require the restoration of damaged nodes to become accessible. The accessibility

time of these nodes is zero in these cases. In Figure 1(b), for example, nodes 2 and 3 become

accessible after the restoration of damaged nodes 7 and 6, respectively, while the accessibility

time of node 1 is zero. There is a total maximum distance li allowed for the path pi. Thus, the

sum of the lengths of the arcs used in path pi must be less than or equal to li.

The damaged nodes are repaired by a single crew that departs from the depot. Thus, the

CSRP also involves determining a schedule K that de�nes the sequence in which the damaged

nodes must be repaired by the crew, in addition to the route that the crew must use to repair the

nodes within this schedule. Figure 1(b) shows a schedule (red dashed lines) and a route (black

arrows) followed by a crew. The schedule K is de�ned by the ordered set of nodes (0, 8, 7, 6, 0).

A route is composed of a sequence of crew paths pij that the crew must follow between two

5

successive nodes i − j in the schedule K. In Figure 1(b), for example, the crew routing is

composed of the crew paths p08− p87− p76− p60. The path p87 is de�ned by nodes 8→2→4→7.

Multiple paths pij may be available. The path de�ned by the nodes 8→2→4→3→5→7 is an

alternative crew path p87. Damaged nodes are repaired the �rst time they are visited, incurring

the repair time. The crew can use the already repaired damaged nodes multiple times after their

restoration without incurring extra repair time. Some damaged nodes may not be necessary for

connecting the depot with the demand nodes. However, all damaged nodes need to be repaired.

A mathematical formulation for the CSRP was proposed in Moreno et al. (2019) as a linearization

of the nonlinear model introduced in Maya-Duque et al. (2016). This formulation uses di�erent

types of variables to represent the decisions illustrated in Figure 1(b). Before formally de�ning

these variables, we brie�y explain their meaning. Variables Xij , for i, j ∈ Vr0 , de�ne the schedule
of the crew. They do not provide the route of the crew, as they are only de�ned for damaged

nodes. The full route of the crew is determined by variables Peij , for e ∈ E and i, j ∈ Vr0 , and
Nkij , for k ∈ V and i, j ∈ Vr0 . These variables determine the arcs and nodes to be visited by the

crew, respectively. The exact time at which damaged node i ∈ Vr0 is repaired is represented by

variable Zri . Relief paths are determined by variables Yej , for e ∈ E and j ∈ Vd, and Vkj , for
k ∈ V and j ∈ Vd, which de�ne the arcs and nodes to be used in the relief paths, respectively.

Finally, Zdi de�nes the accessibility time of demand node i ∈ Vd. The notation used to describe

the model is as follows.

Sets

V Set of nodes.

Vd ⊂ V Set of demand nodes.

Vr ⊂ V Set of damaged nodes.

Vr0 = Vr ∪ {0} Set of damaged nodes including the source node 0 (depot).

E Set of arcs.

Ei ⊆ E Set of arcs incident to node i ∈ V.

Parameters

di Demand of node i ∈ Vd.
δi Repair time of node i ∈ Vr.
τe Travel time on arc e ∈ E .
`e Length (distance) of arc e ∈ E .
li Maximum distance allowed between the depot and the demand node i ∈ Vd.
M A su�ciently large number.

Decision variables

Xij

{ 1, if node j ∈ Vr0 is repaired immediately after node i ∈ Vr0 .
0, otherwise.

Peij

{ 1, if arc e ∈ E is used on the path from node i ∈ Vr0 to node j ∈ Vr0 .
0, otherwise.

Nkij

{1, if node k ∈ V is used on the path from node i ∈ Vr0 to node j ∈ Vr0 .
0, otherwise.

6

Yej

{ 1, if arc e ∈ E is used on the relief path from supply node 0 to node j ∈ Vd.
0, otherwise.

Vkj

{1, if node k ∈ V is used on the relief path from supply node 0 to node j ∈ Vd.
0, otherwise.

Zri Exact time at which damaged node i ∈ Vr0 is repaired.

Zdi Total time that demand node i ∈ Vd remains inaccessible from the depot.

Based on the de�ned notation, the MIP model for the CSRP is stated as follows.

min
∑
i∈Vd

di · Zd
i . (1)

s.t.
∑
j∈Vr

0

Xij = 1, ∀ i ∈ Vr
0 , (2)

∑
i∈Vr

0

Xij = 1, ∀ j ∈ Vr
0 , (3)

∑
e∈Ei

Peij = Xij , ∀ i ∈ Vr
0 , j ∈ Vr, (4)

∑
e∈Ej

Peij = Xij , ∀ i ∈ Vr
0 , j ∈ Vr, (5)

∑
e∈Ek

Peij = 2Nkij , ∀ i ∈ Vr
0 , j ∈ Vr, k ∈ V \ {i, j}, (6)

∑
e∈E0

Yej = 1, ∀ j ∈ Vd, (7)

∑
e∈Ej

Yej = 1, ∀ j ∈ Vd, (8)

∑
e∈Ek

Yej = 2Vkj , ∀ j ∈ Vd, k ∈ V \ {0, j}, (9)

∑
e∈E

Yej · `e ≤ lj , ∀ j ∈ Vd, (10)

Zr
j ≥ Zr

i +
∑
e∈E

Peij · τe + δj − (1−Xij) ·M, ∀ i ∈ Vr
0 , j ∈ Vr, (11)

Zr
j ≥ Zr

k + (Nkij − 1) ·M, ∀ i ∈ Vr
0 , j ∈ Vr, k ∈ Vr, (12)

Zd
i ≥ Zr

j + (Vji − 1) ·M, ∀ i ∈ Vd, j ∈ Vr, (13)

Xij ∈ {0, 1}, ∀ i ∈ Vr
0 , j ∈ Vr

0 , (14)

Yei, Vki ∈ {0, 1}, ∀ i ∈ Vd, k ∈ V, e ∈ E , (15)

Zd
i ≥ 0, ∀ i ∈ Vd, (16)

Peij , Nkij ∈ {0, 1}, ∀ i ∈ Vr
0 , j ∈ Vr

0 , k ∈ V, e ∈ E , (17)

Zr
i ≥ 0, ∀ i ∈ Vr

0 . (18)

The objective function (1) minimizes the weighted sum of the time that each demand node

remains inaccessible from the depot. A demand node i becomes accessible when all the damaged

nodes in the path connecting node i with the depot 0 are repaired. Constraints (2) and (3) specify

that each damaged node must be repaired once during the schedule of the crew. Constraints

(4), (5) and (6) ensure the �ow conservation in the path of the crew between two damaged

nodes i and j. Similarly, constraints (7), (8) and (9) ensure the �ow conservation in the relief

7

paths from the depot to the demand nodes. Constraints (10) prohibit the use of relief paths

with a distance greater than the maximum distance allowed between the depot and the demand

nodes. Constraints (11) de�ne the exact time at which the damaged nodes are repaired. These

constraints also work as subtour elimination constraints. Constraints (12) ensure that a node

k in the path from node i to node j must be repaired before node j, i.e., unrepaired damaged

nodes cannot be used in a path from node i to node j. Constraints (13) de�ne the exact time

at which each demand node i becomes accessible, which is based on the time when the damaged

nodes in the path connecting node i to the depot are repaired. Finally, constraints (14)-(18)

impose the domain of the decision variables. It is worth mentioning that variables Peij and Yej

do not need to be de�ned as binary variables in the computational implementation because they

naturally assume binary values if variables Nkij and Vkj are binaries.

3. Branch-and-Benders-Cut algorithm (BBC)

In this section, we describe the novel BBC algorithm proposed for solving the CSRP based on

a new Benders reformulation of the problem. Benders decomposition is a variable partitioning

technique in which, usually, a relaxed master problem (RMP) considering only the complicating

variables is solved, and then the complicating variables are temporarily �xed, and one or more

subproblems are solved. Moreno et al. (2019) approached the CSRP using Benders decompo-

sition, but considering only the scheduling decisions (variables Xij) as complicating variables.

They considered two subproblems, one to check the feasibility of the RMP solutions using only

the variables related to crew routing (Zri , Peij and Nkij); and another to check the cost of the

RMP solutions using only the variables related to relief paths (Zdi , Yej and Vkj). This decom-

position leads to a weak RMP formulation since the objective function of the original problem,

which minimizes the weighted sum of the variables Zdi , is considered in the second subproblem

and no information of the original costs was kept in the RMP.

We propose a di�erent variable partitioning scheme in which the variables de�ning the paths

that connect the depot with the demand nodes (Zdi , Yej and Vkj) are kept in the RMP, in addition

to the scheduling decision variables. As a consequence, the master problem becomes stronger,

and the resulting BBC method is likely to require fewer calls to the subproblem, hence decreasing

the number of generated cuts. In the proposed scheme, the RMP is de�ned as follows:

(RMP) min
∑
i∈Vd

di · Zdi , (19)

s.t.(2), (3), (7)− (10), (14)− (16), (20)

Zdi ≥ θj + (Vji − 1) ·M, ∀ i ∈ Vd, j ∈ Vr, (21)

θj ≥ θi + δj −M · (1−Xij), ∀ i ∈ Vr0 , j ∈ Vr. (22)

θj ≥ 0, ∀ j ∈ Vr. (23)

Constraints (21) de�ne the time at which each demand node i becomes accessible. Constraints

(22) are introduced to set a lower bound for the time at which the damaged nodes are repaired.

These constraints also act as subtour elimination constraints. Constraints (23) impose the domain

8

of the decision variables θj . The value of variable θj is underestimated because the RMP does not

consider the routing decisions of the crew. The full route of the crew consists of paths connecting

the consecutive damaged nodes in the schedule de�ned by variables Xij . Since damaged nodes

can obstruct the access to other damaged nodes of the network, the paths available for the crew

at a speci�c moment depend on which nodes are still damaged at that moment, which, in turn,

depends on the scheduling decisions. Thus, the paths available for the crew change dynamically

during the restoration according to the schedule. Without considering routing decisions in the

RMP, the damaged points that are not accessible at a given moment might be selected �rst in

the schedule, making the schedule infeasible in practice. Therefore, the RMP lacks feasibility

cuts to avoid infeasible schedules and optimality cuts to set the real values of the variables θj .

To derive feasibility and optimality cuts for the RMP, we solve a subproblem that de�nes the

route of the crew from a scheduling solution. The subproblem can be stated as follows:

(SP) min
∑
i∈V r

Zri , (24)

s.t. (6), (12), (17), (18), (25)∑
e∈Ei

Peij = X̂ij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (26)

∑
e∈Ej

Peij = X̂ij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (27)

Zrj ≥ Zri +
∑
e∈E

Peij · τe + (X̂ij − 1) ·M + δj , ∀ i ∈ Vr ∪ {0}, j ∈ Vr. (28)

in which parameter X̂ij is a solution for the RMP. For each pair of consecutive nodes i− j with
X̂ij = 1 in the schedule de�ned by the RMP, SP determines the shortest path with arcs and

nodes de�ned by variables Peij and Nkij , respectively. The actual value of the variable θj in

the RMP is given by variable Zrj in the SP. Hence, if subproblem SP is feasible, we need to add

optimality cuts to the RMP to update the cost of variable θj . Otherwise, if subproblem SP is

infeasible, we need to add feasibility cuts to the RMP to cut o� infeasible scheduling solutions.

The feasibility and optimality cuts are de�ned by Propositions 1 and 2, respectively. In both

propositions, K = (v0, v1, ..., v(h−1), vh, ..., vp, ...,v|Vr|) is a given schedule for the crew, where vi

is the ith damaged node to be repaired and v0 = 0. This schedule is obtained by solving the

RMP and corresponds to the solution X̂v(i−1)vi = 1, ∀i = 1, ..., |Vr|.

Proposition 1 (Moreno et al. (2019)). For a given index h > 0, let Sh = {v0, v1, ..., v(h−1), vh}
be the sequence of the �rst h damaged nodes in a schedule K of the crew, and assume that sched-

ule K is infeasible because there exists no path from node v(h−1) to node vh without using at least

one damaged node not yet repaired vp, with p > h. Hence, the following feasibility cut is violated

and has to be added to the RMP: ∑
i∈Sh\{vh}

∑
j∈Sh\{v0}:

j 6=i

Xij ≤ |Sh| − 2. (29)

9

Proof. The proof of Proposition 1 is given in Moreno et al. (2019).

Proposition 2. Assume that K is a feasible schedule, with values Ẑrvj computed in subproblem

SP, for each j ∈ Vr. Then, the following optimality multicuts are valid inequalities of the RMP:

θvj ≥ Ẑrvj · (
j∑
i=1

Xv(i−1)vi − (j − 1)), ∀ j ∈ Vr, (30)

θvl ≥ (Ẑrvj + tvjvl + δvl) · (
j∑
i=1

Xv(i−1)vi − (j − 1)), ∀ j ∈ Vr, l ∈ Vr, l > j, (31)

in which tij is the minimum travel time from node i ∈ V to node j ∈ V and δj is the repair time

of damaged node j.

Proof. In cuts (30), the term
∑j

i=1Xv(i−1)vi − (j − 1) is equal to 1 if the partial schedule K ′ =

(v0, v1, ..., vj) for a given j is part of the solution of the RMP. Therefore, the cuts become

θvj ≥ Ẑrvj , and thus the lower bound Ẑrvj is activated for variable θvj . If the partial schedule K
′

is not considered in the solution of the RMP, the term
∑j

i=1Xv(i−1)vi − (j − 1) is smaller than 1

and the cuts become deactivated. Similarly, in cuts (31), if the partial schedule K ′ is considered

in the RMP solution, the lower bound Ẑrvj + tvjvl + δvl is activated for all nodes vl with l > j.

The lower bound Ẑrvj + tvjvl + δvl is valid because it is known that nodes vl need to be repaired

at some moment after node vj and the crew must spend at least tvjvl time units to reach node

vl from node vj and δvl time units to repair it.

Note that cuts (30) are su�cient for the variables θvj assuming their actual values Ẑrvj in

the RMP. However, the additional cuts (31) can be added to speed up the performance of the

method. To illustrate Proposition 2, consider the schedule K = (v0, v1, v2) = (0, 2, 1) that is

assumed to be feasible. Cuts (30) lead to θ2 ≥ Ẑr2 ·(X02) and θ1 ≥ Ẑr1 ·(X02 +X21). Additionally,

cuts (31) result in θ1 ≥ (Ẑr2 + t21 + δ1) · (X02).

Together with the Benders cuts (29), (30) and (31), we propose the use of subtour elimination

constraints (SECs) based on the Dantzig�Fulkerson�Johnson (DFJ) formulation (Dantzig et al.,

1954). SECs based on DFJ can lead to stronger linear relaxations than those based on constraints

(22) of the RMP. They are stated as follows:∑
i∈S

∑
j∈S̄

Xij +
∑
i∈S̄

∑
j∈S

Xij ≥ 2, ∀ S ⊂ Vr : 2 ≤ |S| ≤ |Vr| − 1, (32)

in which S̄ = Vr0 \ S. Because the formulation based on DFJ contains an exponentially large

number of SECs, a typical strategy is to gradually add the constraints to the formulation through

a branch-and-cut scheme (Adulyasak et al., 2015). In practice, relatively few SECs are needed

(Öncan et al., 2009). In our BBC, we add them after solving the LP problem at each node of

the branch-and-cut tree. To detect the violated subtour constraints in a fractional solution X̂,

we solve a series of minimum s − t cut problems in a support graph G∗ = (N∗, E∗), in which

N∗ = Vr0 and E∗ = {(i, j)|X̂ij > 0}. We set the depot as the source node s and the damaged

node i ∈ Vr as the sink node t. A violated subtour constraint is identi�ed every time the value of

10

the resulting minimum cut is less than 2. Then, we separate the corresponding subtour constraint

in the form of inequalities (32). In the implementation, we use the minimum s− t cut algorithm
of the Concorde Callable Library (Applegate et al., 2018). With constraints (32), we do not need

constraints (22) in the RMP anymore. Nevertheless, we keep constraints (22) because they help

to improve the lower bound value of the variables θj ,∀ j ∈ Vr.

3.1. Valid inequalities

We derive valid inequalities to strengthen the LP relaxation of the RMP model and improve

the convergence of the branch-and-cut algorithm. Valid inequalities can be of great importance in

Benders-based methods because the decomposition causes the master problem to lose information

of the variables considered in the subproblems.

If some damaged nodes are used in the path from the depot to the demand node j, all these

damaged nodes need to be repaired before the demand node j becomes accessible. Then, the

time at which the demand node j becomes accessible is higher than or equal to the sum of the

repair times of the damaged nodes used in the path plus the minimum travel time to arrive at

these damaged nodes. Based on this, we can de�ne the following valid inequalities:

Zdj ≥
∑
k∈Vr

Vkj · (δk + t∗k), ∀ j ∈ Vd, (33)

in which t∗k = min
i∈Vr

0 :i 6=k
{tik}, ∀ k ∈ Vr.

The next set of valid inequalities is based on the maximum distance li allowed between the

depot and the demand nodes. If the shortest distance from the depot to a node k plus the shortest

distance from node k to the demand node i is greater than the maximum distance li, then node

k cannot be used in the path from the depot to the demand node i. The valid inequalities are

de�ned as follows:

Vki ≤ 0, ∀ i ∈ Vd, k ∈ V : dist0k + distki > li, (34)

in which distki is the shortest distance from node k to node i, and it is evaluated using Dijkstra's

algorithm. In addition, we use all the valid inequalities proposed by Moreno et al. (2019) in our

RMP.

4. Metaheuristic algorithms

In this section, we present a genetic algorithm (GA) and a simulated annealing (SA) tailored

for the CSRP. These metaheuristics operate on a TSP subproblem representing the scheduling

decisions and call for specialized algorithms to optimize the crew routing and the relief path

decisions as well as to determine the feasibility and cost of the proposed schedule in the original

CSRP. Therefore, the proposed metaheuristics do not explicitly consider all the possible crew

routes and relief paths but only the best crew route and relief paths of a given scheduling solution,

which signi�cantly reduces the space of solutions explored by them. Additionally, they use �ve

local search operators to diversify the search in the solution space. The way the operators are

11

applied varies from one metaheuristic to the other, yet in both cases, they act as essential steps

to escape from local optimal solutions. Such operators work by �nding a neighbor of a current

solution, and they can thus be seen as low-level heuristics that are selected by a higher-level

algorithm (metaheuristic) that guides the search. This type of strategy has been referred to as

hyper-heuristics (Burke et al., 2003; Drake et al., 2019), and successful applications of hyper-

heuristics based on GA and SA metaheuristics can be found in the literature (Han and Kendall,

2003; Dowsland et al., 2007; Bai et al., 2012). Subsections 4.1 and 4.2 describe the proposed GA

and SA methods, respectively.

4.1. Genetic algorithm

GA is a metaheuristic method based on three basic principles of the biological evolution

process: reproduction, natural selection, and diversity of individuals. GAs have been used

together with exact algorithms in a few applications (Lin et al., 2004; Poojari and Beasley, 2009)

and are widely used in the context of routing problems (Karakati£ and Podgorelec, 2015).

Algorithm 1 presents a basic scheme of the genetic algorithm developed in this work. GA

starts with a population composed of a set of initial solutions (individuals) generated with a

construction heuristic. The individuals are evaluated using a �tness function, and they evolve

through a series of iterations (generations) by applying operators of selection of parents (natural

selection), crossover (reproduction), and mutation (diversity of individuals). The procedure is

repeated until it reaches some stopping criterion (e.g., maximum number of iterations or maxi-

mum computational time). The solution representation, construction heuristic, �tness function,

selection, crossover and mutation of individuals are described in the following subsections.

Algorithm 1 Basic scheme of the GA metaheuristic.
1: Generate initial feasible individuals using the construction heuristic (see Section 4.1.3)
2: while stopping criteria are not reached do

3: Evaluate the individuals with the feasibility and optimality check algorithms (see Section 4.1.2);
4: Update the best solution;
5: Perform selection (see Section 4.1.4) and crossover (see Section 4.1.5);
6: Evaluate the individuals with the feasibility and optimality check algorithms (see Section 4.1.2);
7: Perform mutation (see Section 4.1.6);
8: end while

4.1.1. Solution representation

Let K = (v0, v1, . . . , vi, . . . , v|Vr|) be a schedule for the crew, in which vi is the ith damaged

node to be repaired and v0 = 0 is the depot node. To represent the solution corresponding to

schedule K, we use a vector with |Vr| + 2 positions. The �rst |Vr| + 1 positions indicate the

order of the damaged nodes in the schedule of the crew, whereas the last position indicates the

objective value of the solution in the original problem. Figure 2 shows an example of a vector

representing a solution with 5 damaged nodes and an objective value of 100. Infeasible solutions

are represented with an objective value of ∞ in the last position of the vector.

Note that only scheduling decisions are represented in a solution, as depicted in Figure 2.

According to Moreno et al. (2019), for each �xed scheduling decision, we can optimally de�ne

the paths between damaged nodes and between the depot and the demand nodes using Dijkstra-

12

0 4 2 5 1 3 100

Depot Damaged nodes Objective value

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

6 1 8 4 9 2 5 7 3o1

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

2 4 1 5 6 8 9 3 7o2

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

4 6 8 3 9 2 5 7 1o1

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

1 2 5 7 6 8 9 3 4o2

 crossover points

PMX

OX

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

2 4 1 6 9 8 5 3 7o1

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

8 1 5 4 6 2 9 7 3o2 CX

Figure 2: Vector representing a solution of the CSRP problem.

based algorithms. Thus, the other decisions of the CSRP can be straightforwardly derived from

a given crew schedule.

4.1.2. Evaluation of individuals

A �tness function in GA takes a candidate solution of the problem and returns a value that

represents the quality of the solution. In our GA algorithm, the quality of a given solution is

evaluated based on the cost of the corresponding schedule K in the original CSRP formulation.

To evaluate this cost, we use two algorithms proposed in Moreno et al. (2019), which we call the

feasibility check algorithm and the optimality check algorithm, as presented in Appendix A. The

feasibility check algorithm takes a schedule K and veri�es whether it is feasible or not for the

original CSRP. If the solution is infeasible, we set a cost equal to ∞ in the last position of the

solution vector. Otherwise, the algorithm returns the exact time at which the damaged nodes

in schedule K are repaired by the crew. Subsequently, we call the optimality check algorithm

that evaluates the exact time at which the demand nodes become accessible and the total cost

for the solution in the original CSRP.

4.1.3. Initial population

Our initial population is created by using a construction heuristic that generates feasible

solutions for the CSRP. The heuristic consists of generating a feasible solution by sequentially

adding damaged nodes to the schedule in an iterative process. The construction heuristic is

outlined in Algorithm 2. Let K = (v0, v1, . . . , vl) be a partial schedule having the depot node

v0 = 0 and l nodes from set Vr, for a given l > 0. Let FK be the set of the nodes that can be

reached from vl, the last node added to this partial schedule. A node j ∈ Vr can be reached from

vl if there exists a path from vl to j without using a damaged node that has not been repaired

yet, and node j is not in the partial schedule K. In such a case, we say that j is a feasible node.

In the construction heuristic, we initially have K = (v0). At the end of each iteration, we

randomly select a feasible node from the set FK , which is added to the end of the partial schedule
K (line 12 of Algorithm 2). To update the set FK , we need to remove from it the last node vl

added to K (line 3), and then we execute Dijkstra's algorithm to �nd paths between node vl

and the nodes in Vr \ FK that are not in the partial schedule yet (line 6). If there is a path

from vl to some node j ∈ Vr \ FK that is not in K, then node j is added to the set FK (line

8). Finally, when schedule K is completed, the solution is evaluated using the feasibility and

optimality check algorithms (line 14). Notice that only feasible nodes can be selected at each

iteration, and , as a consequence, feasible solutions are always generated.

13

Algorithm 2 construction heuristic for the CSRP.

1: Set node 0 as the �rst node in schedule K, i.e., v0 := 0, K = (v0), FK = {v0};
2: for l = 0 to |Vr| − 1 do

3: Remove node vl from set FK ;
4: for j = 1 to |Vr| do
5: if node j is in Vr \ FK but not in K then

6: Find a path between node vl and node j without using damaged nodes not repaired yet;
7: if a path between node vl and node j exists then
8: Add node j to set FK ;
9: end if

10: end if

11: end for

12: Randomly select a node i ∈ FK and add it to schedule K, i.e., set v(l+1) := i;
13: end for

14: Compute the cost of schedule K using the feasibility and optimality check algorithms;

4.1.4. Parent selection

The selection of individuals to evolve from one generation to the next one is based on a

tournament with k competitors, a so-called k-tournament, in which k individuals are randomly

compared and the best (the one with the smallest cost) is selected for the reproduction step.

A tournament with multiple competitors may yield good solutions quickly but has a higher

chance of settling at local optima (Karakati£ and Podgorelec, 2015). To avoid this issue, the

k-tournament selection can be combined with aggressive mutation strategies. The selected best

individuals can be crossed over by exchanging pieces with others and can either mutate or remain

unaltered until the next generation. Additionally, we apply an elitist strategy that consists of

always passing the best individual of the population from one generation to the next one.

4.1.5. Crossover

We implemented three popular crossover operators for permutation representation: partial

mapped crossover (PMX), ordered crossover (OX), and cycle crossover (CX) (Larranaga et al.,

1999; Kumar et al., 2012). When the individuals are selected for reproduction, one of the three

strategies is randomly applied to generate the o�spring.

4.1.6. Mutation

Mutation is usually used as an operation to prevent the GA from getting stuck on local

optimal solutions (Balin, 2011). In our GA, the individuals are randomly selected for mutation if

they represent feasible solutions. On the other hand, when an individual represents an infeasible

solution, we force its mutation in an attempt to make it feasible. We use �ve local search operators

as mutation strategies: swap, 2-opt, or-opt-1, or-opt-2, and or-opt-3. When the individuals are

selected for mutation, one of these �ve strategies is randomly applied to generate the o�spring.

The �rst local search operator is an exchange (swap) of position of two damaged nodes in the

schedule. The second local search operator is a pairwise exchange (2-opt) that involves removing

two edges and replacing them with two di�erent edges that reconnect the fragments created.

The three last local search operators are repositioning operators (or-opt-k) in which k adjacent

nodes are removed from the schedule and reinserted at a di�erent location in the schedule.

14

4.1.7. Parameters of the GA metaheuristic

In the GA proposed in this work, we have to adjust the following parameters to guarantee a

better performance of the metaheuristic: maximum number of iterations, size of the population,

selection probability, mutation probability, and parameter k for the k-tournament. The values

selected for the parameters are described in Section 6.1.

4.2. Simulated annealing algorithm

SA is a randomized search method that exploits an analogy with the thermodynamic process

of the cooling of metals, gradually adjusting a parameter called �temperature�. At high temper-

atures, the method searches in a large space of solutions, while at low temperatures, solutions

with worsening objective values are less likely to be accepted. SA has the advantage of usually

being easier to implement and less time consuming than more sophisticated metaheuristics while

still providing good overall results (Galvão et al., 2005), in particular for related problems such

as the TSP (Ohlmann and Thomas, 2007) and the inventory routing problem (Alvarez et al.,

2018). Additionally, as pointed out by Gogna and Tayal (2013) and enforced by our computa-

tional experiments, SA is well suited to problems with a large number of local optima, such as

the CSRP.

A basic scheme of the SA implemented in this study is presented in Algorithm 3. The

representation of the solution in our SA is the same as that used in our GA, i.e., a vector

representing the scheduling decisions and the objective value of the solution. SA starts with

a set of multiple initial solutions generated with the construction heuristic (Algorithm 2). At

each iteration, one neighbor of each solution is randomly derived using one of the �ve local

search operators (swap, 2-opt, or-opt-1, or-opt-2, and or-opt-3) de�ned in Subsection 4.1.6.

The neighbors are evaluated by using the feasibility and optimality check algorithms presented

in Appendix A. We perform a few inner iterations before updating the temperature value T

(T > 0). At the end of the inner iterations, we update the temperature value, and all the

solutions are replaced by the best solution found.

Algorithm 3 Basic scheme of the SA metaheuristic.
1: Generate multiple initial feasible solutions using the construction heuristic (see Algorithm 2);
2: while stopping criteria is not reached do

3: while inner iterations are not completed do

4: Apply local search operators to derive the neighbors of the solutions (see Section 4.1.6);
5: Evaluate the solutions with the feasibility and optimality check algorithms (see Appendix A);
6: Check the acceptance criteria and update the solutions (see Section 4.2.1);
7: end while

8: Update the best solution;
9: Update temperature;
10: Replace all solutions by the best solution;
11: end while

4.2.1. Acceptance criteria

In the inner iterations of the proposed SA algorithm, a solution corresponding to a schedule

K can be replaced by a neighbor solution corresponding to a di�erent schedule K ′ according to

an acceptance criterion probability given by min{1, e∆/T }, where ∆ = zK − zK′ and zK (zK
′
)

15

denotes the objective value of schedule K (K ′) in the CSRP. If zK ≥ zK′ , then min{1, e∆/T } = 1.

In this case, as K ′ is better than or equal to K, it is accepted and replaces K. Otherwise, K ′

can still be accepted to replace K with probability min{1, e∆/T } < 1. If K ′ is infeasible, then

it is not accepted because ∆ → −∞ and min{1, e∆/T } → 0. Note that higher values of T

at the beginning of the method imply higher probabilities of acceptance. On the other hand,

smaller values of T in the last iterations of the SA imply smaller probabilities of accepting worse

solutions.

4.2.2. Parameters of the SA metaheuristic

The SA proposed in this study has the following parameters that need to be adjusted by

the user: maximum number of iterations, number of inner iterations per temperature, number

of multiple initial solutions, initial temperature, minimum temperature, and cooling rate. The

values selected for the parameters are described in Section 6.1.

5. Hybrid branch-and-Benders-cut algorithm (HBBC)

The hybrid approach combines the BBC algorithm developed in Section 3 and the meta-

heuristic algorithms proposed in Section 4. More speci�cally, we call a metaheuristic inside

the branch-and-cut tree to explore the neighborhood of the current incumbent solution. The

solutions found in the neighborhood of the current incumbent are used to add feasibility and

optimality cuts to the RMP. The cuts added from the metaheuristic solutions are as de�ned in

(29)-(31), and although they are not required to guarantee the optimality or feasibility of the

solutions in the RMP, they can accelerate the convergence of the BBC method. The cuts required

to guarantee the feasibility and optimality of the solutions in the RMP are still generated by

solving subproblem SP. Therefore, the HBBC is an exact method.

Figure 3 depicts a basic scheme of the HBBC algorithm at each node of the branch-and-cut

tree. At each node i, we solve the linear relaxation of the current RMP, denoted by LPi. If

LPi is infeasible or if the objective value of the LPi solution (OFi) is greater than or equal to

the objective value of the current incumbent solution, then node i is pruned. Otherwise, we

solve the minimum cut problem to identify violated SECs of type (32). If necessary, we add the

violated SECs, and LPi is solved again. Otherwise, the integrality constraints are checked, and

if any component of the binary variables is fractional in the solution of LPi, then the branching

is performed. Before performing the branching, we call a metaheuristic at the corresponding

node i with the fractional solution. In this case, the initial metaheuristic solutions (initial

population for GA or initial multistart for SA) are composed of (i) an integer solution obtained

from a rounding heuristic; (ii) the incumbent solution; and (iii) solutions randomly generated.

The rounding heuristic works as follows. Starting in the depot, let i be the last node added to

schedule K, and select the damaged node j with the highest value X̂ij that has not been included

in K so far. Then, include j at the end of K, and repeat the process iteratively until schedule

K is completed.

Every time the LPi solution is integer feasible, we call the subproblem SP to verify the

violation of feasibility or optimality cuts. Since we keep constraints (22) in the RMP, there is

16

no need to verify violated SECs for the integer solutions. If no feasibility or optimality cuts

are obtained, then the LPi solution is feasible for the original problem and the solution is set

as the new incumbent solution. Otherwise, LPi must be resolved, and the previous steps are

applied again. If a feasible integer solution of the CSRP is found, we call the metaheuristic

to improve this solution and generate additional cuts. In this case, the initial metaheuristic

solutions are composed of the last found integer solution, the incumbent solution, and solutions

randomly generated. If the metaheuristics �nd a better solution, the current incumbent solution

is updated.

Start at node i

Solve the LP at node i

Is the LP infeasible
or is OF ≥ OF*?

No

No

Does LP
solution satisfy the

integrality
constraints?

Branch

Prune the node i

Yes

Solve SP
Yes

Does LP
violate feasibility or

optimality cuts? No

Yes

Add feasibility or
optimality cuts

Note: OF is the objective value of the LP solution. OF* is the objective value of the current incumbent.

i

i

i

i

i
i

i

Solve minimum s-t cut
problems

Does LP
solution violate

SECs?

Yes

Add SECs to the LP

No

i

i

Executed the meta-heuristic
(incumbent as initial solution)

No

YesDoes the meta-
heuristic find a new

best solution?

Set the solution from meta-
heuristic as the new incumbent

Executed the meta-heuristic
(LP solution as initial solution)i

Set the solution from meta-
heuristic as the new incumbent

Does the meta-
heuristic find a new

best solution?

Yes

No

Set the LP solution as the new
incumbent
i

Start at node i

Solve the LP at node i

Is the LP infeasible
or is OF ≥ OF*?

No

Does LP
solution satisfy the

integrality
constraints?

Branch

Prune the node i

Yes

Solve SP
Yes

Does LP
violate feasibility or

optimality cuts? No

Yes

Add feasibility or
optimality cutsi

i

i

i

i

i

Solve minimum s-t cut
problems

Does LP
solution violate

SECs?

Yes

Add SECs to the LP

No

i

i

No

Executed the meta-heuristic
(LP solution as initial solution)i

Set the solution from meta-
heuristic as the new incumbent

Does the meta-
heuristic find a new

best solution?

Yes

No

Set the LP solution as the new
incumbent
i

Start at node i

Solve the LP at node i

Is the LP infeasible
or is OF ≥ OF*?

No

No

Does LP
solution satisfy the

integrality
constraints?

Branch

Prune the node i

Yes

Solve SP
Yes

Does LP
violate feasibility or

optimality cuts?

No

Yes

Add feasibility or
optimality cuts

Set the LP solution as the
new incumbent

Note: OF is the objective value of the LP solution. OF* is the objective value of the current incumbent.

i

i

i

i

i

i

i

Solve minimum s-t cut
problems

Does LP
solution violate

SECs?

Yes

Add SECs to the LP

No

i

i

Executed the meta-heuristic

Set the solution from meta-
heuristic as the new incumbent

Does the meta-
heuristic find a new

best solution?

No

Yes

Start at node i

Solve the LP at node i

Is the LP infeasible
or is OF ≥ OF*?

No

Does LP
solution satisfy the

integrality
constraints?

Branch

Prune the node i

Yes

Solve SP
Yes

Does LP
violate feasibility or

optimality cuts?

No

Yes

Add feasibility or
optimality cuts

Set the LP solution as the
new incumbent

Note: OF is the objective value of the LP solution. OF* is the objective value of the current incumbent.

i

i

i

i

i

i

i

Solve minimum s-t cut
problems

Does LP
solution violate

SECs?

Yes

Add SECs to the LP

No

i

i

Call the meta-heuristic and
add cuts

Set the solution from meta-
heuristic as the new incumbent

Does the meta-
heuristic find a new

best solution?

No

Yes

Call the meta-heuristic
and add cuts

Set the solution from meta-
heuristic as the new incumbent

Does the meta-
heuristic find a new

best solution?

Yes

Call the rounding heuristic

No

Have the meta-
heuristic been called

at node i?No

Yes

No

Figure 3: Flowchart illustrating how the metaheuristics are combined with the BBC method.

Note that the metaheuristics are called at most once per node to avoid stagnation in in�nite

cycles. Since calling a metaheuristic at every node is ine�cient because many unnecessary cuts

may be added and perhaps much time spent, we call the metaheuristics only at nodes with an

integer solution and at some prede�ned nodes with a fractional solution (for example, at the �rst

100 nodes of the tree). Similarly, it could be ine�cient to call the separation procedure to add

violated SECs at each node of the tree. Therefore, we call the separation procedure to detect

violated SECs at the same nodes with a fractional solution for which the metaheuristics are called.

The cuts generated by the metaheuristic in a node i with a fractional solution are immediately

added to the LPi subproblem, and the subproblem is solved again. The cuts generated by the

17

metaheuristic in a node i with an integer solution are added to a pool of constraints checked

later in the tree. Some general-purpose optimization software can use automated cuts and/or

heuristics that are not included in Figure 3.

6. Computational experiments

In this section, we present experimentation campaigns conducted with the scope of compar-

ing the performance of the proposed solution methods. All the methods were coded in C++

programming language and run on a Linux PC with an Intel Core i7 CPU at 3.4 GHz and

16 GB of RAM using a single thread. SECs and Benders cuts are added using the Callback

classes available in the Concert Technology Library. The RMP is solved by CPLEX Optimiza-

tion Solver 12.7. The SP problem is solved by a specialized algorithm (Moreno et al., 2019)

instead of using the CPLEX solver. To avoid running out of memory, we allow CPLEX to store

the branch-and-bound tree in a �le. As we use lazy constraints Callback, CPLEX automatically

turns o� nonlinear reductions and dual reductions. The stopping criterion on CPLEX was either

the elapsed time exceeding the time limit of 3,600 seconds or the optimality gap being smaller

than 10−4. All the remaining parameters of CPLEX were kept at their default values for most

of the computational experiments. We also conduct a few experiments varying the default value

of some CPLEX parameters, as reported in Section 6.3. For the metaheuristics GA and SA, the

stopping criterion was given by either the elapsed time exceeding the time limit of 3,600 seconds

or by performing 500 iterations without improving the best solution. As the metaheuristics SA

and GA presented very similar overall results (as shown in Table 3), we performed the computa-

tional experiments of the HBBC method using only SA, which obtained solutions with a smaller

average cost. The time limit of SA inside the nodes of the branch-and-cut tree was set as 600

seconds in the root node and 60 seconds in the other nodes.

The algorithms were tested using 390 benchmark instances from the literature (Maya-Duque

et al., 2016; Moreno et al., 2019). Originally, the instances were derived from undamaged original

networks by varying two parameters, namely, α and β. Parameter α de�nes the proportion of

damaged arcs in the network. For example, α = 0.1 indicates that 10% of the arcs of the original

network are damaged. For each damaged arc, one or more damaged nodes were considered.

Parameter β speci�es the factor by which the distance between the depot and the demand nodes

can increase in relation to the shortest distance. Let dist0i be the shortest distance between the

depot and the demand node i. Parameter β = 0.1 indicates, for example, that li = (1+0.1)·dist0i.
We consider instances generated from original networks with up to 100 nodes.

Table 1 shows the characteristics of the set of instances. The class and numbers of demand

nodes, total nodes and arcs in the original networks can be seen in columns 1, 2, 3 and 4 of Table

1, respectively. The total numbers of nodes and arcs in the damaged networks can be seen in

columns 5 and 6 of Table 1, respectively. These numbers depend on the parameter α. Original

network 1 with 25 nodes and 40 arcs, for example, is transformed into a damaged network with

27 nodes and 42 arcs when α = 5% and into a damaged network with 45 nodes and 60 arcs

when α = 50%. Thus, the damaged networks generated from original network 1 have from 27

to 45 nodes and from 40 to 60 arcs. The α and β parameters are shown in columns 7 and 8,

18

respectively. By combining the values of α and β, 20 instances were generated for classes 1-15,

and 10 instances were generated for classes 16-24, totaling 390 instances.

Table 1: Set of instances.
Original Original network Damaged networks
network Demand Total Total Total Total Total
(class) nodes nodes arcs nodes arcs Values for α (%) Values for β (%) instances

1 19 25 40 27 to 45 42 to 60 5, 10, 25, 30, 50 5, 10, 25, 50 20
2 19 25 37 26 to 43 38 to 55 5, 10, 25, 30, 50 5, 10, 25, 50 20
3 19 25 39 26 to 44 40 to 58 5, 10, 25, 30, 50 5, 10, 25, 50 20
4 24 30 83 34 to 71 87 to 124 5, 10, 25, 30, 50 5, 10, 25, 50 20
5 24 30 89 34 to 74 93 to 133 5, 10, 25, 30, 50 5, 10, 25, 50 20
6 24 30 84 34 to 72 88 to 126 5, 10, 25, 30, 50 5, 10, 25, 50 20
7 28 35 118 40 to 94 123 to 177 5, 10, 25, 30, 50 5, 10, 25, 50 20
8 28 35 115 40 to 92 120 to 172 5, 10, 25, 30, 50 5, 10, 25, 50 20
9 28 35 113 40 to 91 118 to 169 5, 10, 25, 30, 50 5, 10, 25, 50 20
10 15 20 39 21 to 39 40 to 58 5, 10, 25, 30, 50 5, 10, 25, 50 20
11 15 20 37 21 to 38 38 to 55 5, 10, 25, 30, 50 5, 10, 25, 50 20
12 15 20 37 21 to 38 38 to 55 5, 10, 25, 30, 50 5, 10, 25, 50 20
13 35 40 146 47 to 113 153 to 219 5, 10, 25, 30, 50 5, 10, 25, 50 20
14 35 40 143 47 to 111 150 to 214 5, 10, 25, 30, 50 5, 10, 25, 50 20
15 35 40 143 47 to 111 150 to 214 5, 10, 25, 30, 50 5, 10, 25, 50 20
16 50 60 191 69 to 155 200 to 286 5, 25, 50 | 10, 30 05, 10 | 25, 50 6 | 4
17 50 60 197 69 to 158 206 to 295 5, 25, 50 | 10, 30 25, 50 | 05, 10 6 | 4
18 50 60 196 69 to 158 205 to 294 5, 25, 50 | 10, 30 05, 10 | 25, 50 6 | 4
19 70 80 247 92 to 203 259 to 370 5, 25, 50 | 10, 30 25, 50 | 05, 10 6 | 4
20 70 80 245 92 to 202 257 to 367 5, 25, 50 | 10, 30 05, 10 | 25, 50 6 | 4
21 70 80 248 92 to 204 260 to 372 5, 25, 50 | 10, 30 25, 50 | 05, 10 6 | 4
22 90 100 274 113 to 237 287 to 411 5, 25, 50 | 10, 30 05, 10 | 25, 50 6 | 4
23 90 100 271 113 to 235 284 to 406 5, 25, 50 | 10, 30 25, 50 | 05, 10 6 | 4
24 90 100 273 113 to 236 286 to 409 5, 25, 50 | 10, 30 05, 10 | 25, 50 6 | 4

Total 390

6.1. Parameter tuning

As in most metaheuristics, the satisfactory performance of both the GA and the SA de-

pends on the con�guration choices for a set of key parameters. To appropriately calibrate such

parameters, we use the ParamILS algorithm (Hutter et al., 2009). It is an automated tuning

method that has shown very good performance in many applications (Montero et al., 2014).

ParamILS iteratively improves the performance of a set of parameter con�gurations by searching

in its neighborhood for another con�guration with better quality. For this purpose, an initial

con�guration and discrete ranges for the set of parameters must be provided by the user. We

also tested di�erent strategies for the generation of cuts in the HBBC approach. The parameter

tuning was carried out with 48 instances of di�erent sizes, two from each class of Table 1. The

instances were solved many times using di�erent random seeds.

Table 2 shows the parameters of the metaheuristics GA and SA, the discrete ranges de�ned

according to preliminary experiments for each parameter and their values in the best con�gura-

tion found by ParamILS. Note that, for both the metaheuristics, the size of the initial solution

set is relatively small (10 solutions). This behavior was expected since our evaluation of the

solutions (feasibility and optimality check algorithms) is very expensive to be performed over

a large set of solutions at each iteration. The other expected result was the high mutation

probability for the GA. The CSRP is a degenerate problem (we can �nd several solutions with

the same cost in the same neighborhood), which causes stagnation in local optimal solutions.

The frequent application of mutation operators was shown to be a good strategy to escape from

local optima. Recall that the mutation probability is de�ned only for feasible solutions, as the

infeasible solutions are always forced to mutate.

19

Table 2: Ranges and best con�gurations for the parameters of the GA, SA and HBBC methods.
Solution Final
method Parameter Tested values value

GA

Size of the population {5, 10, 15, 20, 25} 10
Selection probability {0.90, 0.92, 0.94, 0.96, 0.98} 0.98
Mutation probability {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} 0.5
Parameter k {2, 3, 4, 5} 3

SA

Size of the set of initial solutions {5, 10, 15, 20, 25} 10
Inner iterations per temperature {2, 3, 4, 5} 2
Initial temperature {100, 300, 500, 1000, 1500} 500
Minimum temperature {1E-6, 1E-4, 0.01, 0.1} 1E-6
Cooling rate {0.95, 0.96, 0.97, 0.98, 0.99} 0.99

HBBC

Frequency

(1) Only at root node (600 seconds)1and at
nodes with integer solutions (30 seconds)1.

(4)(2) (1) + every 100 nodes (30 seconds)1.
(3) (1) + at the �rst 100 nodes (30 seconds)1.
(4) (1) + decreasing frequency2.

Maximum number of solutions {50, 100, 500, 5 · Vr, 10 · Vr, 20 · Vr} 10 · Vr

Type of cuts

(1) Optimality + feasibility cuts.

(2)(2) Only optimality cuts.
(3) Only feasibility cuts.

1 Time limit set for the metaheuristics at the nodes.
2 From node 0 to node 100, we call the metaheuristics at every 10 nodes; from node 100 to node 1000, we call the
metaheuristics at every 100 nodes; and from node 1000 onward, we call the metaheuristics at every 1000 nodes.

For the HBBC, we varied the frequency of application of the metaheuristics in the branch-

and-cut tree and the quantity and type of cuts that are added to the master problem from the

metaheuristic solutions. Table 2 also shows the parameters tested for the HBBC method. For

instance, the parameter frequency for the HBBC method de�nes how often the metaheuristics are

called in the branch-and-cut tree. Four options were evaluated for this parameter: (1) apply the

metaheuristics only at the �rst three nodes and at nodes with an integer solution; (2) apply the

metaheuristics at the nodes of option (1) and additionally at every 100 nodes with a fractional

solution; (3) apply the metaheuristics at the nodes of option (1) and additionally at the �rst

100 nodes with a fractional solution; and (4) apply the metaheuristics at the nodes of option

(1) and at nodes with a fractional solution in a decreasing frequency. The decreasing frequency

consists of calling the metaheuristics at every 10 nodes for nodes 0 to 100; at every 100 nodes

for nodes 100 to 1000; and at every 1000 nodes for node 1000 onward. The last strategy showed

the best performance, as we observe that it is more likely to �nd new best solutions with the

metaheuristics at the �rst nodes of the tree when the incumbent solution is farther from the

optimal solution than in the last nodes of the tree. Additionally, it is more likely to generate

useful cuts in the �rst nodes because fewer cuts have been added to the RMP. Regarding the type

of cuts derived from the metaheuristic solutions, it is more useful to add only optimality cuts

in the HBBC, as they have a greater impact on the lower bound than feasibility cuts. Finally,

we limited the number of solutions of the metaheuristics from which we can add cuts to the

RMP since the generation of a large number of cuts can slow down the linear subproblems at

the nodes. The computational experiments presented in the next sections were conducted using

the best con�guration found by the ParamILS algorithm. The separation routines for the SECs

at nodes with fractional solutions are called at the same nodes as the metaheuristics.

6.2. Computational performance of the metaheuristic approaches

This section presents the results of the metaheuristics GA and SA. Before running the com-

putational experiments with all the instances described in Table 1, we solved each one of the 48

20

instances used in the parameter tuning 10 times with di�erent random seeds. The objective of

this experiment was to analyze the di�erences in the quality of the solutions provided by the

metaheuristics. The tests were performed setting a time limit of 3,600 seconds for each run.

The average, maximum and minimum objective values over the ten repetitions for each class are

shown in Table 3. We also evaluated the relative di�erence of the maximum value with respect

to the minimum value (Max−Min
Min). Note that, on average, the maximum value over the ten rep-

etitions was only 1.57% and 1.17% higher than the minimum value for metaheuristics GA and

SA, respectively. In fact, for some instances, the result over the ten repetitions was the same,

while for the other instances, the di�erence of the maximum value in relation to the minimum

value was never higher than 8.12% for the GA and 8.28% for SA. Furthermore, such di�erence

was higher than 4% in only 5 out of the 24 instance classes in the metaheuristic GA and in only

1 out of the 24 classes in the metaheuristic SA. Basically, in the instances with a smaller number

of damaged nodes, the space of solutions to be explored is smaller than in the other instances,

and the metaheuristics are able to �nd similar near-optimal solutions over the ten repetitions.

Table 3: Average results of the SA and GA metaheuristics for the instances used in the parameter tuning.
GA SA

Avg. Min. Max. Max−Min
Min

Avg. time Avg. Min. Max. Max−Min
Min

Avg. time
Class cost cost cost (%) (sec.) cost cost cost (%) (sec.)
1 22,675 22,675 22,675 0.00 7.71 22,675 22,675 22,675 0.00 2.04
2 76,367 76,367 76,367 0.00 5.12 76,367 76,367 76,367 0.00 1.44
3 60,645 60,645 60,645 0.00 6.72 60,645 60,645 60,645 0.00 1.99
4 50,479 50,479 50,479 0.00 23.91 50,479 50,479 50,479 0.00 6.94
5 36,944 36,944 36,944 0.00 29.18 36,944 36,944 36,944 0.00 9.12
6 60,841 60,841 60,841 0.00 16.57 60,841 60,841 60,841 0.00 6.35
7 50,416 50,416 50,416 0.00 36.38 50,416 50,416 50,416 0.00 13.82
8 69,196 69,196 69,196 0.00 60.77 69,196 69,196 69,196 0.00 19.62
9 64,564 64,564 64,564 0.00 53.16 64,564 64,564 64,564 0.00 20.57
10 68,605 68,605 68,605 0.00 5.65 68,605 68,605 68,605 0.00 1.52
11 76,268 76,268 76,268 0.00 5.44 76,268 76,268 76,268 0.00 1.48
12 64,619 64,619 64,619 0.00 3.37 64,619 64,619 64,619 0.00 0.95
13 46,179 46,179 46,179 0.00 68.70 46,179 46,179 46,179 0.00 19.37
14 129,183 129,108 129,407 0.23 95.22 129,108 129,108 129,108 0.00 36.43
15 74,357 74,357 74,357 0.00 99.06 74,376 74,357 74,431 0.10 37.77
16 89,097 88,956 89,338 0.43 256.58 89,051 88,956 89,298 0.38 110.53
17 44,169 43,971 44,333 0.82 172.76 44,040 43,878 44,452 1.31 74.38
18 134,518 134,024 135,526 1.12 629.64 134,042 132,332 136,241 2.95 209.90
19 64,070 62,389 66,253 6.19 942.34 61,808 61,057 62,626 2.57 382.37
20 85,896 81,169 87,756 8.12 682.38 76,732 75,390 78,039 3.51 261.72
21 77,520 74,540 79,548 6.72 1,352.30 69,449 68,696 70,790 3.05 529.08
22 246,686 245,172 247,895 1.11 2,129.45 238,805 235,724 244,200 3.60 854.04
23 100,642 97,625 105,440 8.01 2,154.62 95,131 92,772 100,453 8.28 677.67
24 188,774 184,512 193,558 4.90 2,511.13 182,371 180,337 184,546 2.33 1,055.83
Avg. 82,613 81,817 83,384 1.57 472.84 80,946 80,433 81,749 1.17 180.62

Note in Table 3 that the average solution cost is slightly smaller when the problem is solved

by SA, which provided solutions with an average objective value 2.02% better than the solutions

of the GA for an execution time of 3,600 seconds. Figure 4 shows the improvement of the average

objective function value of the 48 instances solved by the metaheuristics SA and GA along 3,600

seconds of execution in relation to the average objective function value of the initial solutions. As

expected, we observed that for both the metaheuristics, the reduction in the objective function

value is faster in the �rst iterations. For the GA (SA), the average cost of the initial solutions

is 272,302 (291,194), which decreases to 106,813 (109,055) in 600 seconds and to 82,613 (80,946)

in 3,600 seconds. Thus, for the instances solved by the GA (SA), the average objective function

21

value decreases by 60.77% (62.55%) in the �rst 600 seconds and by 69.66% (72.20%) in 3,600

seconds. The SA presented a slightly better performance in terms of the objective function values

since the problem typically has many local optimal solutions with the same objective value in

a neighborhood and SA has the ability to avoid becoming trapped in local optimal solutions.

Moreover, the average computational time of SA was 61.8% smaller than that of the GA. It is

worth mentioning that we also ran additional experiments with a longer time limit (3 hours),

but the overall improvement was less than 1% on average.

0 3 5 8 10 13 15 18 20 23 25 28 30 33 35 38 40 43 45 48 50 53 55 58 60 63 65 68 70 73

0
300
600
900

1,200
1,500
1,800
2,100
2,400
2,700
3,000
3,300
3,600

Improvement (%)

Ti
m

e
(s

ec
o

n
d

s)

GA SA

Figure 4: Average cost of the 48 instances solved by SA and the GA along 3,600 seconds of execution.

Table 4 shows the average results of the metaheuristic SA considering all instances of the

classes presented in the �rst column. Since we observed a robust behavior over the 10 runs of

our SA in the results reported in Table 3, we carried out the experiment reported in Table 4 with

a single run of this method. We compare the results of our SA with the results of the GRASP

metaheuristic of Maya-Duque et al. (2016), which was the only metaheuristic so far developed to

solve the same variant of the problem addressed in this work. We present the results of GRASP

for classes 1-15 only because we did not have access to the solutions of the other classes. We also

compare the results of our SA with the best variant of the exact BBC of Moreno et al. (2019),

referred to as GR-BBC0.

Columns 6 and 7 of Table 4 show the relative reduction in the objective value of the solutions

found with the SA with respect to the solutions found with GRASP and GR-BBC0, respectively.

On average, for classes 1-15, the cost of the solutions of the metaheuristic SA decreases by

1.46% and 0.18% in relation to the cost of the solutions of GRASP and GR-BBC0, respectively.

The improvements with respect to GRASP were up to 7.02% in classes 1-15. In relation to

GR-BBC0, the higher improvement in classes 1-15 was only 2.22% since the solutions obtained

with GR-BBC0 for these instances are close to the optimal solutions. For the other classes, the

improvements were up to 55%. The improvement for the larger instance classes comes from the

e�ectiveness of the local search operators that helps SA to escape from local optimal solutions.

The GR-BBC0 approach proposed by Moreno et al. (2019) stagnates in local optima for larger

instances of the problem.

6.3. Computational performance of the exact approaches

In this section, we analyze the performance of our BBC and HBBC methods. Table 5

summarizes the di�erent solution strategies that we tested. The �rst two strategies BBC1 and

22

Table 4: Average results of the metaheuristic SA for the di�erent instance classes (time limit of 3,600 seconds).
Objective function value GRASP−SA

GRASP
GR-BBC0−SA
GR-BBC0

Class GRASP1GR-BBC01 SA (%) (%)

1 9,745 9,745 9,745 0.00 0.00
2 34,089 34,089 34,089 0.00 0.00
3 49,987 49,862 49,862 0.25 0.00
4 18,247 18,037 18,122 0.68 −0.47
5 18,152 18,485 18,074 0.43 2.22
6 21,253 20,917 20,917 1.58 0.00
7 36,873 36,511 36,511 0.98 0.00
8 26,382 26,049 26,146 0.90 −0.37
9 35,224 33,953 33,903 3.75 0.15
10 48,546 48,460 48,460 0.18 0.00
11 39,213 38,538 38,765 1.14 −0.59
12 28,876 28,037 28,037 2.91 0.00
13 23,536 23,566 23,528 0.03 0.16
14 87,163 81,032 81,042 7.02 −0.01
15 52,085 52,201 51,385 1.34 1.56
16 � 38,737 38,851 � −0.30
17 � 30,448 30,537 � −0.29
18 � 97,476 95,516 � 2.01
19 � 65,093 46,048 � 29.26
20 � 71,173 42,037 � 40.94
21 � 75,602 59,025 � 21.93
22 � 211,487 146,526 � 30.72
23 � 98,827 58,012 � 41.30
24 � 209,435 93,868 � 55.18

Avg. 1-15 35,291 34,632 34,572 1.41 0.18
Avg. 16-24 � 99,809 67,824 � 24.53
Avg. All � 59,073 47,042 � 9.31

The character ��� indicates no available value.
1 GRASP proposed in Maya-Duque et al. (2016) and BBC proposed in Moreno
et al. (2019).

BBC2 compare the new Benders reformulation of the problem with and without using the valid

inequalities (VIs) de�ned in Section 3.1. The BBC3 strategy shows the impact of adding the

SECs dynamically together with the Benders cuts. All the HBBC strategies are based on BBC3.

In the HBBC1 strategy, the SA metaheuristic is used in the root node to �nd good-quality

initial solutions for the problem but without generating feasibility and/or optimality cuts. In the

HBBC2 method, on the other hand, the metaheuristic is additionally called in the nodes with

integer solutions and in some nodes with fractional solutions to improve the incumbent solution

and to generate Benders cuts.

The modi�cation of some default parameters of the solver can positively in�uence the perfor-

mance of the branch-and-cut method (Baz et al., 2009; Moreno et al., 2016, 2018). Therefore, the

BBC3 and HBBC2 approaches were also tested varying the default con�guration of the solver

CPLEX to solve the RMP, leading to BBC3* and HBBC2*. For both, we changed parameters

that could lead to improvements in the lower bound of the solutions. We modi�ed the emphasis

of the branch-and-cut algorithm to optimality rather than feasibility, setting the CPLEX param-

eter MIPEmphasis = 3. This con�guration increases the lower bound faster but possibly with a

poor detection of feasible solutions along the optimization. We also set the selection of nodes

to be processed according to the node with the smallest objective function for the associated

LP relaxation, setting the CPLEX parameter NodeSel = 1. This strategy looks at the nodes

with smaller bounds to improve them �rst. Finally, we modi�ed the order of separation of the

di�erent types of cuts at nodes with fractional solutions, using method isAfterCutLoop() of the

callback procedures. In the root node, we keep the default settings of CPLEX, while in the

23

remaining nodes, we call the metaheuristic and add our Benders cuts only after all automatized

cuts of CPLEX have been generated (i.e., if isAfterCutLoop() returns True). This way, we avoid

generating Benders cuts on fractional solutions that may be cut o� by subsequent automatized

cuts of CPLEX.

In the last strategy of Table 5, GR-HBBC2*, we apply a graph reduction (GR) strategy

used in the literature (Moreno et al., 2019) to speed up the convergence of the solution method.

Basically, the idea of the GR is to solve the problem over di�erent subgraphs with a reduced

number of demand and damaged nodes and derive lower bounds for the variables of the original

problem based on the solution of the reduced subgraphs. The subgraphs are usually generated

from an initial feasible solution of the problem, and the performance of the GR strategy highly

depends on this initial solution. Since we do not have a trivial initial solution for the BBC

strategies, we consider the GR only with the best HBBC approach. A description of the GR

strategy is provided in Appendix B.

Table 5: Characteristics of the solution methods.
Solution method Description

BBC1 New Benders reformulation of the problem.
BBC2 BBC1 + VIs.
BBC3 BBC2 + SECs.
BBC3* BBC3 varying the default con�gurations of some CPLEX parameters.
HBBC1 BBC3 + SA in the root node.
HBBC2 HBBC1 + SA in nodes with integer solution and in some nodes with fractional solutions.
HBBC2* HBBC2 varying the default con�gurations of some CPLEX parameters.

GR-HBBC2* HBBC2* + Graph reduction strategy.

Figure 5 presents the performance pro�les (Dolan and Moré, 2002) for the proposed ap-

proaches. The performance is based on the optimality gap, computed as gap = ZU−ZL

ZU , in which

ZU is the upper bound or cost of the best integer solution and ZL is the lower bound. The

value P (f, q) (y-axis) when q > 0 (x-axis) indicates the fraction of instances for which a strategy

f provides solutions with a gap within a factor of 2q of the best obtained gap. The value of

P (f, q) when q = 0 represents the fraction of instances for which the strategy f reached the best

gap. For a given instance, the best gap is the lowest gap found considering all the approaches.

Clearly, the hybrid strategies outperform the standalone BBC strategies. Also, we can observe

that the GR strategy signi�cantly improves the performance of the HBBC approaches.

Table 6 shows the number of optimal solutions (#opt), the proportion of optimal solutions

(%opt), the average bounds and gap, and the average elapsed time of the di�erent solution

strategies. For the sake of comparison, the table also shows the results of the methods BBC0 and

GR-BBC0 of Moreno et al. (2019), which are so far the best exact approaches in the literature.

BBC0 uses a simple heuristic to provide an initial solution for the BBC algorithm, while GR-

BBC0 additionally relies on graph reduction. The average results of the exact solution methods

for di�erent instance classes grouped according to the size of the network are presented in the

Appendix C.

Note that the use of the valid inequalities improves the performance of the solution method,

mainly in relation to the average lower bound and average gap. The average lower bound

increases by 17.60%, from 17,427 in BBC1 to 20,494 in BBC2. The average gap is reduced from

24

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

BBC1 BBC2 BBC3 BBC3* HBBC1 HBBC2 HBBC2* GR-HBBC2*

𝑞

Figure 5: Performance pro�les based on gap for the proposed solution methods.

Table 6: Comparison of the exact BBC and HBBC approaches.
Solution Avg. upper Avg. lower Avg. Avg. time Avg. best
method #ins #opt %opt bound bound gap (%) (sec.) time1(sec.)
BBC1 390 169 43.33 113,048 17,427 28.73 2,238.42 2,058.13
BBC2 390 171 43.85 110,763 20,494 25.03 2,201.55 1,889.79
BBC3 390 171 43.85 110,291 20,499 24.99 2,203.59 1,891.82
BBC3* 390 171 43.85 117,355 21,157 24.67 2,215.35 1,910.44
HBBC1 390 201 51.54 42,377 23,625 21.01 1,762.74 59.23
HBBC2 390 215 55.13 42,187 24,089 19.75 1,646.56 92.48
HBBC2* 390 215 55.13 42,158 24,855 18.15 1,651.39 83.35
BBC02 390 186 47.69 53,342 16,042 31.87 1,906.38 450.57

GR-HBBC2* 390 239 61.28 42,118 29,836 10.90 1,473.87 101.07
GR-BBC02 390 209 53.59 49,673 27,521 14.90 1,672.49 350.25
1 Time spent to �nd the best upper bound.
2 BBC proposed in Moreno et al. (2019) with (GR-BBC0) and without (BBC0) the GR strategy.

28.73% to 25.03%, a reduction of 12.87%. The average cost of the solutions and the average

computational time are not signi�cantly a�ected by the addition of the valid inequalities, while

BBC2 proves optimality for two additional instances with respect to BBC1. BBC2 and BBC3

present a similar performance, with a slight improvement with the use of the SECs in the BBC3

algorithm. Di�erently from the traditional TSP and VRP problems, in which the SECs have

yielded good results, the changes caused by the SECs in the solutions of the LP problems to

eliminate the subtours do not appear to directly a�ect the objective function of such LP problems.

The use of the metaheuristic SA in the root node (HBBC1) to warm-start the BBC algorithm

signi�cantly improves the result of the BBC3 strategy, mainly with respect to the upper bound

and the time spent to �nd the best solution. The average cost of the solutions is reduced from

110,291 to 42,376, a 61.58% reduction. The average time spent to �nd the best solution is

32 times smaller in HBBC1, being reduced from 1,891 to 59 seconds, a 96.87% reduction. The

average lower bound and the average gap are also improved by the HBBC1 strategy. The average

lower bound increases by 15.25%, from 20,499 to 23,625, while the average gap is reduced by

25

15.95%, from 24.99 to 21.01. Furthermore, HBBC1 proves optimality for 30 additional instances

in relation to BBC3. In the HBBC2 algorithm, the use of the SA metaheuristic to derive cuts and

tighten the linear relaxation improves the convergence of the method. The average gap decreases

from 21.01% to 19.75%. Although the reduction in the gap appears insigni�cant, we can observe

that HBBC2 proves the optimality for 14 additional instances in relation to the HBBC1 method.

In fact, for some instance classes, the reduction in the average gap was up to 26%. Note also

that HBBC2 increases the average lower bound of the solutions, while it reduces the average cost

with respect to the solutions obtained with the HBBC1 approach.

Regarding the impact of varying the default con�guration of CPLEX in strategies BBC3 and

HBBC2, Table 6 shows that BBC3* obtained better lower bounds and gaps but worse upper

bounds on average since the new con�guration emphasizes the improvement of the lower bound

rather than having a good-quality solution. For HBBC2*, the negative e�ect of prioritizing the

lower bound is neutralized by the use of the metaheuristic to improve the upper bound. The

average gap was reduced from 19.75 to 18.15, a reduction of 8%, with respect to HBBC2. The

reduction was up to 21% for some instances. When compared with BBC0, HBBC2* reduces

the average upper bound and gap by 20.97% and 43.05%, respectively, and increases the lower

bound by 54.94%.

Finally, the graph reduction strategy signi�cantly improved the results of the HBBC2* ap-

proach. The GR-HBBC2* obtained the optimal solutions for 61.28% of the instances and reduced

the average gap to 10.9%, a reduction of 39.94% with respect to the HBBC2* strategy. Table 7

shows the average results of GR-HBBC2* compared with the results of the GR-BBC0 strategy.

Table 7 also presents the ratio of the GR-HBBC2* solutions in relation to the GR-BBC0 solutions

evaluated as Value in GR-BBC0−Value in GR-HBBC2*
Value in GR-BBC0 . A ratio higher than zero indicates a reduction

in the value of the GR-HBBC2* method, whereas a ratio smaller than zero indicates an increase

in the value.

Evidently, GR-HBBC2* outperforms GR-BBC0. For example, the average reduction in the

upper bound considering all the instances is 15.21%. For some instances, the reduction is up

to 42.97%. Similarly, the improvement of the lower bound in some instance classes is up to

36.15%. The average gap was reduced by 26.17% with GR-HBBC2*, whereas the time spent

to �nd the best solution was reduced by 71.14% on average, considering all the instances. To

con�rm whether the performances of GR-HBBC2* and GR-BBC0 are statistically di�erent in

terms of the upper bound, lower bound, gap and time, we carried out Friedman statistical tests

(Conover, 1999) for the instance classes presented in Table 7. The null hypothesis is that there

is no signi�cant performance di�erence between GR-BBC0 and GR-HBBC2*. Table 8 gives

the corresponding p values for the Friedman tests. Regarding the lower bound, gap and best

time, we observe that the null hypothesis is rejected for every instance class at con�dence levels

ranging between 0.000 and 0.045. Therefore, the performances of GR-BBC0 and GR-HBBC2*

are signi�cantly di�erent with respect to the lower bound, gap and best time in each one of the

considered instance classes. For the upper bound and total computational time, although the

di�erences are not statistically signi�cant for some instance classes, the strategy GR-HBBC2*

obtained always the same or better average results than GR-BBC0*.

26

Table 7: Comparison of the GR-HBBC2* algorithm with the BBC approach from the literature.
Solution Instance Avg. upper Avg. lower Avg. Avg. time Avg. best
method classes #ins #opt %opt bound bound gap (%) (sec.) time1(sec.)

1, 2, 3 60 48 80.00 31,232 28,237 3.29 867.81 142.58
4, 5, 6 60 33 55.00 19,146 14,865 9.84 1,499.68 260.53
7, 8, 9 60 28 46.67 32,171 23,223 14.16 1,904.82 33.98

10, 11, 12 60 48 80.00 38,345 35,623 2.60 749.47 164.62
GR-BBC02 13, 14, 15 60 24 40.00 52,266 33,991 16.71 2,132.32 126.54

16, 17, 18 30 12 40.00 55,554 34,985 18.68 2,142.24 529.64
19, 20, 21 30 10 33.33 70,623 18,801 37.39 2,410.55 1,024.54
22, 23, 24 30 6 20.00 173,250 32,110 42.70 2,881.42 1,542.53

All instances 390 209 53.59 49,673 27,521 14.77 1,672.49 350.25
1, 2, 3 60 54 90.00 31,232 30,076 1.02 713.16 0.14
4, 5, 6 60 42 70.00 19,006 15,667 5.27 1,086.71 2.20
7, 8, 9 60 32 53.33 32,145 25,431 9.49 1,744.60 5.51

10, 11, 12 60 49 81.67 38,345 36,122 2.10 737.94 2.88
GR-HBBC2* 13, 14, 15 60 31 51.67 51,963 36,521 12.72 1,746.30 74.48

16, 17, 18 30 13 43.33 54,588 36,713 14.88 2,047.63 301.98
19, 20, 21 30 12 40.00 48,757 19,810 31.94 2,173.21 290.58
22, 23, 24 30 6 20.00 98,812 43,716 33.71 2,881.99 550.99

All instances 390 239 61.28 42,118 29,836 10.90 1,473.87 101.07
1, 2, 3 12.50 12.50 0.00 6.51 −69.11 −17.82 −99.90
4, 5, 6 27.27 27.27 −0.73 5.40 −46.38 −27.54 −99.15
7, 8, 9 14.29 14.29 −0.08 9.51 −33.02 −8.41 −83.77

10, 11, 12 2.08 2.08 0.00 1.40 −19.19 −1.54 −98.25
Ratio 13, 14, 15 29.17 29.17 −0.58 7.44 −23.87 −18.10 −41.14
(%) 16, 17, 18 8.33 8.33 −1.74 4.94 −20.34 −4.42 −42.98

19, 20, 21 20.00 20.00 −30.96 5.37 −14.59 −9.85 −71.64
22, 23, 24 0.00 0.00 −42.97 36.15 −21.05 0.02 −64.28

All instances 14.35 14.35 −15.21 8.41 −26.17 −11.88 −71.14
1 Time spent to �nd the best upper bound.
2 BBC proposed in Moreno et al. (2019) that also uses GR.

Table 8: The statistic values (p values) of the Friedman test for GR-BBC0 vs GR-HBBC2*.
Instance Upper Lower Time Best
Class bound bound Gap (%) (sec.) time1(sec.)
1, 2, 3 0.366 0.007 0.039 0.606 0.000
4, 5, 6 0.245 0.020 0.005 0.039 0.000
7, 8, 9 0.606 0.001 0.000 0.053 0.001

10, 11, 12 0.121 0.039 0.039 0.606 0.000
13, 14, 15 0.197 0.007 0.007 0.897 0.007
16, 17, 18 0.465 0.045 0.028 0.361 0.005
19, 20, 21 0.028 0.018 0.003 0.197 0.001
22, 23, 24 0.003 0.000 0.000 0.051 0.001
1 Time spent to �nd the best upper bound.
p values > 0.05 are highlighted in bold.

7. Conclusions and future research

This paper has proposed two novel metaheuristics, which were further hybridized with a

branch-and-Benders-cut (BBC) algorithm originating an exact hybrid BBC (HBBC), to solve

the road restoration crew scheduling and routing problem (CSRP). The metaheuristics are the

�rst genetic algorithm and simulated annealing proposed for the CSRP. They are based on the

decomposition of the problem into smaller subproblems and the use of specialized algorithms to

evaluate the candidate solutions. The BBC is based on an improved Benders reformulation of

the problem and enhances previous approaches by using a di�erent variable partitioning scheme.

Valid inequalities for the problem have been proposed as well. The HBBC is an exact hybrid

method that uses a metaheuristic to obtain good-quality solutions at early stages of the search

tree as well as to improve the performance of solving the master problem by exploring the

neighborhood of the incumbent solutions to generate more e�ective Benders cuts.

The results of extensive computational experiments with 390 benchmark instances showed

27

that both metaheuristics outperformed the only metaheuristic available in the literature for the

CSRP. For the BBC approach, the new variable partitioning scheme and the proposed valid

inequalities were shown to be e�ective to increase the lower bound of the master problem. The

computational results also provide evidence that the combination of the metaheuristic with the

BBC, resulting in the hybrid algorithm HBBC, signi�cantly reduces the cost of the solutions and

the time spent to �nd good-quality solutions. The lower bound and gap of the solutions were

also improved with the use of the metaheuristic within the BBC, especially when additional cuts

from the neighborhood of the master problem solutions are generated.

We have observed that, while the BBC presented a solution with a higher cost when varying

the parameters of the solver, the HBBC is able to take advantage of the new parameter con�g-

uration to improve the lower bound, the gap and the cost of the solutions. Basically, the HBBC

counteracts the elevation of the cost in the BBC by exploring the neighborhood of the master

problem solutions. By incorporating the graph reduction technique in the HBBC, we observed

a signi�cant reduction in the average gap, mainly because the graph reduction helps to increase

the lower bound of the solutions. With the GR-HBBC, we e�ectively reduce the cost, gap and

computational time of most of the instances with respect to the best exact approach proposed

in the literature. In addition to their theoretical relevance, the improvements obtained with the

proposed approaches may also have great value to aid decision making in practice. The reduction

in the cost of the solutions directly impacts the time at which the demand nodes are accessible

from the supply node, thus reducing the time that victims in the a�ected areas wait for supplies,

evacuation, rescue and medical assistance.

Several avenues for future work can be identi�ed. The use of other reformulation techniques

to solve the problem, such as the Dantzig-Wolfe decomposition, followed by a branch-price-

and-cut method, could be explored for the large-scale instances. Extending the problem and

solution approaches to consider distinct characteristics such as multiple crews, relief distribution

and an alternative objective function to take into account network vulnerability, for example,

is also a promising research direction. Since the information about the actual situation of the

damaged nodes after the extreme events is limited, and the consequences of the extreme events

over the transportation networks cannot be accurately predicted, another encouraging area of

investigation relies on considering the inherent uncertainties present in the CSRP.

Acknowledgments

This work was supported by the São Paulo Research Foundation (FAPESP) [grant num-

bers 2015/26453-7, 2016/15966-6 and 2016/23366-9] and the National Council for Scienti�c and

Technological Development (CNPq) [grant numbers 141973/2016-1 and 304601/2017-9]. The

third author expresses thanks for the support of both the British Academy via BA/Leverhulme

Small Research Grant SRG18R1\180939 and the UEBS First Grant Venture Fund. We wish to

acknowledge the comments and suggestions of the four anonymous referees which led to substan-

tial improvement of the paper.

28

Appendix A. Algorithms to check feasibility and cost of the schedule solutions

Let K = (v0, v1, ..., v(h−1), vh, ..., vp, ..., v|Vr|) be a schedule for the crew, where vi is the ith

damaged node to be repaired and v0 = 0. The Algorithm 4 �nds the optimal paths between

damaged nodes when a scheduleK is �xed. The algorithm is executed over the graph G = (V, E).

Initially, the cost Ce of each arc e ∈ E is set to ∞ if the arc e is adjacent to a damaged node

or equal to τe otherwise (line 1 of Algorithm 4). Iteratively, the cost Ce of each arc adjacent to

damaged nodes is reset as τe + δvj (line 3), and Dijkstra's algorithm is used to �nd the shortest

path between nodes vj−1 and vj (line 4). If a path between nodes vj−1 and vj exists, the cost C
of the path must be less than ∞ and the value of variable Zrvj is updated (line 6). Otherwise,

the solution is infeasible, and a cost ∞ is de�ned for schedule K.

Algorithm 4 feasibility check algorithm (adapted from Moreno et al. (2019)).

Input:

Graph G = (V, E); Schedule K = (v0, v1, ..., vj , ..., v|Vr|); Parameters δj , ∀j ∈ Vr, and τe, ∀e ∈ E ;
Output:

If K is feasible in the CSRP, return �Feasible Schedule� and save optimal values of Zr
j , ∀j ∈ Vr;

If schedule K is infeasible in the original CSRP, return �Infeasible Schedule�;

1: Ce := τe, ∀e ∈ E ; Ce :=∞, ∀e ∈ Ej , j ∈ Vr; Zr
j := 0, ∀j ∈ Vr;

2: for j = 1 to |Vr| do
3: Ce := τe + δvj , ∀e ∈ Evj ;
4: Find the cost C of the shortest path from node vj−1 ∈ K to node vj ∈ K by Dijkstra's algorithm;
5: if C < ∞ then

6: Zr
vj := Zr

vj−1
+ C;

7: Ce := τe, ∀e ∈ Evj : e /∈
⋃|Vr|

i=j+1
Evi and Ce :=∞, ∀e ∈ Evj : e ∈

⋃|Vr|

i=j+1
Evi ;

8: else

9: return �Infeasible Schedule�;
10: end if

11: end for

12: return �Feasible Schedule�;

If Algorithm 4 �nishes with feasible paths between the damaged nodes, Algorithm 5 is used

to �nd the cost of the solution in the original CSRP. Algorithm 5 �nds the optimal paths between

the depot and the demand nodes. Initially, the cost Ce of the arcs in the network is set as `e

for all the arcs (line 1 of Algorithm 5). Then, the cost of each arc adjacent to the damaged

nodes is set as ∞ (line 3), starting with the last damaged node (v|Vr|) in the schedule of the

crew. Dijkstra's algorithm is used to �nd the shortest path between node v0 and all the demand

nodes i ∈ Vd (line 4). For a given node vj , if the cost Ci to reach a demand node i is larger

than the maximum distance li (line 6), we conclude that node vj is necessary to �nd a path

with a cost smaller than the maximum distance li, so the time instant Zdi in which the demand

node i becomes accessible must be set as Zrvj (line 7). Note that we update Zdi only if it was

not updated in previous iterations; thus, Zdi is equal to the largest repair time of the damaged

nodes visited in the path from the depot to node i. Finally, we calculate the cost of schedule

K (line 11), and such cost is de�ned as the solution value in the last position of the vector that

represents this solution in the metaheuristic algorithms (see Figure 2 for an illustration).

29

Algorithm 5 optimality check algorithm (adapted from Moreno et al. (2019)).

Input:

Graph G = (V, E); Schedule K = (v0, v1, ..., vj , ..., v|Vr|); Time Zr
i at which damaged node i ∈ Vr is

repaired; Parameters `e, ∀e ∈ E , li, ∀i ∈ Vd and di,∀i ∈ Vd;
Output:

Time Zd
i at which the demand node i ∈ Vd becomes accessible; Total cost Θ̂;

1: Ce := `e, ∀e ∈ E ; Zd
i := 0, ∀i ∈ Vd;

2: for j = |Vr| to 1 do

3: Ce :=∞, ∀e ∈ Evj ;
4: Find the cost Ci of the shortest paths from the depot to demand nodes i ∈ Vd by Dijkstra's

algorithm;
5: for i = 1 to |Vd| do
6: if Ci > li and Z

d
i = 0 then

7: Zd
i := Zr

vj ;
8: end if

9: end for

10: end for

11: Compute total cost Θ̂ :=
∑

i∈Vd di · Zd
i ;

Appendix B. Graph reduction strategy

Let L ⊆ Vr be a subset of the damaged nodes and F ⊆ Vd be a subset of the demand nodes

in the original graph G. GLF is de�ned as the subgraph obtained from G by deleting all the

damaged nodes that are not in L and transforming all the demand nodes that do not belong to

F into transshipment nodes. The subgraph GLF is further reduced by removing transshipment

nodes that are not directly connected to damaged nodes. For each node i removed from GLF , the

arcs adjacent to this node are deleted, and new arcs are created connecting each pair of nodes j

and k that were neighbors of i in GLF , such that j 6= k. The cost cjk of the new arc j − k is set

as cjk = cji + cik. The resulting graph is denoted by ḠLF . From a feasible solution of the CSRP

de�ned using ḠLF , valid inequalities can be derived for the original problem, as pointed out in

Proposition 3.

Proposition 3. Given L ⊆ Vr and F ⊆ Vd, let KḠLF
be the schedule corresponding to an

optimal solution of the CSRP, de�ned using the reduced graph ḠLF of the original graph G. Let

Θ̂ḠLF
be the optimal value and θ̂Ḡ

LF

i be the value of the variable Zdi related to KḠLF
, for all

i ∈ F . Then, the following inequalities are valid for the RMP of the original CSRP de�ned using

graph G: ∑
i∈F : di·θ̂Ḡ

LF

i >0

di · θi ≥ Θ̂ḠLF
, (B.1)

∑
j∈L

Vji ≥ 1, ∀i ∈ F : θ̂Ḡ
LF

i > 0. (B.2)

Proof. The proof of equation (B.1) is given in Moreno et al. (2019). If θ̂Ḡ
LF

i > 0, the relief

paths to demand node i use at least one of the damaged nodes in set L, and thus the equation

(B.2) is valid. �

30

Appendix C. Additional computational results

Tables C.9 and C.10 present the average results of the BBC and HBBC solution methods for

di�erent classes of instances grouped according to the size of the network.

Table C.9: Comparison of the exact BBC solution approaches.
Solution Instance Avg. upper Avg. lower Avg. Avg. time Avg. best
method classes #ins #opt %opt bound bound gap (%) (sec.) time1(sec.)
BBC1 1, 2, 3 60 43 71.67 30,502 24,411 8.14 1,139.93 1,044.04

4, 5, 6 60 30 50.00 6,336 10,325 9.40 1,839.95 1,680.40
7, 8, 9 60 24 40.00 19,330 15,950 16.98 2,193.77 2,023.08

10, 11, 12 60 41 68.33 38,539 31,004 7.31 1,236.69 1,174.83
13, 14, 15 60 20 33.33 8,196 19,246 3.06 2,526.45 2,328.36
16, 17, 18 30 8 26.67 297,915 1,768 73.33 2,782.49 2,503.31
19, 20, 21 30 2 6.67 171,547 12,581 63.13 2,959.21 2,765.48
22, 23, 24 30 1 3.33 538,291 26,534 72.45 3,407.97 3,137.27

All 390 169 43.33 113,048 17,427 28.73 2,238.42 2,058.13
BBC2 1, 2, 3 60 43 71.67 32,151 25,295 6.72 1,073.87 1,056.54

4, 5, 6 60 30 50.00 8,627 6,520 7.74 1,813.94 1,573.02
7, 8, 9 60 24 40.00 15,232 7,226 13.91 2,167.96 1,895.85

10, 11, 12 60 43 71.67 38,694 31,977 6.29 1,057.97 1,007.75
13, 14, 15 60 20 33.33 8,196 7,881 2.29 2,472.36 2,194.44
16, 17, 18 30 8 26.67 297,915 32,875 51.86 2,754.94 2,258.25
19, 20, 21 30 2 6.67 171,547 15,830 55.38 2,929.91 2,615.22
22, 23, 24 30 1 3.33 538,291 36,207 66.48 3,374.23 2,987.47

All 390 171 43.85 110,763 20,494 25.03 2201.55 1,889.79
BBC3 1, 2, 3 60 43 71.67 32,151 25,328 6.71 1,080.51 1,003.94

4, 5, 6 60 30 50.00 8,704 6,528 7.76 1,815.49 1,595.92
7, 8, 9 60 24 40.00 15,306 7,222 13.93 2,224.59 2,127.39

10, 11, 12 60 43 71.67 38,694 31,978 6.29 1,059.75 1,020.17
13, 14, 15 60 20 33.33 8,205 7,881 2.29 2,474.54 2,030.34
16, 17, 18 30 8 26.67 295,963 32,881 51.78 2,758.30 2,250.02
19, 20, 21 30 2 6.67 166,133 15,834 55.30 2,926.88 2,606.95
22, 23, 24 30 1 3.33 526,655 36,212 65.85 3,324.88 3,051.20

All 390 171 43.85 110,291 20,499 24.99 2,203.59 1,891.82
BBC3* 1, 2, 3 60 43 71.67 32,151 26,098 5.51 1,153.71 1,135.08

4, 5, 6 60 30 50.00 8,897 7,044 6.50 1,814.71 1,598.69
7, 8, 9 60 24 40.00 15,159 7,646 12.68 2,098.03 1,734.70

10, 11, 12 60 43 71.67 38,694 32,564 5.56 1,101.18 1,052.99
13, 14, 15 60 20 33.33 8,541 8,131 2.20 2,470.04 2,192.38
16, 17, 18 30 8 26.67 357,327 33,251 53.27 2,751.29 2,205.26
19, 20, 21 30 2 6.67 198,129 16,378 54.31 2,928.72 2,624.16
22, 23, 24 30 1 3.33 580,125 36,540 66.57 3,424.34 3,033.84

All 390 171 43.85 117,355 21,157 24.67 2,215.35 1,910.44
1 Time spent to �nd the best upper bound.

31

Table C.10: Comparison of the exact HBBC solution approaches.
Solution Instance Avg. upper Avg. lower Avg. Avg. time Avg. best
method classes #ins #opt %opt bound bound gap (%) (sec.) time1(sec.)
HBBC1 1, 2, 3 60 48 80.00 31,232 25,355 6.06 753.86 0.28

4, 5, 6 60 34 56.67 19,267 11,038 17.12 1,562.06 1.62
7, 8, 9 60 29 48.33 32,326 16,930 23.99 1,872.77 9.09

10, 11, 12 60 47 78.33 38,345 31,782 6.33 815.79 0.63
13, 14, 15 60 21 35.00 52,084 26,009 27.05 2,343.41 24.79
16, 17, 18 30 10 33.33 55,102 32,789 23.20 2,402.79 88.30
19, 20, 21 30 8 26.67 49,574 15,830 43.12 2,644.80 268.34
22, 23, 24 30 4 13.33 99,715 36,271 45.67 3,172.22 340.58

All 390 201 51.54 42,377 23,625 21.01 1,762.74 59.23
HBBC2 1, 2, 3 60 51 85.00 31,232 26,645 4.48 634.24 0.19

4, 5, 6 60 38 63.33 19,038 11,527 15.04 1,331.01 2.42
7, 8, 9 60 30 50.00 32,154 17,132 23.06 1,824.65 7.15

10, 11, 12 60 47 78.33 38,345 32,075 5.96 817.21 0.88
13, 14, 15 60 26 43.33 51,997 26,584 24.81 2,063.03 30.03
16, 17, 18 30 12 40.00 54,637 32,985 22.25 2,174.72 103.51
19, 20, 21 30 8 26.67 49,078 15,942 42.17 2,648.38 356.15
22, 23, 24 30 3 10.00 99,181 36,309 45.60 3,241.94 661.24

All 390 215 55.13 42,187 24,089 19.75 1,646.56 92.48
HBBC2* 1, 2, 3 60 51 85.00 31,232 27,396 3.54 630.57 0.32

4, 5, 6 60 38 63.33 19,006 12,340 12.54 1,333.82 2.57
7, 8, 9 60 30 50.00 32,145 18,209 20.86 1,864.03 13.77

10, 11, 12 60 47 78.33 38,345 32,755 5.23 806.55 1.48
13, 14, 15 60 26 43.33 51,963 27,505 23.57 2,068.16 32.22
16, 17, 18 30 12 40.00 54,637 33,369 20.86 2,172.90 155.64
19, 20, 21 30 8 26.67 48,934 16,482 40.07 2,648.29 327.90
22, 23, 24 30 3 10.00 99,096 36,854 43.56 3,240.62 499.23

All 390 215 55.13 42,158 24,855 18.15 1,651.39 83.35
GR-HBBC2* 1, 2, 3 60 54 90.00 31,232 30,076 1.02 713.16 0.14

4, 5, 6 60 42 70.00 19,006 15,667 5.27 1,086.71 2.20
7, 8, 9 60 32 53.33 32,145 25,431 9.49 1,744.60 5.51

10, 11, 12 60 49 81.67 38,345 36,122 2.10 737.94 2.88
13, 14, 15 60 31 51.67 51,963 36,521 12.72 1,746.30 74.48
16, 17, 18 30 13 43.33 54,588 36,713 14.88 2,047.63 301.98
19, 20, 21 30 12 40.00 48,757 19,810 31.94 2,173.21 290.58
22, 23, 24 30 6 20.00 98,812 43,716 33.71 2,881.99 550.99

All 390 239 61.28 42,118 29,836 10.90 1,473.87 101.07
1 Time spent to �nd the best upper bound.

32

References

Adulyasak, Y., Cordeau, J.-F., Jans, R., 2015. Benders Decomposition for Production Routing

Under Demand Uncertainty. Operations Research 63 (4), 851�867.

URL http://pubsonline.informs.org/doi/10.1287/opre.2015.1401

Akbari, V., Salman, F. S., 2017a. Multi-vehicle prize collecting arc routing for connectivity

problem. Computers & Operations Research 82, 52�68.

URL http://linkinghub.elsevier.com/retrieve/pii/S0305054817300072

Akbari, V., Salman, F. S., 2017b. Multi-vehicle synchronized arc routing problem to restore post-

disaster network connectivity. European Joural of Operational Research 257 (2), 625�640.

Alvarez, A., Munari, P., Morabito, R., 2018. Iterated local search and simulated annealing algo-

rithms for the inventory routing problem. International Transactions in Operational Research

25 (6), 1785�1809.

URL http://doi.wiley.com/10.1111/itor.12547

Applegate, D., Bixby, R., Chvátal, V., Cook, W., 2018. Concorde TSP solver. Accessed on

01/02/2018.

URL www.tsp.gatech.edu/concorde.html

Arslan, O., Kara³an, O. E., 2016. A Benders decomposition approach for the charging sta-

tion location problem with plug-in hybrid electric vehicles. Transportation Research Part B:

Methodological 93, 1339�1351.

Bai, R., Blazewicz, J., Burke, E. K., Kendall, G., McCollum, B., 2012. A simulated annealing

hyper-heuristic methodology for �exible decision support. 4OR 10 (1), 43�66.

URL http://link.springer.com/10.1007/s10288-011-0182-8

Balin, S., 2011. Parallel machine scheduling with fuzzy processing times using a robust genetic

algorithm and simulation. Information Sciences 181 (17), 3551�3569.

URL http://linkinghub.elsevier.com/retrieve/pii/S0020025511001782

Baz, M., Hunsaker, B., Prokopyev, O., mar 2009. How much do we �pay� for using default

parameters? Computational Optimization and Applications 48 (1), 91�108.

URL http://link.springer.com/10.1007/s10589-009-9238-5

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S., 2003. Hyper-Heuristics:

An Emerging Direction in Modern Search Technology. Springer US, Boston, MA, pp. 457�474.

URL https://doi.org/10.1007/0-306-48056-5_16

Conover, W., 1999. Practical nonparametric statistics, john wiley & sons. INC, New York.

Dantzig, G., Fulkerson, R., Johnson, S., 1954. Solution of a Large-Scale Traveling-Salesman

Problem. Journal of the Operational Research Society of America 2 (4), 393�410.

33

http://pubsonline.informs.org/doi/10.1287/opre.2015.1401
http://linkinghub.elsevier.com/retrieve/pii/S0305054817300072
http://doi.wiley.com/10.1111/itor.12547
www.tsp.gatech.edu/concorde.html
http://link.springer.com/10.1007/s10288-011-0182-8
http://linkinghub.elsevier.com/retrieve/pii/S0020025511001782
http://link.springer.com/10.1007/s10589-009-9238-5
https://doi.org/10.1007/0-306-48056-5_16

Dolan, E. D., Moré, J. J., 2002. Benchmarking optimization software with performance pro�les.

Mathematical Programming 91 (2), 201�213.

URL http://dx.doi.org/10.1007/s101070100263

Dowsland, K. A., Soubeiga, E., Burke, E., 2007. A simulated annealing based hyperheuristic

for determining shipper sizes for storage and transportation. European Journal of Operational

Research 179 (3), 759�774.

URL https://linkinghub.elsevier.com/retrieve/pii/S0377221705007356

Drake, J. H., Kheiri, A., Özcan, E., Burke, E. K., 2019. Recent Advances in Selection Hyper-

heuristics. European Journal of Operational Research.

URL https://linkinghub.elsevier.com/retrieve/pii/S0377221719306526

Errico, F., Crainic, T. G., Malucelli, F., Nonato, M., 2017. A Benders Decomposition Approach

for the Symmetric TSP with Generalized Latency Arising in the Design of Semi�exible Transit

Systems. Transportation Science 51 (2), 706�722.

URL http://pubsonline.informs.org/doi/10.1287/trsc.2015.0636

Fischetti, M., Ljubic, I., Sinnl, M., 2017. Redesigning Benders Decomposition for Large-Scale

Facility Location. Management Science 63 (7), 2146�2162.

URL http://pubsonline.informs.org/doi/10.1287/mnsc.2016.2461

Galvão, R. D., Chiyoshi, F. Y., Morabito, R., 2005. Towards uni�ed formulations and extensions

of two classical probabilistic location models. Computers & Operations Research 32 (1), 15�33.

URL https://linkinghub.elsevier.com/retrieve/pii/S0305054803002004

Gendron, B., Lucena, A., da Cunha, A. S., Simonetti, L., 2014. Benders Decomposition, Branch-

and-Cut, and Hybrid Algorithms for the Minimum Connected Dominating Set Problem. IN-

FORMS Journal on Computing 26 (4), 645�657.

URL http://pubsonline.informs.org/doi/abs/10.1287/ijoc.2013.0589

Gendron, B., Scutellà, M. G., Garroppo, R. G., Nencioni, G., Tavanti, L., 2016. A branch-and-

Benders-cut method for nonlinear power design in green wireless local area networks. European

Journal of Operational Research 255 (1), 151�162.

URL http://linkinghub.elsevier.com/retrieve/pii/S0377221716302958

Gogna, A., Tayal, A., dec 2013. Metaheuristics: review and application. Journal of Experimental

& Theoretical Arti�cial Intelligence 25 (4), 503�526.

URL http://dx.doi.org/10.1080/0952813X.2013.782347

Han, L., Kendall, G., 2003. Guided Operators for a Hyper-Heuristic Genetic Algorithm. In:

Lecture Notes in Computer Science. Vol. 2903. pp. 807�820.

URL http://link.springer.com/10.1007/978-3-540-24581-0{_}69

Hutter, F., Hoos, H. H., Leyton-Brown, K., Stützle, T., 2009. Paramils: An automatic algorithm

con�guration framework. Journal of Arti�cial Intelligence Research 36 (1), 267�306.

URL http://dl.acm.org/citation.cfm?id=1734953.1734959

34

http://dx.doi.org/10.1007/s101070100263
https://linkinghub.elsevier.com/retrieve/pii/S0377221705007356
https://linkinghub.elsevier.com/retrieve/pii/S0377221719306526
http://pubsonline.informs.org/doi/10.1287/trsc.2015.0636
http://pubsonline.informs.org/doi/10.1287/mnsc.2016.2461
https://linkinghub.elsevier.com/retrieve/pii/S0305054803002004
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.2013.0589
http://linkinghub.elsevier.com/retrieve/pii/S0377221716302958
http://dx.doi.org/10.1080/0952813X.2013.782347
http://link.springer.com/10.1007/978-3-540-24581-0{_}69
http://dl.acm.org/citation.cfm?id=1734953.1734959

Jamshidi, A., Hajizadeh, S., Su, Z., Naeimi, M., Núñez, A., Dollevoet, R., Schutter, B. D., Li,

Z., 2018. A decision support approach for condition-based maintenance of rails based on big

data analysis. Transportation Research Part C: Emerging Technologies 95, 185 � 206.

URL http://www.sciencedirect.com/science/article/pii/S0968090X18309859

Karakati£, S., Podgorelec, V., 2015. A survey of genetic algorithms for solving multi depot vehicle

routing problem. Applied Soft Computing Journal 27, 519�532.

Kasaei, M., Salman, F. S., 2016. Arc routing problems to restore connectivity of a road network.

Transportation Research Part E: Logistics and Transportation Review 95, 177�206.

URL http://dx.doi.org/10.1016/j.tre.2016.09.012

Kim, S., Shin, Y., Lee, G. M., Moon, I., 2018. Network repair crew scheduling for short-term

disasters. Applied Mathematical Modelling 64, 510�523.

URL https://doi.org/10.1016/j.apm.2018.07.047

Kumar, R., Kumar, N., Karambir, 2012. A Comparative Analysis of PMX , CX and OX Crossover

operators for solving Travelling Salesman Problem. International Journal of Latest Research

in Science and Technology 1 (2), 98�101.

URL http://www.mnkjournals.com/ijlrst{_}files/download/Vol1Issue2/303-Naveen.

pdf

Larranaga, P., Kuijpers, C., Murga, R., Inza, I., Dizdarevic, S., 1999. Genetic Algorithms for

the Travelling Salesman Problem: A Review of Representations and Operators. Arti�cial In-

telligence Review 13 (Holland 1975), 129�170.

Li, H., Jian, X., Chang, X., Lu, Y., 2018. The generalized rollon-rollo� vehicle routing problem

and savings-based algorithm. Transportation Research Part B: Methodological 113, 1�23.

URL https://doi.org/10.1016/j.trb.2018.05.005

Lin, Z.-Z., Bean, J. C., White, C. C., 2004. A Hybrid Genetic/Optimization Algorithm for Finite-

Horizon, Partially Observed Markov Decision Processes. INFORMS Journal on Computing

16 (1), 27�38.

URL http://pubsonline.informs.org/doi/10.1287/ijoc.1020.0024

Maya-Duque, P. A., Dolinskaya, I. S., Sörensen, K., 2016. Network repair crew scheduling and

routing for emergency relief distribution problem. European Journal of Operational Research

248 (1), 272�285.

URL http://www.sciencedirect.com/science/article/pii/S0377221715005408

Montero, E., Ri�, M.-c., Neveu, B., 2014. A beginner's guide to tuning methods. Applied Soft

Computing 17, 39�51.

URL http://dx.doi.org/10.1016/j.asoc.2013.12.017

Moreno, A., Alem, D., Ferreira, D., 2016. Heuristic approaches for the multiperiod location-

transportation problem with reuse of vehicles in emergency logistics. Computers & Operations

35

http://www.sciencedirect.com/science/article/pii/S0968090X18309859
http://dx.doi.org/10.1016/j.tre.2016.09.012
https://doi.org/10.1016/j.apm.2018.07.047
http://www.mnkjournals.com/ijlrst{_}files/download/Vol 1 Issue 2/303- Naveen.pdf
http://www.mnkjournals.com/ijlrst{_}files/download/Vol 1 Issue 2/303- Naveen.pdf
https://doi.org/10.1016/j.trb.2018.05.005
http://pubsonline.informs.org/doi/10.1287/ijoc.1020.0024
http://www.sciencedirect.com/science/article/pii/S0377221715005408
http://dx.doi.org/10.1016/j.asoc.2013.12.017

Research 69, 79�96.

URL http://dx.doi.org/10.1016/j.cor.2015.12.002

Moreno, A., Alem, D., Ferreira, D., Clark, A., 2018. An e�ective two-stage stochastic multi-trip

location-transportation model with social concerns in relief supply chains. European Journal

of Operational Research 269 (3), 1050�1071.

URL https://doi.org/10.1016/j.ejor.2018.02.022

Moreno, A., Munari, P., Alem, D., 2019. A branch-and-Benders-cut algorithm for the Crew

Scheduling and Routing Problem in road restoration. European Journal of Operational Re-

search 275 (1), 16�34.

URL https://doi.org/10.1016/j.ejor.2018.11.004

Morshedlou, N., González, A. D., Barker, K., 2018. Work crew routing problem for infrastructure

network restoration. Transportation Research Part B: Methodological 118, 66�89.

URL https://linkinghub.elsevier.com/retrieve/pii/S0191261518303539

Ohlmann, J. W., Thomas, B. W., 2007. A Compressed-Annealing Heuristic for the Traveling

Salesman Problem with Time Windows. INFORMS Journal on Computing 19 (1), 80�90.

Öncan, T., Altinel, I. K., Laporte, G., 2009. A comparative analysis of several asymmetric

traveling salesman problem formulations. Computers & Operations Research 36 (3), 637�654.

URL http://linkinghub.elsevier.com/retrieve/pii/S0305054807002468

Özdamar, L., Tüzün Aksu, D., Ergüne³, B., 2014. Coordinating debris cleanup operations in

post disaster road networks. Socio-Economic Planning Sciences 48 (4), 249�262.

URL http://www.sciencedirect.com/science/article/pii/S0038012114000408

Poojari, C. A., Beasley, J. E., 2009. Improving benders decomposition using a genetic algorithm.

European Journal of Operational Research 199 (1), 89�97.

URL http://www.sciencedirect.com/science/article/pii/S0377221708009740

Pramudita, A., Taniguchi, E., 2014. Model of debris collection operation after disasters and its

application in urban area. International Journal of Urban Sciences 18 (2), 218�243.

URL http://www.tandfonline.com/doi/abs/10.1080/12265934.2014.929507

Pramudita, A., Taniguchi, E., Qureshi, A. G., 2012. Undirected Capacitated Arc Routing Prob-

lems in Debris Collection Operation After Disaster. Infrastructure Planning and Management

68 (5), 805�813.

Rahmaniani, R., Crainic, T. G., Gendreau, M., Rei, W., 2017. The Benders decomposition

algorithm: A literature review. European Journal of Operational Research 259 (3), 801�817.

URL http://dx.doi.org/10.1016/j.ejor.2016.12.005

Raidl, G. R., 2015. Decomposition based hybrid metaheuristics. European Journal of Operational

Research 244 (1), 66�76.

URL http://linkinghub.elsevier.com/retrieve/pii/S0377221714009874

36

http://dx.doi.org/10.1016/j.cor.2015.12.002
https://doi.org/10.1016/j.ejor.2018.02.022
https://doi.org/10.1016/j.ejor.2018.11.004
https://linkinghub.elsevier.com/retrieve/pii/S0191261518303539
http://linkinghub.elsevier.com/retrieve/pii/S0305054807002468
http://www.sciencedirect.com/science/article/pii/S0038012114000408
http://www.sciencedirect.com/science/article/pii/S0377221708009740
http://www.tandfonline.com/doi/abs/10.1080/12265934.2014.929507
http://dx.doi.org/10.1016/j.ejor.2016.12.005
http://linkinghub.elsevier.com/retrieve/pii/S0377221714009874

Rei, W., Cordeau, J.-F., Gendreau, M., Soriano, P., 2009. Accelerating Benders Decomposition

by Local Branching. INFORMS Journal on Computing 21 (2), 333�345.

URL http://pubsonline.informs.org/doi/10.1287/ijoc.1080.0296

Salazar-González, J.-J., Santos-Hernández, B., 2015. The split-demand one-commodity pickup-

and-delivery travelling salesman problem. Transportation Research Part B: Methodological 75,

58�73.

URL https://linkinghub.elsevier.com/retrieve/pii/S0191261515000429

Shao, S., Sherali, H. D., Haouari, M., 2017. A Novel Model and Decomposition Approach for

the Integrated Airline Fleet Assignment, Aircraft Routing, and Crew Pairing Problem. Trans-

portation Science 51 (1), 233�249.

URL http://pubsonline.informs.org/doi/10.1287/trsc.2015.0623

Shin, Y., Kim, S., Moon, I., 2019. Integrated optimal scheduling of repair crew and relief vehicle

after disaster. Computers and Operations Research 105, 237�247.

URL https://doi.org/10.1016/j.cor.2019.01.015

Su, Z., Jamshidi, A., Núñez, A., Baldi, S., De Schutter, B., 2019. Integrated condition-based track

maintenance planning and crew scheduling of railway networks. Transportation Research Part

C: Emerging Technologies 105 (June), 359�384.

URL https://doi.org/10.1016/j.trc.2019.05.045

Ta³kin, Z. C., Cevik, M., 2013. Combinatorial Benders cuts for decomposing IMRT �uence maps

using rectangular apertures. Computers & Operations Research 40 (9), 2178�2186.

Yan, S., Chu, J. C., Shih, Y.-L., 2014. Optimal scheduling for highway emergency repairs under

large-scale supply-demand perturbations. IEEE Transactions on Intelligent Transportation

Systems 15 (6), 2378�2393.

Zhang, Y., D'Ariano, A., He, B., Peng, Q., 2019. Microscopic optimization model and algorithm

for integrating train timetabling and track maintenance task scheduling. Transportation Re-

search Part B: Methodological 127, 237�278.

URL https://doi.org/10.1016/j.trb.2019.07.010

37

http://pubsonline.informs.org/doi/10.1287/ijoc.1080.0296
https://linkinghub.elsevier.com/retrieve/pii/S0191261515000429
http://pubsonline.informs.org/doi/10.1287/trsc.2015.0623
https://doi.org/10.1016/j.cor.2019.01.015
https://doi.org/10.1016/j.trc.2019.05.045
https://doi.org/10.1016/j.trb.2019.07.010

LaTeX Source Files
Click here to download LaTeX Source Files: Latex_files.zip

http://ees.elsevier.com/cor/download.aspx?id=321175&guid=c502df12-087a-45e5-b4e5-3c7bd8b1a49c&scheme=1

Alfredo Moreno: Conceptualization, Methodology, Software, Investigation, Formal

Analysis, Writing- Original draft preparation. Pedro Munari.: Validation, Data curation,

Writing- Original draft preparation, Writing- Reviewing and Editing, Supervision, Funding

acquisition. Douglas Alem: Conceptualization, Writing- Original draft preparation, Writing-

Reviewing and Editing, Supervision, Funding acquisition.

*Credit Author Statement

